| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Low-level CPU initialisation |
| * Based on arch/arm/kernel/head.S |
| * |
| * Copyright (C) 1994-2002 Russell King |
| * Copyright (C) 2003-2012 ARM Ltd. |
| * Authors: Catalin Marinas <catalin.marinas@arm.com> |
| * Will Deacon <will.deacon@arm.com> |
| */ |
| |
| #include <linux/linkage.h> |
| #include <linux/init.h> |
| #include <linux/irqchip/arm-gic-v3.h> |
| |
| #include <asm/assembler.h> |
| #include <asm/boot.h> |
| #include <asm/ptrace.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/cache.h> |
| #include <asm/cputype.h> |
| #include <asm/elf.h> |
| #include <asm/image.h> |
| #include <asm/kernel-pgtable.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/memory.h> |
| #include <asm/pgtable-hwdef.h> |
| #include <asm/pgtable.h> |
| #include <asm/page.h> |
| #include <asm/smp.h> |
| #include <asm/sysreg.h> |
| #include <asm/thread_info.h> |
| #include <asm/virt.h> |
| |
| #include "efi-header.S" |
| |
| #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET) |
| |
| #if (TEXT_OFFSET & 0xfff) != 0 |
| #error TEXT_OFFSET must be at least 4KB aligned |
| #elif (PAGE_OFFSET & 0x1fffff) != 0 |
| #error PAGE_OFFSET must be at least 2MB aligned |
| #elif TEXT_OFFSET > 0x1fffff |
| #error TEXT_OFFSET must be less than 2MB |
| #endif |
| |
| /* |
| * Kernel startup entry point. |
| * --------------------------- |
| * |
| * The requirements are: |
| * MMU = off, D-cache = off, I-cache = on or off, |
| * x0 = physical address to the FDT blob. |
| * |
| * This code is mostly position independent so you call this at |
| * __pa(PAGE_OFFSET + TEXT_OFFSET). |
| * |
| * Note that the callee-saved registers are used for storing variables |
| * that are useful before the MMU is enabled. The allocations are described |
| * in the entry routines. |
| */ |
| __HEAD |
| _head: |
| /* |
| * DO NOT MODIFY. Image header expected by Linux boot-loaders. |
| */ |
| #ifdef CONFIG_EFI |
| /* |
| * This add instruction has no meaningful effect except that |
| * its opcode forms the magic "MZ" signature required by UEFI. |
| */ |
| add x13, x18, #0x16 |
| b stext |
| #else |
| b stext // branch to kernel start, magic |
| .long 0 // reserved |
| #endif |
| le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian |
| le64sym _kernel_size_le // Effective size of kernel image, little-endian |
| le64sym _kernel_flags_le // Informative flags, little-endian |
| .quad 0 // reserved |
| .quad 0 // reserved |
| .quad 0 // reserved |
| .ascii ARM64_IMAGE_MAGIC // Magic number |
| #ifdef CONFIG_EFI |
| .long pe_header - _head // Offset to the PE header. |
| |
| pe_header: |
| __EFI_PE_HEADER |
| #else |
| .long 0 // reserved |
| #endif |
| |
| __INIT |
| |
| /* |
| * The following callee saved general purpose registers are used on the |
| * primary lowlevel boot path: |
| * |
| * Register Scope Purpose |
| * x21 stext() .. start_kernel() FDT pointer passed at boot in x0 |
| * x23 stext() .. start_kernel() physical misalignment/KASLR offset |
| * x28 __create_page_tables() callee preserved temp register |
| * x19/x20 __primary_switch() callee preserved temp registers |
| * x24 __primary_switch() .. relocate_kernel() |
| * current RELR displacement |
| */ |
| ENTRY(stext) |
| bl preserve_boot_args |
| bl el2_setup // Drop to EL1, w0=cpu_boot_mode |
| adrp x23, __PHYS_OFFSET |
| and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0 |
| bl set_cpu_boot_mode_flag |
| bl __create_page_tables |
| /* |
| * The following calls CPU setup code, see arch/arm64/mm/proc.S for |
| * details. |
| * On return, the CPU will be ready for the MMU to be turned on and |
| * the TCR will have been set. |
| */ |
| bl __cpu_setup // initialise processor |
| b __primary_switch |
| ENDPROC(stext) |
