| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2015, Sony Mobile Communications AB. |
| * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. |
| */ |
| |
| #include <linux/hwspinlock.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/platform_device.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| #include <linux/soc/qcom/smem.h> |
| #include <linux/soc/qcom/socinfo.h> |
| |
| /* |
| * The Qualcomm shared memory system is a allocate only heap structure that |
| * consists of one of more memory areas that can be accessed by the processors |
| * in the SoC. |
| * |
| * All systems contains a global heap, accessible by all processors in the SoC, |
| * with a table of contents data structure (@smem_header) at the beginning of |
| * the main shared memory block. |
| * |
| * The global header contains meta data for allocations as well as a fixed list |
| * of 512 entries (@smem_global_entry) that can be initialized to reference |
| * parts of the shared memory space. |
| * |
| * |
| * In addition to this global heap a set of "private" heaps can be set up at |
| * boot time with access restrictions so that only certain processor pairs can |
| * access the data. |
| * |
| * These partitions are referenced from an optional partition table |
| * (@smem_ptable), that is found 4kB from the end of the main smem region. The |
| * partition table entries (@smem_ptable_entry) lists the involved processors |
| * (or hosts) and their location in the main shared memory region. |
| * |
| * Each partition starts with a header (@smem_partition_header) that identifies |
| * the partition and holds properties for the two internal memory regions. The |
| * two regions are cached and non-cached memory respectively. Each region |
| * contain a link list of allocation headers (@smem_private_entry) followed by |
| * their data. |
| * |
| * Items in the non-cached region are allocated from the start of the partition |
| * while items in the cached region are allocated from the end. The free area |
| * is hence the region between the cached and non-cached offsets. The header of |
| * cached items comes after the data. |
| * |
| * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure |
| * for the global heap. A new global partition is created from the global heap |
| * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is |
| * set by the bootloader. |
| * |
| * To synchronize allocations in the shared memory heaps a remote spinlock must |
| * be held - currently lock number 3 of the sfpb or tcsr is used for this on all |
| * platforms. |
| * |
| */ |
| |
| /* |
| * The version member of the smem header contains an array of versions for the |
| * various software components in the SoC. We verify that the boot loader |
| * version is a valid version as a sanity check. |
| */ |
| #define SMEM_MASTER_SBL_VERSION_INDEX 7 |
| #define SMEM_GLOBAL_HEAP_VERSION 11 |
| #define SMEM_GLOBAL_PART_VERSION 12 |
| |
| /* |
| * The first 8 items are only to be allocated by the boot loader while |
| * initializing the heap. |
| */ |
| #define SMEM_ITEM_LAST_FIXED 8 |
| |
| /* Highest accepted item number, for both global and private heaps */ |
| #define SMEM_ITEM_COUNT 512 |
| |
| /* Processor/host identifier for the application processor */ |
| #define SMEM_HOST_APPS 0 |
| |
| /* Processor/host identifier for the global partition */ |
| #define SMEM_GLOBAL_HOST 0xfffe |
| |
| /* Max number of processors/hosts in a system */ |
| #define SMEM_HOST_COUNT 20 |
| |
| /** |
| * struct smem_proc_comm - proc_comm communication struct (legacy) |
| * @command: current command to be executed |
| * @status: status of the currently requested command |
| * @params: parameters to the command |
| */ |
| struct smem_proc_comm { |
| __le32 command; |
| __le32 status; |
| __le32 params[2]; |
| }; |
| |
| /** |
| * struct smem_global_entry - entry to reference smem items on the heap |
| * @allocated: boolean to indicate if this entry is used |
| * @offset: offset to the allocated space |
| * @size: size of the allocated space, 8 byte aligned |
| * @aux_base: base address for the memory region used by this unit, or 0 for |
| * the default region. bits 0,1 are reserved |
| */ |
| struct smem_global_entry { |
| __le32 allocated; |
| __le32 offset; |
| __le32 size; |
| __le32 aux_base; /* bits 1:0 reserved */ |
