| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called LICENSE.GPL. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| *****************************************************************************/ |
| |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| |
| #include <net/mac80211.h> |
| |
| #include "iwl-commands.h" |
| #include "iwl-dev.h" |
| #include "iwl-core.h" |
| #include "iwl-debug.h" |
| #include "iwl-eeprom.h" |
| #include "iwl-io.h" |
| |
| /************************** EEPROM BANDS **************************** |
| * |
| * The iwl_eeprom_band definitions below provide the mapping from the |
| * EEPROM contents to the specific channel number supported for each |
| * band. |
| * |
| * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3 |
| * definition below maps to physical channel 42 in the 5.2GHz spectrum. |
| * The specific geography and calibration information for that channel |
| * is contained in the eeprom map itself. |
| * |
| * During init, we copy the eeprom information and channel map |
| * information into priv->channel_info_24/52 and priv->channel_map_24/52 |
| * |
| * channel_map_24/52 provides the index in the channel_info array for a |
| * given channel. We have to have two separate maps as there is channel |
| * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and |
| * band_2 |
| * |
| * A value of 0xff stored in the channel_map indicates that the channel |
| * is not supported by the hardware at all. |
| * |
| * A value of 0xfe in the channel_map indicates that the channel is not |
| * valid for Tx with the current hardware. This means that |
| * while the system can tune and receive on a given channel, it may not |
| * be able to associate or transmit any frames on that |
| * channel. There is no corresponding channel information for that |
| * entry. |
| * |
| *********************************************************************/ |
| |
| /* 2.4 GHz */ |
| const u8 iwl_eeprom_band_1[14] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 |
| }; |
| |
| /* 5.2 GHz bands */ |
| static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */ |
| 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 |
| }; |
| |
| static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */ |
| 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 |
| }; |
| |
| static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */ |
| 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 |
| }; |
| |
| static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */ |
| 145, 149, 153, 157, 161, 165 |
| }; |
| |
| static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */ |
| 1, 2, 3, 4, 5, 6, 7 |
| }; |
| |
| static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */ |
| 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 |
| }; |
| |
| /** |
| * struct iwl_txpwr_section: eeprom section information |
| * @offset: indirect address into eeprom image |
| * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section |
| * @band: band type for the section |
| * @is_common - true: common section, false: channel section |
| * @is_cck - true: cck section, false: not cck section |
| * @is_ht_40 - true: all channel in the section are HT40 channel, |
| * false: legacy or HT 20 MHz |
| * ignore if it is common section |
| * @iwl_eeprom_section_channel: channel array in the section, |
| * ignore if common section |
| */ |
| struct iwl_txpwr_section { |
| u32 offset; |
| u8 count; |
| enum ieee80211_band band; |
| bool is_common; |
| bool is_cck; |
| bool is_ht40; |
| u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS]; |
| }; |
| |
| /** |
| * section 1 - 3 are regulatory tx power apply to all channels based on |
| * modulation: CCK, OFDM |
| * Band: 2.4GHz, 5.2GHz |
| * section 4 - 10 are regulatory tx power apply to specified channels |
| * For example: |
| * 1L - Channel 1 Legacy |
| * 1HT - Channel 1 HT |
| * (1,+1) - Channel 1 HT40 "_above_" |
| * |
| * Section 1: all CCK channels |
| * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels |
| * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels |
| * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT |
| * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1) |
| * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT |
| * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1) |
| * Section 8: 2.4 GHz channel: 13L, 13HT |