| |
| /* |
| * Preserve the arguments passed by the bootloader in x0 .. x3 |
| */ |
| preserve_boot_args: |
| mov x21, x0 // x21=FDT |
| |
| adr_l x0, boot_args // record the contents of |
| stp x21, x1, [x0] // x0 .. x3 at kernel entry |
| stp x2, x3, [x0, #16] |
| |
| dmb sy // needed before dc ivac with |
| // MMU off |
| |
| mov x1, #0x20 // 4 x 8 bytes |
| b __inval_dcache_area // tail call |
| ENDPROC(preserve_boot_args) |
| |
| /* |
| * Macro to create a table entry to the next page. |
| * |
| * tbl: page table address |
| * virt: virtual address |
| * shift: #imm page table shift |
| * ptrs: #imm pointers per table page |
| * |
| * Preserves: virt |
| * Corrupts: ptrs, tmp1, tmp2 |
| * Returns: tbl -> next level table page address |
| */ |
| .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 |
| add \tmp1, \tbl, #PAGE_SIZE |
| phys_to_pte \tmp2, \tmp1 |
| orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type |
| lsr \tmp1, \virt, #\shift |
| sub \ptrs, \ptrs, #1 |
| and \tmp1, \tmp1, \ptrs // table index |
| str \tmp2, [\tbl, \tmp1, lsl #3] |
| add \tbl, \tbl, #PAGE_SIZE // next level table page |
| .endm |
| |
| /* |
| * Macro to populate page table entries, these entries can be pointers to the next level |
| * or last level entries pointing to physical memory. |
| * |
| * tbl: page table address |
| * rtbl: pointer to page table or physical memory |
| * index: start index to write |
| * eindex: end index to write - [index, eindex] written to |
| * flags: flags for pagetable entry to or in |
| * inc: increment to rtbl between each entry |
| * tmp1: temporary variable |
| * |
| * Preserves: tbl, eindex, flags, inc |
| * Corrupts: index, tmp1 |
| * Returns: rtbl |
| */ |
| .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1 |
| .Lpe\@: phys_to_pte \tmp1, \rtbl |
| orr \tmp1, \tmp1, \flags // tmp1 = table entry |
| str \tmp1, [\tbl, \index, lsl #3] |
| add \rtbl, \rtbl, \inc // rtbl = pa next level |
| add \index, \index, #1 |
| cmp \index, \eindex |
| b.ls .Lpe\@ |
| .endm |
| |
| /* |
| * Compute indices of table entries from virtual address range. If multiple entries |
| * were needed in the previous page table level then the next page table level is assumed |
| * to be composed of multiple pages. (This effectively scales the end index). |
| * |
| * vstart: virtual address of start of range |
| * vend: virtual address of end of range |
| * shift: shift used to transform virtual address into index |
| * ptrs: number of entries in page table |
| * istart: index in table corresponding to vstart |
| * iend: index in table corresponding to vend |
| * count: On entry: how many extra entries were required in previous level, scales |
| * our end index. |
| * On exit: returns how many extra entries required for next page table level |
| * |
| * Preserves: vstart, vend, shift, ptrs |
| * Returns: istart, iend, count |
| */ |
| .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count |
| lsr \iend, \vend, \shift |
| mov \istart, \ptrs |
| sub \istart, \istart, #1 |
| and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1) |
| mov \istart, \ptrs |
| mul \istart, \istart, \count |
| add \iend, \iend, \istart // iend += (count - 1) * ptrs |
| // our entries span multiple tables |
| |
| lsr \istart, \vstart, \shift |
| mov \count, \ptrs |
| sub \count, \count, #1 |
| and \istart, \istart, \count |
| |
| sub \count, \iend, \istart |
| .endm |
| |
| /* |
| * Map memory for specified virtual address range. Each level of page table needed supports |
| * multiple entries. If a level requires n entries the next page table level is assumed to be |
| * formed from n pages. |
| * |
| * tbl: location of page table |
| * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE) |
| * vstart: start address to map |