| }; |
| #define AUX_BASE_MASK 0xfffffffc |
| |
| /** |
| * struct smem_header - header found in beginning of primary smem region |
| * @proc_comm: proc_comm communication interface (legacy) |
| * @version: array of versions for the various subsystems |
| * @initialized: boolean to indicate that smem is initialized |
| * @free_offset: index of the first unallocated byte in smem |
| * @available: number of bytes available for allocation |
| * @reserved: reserved field, must be 0 |
| * @toc: array of references to items |
| */ |
| struct smem_header { |
| struct smem_proc_comm proc_comm[4]; |
| __le32 version[32]; |
| __le32 initialized; |
| __le32 free_offset; |
| __le32 available; |
| __le32 reserved; |
| struct smem_global_entry toc[SMEM_ITEM_COUNT]; |
| }; |
| |
| /** |
| * struct smem_ptable_entry - one entry in the @smem_ptable list |
| * @offset: offset, within the main shared memory region, of the partition |
| * @size: size of the partition |
| * @flags: flags for the partition (currently unused) |
| * @host0: first processor/host with access to this partition |
| * @host1: second processor/host with access to this partition |
| * @cacheline: alignment for "cached" entries |
| * @reserved: reserved entries for later use |
| */ |
| struct smem_ptable_entry { |
| __le32 offset; |
| __le32 size; |
| __le32 flags; |
| __le16 host0; |
| __le16 host1; |
| __le32 cacheline; |
| __le32 reserved[7]; |
| }; |
| |
| /** |
| * struct smem_ptable - partition table for the private partitions |
| * @magic: magic number, must be SMEM_PTABLE_MAGIC |
| * @version: version of the partition table |
| * @num_entries: number of partitions in the table |
| * @reserved: for now reserved entries |
| * @entry: list of @smem_ptable_entry for the @num_entries partitions |
| */ |
| struct smem_ptable { |
| u8 magic[4]; |
| __le32 version; |
| __le32 num_entries; |
| __le32 reserved[5]; |
| struct smem_ptable_entry entry[]; |
| }; |
| |
| static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ |
| |
| /** |
| * struct smem_partition_header - header of the partitions |
| * @magic: magic number, must be SMEM_PART_MAGIC |
| * @host0: first processor/host with access to this partition |
| * @host1: second processor/host with access to this partition |
| * @size: size of the partition |
| * @offset_free_uncached: offset to the first free byte of uncached memory in |
| * this partition |
| * @offset_free_cached: offset to the first free byte of cached memory in this |
| * partition |
| * @reserved: for now reserved entries |
| */ |
| struct smem_partition_header { |
| u8 magic[4]; |
| __le16 host0; |
| __le16 host1; |
| __le32 size; |
| __le32 offset_free_uncached; |
| __le32 offset_free_cached; |
| __le32 reserved[3]; |
| }; |
| |
| /** |
| * struct smem_partition - describes smem partition |
| * @virt_base: starting virtual address of partition |
| * @phys_base: starting physical address of partition |
| * @cacheline: alignment for "cached" entries |
| * @size: size of partition |
| */ |
| struct smem_partition { |
| void __iomem *virt_base; |
| phys_addr_t phys_base; |
| size_t cacheline; |
| size_t size; |
| }; |
| |
| static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; |
| |
| /** |
| * struct smem_private_entry - header of each item in the private partition |
| * @canary: magic number, must be SMEM_PRIVATE_CANARY |
| * @item: identifying number of the smem item |
| * @size: size of the data, including padding bytes |
| * @padding_data: number of bytes of padding of data |
| * @padding_hdr: number of bytes of padding between the header and the data |
| * @reserved: for now reserved entry |
| */ |
| struct smem_private_entry { |
| u16 canary; /* bytes are the same so no swapping needed */ |
| __le16 item; |
| __le32 size; /* includes padding bytes */ |
| __le16 padding_data; |
| __le16 padding_hdr; |
| __le32 reserved; |
| }; |
| #define SMEM_PRIVATE_CANARY 0xa5a5 |
| |
| /** |
| * struct smem_info - smem region info located after the table of contents |
| * @magic: magic number, must be SMEM_INFO_MAGIC |
| * @size: size of the smem region |
| * @base_addr: base address of the smem region |
| * @reserved: for now reserved entry |
| * @num_items: highest accepted item number |
| */ |
| struct smem_info { |
| u8 magic[4]; |
| __le32 size; |
| __le32 base_addr; |