| * Section 9: 2.4 GHz channel: 140L, 140HT |
| * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1) |
| * |
| */ |
| static const struct iwl_txpwr_section enhinfo[] = { |
| { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false }, |
| { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false }, |
| { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false }, |
| { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ, |
| false, false, false, |
| {1, 1, 2, 2, 10, 10, 11, 11 } }, |
| { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ, |
| false, false, true, |
| { 1, 2, 6, 7, 9 } }, |
| { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ, |
| false, false, false, |
| { 36, 64, 100, 36, 64, 100 } }, |
| { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ, |
| false, false, true, |
| { 36, 60, 100 } }, |
| { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ, |
| false, false, false, |
| { 13, 13 } }, |
| { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ, |
| false, false, false, |
| { 140, 140 } }, |
| { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ, |
| false, false, true, |
| { 132, 44 } }, |
| }; |
| |
| /****************************************************************************** |
| * |
| * EEPROM related functions |
| * |
| ******************************************************************************/ |
| |
| int iwlcore_eeprom_verify_signature(struct iwl_priv *priv) |
| { |
| u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK; |
| int ret = 0; |
| |
| IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp); |
| switch (gp) { |
| case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP: |
| if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) { |
| IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n", |
| gp); |
| ret = -ENOENT; |
| } |
| break; |
| case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K: |
| case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K: |
| if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) { |
| IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp); |
| ret = -ENOENT; |
| } |
| break; |
| case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP: |
| default: |
| IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, " |
| "EEPROM_GP=0x%08x\n", |
| (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) |
| ? "OTP" : "EEPROM", gp); |
| ret = -ENOENT; |
| break; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(iwlcore_eeprom_verify_signature); |
| |
| static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode) |
| { |
| u32 otpgp; |
| |
| otpgp = iwl_read32(priv, CSR_OTP_GP_REG); |
| if (mode == IWL_OTP_ACCESS_ABSOLUTE) |
| iwl_clear_bit(priv, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_OTP_ACCESS_MODE); |
| else |
| iwl_set_bit(priv, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_OTP_ACCESS_MODE); |
| } |
| |
| static int iwlcore_get_nvm_type(struct iwl_priv *priv) |
| { |
| u32 otpgp; |
| int nvm_type; |
| |
| /* OTP only valid for CP/PP and after */ |
| switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) { |
| case CSR_HW_REV_TYPE_NONE: |
| IWL_ERR(priv, "Unknown hardware type\n"); |
| return -ENOENT; |
| case CSR_HW_REV_TYPE_3945: |
| case CSR_HW_REV_TYPE_4965: |
| case CSR_HW_REV_TYPE_5300: |
| case CSR_HW_REV_TYPE_5350: |
| case CSR_HW_REV_TYPE_5100: |
| case CSR_HW_REV_TYPE_5150: |
| nvm_type = NVM_DEVICE_TYPE_EEPROM; |
| break; |
| default: |
| otpgp = iwl_read32(priv, CSR_OTP_GP_REG); |
| if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT) |
| nvm_type = NVM_DEVICE_TYPE_OTP; |
| else |
| nvm_type = NVM_DEVICE_TYPE_EEPROM; |
| break; |
| } |
| return nvm_type; |
| } |
| |
| /* |
| * The device's EEPROM semaphore prevents conflicts between driver and uCode |
| * when accessing the EEPROM; each access is a series of pulses to/from the |
| * EEPROM chip, not a single event, so even reads could conflict if they |
| * weren't arbitrated by the semaphore. |
| */ |
| int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv) |
| { |
| u16 count; |
| int ret; |
| |
| for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { |
| /* Request semaphore */ |
| iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); |
| |
| /* See if we got it */ |
| ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, |
| EEPROM_SEM_TIMEOUT); |