| * vend: end address to map - we map [vstart, vend] |
| * flags: flags to use to map last level entries |
| * phys: physical address corresponding to vstart - physical memory is contiguous |
| * pgds: the number of pgd entries |
| * |
| * Temporaries: istart, iend, tmp, count, sv - these need to be different registers |
| * Preserves: vstart, vend, flags |
| * Corrupts: tbl, rtbl, istart, iend, tmp, count, sv |
| */ |
| .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv |
| add \rtbl, \tbl, #PAGE_SIZE |
| mov \sv, \rtbl |
| mov \count, #0 |
| compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count |
| populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp |
| mov \tbl, \sv |
| mov \sv, \rtbl |
| |
| #if SWAPPER_PGTABLE_LEVELS > 3 |
| compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count |
| populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp |
| mov \tbl, \sv |
| mov \sv, \rtbl |
| #endif |
| |
| #if SWAPPER_PGTABLE_LEVELS > 2 |
| compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count |
| populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp |
| mov \tbl, \sv |
| #endif |
| |
| compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count |
| bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1 |
| populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp |
| .endm |
| |
| /* |
| * Setup the initial page tables. We only setup the barest amount which is |
| * required to get the kernel running. The following sections are required: |
| * - identity mapping to enable the MMU (low address, TTBR0) |
| * - first few MB of the kernel linear mapping to jump to once the MMU has |
| * been enabled |
| */ |
| __create_page_tables: |
| mov x28, lr |
| |
| /* |
| * Invalidate the init page tables to avoid potential dirty cache lines |
| * being evicted. Other page tables are allocated in rodata as part of |
| * the kernel image, and thus are clean to the PoC per the boot |
| * protocol. |
| */ |
| adrp x0, init_pg_dir |
| adrp x1, init_pg_end |
| sub x1, x1, x0 |
| bl __inval_dcache_area |
| |
| /* |
| * Clear the init page tables. |
| */ |
| adrp x0, init_pg_dir |
| adrp x1, init_pg_end |
| sub x1, x1, x0 |
| 1: stp xzr, xzr, [x0], #16 |
| stp xzr, xzr, [x0], #16 |
| stp xzr, xzr, [x0], #16 |
| stp xzr, xzr, [x0], #16 |
| subs x1, x1, #64 |
| b.ne 1b |
| |
| mov x7, SWAPPER_MM_MMUFLAGS |
| |
| /* |
| * Create the identity mapping. |
| */ |
| adrp x0, idmap_pg_dir |
| adrp x3, __idmap_text_start // __pa(__idmap_text_start) |
| |
| #ifdef CONFIG_ARM64_VA_BITS_52 |
| mrs_s x6, SYS_ID_AA64MMFR2_EL1 |
| and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT) |
| mov x5, #52 |
| cbnz x6, 1f |
| #endif |
| mov x5, #VA_BITS_MIN |
| 1: |
| adr_l x6, vabits_actual |
| str x5, [x6] |
| dmb sy |
| dc ivac, x6 // Invalidate potentially stale cache line |
| |
| /* |
| * VA_BITS may be too small to allow for an ID mapping to be created |
| * that covers system RAM if that is located sufficiently high in the |
| * physical address space. So for the ID map, use an extended virtual |
| * range in that case, and configure an additional translation level |
| * if needed. |
| * |
| * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the |
| * entire ID map region can be mapped. As T0SZ == (64 - #bits used), |
| * this number conveniently equals the number of leading zeroes in |
| * the physical address of __idmap_text_end. |
| */ |
| adrp x5, __idmap_text_end |
| clz x5, x5 |
| cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough? |
| b.ge 1f // .. then skip VA range extension |
| |
| adr_l x6, idmap_t0sz |
| str x5, [x6] |
| dmb sy |
| dc ivac, x6 // Invalidate potentially stale cache line |
| |
| #if (VA_BITS < 48) |
| #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) |