| __le32 reserved; |
| __le16 num_items; |
| }; |
| |
| static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ |
| |
| /** |
| * struct smem_region - representation of a chunk of memory used for smem |
| * @aux_base: identifier of aux_mem base |
| * @virt_base: virtual base address of memory with this aux_mem identifier |
| * @size: size of the memory region |
| */ |
| struct smem_region { |
| phys_addr_t aux_base; |
| void __iomem *virt_base; |
| size_t size; |
| }; |
| |
| /** |
| * struct qcom_smem - device data for the smem device |
| * @dev: device pointer |
| * @hwlock: reference to a hwspinlock |
| * @ptable: virtual base of partition table |
| * @global_partition: describes for global partition when in use |
| * @partitions: list of partitions of current processor/host |
| * @item_count: max accepted item number |
| * @socinfo: platform device pointer |
| * @num_regions: number of @regions |
| * @regions: list of the memory regions defining the shared memory |
| */ |
| struct qcom_smem { |
| struct device *dev; |
| |
| struct hwspinlock *hwlock; |
| |
| u32 item_count; |
| struct platform_device *socinfo; |
| struct smem_ptable *ptable; |
| struct smem_partition global_partition; |
| struct smem_partition partitions[SMEM_HOST_COUNT]; |
| |
| unsigned num_regions; |
| struct smem_region regions[]; |
| }; |
| |
| static void * |
| phdr_to_last_uncached_entry(struct smem_partition_header *phdr) |
| { |
| void *p = phdr; |
| |
| return p + le32_to_cpu(phdr->offset_free_uncached); |
| } |
| |
| static struct smem_private_entry * |
| phdr_to_first_cached_entry(struct smem_partition_header *phdr, |
| size_t cacheline) |
| { |
| void *p = phdr; |
| struct smem_private_entry *e; |
| |
| return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); |
| } |
| |
| static void * |
| phdr_to_last_cached_entry(struct smem_partition_header *phdr) |
| { |
| void *p = phdr; |
| |
| return p + le32_to_cpu(phdr->offset_free_cached); |
| } |
| |
| static struct smem_private_entry * |
| phdr_to_first_uncached_entry(struct smem_partition_header *phdr) |
| { |
| void *p = phdr; |
| |
| return p + sizeof(*phdr); |
| } |
| |
| static struct smem_private_entry * |
| uncached_entry_next(struct smem_private_entry *e) |
| { |
| void *p = e; |
| |
| return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + |
| le32_to_cpu(e->size); |
| } |
| |
| static struct smem_private_entry * |
| cached_entry_next(struct smem_private_entry *e, size_t cacheline) |
| { |
| void *p = e; |
| |
| return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); |
| } |
| |
| static void *uncached_entry_to_item(struct smem_private_entry *e) |
| { |
| void *p = e; |
| |
| return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); |
| } |
| |
| static void *cached_entry_to_item(struct smem_private_entry *e) |
| { |
| void *p = e; |
| |
| return p - le32_to_cpu(e->size); |
| } |
| |
| /* Pointer to the one and only smem handle */ |
| static struct qcom_smem *__smem; |
| |
| /* Timeout (ms) for the trylock of remote spinlocks */ |
| #define HWSPINLOCK_TIMEOUT 1000 |
| |
| static int qcom_smem_alloc_private(struct qcom_smem *smem, |
| struct smem_partition *part, |
| unsigned item, |
| size_t size) |
| { |
| struct smem_private_entry *hdr, *end; |
| struct smem_partition_header *phdr; |
| size_t alloc_size; |
| void *cached; |
| void *p_end; |
| |
| phdr = (struct smem_partition_header __force *)part->virt_base; |
| p_end = (void *)phdr + part->size; |
| |
| hdr = phdr_to_first_uncached_entry(phdr); |
| end = phdr_to_last_uncached_entry(phdr); |
| cached = phdr_to_last_cached_entry(phdr); |
| |
| if (WARN_ON((void *)end > p_end || cached > p_end)) |
| return -EINVAL; |
| |
| while (hdr < end) { |
| if (hdr->canary != SMEM_PRIVATE_CANARY) |
| goto bad_canary; |
| if (le16_to_cpu(hdr->item) == item) |
| return -EEXIST; |
| |
| hdr = uncached_entry_next(hdr); |
| } |
| |
| if (WARN_ON((void *)hdr > p_end)) |
| return -EINVAL; |
| |
| /* Check that we don't grow into the cached region */ |
| alloc_size = sizeof(*hdr) + ALIGN(size, 8); |
| if ((void *)hdr + alloc_size > cached) { |
| dev_err(smem->dev, "Out of memory\n"); |
| return -ENOSPC; |
| } |
| |
| hdr->canary = SMEM_PRIVATE_CANARY; |
| hdr->item = cpu_to_le16(item); |
| hdr->size = cpu_to_le32(ALIGN(size, 8)); |
| hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); |
| hdr->padding_hdr = 0; |
| |
| /* |
| * Ensure the header is written before we advance the free offset, so |
| * that remote processors that does not take the remote spinlock still |
| * gets a consistent view of the linked list. |
| */ |
| wmb(); |
| le32_add_cpu(&phdr->offset_free_uncached, alloc_size); |
| |
| return 0; |
| bad_canary: |
| dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", |
| le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); |
| |
| return -EINVAL; |
| } |
| |
| static int qcom_smem_alloc_global(struct qcom_smem *smem, |
| unsigned item, |
| size_t size) |
| { |
| struct smem_global_entry *entry; |
| struct smem_header *header; |
| |
| header = smem->regions[0].virt_base; |
| entry = &header->toc[item]; |
| if (entry->allocated) |
| return -EEXIST; |
| |
| size = ALIGN(size, 8); |
| if (WARN_ON(size > le32_to_cpu(header->available))) |
| return -ENOMEM; |
| |
| entry->offset = header->free_offset; |
| entry->size = cpu_to_le32(size); |
| |
| /* |
| * Ensure the header is consistent before we mark the item allocated, |
| * so that remote processors will get a consistent view of the item |
| * even though they do not take the spinlock on read. |
| */ |
| wmb(); |
| entry->allocated = cpu_to_le32(1); |
| |
| le32_add_cpu(&header->free_offset, size); |
| le32_add_cpu(&header->available, -size); |
| |
| return 0; |
| } |
| |
| /** |
| * qcom_smem_alloc() - allocate space for a smem item |
| * @host: remote processor id, or -1 |
| * @item: smem item handle |
| * @size: number of bytes to be allocated |
| * |
| * Allocate space for a given smem item of size @size, given that the item is |
| * not yet allocated. |
| */ |
| int qcom_smem_alloc(unsigned host, unsigned item, size_t size) |
| { |
| struct smem_partition *part; |
| unsigned long flags; |
| int ret; |
| |
| if (!__smem) |
| return -EPROBE_DEFER; |
| |
| if (item < SMEM_ITEM_LAST_FIXED) { |
| dev_err(__smem->dev, |
| "Rejecting allocation of static entry %d\n", item); |
| return -EINVAL; |
| } |
| |
| if (WARN_ON(item >= __smem->item_count)) |
| return -EINVAL; |
| |
| ret = hwspin_lock_timeout_irqsave(__smem->hwlock, |
| HWSPINLOCK_TIMEOUT, |
| &flags); |
| if (ret) |
| return ret; |
| |
| if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { |
| part = &__smem->partitions[host]; |
| ret = qcom_smem_alloc_private(__smem, part, item, size); |
| } else if (__smem->global_partition.virt_base) { |
| part = &__smem->global_partition; |
| ret = qcom_smem_alloc_private(__smem, part, item, size); |
| } else { |
| ret = qcom_smem_alloc_global(__smem, item, size); |
| } |
| |
| hwspin_unlock_irqrestore(__smem->hwlock, &flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(qcom_smem_alloc); |
| |
| static void *qcom_smem_get_global(struct qcom_smem *smem, |
| unsigned item, |
| size_t *size) |
| { |
| struct smem_header *header; |
| struct smem_region *region; |
| struct smem_global_entry *entry; |
| u64 entry_offset; |
| u32 e_size; |
| u32 aux_base; |
| unsigned i; |
| |
| header = smem->regions[0].virt_base; |
| entry = &header->toc[item]; |
| if (!entry->allocated) |
| return ERR_PTR(-ENXIO); |
| |
| aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; |
| |
| for (i = 0; i < smem->num_regions; i++) { |
| region = &smem->regions[i]; |
| |
| if ((u32)region->aux_base == aux_base || !aux_base) { |
| e_size = le32_to_cpu(entry->size); |
| entry_offset = le32_to_cpu(entry->offset); |
| |
| if (WARN_ON(e_size + entry_offset > region->size)) |
| return ERR_PTR(-EINVAL); |
| |
| if (size != NULL) |
| *size = e_size; |
| |
| return region->virt_base + entry_offset; |
| } |
| } |
| |
| return ERR_PTR(-ENOENT); |
| } |
| |
| static void *qcom_smem_get_private(struct qcom_smem *smem, |
| struct smem_partition *part, |
| unsigned item, |
| size_t *size) |
| { |
| struct smem_private_entry *e, *end; |
| struct smem_partition_header *phdr; |
| void *item_ptr, *p_end; |
| u32 padding_data; |
| u32 e_size; |
| |
| phdr = (struct smem_partition_header __force *)part->virt_base; |
| p_end = (void *)phdr + part->size; |
| |
| e = phdr_to_first_uncached_entry(phdr); |
| end = phdr_to_last_uncached_entry(phdr); |
| |
| while (e < end) { |
| if (e->canary != SMEM_PRIVATE_CANARY) |
| goto invalid_canary; |
| |
| if (le16_to_cpu(e->item) == item) { |