| if (ret >= 0) { |
| IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n", |
| count+1); |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore); |
| |
| void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv) |
| { |
| iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); |
| |
| } |
| EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore); |
| |
| const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) |
| { |
| BUG_ON(offset >= priv->cfg->base_params->eeprom_size); |
| return &priv->eeprom[offset]; |
| } |
| EXPORT_SYMBOL(iwlcore_eeprom_query_addr); |
| |
| static int iwl_init_otp_access(struct iwl_priv *priv) |
| { |
| int ret; |
| |
| /* Enable 40MHz radio clock */ |
| _iwl_write32(priv, CSR_GP_CNTRL, |
| _iwl_read32(priv, CSR_GP_CNTRL) | |
| CSR_GP_CNTRL_REG_FLAG_INIT_DONE); |
| |
| /* wait for clock to be ready */ |
| ret = iwl_poll_bit(priv, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, |
| 25000); |
| if (ret < 0) |
| IWL_ERR(priv, "Time out access OTP\n"); |
| else { |
| iwl_set_bits_prph(priv, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_RESET_REQ); |
| udelay(5); |
| iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_RESET_REQ); |
| |
| /* |
| * CSR auto clock gate disable bit - |
| * this is only applicable for HW with OTP shadow RAM |
| */ |
| if (priv->cfg->base_params->shadow_ram_support) |
| iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| } |
| return ret; |
| } |
| |
| static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data) |
| { |
| int ret = 0; |
| u32 r; |
| u32 otpgp; |
| |
| _iwl_write32(priv, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); |
| ret = iwl_poll_bit(priv, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| IWL_EEPROM_ACCESS_TIMEOUT); |
| if (ret < 0) { |
| IWL_ERR(priv, "Time out reading OTP[%d]\n", addr); |
| return ret; |
| } |
| r = _iwl_read_direct32(priv, CSR_EEPROM_REG); |
| /* check for ECC errors: */ |
| otpgp = iwl_read32(priv, CSR_OTP_GP_REG); |
| if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) { |
| /* stop in this case */ |
| /* set the uncorrectable OTP ECC bit for acknowledgement */ |
| iwl_set_bit(priv, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); |
| IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n"); |
| return -EINVAL; |
| } |
| if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) { |
| /* continue in this case */ |
| /* set the correctable OTP ECC bit for acknowledgement */ |
| iwl_set_bit(priv, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK); |
| IWL_ERR(priv, "Correctable OTP ECC error, continue read\n"); |
| } |
| *eeprom_data = cpu_to_le16(r >> 16); |
| return 0; |
| } |
| |
| /* |
| * iwl_is_otp_empty: check for empty OTP |
| */ |
| static bool iwl_is_otp_empty(struct iwl_priv *priv) |
| { |
| u16 next_link_addr = 0; |
| __le16 link_value; |
| bool is_empty = false; |
| |
| /* locate the beginning of OTP link list */ |
| if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) { |
| if (!link_value) { |
| IWL_ERR(priv, "OTP is empty\n"); |
| is_empty = true; |
| } |
| } else { |
| IWL_ERR(priv, "Unable to read first block of OTP list.\n"); |
| is_empty = true; |
| } |
| |
| return is_empty; |
| } |
| |
| |
| /* |
| * iwl_find_otp_image: find EEPROM image in OTP |
| * finding the OTP block that contains the EEPROM image. |
| * the last valid block on the link list (the block _before_ the last block) |
| * is the block we should read and used to configure the device. |
| * If all the available OTP blocks are full, the last block will be the block |
| * we should read and used to configure the device. |
| * only perform this operation if shadow RAM is disabled |
| */ |
| static int iwl_find_otp_image(struct iwl_priv *priv, |
| u16 *validblockaddr) |
| { |
| u16 next_link_addr = 0, valid_addr; |
| __le16 link_value = 0; |
| int usedblocks = 0; |
| |
| /* set addressing mode to absolute to traverse the link list */ |
| iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE); |
| |
| /* checking for empty OTP or error */ |
| if (iwl_is_otp_empty(priv)) |
| return -EINVAL; |
| |
| /* |
| * start traverse link list |
| * until reach the max number of OTP blocks |
| * different devices have different number of OTP blocks |
| */ |
| do { |
| /* save current valid block address |
| * check for more block on the link list |
| */ |