| #define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT)) |
| |
| /* |
| * If VA_BITS < 48, we have to configure an additional table level. |
| * First, we have to verify our assumption that the current value of |
| * VA_BITS was chosen such that all translation levels are fully |
| * utilised, and that lowering T0SZ will always result in an additional |
| * translation level to be configured. |
| */ |
| #if VA_BITS != EXTRA_SHIFT |
| #error "Mismatch between VA_BITS and page size/number of translation levels" |
| #endif |
| |
| mov x4, EXTRA_PTRS |
| create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6 |
| #else |
| /* |
| * If VA_BITS == 48, we don't have to configure an additional |
| * translation level, but the top-level table has more entries. |
| */ |
| mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT) |
| str_l x4, idmap_ptrs_per_pgd, x5 |
| #endif |
| 1: |
| ldr_l x4, idmap_ptrs_per_pgd |
| mov x5, x3 // __pa(__idmap_text_start) |
| adr_l x6, __idmap_text_end // __pa(__idmap_text_end) |
| |
| map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14 |
| |
| /* |
| * Map the kernel image (starting with PHYS_OFFSET). |
| */ |
| adrp x0, init_pg_dir |
| mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text) |
| add x5, x5, x23 // add KASLR displacement |
| mov x4, PTRS_PER_PGD |
| adrp x6, _end // runtime __pa(_end) |
| adrp x3, _text // runtime __pa(_text) |
| sub x6, x6, x3 // _end - _text |
| add x6, x6, x5 // runtime __va(_end) |
| |
| map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14 |
| |
| /* |
| * Since the page tables have been populated with non-cacheable |
| * accesses (MMU disabled), invalidate the idmap and swapper page |
| * tables again to remove any speculatively loaded cache lines. |
| */ |
| adrp x0, idmap_pg_dir |
| adrp x1, init_pg_end |
| sub x1, x1, x0 |
| dmb sy |
| bl __inval_dcache_area |
| |
| ret x28 |
| ENDPROC(__create_page_tables) |
| .ltorg |
| |
| /* |
| * The following fragment of code is executed with the MMU enabled. |
| * |
| * x0 = __PHYS_OFFSET |
| */ |
| __primary_switched: |
| adrp x4, init_thread_union |
| add sp, x4, #THREAD_SIZE |
| adr_l x5, init_task |
| msr sp_el0, x5 // Save thread_info |
| |
| adr_l x8, vectors // load VBAR_EL1 with virtual |
| msr vbar_el1, x8 // vector table address |
| isb |
| |
| stp xzr, x30, [sp, #-16]! |
| mov x29, sp |
| |
| str_l x21, __fdt_pointer, x5 // Save FDT pointer |
| |
| ldr_l x4, kimage_vaddr // Save the offset between |
| sub x4, x4, x0 // the kernel virtual and |
| str_l x4, kimage_voffset, x5 // physical mappings |
| |
| // Clear BSS |
| adr_l x0, __bss_start |
| mov x1, xzr |
| adr_l x2, __bss_stop |
| sub x2, x2, x0 |
| bl __pi_memset |
| dsb ishst // Make zero page visible to PTW |
| |
| #ifdef CONFIG_KASAN |
| bl kasan_early_init |
| #endif |
| #ifdef CONFIG_RANDOMIZE_BASE |
| tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized? |
| b.ne 0f |
| mov x0, x21 // pass FDT address in x0 |
| bl kaslr_early_init // parse FDT for KASLR options |
| cbz x0, 0f // KASLR disabled? just proceed |
| orr x23, x23, x0 // record KASLR offset |
| ldp x29, x30, [sp], #16 // we must enable KASLR, return |
| ret // to __primary_switch() |
| 0: |
| #endif |
| add sp, sp, #16 |
| mov x29, #0 |
| mov x30, #0 |
| b start_kernel |
| ENDPROC(__primary_switched) |
| |
| /* |
| * end early head section, begin head code that is also used for |
| * hotplug and needs to have the same protections as the text region |
| */ |
| .section ".idmap.text","awx" |
| |
| ENTRY(kimage_vaddr) |
| .quad _text - TEXT_OFFSET |
| EXPORT_SYMBOL(kimage_vaddr) |
| |
| /* |
| * If we're fortunate enough to boot at EL2, ensure that the world is |
| * sane before dropping to EL1. |
| * |
| * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if |
| * booted in EL1 or EL2 respectively. |
| */ |
| ENTRY(el2_setup) |
| msr SPsel, #1 // We want to use SP_EL{1,2} |
| mrs x0, CurrentEL |
| cmp x0, #CurrentEL_EL2 |
| b.eq 1f |
| mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) |
| msr sctlr_el1, x0 |
| mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 |
| isb |
| ret |
| |
| 1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2) |
| msr sctlr_el2, x0 |
| |
| #ifdef CONFIG_ARM64_VHE |
| /* |
| * Check for VHE being present. For the rest of the EL2 setup, |
| * x2 being non-zero indicates that we do have VHE, and that the |
| * kernel is intended to run at EL2. |
| */ |
| mrs x2, id_aa64mmfr1_el1 |
| ubfx x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4 |
| #else |
| mov x2, xzr |
| #endif |
| |
| /* Hyp configuration. */ |
| mov_q x0, HCR_HOST_NVHE_FLAGS |
| cbz x2, set_hcr |
| mov_q x0, HCR_HOST_VHE_FLAGS |
| set_hcr: |
| msr hcr_el2, x0 |
| isb |
| |
| /* |
| * Allow Non-secure EL1 and EL0 to access physical timer and counter. |
| * This is not necessary for VHE, since the host kernel runs in EL2, |
| * and EL0 accesses are configured in the later stage of boot process. |
| * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout |
| * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined |
| * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1 |
| * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in |
| * EL2. |
| */ |
| cbnz x2, 1f |
| mrs x0, cnthctl_el2 |
| orr x0, x0, #3 // Enable EL1 physical timers |
| msr cnthctl_el2, x0 |
| 1: |
| msr cntvoff_el2, xzr // Clear virtual offset |
| |
| #ifdef CONFIG_ARM_GIC_V3 |
| /* GICv3 system register access */ |
| mrs x0, id_aa64pfr0_el1 |
| ubfx x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4 |
| cbz x0, 3f |
| |
| mrs_s x0, SYS_ICC_SRE_EL2 |
| orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1 |
| orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1 |
| msr_s SYS_ICC_SRE_EL2, x0 |
| isb // Make sure SRE is now set |
| mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back, |
| tbz x0, #0, 3f // and check that it sticks |
| msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults |
| |
| 3: |
| #endif |
| |
| /* Populate ID registers. */ |
| mrs x0, midr_el1 |
| mrs x1, mpidr_el1 |
| msr vpidr_el2, x0 |
| msr vmpidr_el2, x1 |
| |
| #ifdef CONFIG_COMPAT |
| msr hstr_el2, xzr // Disable CP15 traps to EL2 |
| #endif |
| |
| /* EL2 debug */ |
| mrs x1, id_aa64dfr0_el1 |
| sbfx x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4 |
| cmp x0, #1 |
| b.lt 4f // Skip if no PMU present |
| mrs x0, pmcr_el0 // Disable debug access traps |
| ubfx x0, x0, #11, #5 // to EL2 and allow access to |
| 4: |
| csel x3, xzr, x0, lt // all PMU counters from EL1 |
| |
| /* Statistical profiling */ |
| ubfx x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4 |
| cbz x0, 7f // Skip if SPE not present |
| cbnz x2, 6f // VHE? |
| mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2, |
| and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT) |
| cbnz x4, 5f // then permit sampling of physical |
| mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \ |
| 1 << SYS_PMSCR_EL2_PA_SHIFT) |
| msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter |
| 5: |
| mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT) |
| orr x3, x3, x1 // If we don't have VHE, then |
| b 7f // use EL1&0 translation. |
| 6: // For VHE, use EL2 translation |
| orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1 |
| 7: |
| msr mdcr_el2, x3 // Configure debug traps |
| |
| /* LORegions */ |
| mrs x1, id_aa64mmfr1_el1 |
| ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4 |
| cbz x0, 1f |
| msr_s SYS_LORC_EL1, xzr |
| 1: |
| |
| /* Stage-2 translation */ |