| if (size != NULL) { |
| e_size = le32_to_cpu(e->size); |
| padding_data = le16_to_cpu(e->padding_data); |
| |
| if (WARN_ON(e_size > part->size || padding_data > e_size)) |
| return ERR_PTR(-EINVAL); |
| |
| *size = e_size - padding_data; |
| } |
| |
| item_ptr = uncached_entry_to_item(e); |
| if (WARN_ON(item_ptr > p_end)) |
| return ERR_PTR(-EINVAL); |
| |
| return item_ptr; |
| } |
| |
| e = uncached_entry_next(e); |
| } |
| |
| if (WARN_ON((void *)e > p_end)) |
| return ERR_PTR(-EINVAL); |
| |
| /* Item was not found in the uncached list, search the cached list */ |
| |
| e = phdr_to_first_cached_entry(phdr, part->cacheline); |
| end = phdr_to_last_cached_entry(phdr); |
| |
| if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end)) |
| return ERR_PTR(-EINVAL); |
| |
| while (e > end) { |
| if (e->canary != SMEM_PRIVATE_CANARY) |
| goto invalid_canary; |
| |
| if (le16_to_cpu(e->item) == item) { |
| if (size != NULL) { |
| e_size = le32_to_cpu(e->size); |
| padding_data = le16_to_cpu(e->padding_data); |
| |
| if (WARN_ON(e_size > part->size || padding_data > e_size)) |
| return ERR_PTR(-EINVAL); |
| |
| *size = e_size - padding_data; |
| } |
| |
| item_ptr = cached_entry_to_item(e); |
| if (WARN_ON(item_ptr < (void *)phdr)) |
| return ERR_PTR(-EINVAL); |
| |
| return item_ptr; |
| } |
| |
| e = cached_entry_next(e, part->cacheline); |
| } |
| |
| if (WARN_ON((void *)e < (void *)phdr)) |
| return ERR_PTR(-EINVAL); |
| |
| return ERR_PTR(-ENOENT); |
| |
| invalid_canary: |
| dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", |
| le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); |
| |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /** |
| * qcom_smem_get() - resolve ptr of size of a smem item |
| * @host: the remote processor, or -1 |
| * @item: smem item handle |
| * @size: pointer to be filled out with size of the item |
| * |
| * Looks up smem item and returns pointer to it. Size of smem |
| * item is returned in @size. |
| */ |
| void *qcom_smem_get(unsigned host, unsigned item, size_t *size) |
| { |
| struct smem_partition *part; |
| unsigned long flags; |
| int ret; |
| void *ptr = ERR_PTR(-EPROBE_DEFER); |
| |
| if (!__smem) |
| return ptr; |
| |
| if (WARN_ON(item >= __smem->item_count)) |
| return ERR_PTR(-EINVAL); |
| |
| ret = hwspin_lock_timeout_irqsave(__smem->hwlock, |
| HWSPINLOCK_TIMEOUT, |
| &flags); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { |
| part = &__smem->partitions[host]; |
| ptr = qcom_smem_get_private(__smem, part, item, size); |
| } else if (__smem->global_partition.virt_base) { |
| part = &__smem->global_partition; |
| ptr = qcom_smem_get_private(__smem, part, item, size); |
| } else { |
| ptr = qcom_smem_get_global(__smem, item, size); |
| } |
| |
| hwspin_unlock_irqrestore(__smem->hwlock, &flags); |
| |
| return ptr; |
| |
| } |
| EXPORT_SYMBOL_GPL(qcom_smem_get); |
| |
| /** |
| * qcom_smem_get_free_space() - retrieve amount of free space in a partition |
| * @host: the remote processor identifying a partition, or -1 |
| * |
| * To be used by smem clients as a quick way to determine if any new |
| * allocations has been made. |
| */ |
| int qcom_smem_get_free_space(unsigned host) |
| { |
| struct smem_partition *part; |
| struct smem_partition_header *phdr; |
| struct smem_header *header; |
| unsigned ret; |
| |
| if (!__smem) |
| return -EPROBE_DEFER; |
| |
| if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { |
| part = &__smem->partitions[host]; |
| phdr = part->virt_base; |
| ret = le32_to_cpu(phdr->offset_free_cached) - |
| le32_to_cpu(phdr->offset_free_uncached); |
| |
| if (ret > le32_to_cpu(part->size)) |
| return -EINVAL; |
| } else if (__smem->global_partition.virt_base) { |
| part = &__smem->global_partition; |
| phdr = part->virt_base; |
| ret = le32_to_cpu(phdr->offset_free_cached) - |
| le32_to_cpu(phdr->offset_free_uncached); |
| |
| if (ret > le32_to_cpu(part->size)) |
| return -EINVAL; |
| } else { |
| header = __smem->regions[0].virt_base; |
| ret = le32_to_cpu(header->available); |
| |
| if (ret > __smem->regions[0].size) |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(qcom_smem_get_free_space); |
| |
| static bool addr_in_range(void __iomem *base, size_t size, void *addr) |
| { |
| return base && (addr >= base && addr < base + size); |
| } |
| |
| /** |