| valid_addr = next_link_addr; |
| next_link_addr = le16_to_cpu(link_value) * sizeof(u16); |
| IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n", |
| usedblocks, next_link_addr); |
| if (iwl_read_otp_word(priv, next_link_addr, &link_value)) |
| return -EINVAL; |
| if (!link_value) { |
| /* |
| * reach the end of link list, return success and |
| * set address point to the starting address |
| * of the image |
| */ |
| *validblockaddr = valid_addr; |
| /* skip first 2 bytes (link list pointer) */ |
| *validblockaddr += 2; |
| return 0; |
| } |
| /* more in the link list, continue */ |
| usedblocks++; |
| } while (usedblocks <= priv->cfg->base_params->max_ll_items); |
| |
| /* OTP has no valid blocks */ |
| IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n"); |
| return -EINVAL; |
| } |
| |
| /** |
| * iwl_eeprom_init - read EEPROM contents |
| * |
| * Load the EEPROM contents from adapter into priv->eeprom |
| * |
| * NOTE: This routine uses the non-debug IO access functions. |
| */ |
| int iwl_eeprom_init(struct iwl_priv *priv) |
| { |
| __le16 *e; |
| u32 gp = iwl_read32(priv, CSR_EEPROM_GP); |
| int sz; |
| int ret; |
| u16 addr; |
| u16 validblockaddr = 0; |
| u16 cache_addr = 0; |
| |
| priv->nvm_device_type = iwlcore_get_nvm_type(priv); |
| if (priv->nvm_device_type == -ENOENT) |
| return -ENOENT; |
| /* allocate eeprom */ |
| sz = priv->cfg->base_params->eeprom_size; |
| IWL_DEBUG_INFO(priv, "NVM size = %d\n", sz); |
| priv->eeprom = kzalloc(sz, GFP_KERNEL); |
| if (!priv->eeprom) { |
| ret = -ENOMEM; |
| goto alloc_err; |
| } |
| e = (__le16 *)priv->eeprom; |
| |
| priv->cfg->ops->lib->apm_ops.init(priv); |
| |
| ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv); |
| if (ret < 0) { |
| IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp); |
| ret = -ENOENT; |
| goto err; |
| } |
| |
| /* Make sure driver (instead of uCode) is allowed to read EEPROM */ |
| ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv); |
| if (ret < 0) { |
| IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n"); |
| ret = -ENOENT; |
| goto err; |
| } |
| |
| if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) { |
| |
| ret = iwl_init_otp_access(priv); |
| if (ret) { |
| IWL_ERR(priv, "Failed to initialize OTP access.\n"); |
| ret = -ENOENT; |
| goto done; |
| } |
| _iwl_write32(priv, CSR_EEPROM_GP, |
| iwl_read32(priv, CSR_EEPROM_GP) & |
| ~CSR_EEPROM_GP_IF_OWNER_MSK); |
| |
| iwl_set_bit(priv, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK | |
| CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); |
| /* traversing the linked list if no shadow ram supported */ |
| if (!priv->cfg->base_params->shadow_ram_support) { |
| if (iwl_find_otp_image(priv, &validblockaddr)) { |
| ret = -ENOENT; |
| goto done; |
| } |
| } |
| for (addr = validblockaddr; addr < validblockaddr + sz; |
| addr += sizeof(u16)) { |
| __le16 eeprom_data; |
| |
| ret = iwl_read_otp_word(priv, addr, &eeprom_data); |
| if (ret) |
| goto done; |
| e[cache_addr / 2] = eeprom_data; |
| cache_addr += sizeof(u16); |
| } |
| } else { |
| /* eeprom is an array of 16bit values */ |
| for (addr = 0; addr < sz; addr += sizeof(u16)) { |
| u32 r; |
| |
| _iwl_write32(priv, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); |
| |
| ret = iwl_poll_bit(priv, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| IWL_EEPROM_ACCESS_TIMEOUT); |
| if (ret < 0) { |
| IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr); |
| goto done; |
| } |
| r = _iwl_read_direct32(priv, CSR_EEPROM_REG); |
| e[addr / 2] = cpu_to_le16(r >> 16); |
| } |
| } |
| |
| IWL_DEBUG_INFO(priv, "NVM Type: %s, version: 0x%x\n", |
| (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) |
| ? "OTP" : "EEPROM", |
| iwl_eeprom_query16(priv, EEPROM_VERSION)); |
| |
| ret = 0; |
| done: |
| priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv); |
| |
| err: |
| if (ret) |
| iwl_eeprom_free(priv); |
| /* Reset chip to save power until we load uCode during "up". */ |
| priv->cfg->ops->lib->apm_ops.stop(priv); |
| alloc_err: |
| return ret; |
| } |
| EXPORT_SYMBOL(iwl_eeprom_init); |
| |
| void iwl_eeprom_free(struct iwl_priv *priv) |
| { |
| kfree(priv->eeprom); |
| priv->eeprom = NULL; |
| } |
| EXPORT_SYMBOL(iwl_eeprom_free); |
| |
| int iwl_eeprom_check_version(struct iwl_priv *priv) |
| { |
| u16 eeprom_ver; |
| u16 calib_ver; |
| |
| eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION); |
| calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv); |
| |
| if (eeprom_ver < priv->cfg->eeprom_ver || |
| calib_ver < priv->cfg->eeprom_calib_ver) |
| goto err; |
| |
| IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n", |
| eeprom_ver, calib_ver); |
| |
| return 0; |
| err: |
| IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n", |
| eeprom_ver, priv->cfg->eeprom_ver, |
| calib_ver, priv->cfg->eeprom_calib_ver); |
| return -EINVAL; |
| |
| } |
| EXPORT_SYMBOL(iwl_eeprom_check_version); |
| |
| const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) |
| { |
| return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset); |
| } |
| EXPORT_SYMBOL(iwl_eeprom_query_addr); |
| |
| u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset) |
| { |
| if (!priv->eeprom) |
| return 0; |
| return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8); |
| } |
| EXPORT_SYMBOL(iwl_eeprom_query16); |
| |
| void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac) |
| { |
| const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv, |
| EEPROM_MAC_ADDRESS); |
| memcpy(mac, addr, ETH_ALEN); |
| } |
| EXPORT_SYMBOL(iwl_eeprom_get_mac); |
| |
| static void iwl_init_band_reference(const struct iwl_priv *priv, |
| int eep_band, int *eeprom_ch_count, |
| const struct iwl_eeprom_channel **eeprom_ch_info, |
| const u8 **eeprom_ch_index) |
| { |
| u32 offset = priv->cfg->ops->lib-> |
| eeprom_ops.regulatory_bands[eep_band - 1]; |
| switch (eep_band) { |
| case 1: /* 2.4GHz band */ |
| *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1); |
| *eeprom_ch_info = (struct iwl_eeprom_channel *) |
| iwl_eeprom_query_addr(priv, offset); |
| *eeprom_ch_index = iwl_eeprom_band_1; |
| break; |
| case 2: /* 4.9GHz band */ |
| *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2); |
| *eeprom_ch_info = (struct iwl_eeprom_channel *) |
| iwl_eeprom_query_addr(priv, offset); |
| *eeprom_ch_index = iwl_eeprom_band_2; |
| break; |
| case 3: /* 5.2GHz band */ |
| *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3); |
| *eeprom_ch_info = (struct iwl_eeprom_channel *) |
| iwl_eeprom_query_addr(priv, offset); |
| *eeprom_ch_index = iwl_eeprom_band_3; |
| break; |
| case 4: /* 5.5GHz band */ |
| *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4); |
| *eeprom_ch_info = (struct iwl_eeprom_channel *) |
| iwl_eeprom_query_addr(priv, offset); |
| *eeprom_ch_index = iwl_eeprom_band_4; |
| break; |
| case 5: /* 5.7GHz band */ |
| *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5); |
| *eeprom_ch_info = (struct iwl_eeprom_channel *) |
| iwl_eeprom_query_addr(priv, offset); |
| *eeprom_ch_index = iwl_eeprom_band_5; |
| break; |
| case 6: /* 2.4GHz ht40 channels */ |
| *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6); |
| *eeprom_ch_info = (struct iwl_eeprom_channel *) |
| iwl_eeprom_query_addr(priv, offset); |
| *eeprom_ch_index = iwl_eeprom_band_6; |
| break; |
| case 7: /* 5 GHz ht40 channels */ |
| *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7); |
| *eeprom_ch_info = (struct iwl_eeprom_channel *) |
| iwl_eeprom_query_addr(priv, offset); |
| *eeprom_ch_index = iwl_eeprom_band_7; |
| break; |
| default: |
| BUG(); |
| return; |
| } |
| } |
| |
| #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \ |
| ? # x " " : "") |
| |
| /** |
| * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv. |
| * |
| * Does not set up a command, or touch hardware. |
| */ |
| static int iwl_mod_ht40_chan_info(struct iwl_priv *priv, |
| enum ieee80211_band band, u16 channel, |
| const struct iwl_eeprom_channel *eeprom_ch, |
| u8 clear_ht40_extension_channel) |
| { |
| struct iwl_channel_info *ch_info; |
| |
| ch_info = (struct iwl_channel_info *) |
| iwl_get_channel_info(priv, band, channel); |
| |
| if (!is_channel_valid(ch_info)) |
| return -1; |
| |
| IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):" |
| " Ad-Hoc %ssupported\n", |
| ch_info->channel, |
| is_channel_a_band(ch_info) ? |
| "5.2" : "2.4", |
| CHECK_AND_PRINT(IBSS), |
| CHECK_AND_PRINT(ACTIVE), |
| CHECK_AND_PRINT(RADAR), |
| CHECK_AND_PRINT(WIDE), |
| CHECK_AND_PRINT(DFS), |
| eeprom_ch->flags, |
| eeprom_ch->max_power_avg, |
| ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) |
| && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? |
| "" : "not "); |
| |