| msr vttbr_el2, xzr |
| |
| cbz x2, install_el2_stub |
| |
| mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 |
| isb |
| ret |
| |
| install_el2_stub: |
| /* |
| * When VHE is not in use, early init of EL2 and EL1 needs to be |
| * done here. |
| * When VHE _is_ in use, EL1 will not be used in the host and |
| * requires no configuration, and all non-hyp-specific EL2 setup |
| * will be done via the _EL1 system register aliases in __cpu_setup. |
| */ |
| mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) |
| msr sctlr_el1, x0 |
| |
| /* Coprocessor traps. */ |
| mov x0, #0x33ff |
| msr cptr_el2, x0 // Disable copro. traps to EL2 |
| |
| /* SVE register access */ |
| mrs x1, id_aa64pfr0_el1 |
| ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4 |
| cbz x1, 7f |
| |
| bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps |
| msr cptr_el2, x0 // Disable copro. traps to EL2 |
| isb |
| mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector |
| msr_s SYS_ZCR_EL2, x1 // length for EL1. |
| |
| /* Hypervisor stub */ |
| 7: adr_l x0, __hyp_stub_vectors |
| msr vbar_el2, x0 |
| |
| /* spsr */ |
| mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ |
| PSR_MODE_EL1h) |
| msr spsr_el2, x0 |
| msr elr_el2, lr |
| mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 |
| eret |
| ENDPROC(el2_setup) |
| |
| /* |
| * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed |
| * in w0. See arch/arm64/include/asm/virt.h for more info. |
| */ |
| set_cpu_boot_mode_flag: |
| adr_l x1, __boot_cpu_mode |
| cmp w0, #BOOT_CPU_MODE_EL2 |
| b.ne 1f |
| add x1, x1, #4 |
| 1: str w0, [x1] // This CPU has booted in EL1 |
| dmb sy |
| dc ivac, x1 // Invalidate potentially stale cache line |
| ret |
| ENDPROC(set_cpu_boot_mode_flag) |
| |
| /* |
| * These values are written with the MMU off, but read with the MMU on. |
| * Writers will invalidate the corresponding address, discarding up to a |
| * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures |
| * sufficient alignment that the CWG doesn't overlap another section. |
| */ |
| .pushsection ".mmuoff.data.write", "aw" |
| /* |
| * We need to find out the CPU boot mode long after boot, so we need to |
| * store it in a writable variable. |
| * |
| * This is not in .bss, because we set it sufficiently early that the boot-time |
| * zeroing of .bss would clobber it. |
| */ |
| ENTRY(__boot_cpu_mode) |
| .long BOOT_CPU_MODE_EL2 |
| .long BOOT_CPU_MODE_EL1 |
| /* |
| * The booting CPU updates the failed status @__early_cpu_boot_status, |
| * with MMU turned off. |
| */ |
| ENTRY(__early_cpu_boot_status) |
| .quad 0 |
| |
| .popsection |
| |
| /* |
| * This provides a "holding pen" for platforms to hold all secondary |
| * cores are held until we're ready for them to initialise. |
| */ |
| ENTRY(secondary_holding_pen) |
| bl el2_setup // Drop to EL1, w0=cpu_boot_mode |
| bl set_cpu_boot_mode_flag |
| mrs x0, mpidr_el1 |
| mov_q x1, MPIDR_HWID_BITMASK |
| and x0, x0, x1 |
| adr_l x3, secondary_holding_pen_release |
| pen: ldr x4, [x3] |
| cmp x4, x0 |
| b.eq secondary_startup |
| wfe |
| b pen |
| ENDPROC(secondary_holding_pen) |
| |
| /* |
| * Secondary entry point that jumps straight into the kernel. Only to |
| * be used where CPUs are brought online dynamically by the kernel. |
| */ |
| ENTRY(secondary_entry) |
| bl el2_setup // Drop to EL1 |
| bl set_cpu_boot_mode_flag |
| b secondary_startup |
| ENDPROC(secondary_entry) |
| |
| secondary_startup: |
| /* |
| * Common entry point for secondary CPUs. |
| */ |
| bl __cpu_secondary_check52bitva |
| bl __cpu_setup // initialise processor |
| adrp x1, swapper_pg_dir |
| bl __enable_mmu |
| ldr x8, =__secondary_switched |
| br x8 |
| ENDPROC(secondary_startup) |
| |
| __secondary_switched: |