| * qcom_smem_virt_to_phys() - return the physical address associated |
| * with an smem item pointer (previously returned by qcom_smem_get() |
| * @p: the virtual address to convert |
| * |
| * Returns 0 if the pointer provided is not within any smem region. |
| */ |
| phys_addr_t qcom_smem_virt_to_phys(void *p) |
| { |
| struct smem_partition *part; |
| struct smem_region *area; |
| u64 offset; |
| u32 i; |
| |
| for (i = 0; i < SMEM_HOST_COUNT; i++) { |
| part = &__smem->partitions[i]; |
| |
| if (addr_in_range(part->virt_base, part->size, p)) { |
| offset = p - part->virt_base; |
| |
| return (phys_addr_t)part->phys_base + offset; |
| } |
| } |
| |
| part = &__smem->global_partition; |
| |
| if (addr_in_range(part->virt_base, part->size, p)) { |
| offset = p - part->virt_base; |
| |
| return (phys_addr_t)part->phys_base + offset; |
| } |
| |
| for (i = 0; i < __smem->num_regions; i++) { |
| area = &__smem->regions[i]; |
| |
| if (addr_in_range(area->virt_base, area->size, p)) { |
| offset = p - area->virt_base; |
| |
| return (phys_addr_t)area->aux_base + offset; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys); |
| |
| /** |
| * qcom_smem_get_soc_id() - return the SoC ID |
| * @id: On success, we return the SoC ID here. |
| * |
| * Look up SoC ID from HW/SW build ID and return it. |
| * |
| * Return: 0 on success, negative errno on failure. |
| */ |
| int qcom_smem_get_soc_id(u32 *id) |
| { |
| struct socinfo *info; |
| |
| info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); |
| if (IS_ERR(info)) |
| return PTR_ERR(info); |
| |
| *id = __le32_to_cpu(info->id); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id); |
| |
| static int qcom_smem_get_sbl_version(struct qcom_smem *smem) |
| { |
| struct smem_header *header; |
| __le32 *versions; |
| |
| header = smem->regions[0].virt_base; |
| versions = header->version; |
| |
| return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); |
| } |
| |
| static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) |
| { |
| struct smem_ptable *ptable; |
| u32 version; |
| |
| ptable = smem->ptable; |
| if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) |
| return ERR_PTR(-ENOENT); |
| |
| version = le32_to_cpu(ptable->version); |
| if (version != 1) { |
| dev_err(smem->dev, |
| "Unsupported partition header version %d\n", version); |
| return ERR_PTR(-EINVAL); |
| } |
| return ptable; |
| } |
| |
| static u32 qcom_smem_get_item_count(struct qcom_smem *smem) |
| { |
| struct smem_ptable *ptable; |
| struct smem_info *info; |
| |
| ptable = qcom_smem_get_ptable(smem); |
| if (IS_ERR_OR_NULL(ptable)) |
| return SMEM_ITEM_COUNT; |
| |
| info = (struct smem_info *)&ptable->entry[ptable->num_entries]; |
| if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) |
| return SMEM_ITEM_COUNT; |
| |
| return le16_to_cpu(info->num_items); |
| } |
| |
| /* |
| * Validate the partition header for a partition whose partition |
| * table entry is supplied. Returns a pointer to its header if |
| * valid, or a null pointer otherwise. |
| */ |
| static struct smem_partition_header * |
| qcom_smem_partition_header(struct qcom_smem *smem, |
| struct smem_ptable_entry *entry, u16 host0, u16 host1) |
| { |
| struct smem_partition_header *header; |
| u32 phys_addr; |
| u32 size; |
| |
| phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset); |
| header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size)); |
| |
| if (!header) |
| return NULL; |
| |
| if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { |
| dev_err(smem->dev, "bad partition magic %4ph\n", header->magic); |
| return NULL; |
| } |
| |
| if (host0 != le16_to_cpu(header->host0)) { |
| dev_err(smem->dev, "bad host0 (%hu != %hu)\n", |
| host0, le16_to_cpu(header->host0)); |
| return NULL; |
| } |
| if (host1 != le16_to_cpu(header->host1)) { |
| dev_err(smem->dev, "bad host1 (%hu != %hu)\n", |
| host1, le16_to_cpu(header->host1)); |
| return NULL; |
| } |
| |
| size = le32_to_cpu(header->size); |
| if (size != le32_to_cpu(entry->size)) { |
| dev_err(smem->dev, "bad partition size (%u != %u)\n", |
| size, le32_to_cpu(entry->size)); |
| return NULL; |
| } |
| |
| if (le32_to_cpu(header->offset_free_uncached) > size) { |
| dev_err(smem->dev, "bad partition free uncached (%u > %u)\n", |
| le32_to_cpu(header->offset_free_uncached), size); |