| ch_info->ht40_eeprom = *eeprom_ch; |
| ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg; |
| ch_info->ht40_flags = eeprom_ch->flags; |
| if (eeprom_ch->flags & EEPROM_CHANNEL_VALID) |
| ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel; |
| |
| return 0; |
| } |
| |
| /** |
| * iwl_get_max_txpower_avg - get the highest tx power from all chains. |
| * find the highest tx power from all chains for the channel |
| */ |
| static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv, |
| struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, |
| int element, s8 *max_txpower_in_half_dbm) |
| { |
| s8 max_txpower_avg = 0; /* (dBm) */ |
| |
| IWL_DEBUG_INFO(priv, "%d - " |
| "chain_a: %d dB chain_b: %d dB " |
| "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n", |
| element, |
| enhanced_txpower[element].chain_a_max >> 1, |
| enhanced_txpower[element].chain_b_max >> 1, |
| enhanced_txpower[element].chain_c_max >> 1, |
| enhanced_txpower[element].mimo2_max >> 1, |
| enhanced_txpower[element].mimo3_max >> 1); |
| /* Take the highest tx power from any valid chains */ |
| if ((priv->cfg->valid_tx_ant & ANT_A) && |
| (enhanced_txpower[element].chain_a_max > max_txpower_avg)) |
| max_txpower_avg = enhanced_txpower[element].chain_a_max; |
| if ((priv->cfg->valid_tx_ant & ANT_B) && |
| (enhanced_txpower[element].chain_b_max > max_txpower_avg)) |
| max_txpower_avg = enhanced_txpower[element].chain_b_max; |
| if ((priv->cfg->valid_tx_ant & ANT_C) && |
| (enhanced_txpower[element].chain_c_max > max_txpower_avg)) |
| max_txpower_avg = enhanced_txpower[element].chain_c_max; |
| if (((priv->cfg->valid_tx_ant == ANT_AB) | |
| (priv->cfg->valid_tx_ant == ANT_BC) | |
| (priv->cfg->valid_tx_ant == ANT_AC)) && |
| (enhanced_txpower[element].mimo2_max > max_txpower_avg)) |
| max_txpower_avg = enhanced_txpower[element].mimo2_max; |
| if ((priv->cfg->valid_tx_ant == ANT_ABC) && |
| (enhanced_txpower[element].mimo3_max > max_txpower_avg)) |
| max_txpower_avg = enhanced_txpower[element].mimo3_max; |
| |
| /* |
| * max. tx power in EEPROM is in 1/2 dBm format |
| * convert from 1/2 dBm to dBm (round-up convert) |
| * but we also do not want to loss 1/2 dBm resolution which |
| * will impact performance |
| */ |
| *max_txpower_in_half_dbm = max_txpower_avg; |
| return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1); |
| } |
| |
| /** |
| * iwl_update_common_txpower: update channel tx power |
| * update tx power per band based on EEPROM enhanced tx power info. |
| */ |
| static s8 iwl_update_common_txpower(struct iwl_priv *priv, |
| struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, |
| int section, int element, s8 *max_txpower_in_half_dbm) |
| { |
| struct iwl_channel_info *ch_info; |
| int ch; |
| bool is_ht40 = false; |
| s8 max_txpower_avg; /* (dBm) */ |
| |
| /* it is common section, contain all type (Legacy, HT and HT40) |
| * based on the element in the section to determine |
| * is it HT 40 or not |
| */ |
| if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX) |
| is_ht40 = true; |
| max_txpower_avg = |
| iwl_get_max_txpower_avg(priv, enhanced_txpower, |
| element, max_txpower_in_half_dbm); |
| |
| ch_info = priv->channel_info; |
| |
| for (ch = 0; ch < priv->channel_count; ch++) { |
| /* find matching band and update tx power if needed */ |
| if ((ch_info->band == enhinfo[section].band) && |
| (ch_info->max_power_avg < max_txpower_avg) && |
| (!is_ht40)) { |
| /* Update regulatory-based run-time data */ |
| ch_info->max_power_avg = ch_info->curr_txpow = |
| max_txpower_avg; |
| ch_info->scan_power = max_txpower_avg; |
| } |
| if ((ch_info->band == enhinfo[section].band) && is_ht40 && |
| (ch_info->ht40_max_power_avg < max_txpower_avg)) { |
| /* Update regulatory-based run-time data */ |
| ch_info->ht40_max_power_avg = max_txpower_avg; |
| } |
| ch_info++; |
| } |
| return max_txpower_avg; |
| } |
| |
| /** |
| * iwl_update_channel_txpower: update channel tx power |
| * update channel tx power based on EEPROM enhanced tx power info. |
| */ |
| static s8 iwl_update_channel_txpower(struct iwl_priv *priv, |
| struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, |
| int section, int element, s8 *max_txpower_in_half_dbm) |
| { |
| struct iwl_channel_info *ch_info; |
| int ch; |
| u8 channel; |
| s8 max_txpower_avg; /* (dBm) */ |
| |
| channel = enhinfo[section].iwl_eeprom_section_channel[element]; |