| adr_l x5, vectors |
| msr vbar_el1, x5 |
| isb |
| |
| adr_l x0, secondary_data |
| ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack |
| cbz x1, __secondary_too_slow |
| mov sp, x1 |
| ldr x2, [x0, #CPU_BOOT_TASK] |
| cbz x2, __secondary_too_slow |
| msr sp_el0, x2 |
| mov x29, #0 |
| mov x30, #0 |
| b secondary_start_kernel |
| ENDPROC(__secondary_switched) |
| |
| __secondary_too_slow: |
| wfe |
| wfi |
| b __secondary_too_slow |
| ENDPROC(__secondary_too_slow) |
| |
| /* |
| * The booting CPU updates the failed status @__early_cpu_boot_status, |
| * with MMU turned off. |
| * |
| * update_early_cpu_boot_status tmp, status |
| * - Corrupts tmp1, tmp2 |
| * - Writes 'status' to __early_cpu_boot_status and makes sure |
| * it is committed to memory. |
| */ |
| |
| .macro update_early_cpu_boot_status status, tmp1, tmp2 |
| mov \tmp2, #\status |
| adr_l \tmp1, __early_cpu_boot_status |
| str \tmp2, [\tmp1] |
| dmb sy |
| dc ivac, \tmp1 // Invalidate potentially stale cache line |
| .endm |
| |
| /* |
| * Enable the MMU. |
| * |
| * x0 = SCTLR_EL1 value for turning on the MMU. |
| * x1 = TTBR1_EL1 value |
| * |
| * Returns to the caller via x30/lr. This requires the caller to be covered |
| * by the .idmap.text section. |
| * |
| * Checks if the selected granule size is supported by the CPU. |
| * If it isn't, park the CPU |
| */ |
| ENTRY(__enable_mmu) |
| mrs x2, ID_AA64MMFR0_EL1 |
| ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4 |
| cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED |
| b.ne __no_granule_support |
| update_early_cpu_boot_status 0, x2, x3 |
| adrp x2, idmap_pg_dir |
| phys_to_ttbr x1, x1 |
| phys_to_ttbr x2, x2 |
| msr ttbr0_el1, x2 // load TTBR0 |
| offset_ttbr1 x1, x3 |
| msr ttbr1_el1, x1 // load TTBR1 |
| isb |
| msr sctlr_el1, x0 |
| isb |
| /* |
| * Invalidate the local I-cache so that any instructions fetched |
| * speculatively from the PoC are discarded, since they may have |
| * been dynamically patched at the PoU. |
| */ |
| ic iallu |
| dsb nsh |
| isb |
| ret |
| ENDPROC(__enable_mmu) |
| |
| ENTRY(__cpu_secondary_check52bitva) |
| #ifdef CONFIG_ARM64_VA_BITS_52 |
| ldr_l x0, vabits_actual |
| cmp x0, #52 |
| b.ne 2f |
| |
| mrs_s x0, SYS_ID_AA64MMFR2_EL1 |
| and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT) |
| cbnz x0, 2f |
| |
| update_early_cpu_boot_status \ |
| CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1 |
| 1: wfe |
| wfi |
| b 1b |
| |
| #endif |
| 2: ret |
| ENDPROC(__cpu_secondary_check52bitva) |
| |
| __no_granule_support: |
| /* Indicate that this CPU can't boot and is stuck in the kernel */ |
| update_early_cpu_boot_status \ |
| CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2 |
| 1: |
| wfe |
| wfi |
| b 1b |
| ENDPROC(__no_granule_support) |
| |
| #ifdef CONFIG_RELOCATABLE |
| __relocate_kernel: |
| /* |
| * Iterate over each entry in the relocation table, and apply the |
| * relocations in place. |
| */ |
| ldr w9, =__rela_offset // offset to reloc table |
| ldr w10, =__rela_size // size of reloc table |
| |
| mov_q x11, KIMAGE_VADDR // default virtual offset |
| add x11, x11, x23 // actual virtual offset |
| add x9, x9, x11 // __va(.rela) |
| add x10, x9, x10 // __va(.rela) + sizeof(.rela) |
| |
| 0: cmp x9, x10 |
| b.hs 1f |
| ldp x12, x13, [x9], #24 |
| ldr x14, [x9, #-8] |
| cmp w13, #R_AARCH64_RELATIVE |
| b.ne 0b |
| add x14, x14, x23 // relocate |
| str x14, [x12, x23] |
| b 0b |
| |
| 1: |
| #ifdef CONFIG_RELR |
| /* |
| * Apply RELR relocations. |
| * |
| * RELR is a compressed format for storing relative relocations. The |
| * encoded sequence of entries looks like: |
| * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] |
| * |
| * i.e. start with an address, followed by any number of bitmaps. The |