| return NULL; |
| } |
| |
| return header; |
| } |
| |
| static int qcom_smem_set_global_partition(struct qcom_smem *smem) |
| { |
| struct smem_partition_header *header; |
| struct smem_ptable_entry *entry; |
| struct smem_ptable *ptable; |
| bool found = false; |
| int i; |
| |
| if (smem->global_partition.virt_base) { |
| dev_err(smem->dev, "Already found the global partition\n"); |
| return -EINVAL; |
| } |
| |
| ptable = qcom_smem_get_ptable(smem); |
| if (IS_ERR(ptable)) |
| return PTR_ERR(ptable); |
| |
| for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { |
| entry = &ptable->entry[i]; |
| if (!le32_to_cpu(entry->offset)) |
| continue; |
| if (!le32_to_cpu(entry->size)) |
| continue; |
| |
| if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST) |
| continue; |
| |
| if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| dev_err(smem->dev, "Missing entry for global partition\n"); |
| return -EINVAL; |
| } |
| |
| header = qcom_smem_partition_header(smem, entry, |
| SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST); |
| if (!header) |
| return -EINVAL; |
| |
| smem->global_partition.virt_base = (void __iomem *)header; |
| smem->global_partition.phys_base = smem->regions[0].aux_base + |
| le32_to_cpu(entry->offset); |
| smem->global_partition.size = le32_to_cpu(entry->size); |
| smem->global_partition.cacheline = le32_to_cpu(entry->cacheline); |
| |
| return 0; |
| } |
| |
| static int |
| qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host) |
| { |
| struct smem_partition_header *header; |
| struct smem_ptable_entry *entry; |
| struct smem_ptable *ptable; |
| u16 remote_host; |
| u16 host0, host1; |
| int i; |
| |
| ptable = qcom_smem_get_ptable(smem); |
| if (IS_ERR(ptable)) |
| return PTR_ERR(ptable); |
| |
| for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { |
| entry = &ptable->entry[i]; |
| if (!le32_to_cpu(entry->offset)) |
| continue; |
| if (!le32_to_cpu(entry->size)) |
| continue; |
| |
| host0 = le16_to_cpu(entry->host0); |
| host1 = le16_to_cpu(entry->host1); |
| if (host0 == local_host) |
| remote_host = host1; |
| else if (host1 == local_host) |
| remote_host = host0; |
| else |
| continue; |
| |
| if (remote_host >= SMEM_HOST_COUNT) { |
| dev_err(smem->dev, "bad host %u\n", remote_host); |
| return -EINVAL; |
| } |
| |
| if (smem->partitions[remote_host].virt_base) { |
| dev_err(smem->dev, "duplicate host %u\n", remote_host); |
| return -EINVAL; |
| } |
| |
| header = qcom_smem_partition_header(smem, entry, host0, host1); |
| if (!header) |
| return -EINVAL; |
| |
| smem->partitions[remote_host].virt_base = (void __iomem *)header; |
| smem->partitions[remote_host].phys_base = smem->regions[0].aux_base + |
| le32_to_cpu(entry->offset); |
| smem->partitions[remote_host].size = le32_to_cpu(entry->size); |
| smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline); |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region) |
| { |
| u32 ptable_start; |
| |
| /* map starting 4K for smem header */ |
| region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K); |
| ptable_start = region->aux_base + region->size - SZ_4K; |
| /* map last 4k for toc */ |
| smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K); |
| |
| if (!region->virt_base || !smem->ptable) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int qcom_smem_map_global(struct qcom_smem *smem, u32 size) |
| { |
| u32 phys_addr; |
| |
| phys_addr = smem->regions[0].aux_base; |
| |
| smem->regions[0].size = size; |
| smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size); |
| |
| if (!smem->regions[0].virt_base) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name, |
| struct smem_region *region) |
| { |
| struct device *dev = smem->dev; |
| struct device_node *np; |
| struct resource r; |
| int ret; |
| |
| np = of_parse_phandle(dev->of_node, name, 0); |
| if (!np) { |
| dev_err(dev, "No %s specified\n", name); |
| return -EINVAL; |
| } |
| |
| ret = of_address_to_resource(np, 0, &r); |
| of_node_put(np); |
| if (ret) |
| return ret; |
| |
| region->aux_base = r.start; |
| region->size = resource_size(&r); |
| |
| return 0; |
| } |
| |
| static int qcom_smem_probe(struct platform_device *pdev) |
| { |
| struct smem_header *header; |
| struct reserved_mem *rmem; |
| struct qcom_smem *smem; |
| unsigned long flags; |