| max_txpower_avg = |
| iwl_get_max_txpower_avg(priv, enhanced_txpower, |
| element, max_txpower_in_half_dbm); |
| |
| ch_info = priv->channel_info; |
| for (ch = 0; ch < priv->channel_count; ch++) { |
| /* find matching channel and update tx power if needed */ |
| if (ch_info->channel == channel) { |
| if ((ch_info->max_power_avg < max_txpower_avg) && |
| (!enhinfo[section].is_ht40)) { |
| /* Update regulatory-based run-time data */ |
| ch_info->max_power_avg = max_txpower_avg; |
| ch_info->curr_txpow = max_txpower_avg; |
| ch_info->scan_power = max_txpower_avg; |
| } |
| if ((enhinfo[section].is_ht40) && |
| (ch_info->ht40_max_power_avg < max_txpower_avg)) { |
| /* Update regulatory-based run-time data */ |
| ch_info->ht40_max_power_avg = max_txpower_avg; |
| } |
| break; |
| } |
| ch_info++; |
| } |
| return max_txpower_avg; |
| } |
| |
| /** |
| * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info |
| */ |
| void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv) |
| { |
| int eeprom_section_count = 0; |
| int section, element; |
| struct iwl_eeprom_enhanced_txpwr *enhanced_txpower; |
| u32 offset; |
| s8 max_txpower_avg; /* (dBm) */ |
| s8 max_txpower_in_half_dbm; /* (half-dBm) */ |
| |
| /* Loop through all the sections |
| * adjust bands and channel's max tx power |
| * Set the tx_power_user_lmt to the highest power |
| * supported by any channels and chains |
| */ |
| for (section = 0; section < ARRAY_SIZE(enhinfo); section++) { |
| eeprom_section_count = enhinfo[section].count; |
| offset = enhinfo[section].offset; |
| enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *) |
| iwl_eeprom_query_addr(priv, offset); |
| |
| /* |
| * check for valid entry - |
| * different version of EEPROM might contain different set |
| * of enhanced tx power table |
| * always check for valid entry before process |
| * the information |
| */ |
| if (!enhanced_txpower->common || enhanced_txpower->reserved) |
| continue; |
| |
| for (element = 0; element < eeprom_section_count; element++) { |
| if (enhinfo[section].is_common) |
| max_txpower_avg = |
| iwl_update_common_txpower(priv, |
| enhanced_txpower, section, |
| element, |
| &max_txpower_in_half_dbm); |
| else |
| max_txpower_avg = |
| iwl_update_channel_txpower(priv, |
| enhanced_txpower, section, |
| element, |
| &max_txpower_in_half_dbm); |
| |
| /* Update the tx_power_user_lmt to the highest power |
| * supported by any channel */ |
| if (max_txpower_avg > priv->tx_power_user_lmt) |
| priv->tx_power_user_lmt = max_txpower_avg; |
| |
| /* |
| * Update the tx_power_lmt_in_half_dbm to |
| * the highest power supported by any channel |
| */ |
| if (max_txpower_in_half_dbm > |
| priv->tx_power_lmt_in_half_dbm) |
| priv->tx_power_lmt_in_half_dbm = |
| max_txpower_in_half_dbm; |
| } |
| } |
| } |
| EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower); |
| |
| #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \ |
| ? # x " " : "") |
| |
| /** |
| * iwl_init_channel_map - Set up driver's info for all possible channels |
| */ |
| int iwl_init_channel_map(struct iwl_priv *priv) |
| { |
| int eeprom_ch_count = 0; |
| const u8 *eeprom_ch_index = NULL; |
| const struct iwl_eeprom_channel *eeprom_ch_info = NULL; |
| int band, ch; |
| struct iwl_channel_info *ch_info; |
| |
| if (priv->channel_count) { |
| IWL_DEBUG_INFO(priv, "Channel map already initialized.\n"); |
| return 0; |
| } |
| |
| IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n"); |
| |
| priv->channel_count = |
| ARRAY_SIZE(iwl_eeprom_band_1) + |
| ARRAY_SIZE(iwl_eeprom_band_2) + |
| ARRAY_SIZE(iwl_eeprom_band_3) + |
| ARRAY_SIZE(iwl_eeprom_band_4) + |
| ARRAY_SIZE(iwl_eeprom_band_5); |
| |
| IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count); |
| |
| priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) * |
| priv->channel_count, GFP_KERNEL); |
| if (!priv->channel_info) { |
| IWL_ERR(priv, "Could not allocate channel_info\n"); |
| priv->channel_count = 0; |
| return -ENOMEM; |
| } |
| |
| ch_info = priv->channel_info; |
| |
| /* Loop through the 5 EEPROM bands adding them in order to the |
| * channel map we maintain (that contains additional information than |
| * what just in the EEPROM) */ |
| for (band = 1; band <= 5; band++) { |
| |
| iwl_init_band_reference(priv, band, &eeprom_ch_count, |
| &eeprom_ch_info, &eeprom_ch_index); |