| * address entry encodes 1 relocation. The subsequent bitmap entries |
| * encode up to 63 relocations each, at subsequent offsets following |
| * the last address entry. |
| * |
| * The bitmap entries must have 1 in the least significant bit. The |
| * assumption here is that an address cannot have 1 in lsb. Odd |
| * addresses are not supported. Any odd addresses are stored in the RELA |
| * section, which is handled above. |
| * |
| * Excluding the least significant bit in the bitmap, each non-zero |
| * bit in the bitmap represents a relocation to be applied to |
| * a corresponding machine word that follows the base address |
| * word. The second least significant bit represents the machine |
| * word immediately following the initial address, and each bit |
| * that follows represents the next word, in linear order. As such, |
| * a single bitmap can encode up to 63 relocations in a 64-bit object. |
| * |
| * In this implementation we store the address of the next RELR table |
| * entry in x9, the address being relocated by the current address or |
| * bitmap entry in x13 and the address being relocated by the current |
| * bit in x14. |
| * |
| * Because addends are stored in place in the binary, RELR relocations |
| * cannot be applied idempotently. We use x24 to keep track of the |
| * currently applied displacement so that we can correctly relocate if |
| * __relocate_kernel is called twice with non-zero displacements (i.e. |
| * if there is both a physical misalignment and a KASLR displacement). |
| */ |
| ldr w9, =__relr_offset // offset to reloc table |
| ldr w10, =__relr_size // size of reloc table |
| add x9, x9, x11 // __va(.relr) |
| add x10, x9, x10 // __va(.relr) + sizeof(.relr) |
| |
| sub x15, x23, x24 // delta from previous offset |
| cbz x15, 7f // nothing to do if unchanged |
| mov x24, x23 // save new offset |
| |
| 2: cmp x9, x10 |
| b.hs 7f |
| ldr x11, [x9], #8 |
| tbnz x11, #0, 3f // branch to handle bitmaps |
| add x13, x11, x23 |
| ldr x12, [x13] // relocate address entry |
| add x12, x12, x15 |
| str x12, [x13], #8 // adjust to start of bitmap |
| b 2b |
| |
| 3: mov x14, x13 |
| 4: lsr x11, x11, #1 |
| cbz x11, 6f |
| tbz x11, #0, 5f // skip bit if not set |
| ldr x12, [x14] // relocate bit |
| add x12, x12, x15 |
| str x12, [x14] |
| |
| 5: add x14, x14, #8 // move to next bit's address |
| b 4b |
| |
| 6: /* |
| * Move to the next bitmap's address. 8 is the word size, and 63 is the |
| * number of significant bits in a bitmap entry. |
| */ |
| add x13, x13, #(8 * 63) |
| b 2b |
| |
| 7: |
| #endif |
| ret |
| |
| ENDPROC(__relocate_kernel) |
| #endif |
| |
| __primary_switch: |
| #ifdef CONFIG_RANDOMIZE_BASE |
| mov x19, x0 // preserve new SCTLR_EL1 value |
| mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value |
| #endif |
| |
| adrp x1, init_pg_dir |
| bl __enable_mmu |
| #ifdef CONFIG_RELOCATABLE |
| #ifdef CONFIG_RELR |
| mov x24, #0 // no RELR displacement yet |
| #endif |
| bl __relocate_kernel |
| #ifdef CONFIG_RANDOMIZE_BASE |
| ldr x8, =__primary_switched |
| adrp x0, __PHYS_OFFSET |
| blr x8 |
| |
| /* |
| * If we return here, we have a KASLR displacement in x23 which we need |
| * to take into account by discarding the current kernel mapping and |
| * creating a new one. |
| */ |
| pre_disable_mmu_workaround |
| msr sctlr_el1, x20 // disable the MMU |
| isb |
| bl __create_page_tables // recreate kernel mapping |
| |
| tlbi vmalle1 // Remove any stale TLB entries |
| dsb nsh |
| |
| msr sctlr_el1, x19 // re-enable the MMU |
| isb |
| ic iallu // flush instructions fetched |
| dsb nsh // via old mapping |
| isb |
| |
| bl __relocate_kernel |
| #endif |
| #endif |
| ldr x8, =__primary_switched |
| adrp x0, __PHYS_OFFSET |
| br x8 |
| ENDPROC(__primary_switch) |