| size_t array_size; |
| int num_regions; |
| int hwlock_id; |
| u32 version; |
| u32 size; |
| int ret; |
| int i; |
| |
| num_regions = 1; |
| if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram")) |
| num_regions++; |
| |
| array_size = num_regions * sizeof(struct smem_region); |
| smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL); |
| if (!smem) |
| return -ENOMEM; |
| |
| smem->dev = &pdev->dev; |
| smem->num_regions = num_regions; |
| |
| rmem = of_reserved_mem_lookup(pdev->dev.of_node); |
| if (rmem) { |
| smem->regions[0].aux_base = rmem->base; |
| smem->regions[0].size = rmem->size; |
| } else { |
| /* |
| * Fall back to the memory-region reference, if we're not a |
| * reserved-memory node. |
| */ |
| ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]); |
| if (ret) |
| return ret; |
| } |
| |
| if (num_regions > 1) { |
| ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]); |
| if (ret) |
| return ret; |
| } |
| |
| |
| ret = qcom_smem_map_toc(smem, &smem->regions[0]); |
| if (ret) |
| return ret; |
| |
| for (i = 1; i < num_regions; i++) { |
| smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev, |
| smem->regions[i].aux_base, |
| smem->regions[i].size); |
| if (!smem->regions[i].virt_base) { |
| dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base); |
| return -ENOMEM; |
| } |
| } |
| |
| header = smem->regions[0].virt_base; |
| if (le32_to_cpu(header->initialized) != 1 || |
| le32_to_cpu(header->reserved)) { |
| dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); |
| return -EINVAL; |
| } |
| |
| hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); |
| if (hwlock_id < 0) { |
| if (hwlock_id != -EPROBE_DEFER) |
| dev_err(&pdev->dev, "failed to retrieve hwlock\n"); |
| return hwlock_id; |
| } |
| |
| smem->hwlock = hwspin_lock_request_specific(hwlock_id); |
| if (!smem->hwlock) |
| return -ENXIO; |
| |
| ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); |
| if (ret) |
| return ret; |
| size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset); |
| hwspin_unlock_irqrestore(smem->hwlock, &flags); |
| |
| version = qcom_smem_get_sbl_version(smem); |
| /* |
| * smem header mapping is required only in heap version scheme, so unmap |
| * it here. It will be remapped in qcom_smem_map_global() when whole |
| * partition is mapped again. |
| */ |
| devm_iounmap(smem->dev, smem->regions[0].virt_base); |
| switch (version >> 16) { |
| case SMEM_GLOBAL_PART_VERSION: |
| ret = qcom_smem_set_global_partition(smem); |
| if (ret < 0) |
| return ret; |
| smem->item_count = qcom_smem_get_item_count(smem); |
| break; |
| case SMEM_GLOBAL_HEAP_VERSION: |
| qcom_smem_map_global(smem, size); |
| smem->item_count = SMEM_ITEM_COUNT; |
| break; |
| default: |
| dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); |
| return -EINVAL; |
| } |
| |
| BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT); |
| ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); |
| if (ret < 0 && ret != -ENOENT) |
| return ret; |
| |
| __smem = smem; |
| |
| smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo", |
| PLATFORM_DEVID_NONE, NULL, |
| 0); |
| if (IS_ERR(smem->socinfo)) |
| dev_dbg(&pdev->dev, "failed to register socinfo device\n"); |
| |
| return 0; |
| } |
| |
| static int qcom_smem_remove(struct platform_device *pdev) |
| { |
| platform_device_unregister(__smem->socinfo); |
| |
| hwspin_lock_free(__smem->hwlock); |
| __smem = NULL; |
| |
| return 0; |
| } |
| |
| static const struct of_device_id qcom_smem_of_match[] = { |
| { .compatible = "qcom,smem" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, qcom_smem_of_match); |
| |
| static struct platform_driver qcom_smem_driver = { |
| .probe = qcom_smem_probe, |
| .remove = qcom_smem_remove, |
| .driver = { |
| .name = "qcom-smem", |
| .of_match_table = qcom_smem_of_match, |
| .suppress_bind_attrs = true, |
| }, |
| }; |
| |
| static int __init qcom_smem_init(void) |
| { |
| return platform_driver_register(&qcom_smem_driver); |
| } |
| arch_initcall(qcom_smem_init); |
| |
| static void __exit qcom_smem_exit(void) |
| { |
| platform_driver_unregister(&qcom_smem_driver); |
| } |
| module_exit(qcom_smem_exit) |
| |
| MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); |
| MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); |
| MODULE_LICENSE("GPL v2"); |