| |
| /* Loop through each band adding each of the channels */ |
| for (ch = 0; ch < eeprom_ch_count; ch++) { |
| ch_info->channel = eeprom_ch_index[ch]; |
| ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ : |
| IEEE80211_BAND_5GHZ; |
| |
| /* permanently store EEPROM's channel regulatory flags |
| * and max power in channel info database. */ |
| ch_info->eeprom = eeprom_ch_info[ch]; |
| |
| /* Copy the run-time flags so they are there even on |
| * invalid channels */ |
| ch_info->flags = eeprom_ch_info[ch].flags; |
| /* First write that ht40 is not enabled, and then enable |
| * one by one */ |
| ch_info->ht40_extension_channel = |
| IEEE80211_CHAN_NO_HT40; |
| |
| if (!(is_channel_valid(ch_info))) { |
| IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - " |
| "No traffic\n", |
| ch_info->channel, |
| ch_info->flags, |
| is_channel_a_band(ch_info) ? |
| "5.2" : "2.4"); |
| ch_info++; |
| continue; |
| } |
| |
| /* Initialize regulatory-based run-time data */ |
| ch_info->max_power_avg = ch_info->curr_txpow = |
| eeprom_ch_info[ch].max_power_avg; |
| ch_info->scan_power = eeprom_ch_info[ch].max_power_avg; |
| ch_info->min_power = 0; |
| |
| IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):" |
| " Ad-Hoc %ssupported\n", |
| ch_info->channel, |
| is_channel_a_band(ch_info) ? |
| "5.2" : "2.4", |
| CHECK_AND_PRINT_I(VALID), |
| CHECK_AND_PRINT_I(IBSS), |
| CHECK_AND_PRINT_I(ACTIVE), |
| CHECK_AND_PRINT_I(RADAR), |
| CHECK_AND_PRINT_I(WIDE), |
| CHECK_AND_PRINT_I(DFS), |
| eeprom_ch_info[ch].flags, |
| eeprom_ch_info[ch].max_power_avg, |
| ((eeprom_ch_info[ch]. |
| flags & EEPROM_CHANNEL_IBSS) |
| && !(eeprom_ch_info[ch]. |
| flags & EEPROM_CHANNEL_RADAR)) |
| ? "" : "not "); |
| |
| /* Set the tx_power_user_lmt to the highest power |
| * supported by any channel */ |
| if (eeprom_ch_info[ch].max_power_avg > |
| priv->tx_power_user_lmt) |
| priv->tx_power_user_lmt = |
| eeprom_ch_info[ch].max_power_avg; |
| |
| ch_info++; |
| } |
| } |
| |
| /* Check if we do have HT40 channels */ |
| if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] == |
| EEPROM_REGULATORY_BAND_NO_HT40 && |
| priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] == |
| EEPROM_REGULATORY_BAND_NO_HT40) |
| return 0; |
| |
| /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */ |
| for (band = 6; band <= 7; band++) { |
| enum ieee80211_band ieeeband; |
| |
| iwl_init_band_reference(priv, band, &eeprom_ch_count, |
| &eeprom_ch_info, &eeprom_ch_index); |
| |
| /* EEPROM band 6 is 2.4, band 7 is 5 GHz */ |
| ieeeband = |
| (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; |
| |
| /* Loop through each band adding each of the channels */ |
| for (ch = 0; ch < eeprom_ch_count; ch++) { |
| /* Set up driver's info for lower half */ |
| iwl_mod_ht40_chan_info(priv, ieeeband, |
| eeprom_ch_index[ch], |
| &eeprom_ch_info[ch], |
| IEEE80211_CHAN_NO_HT40PLUS); |
| |
| /* Set up driver's info for upper half */ |
| iwl_mod_ht40_chan_info(priv, ieeeband, |
| eeprom_ch_index[ch] + 4, |
| &eeprom_ch_info[ch], |
| IEEE80211_CHAN_NO_HT40MINUS); |
| } |
| } |
| |
| /* for newer device (6000 series and up) |
| * EEPROM contain enhanced tx power information |
| * driver need to process addition information |
| * to determine the max channel tx power limits |
| */ |
| if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower) |
| priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(iwl_init_channel_map); |
| |
| /* |
| * iwl_free_channel_map - undo allocations in iwl_init_channel_map |
| */ |
| void iwl_free_channel_map(struct iwl_priv *priv) |
| { |
| kfree(priv->channel_info); |
| priv->channel_count = 0; |
| } |
| EXPORT_SYMBOL(iwl_free_channel_map); |
| |
| /** |
| * iwl_get_channel_info - Find driver's private channel info |
| * |
| * Based on band and channel number. |
| */ |
| const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv, |
| enum ieee80211_band band, u16 channel) |
| { |
| int i; |
| |
| switch (band) { |
| case IEEE80211_BAND_5GHZ: |
| for (i = 14; i < priv->channel_count; i++) { |
| if (priv->channel_info[i].channel == channel) |
| return &priv->channel_info[i]; |
| } |
| break; |
| case IEEE80211_BAND_2GHZ: |
| if (channel >= 1 && channel <= 14) |
| return &priv->channel_info[channel - 1]; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(iwl_get_channel_info); |
| |