| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 Red Hat, Inc. All rights reserved. |
| * Author: Alex Williamson <alex.williamson@redhat.com> |
| * |
| * Derived from original vfio: |
| * Copyright 2010 Cisco Systems, Inc. All rights reserved. |
| * Author: Tom Lyon, pugs@cisco.com |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/aperture.h> |
| #include <linux/device.h> |
| #include <linux/eventfd.h> |
| #include <linux/file.h> |
| #include <linux/interrupt.h> |
| #include <linux/iommu.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/notifier.h> |
| #include <linux/pci.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/uaccess.h> |
| #include <linux/vgaarb.h> |
| #include <linux/nospec.h> |
| #include <linux/sched/mm.h> |
| #if IS_ENABLED(CONFIG_EEH) |
| #include <asm/eeh.h> |
| #endif |
| |
| #include "vfio_pci_priv.h" |
| |
| #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" |
| #define DRIVER_DESC "core driver for VFIO based PCI devices" |
| |
| static bool nointxmask; |
| static bool disable_vga; |
| static bool disable_idle_d3; |
| |
| /* List of PF's that vfio_pci_core_sriov_configure() has been called on */ |
| static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex); |
| static LIST_HEAD(vfio_pci_sriov_pfs); |
| |
| struct vfio_pci_dummy_resource { |
| struct resource resource; |
| int index; |
| struct list_head res_next; |
| }; |
| |
| struct vfio_pci_vf_token { |
| struct mutex lock; |
| uuid_t uuid; |
| int users; |
| }; |
| |
| struct vfio_pci_mmap_vma { |
| struct vm_area_struct *vma; |
| struct list_head vma_next; |
| }; |
| |
| static inline bool vfio_vga_disabled(void) |
| { |
| #ifdef CONFIG_VFIO_PCI_VGA |
| return disable_vga; |
| #else |
| return true; |
| #endif |
| } |
| |
| /* |
| * Our VGA arbiter participation is limited since we don't know anything |
| * about the device itself. However, if the device is the only VGA device |
| * downstream of a bridge and VFIO VGA support is disabled, then we can |
| * safely return legacy VGA IO and memory as not decoded since the user |
| * has no way to get to it and routing can be disabled externally at the |
| * bridge. |
| */ |
| static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga) |
| { |
| struct pci_dev *tmp = NULL; |
| unsigned char max_busnr; |
| unsigned int decodes; |
| |
| if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus)) |
| return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | |
| VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; |
| |
| max_busnr = pci_bus_max_busnr(pdev->bus); |
| decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; |
| |
| while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) { |
| if (tmp == pdev || |
| pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) || |
| pci_is_root_bus(tmp->bus)) |
| continue; |
| |
| if (tmp->bus->number >= pdev->bus->number && |
| tmp->bus->number <= max_busnr) { |
| pci_dev_put(tmp); |
| decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; |
| break; |
| } |
| } |
| |
| return decodes; |
| } |
| |
| static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev) |
| { |
| struct resource *res; |
| int i; |
| struct vfio_pci_dummy_resource *dummy_res; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| int bar = i + PCI_STD_RESOURCES; |
| |
| res = &vdev->pdev->resource[bar]; |
| |
| if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP)) |
| goto no_mmap; |
| |
| if (!(res->flags & IORESOURCE_MEM)) |
| goto no_mmap; |
| |
| /* |
| * The PCI core shouldn't set up a resource with a |
| * type but zero size. But there may be bugs that |
| * cause us to do that. |
| */ |
| if (!resource_size(res)) |
| goto no_mmap; |
| |
| if (resource_size(res) >= PAGE_SIZE) { |
| vdev->bar_mmap_supported[bar] = true; |
| continue; |
| } |
| |
| if (!(res->start & ~PAGE_MASK)) { |
| /* |
| * Add a dummy resource to reserve the remainder |
| * of the exclusive page in case that hot-add |
| * device's bar is assigned into it. |
| */ |
| dummy_res = |
| kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT); |
| if (dummy_res == NULL) |
| goto no_mmap; |
| |
| dummy_res->resource.name = "vfio sub-page reserved"; |
| dummy_res->resource.start = res->end + 1; |
| dummy_res->resource.end = res->start + PAGE_SIZE - 1; |
| dummy_res->resource.flags = res->flags; |
| if (request_resource(res->parent, |
| &dummy_res->resource)) { |
| kfree(dummy_res); |
| goto no_mmap; |
| } |
| dummy_res->index = bar; |
| list_add(&dummy_res->res_next, |
| &vdev->dummy_resources_list); |
| vdev->bar_mmap_supported[bar] = true; |
| continue; |
| } |
| /* |
| * Here we don't handle the case when the BAR is not page |
| * aligned because we can't expect the BAR will be |
| * assigned into the same location in a page in guest |
| * when we passthrough the BAR. And it's hard to access |
| * this BAR in userspace because we have no way to get |
| * the BAR's location in a page. |
| */ |
| no_mmap: |
| vdev->bar_mmap_supported[bar] = false; |
| } |
| } |
| |
| struct vfio_pci_group_info; |
| static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set); |
| static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, |
| struct vfio_pci_group_info *groups); |
| |
| /* |
| * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND |
| * _and_ the ability detect when the device is asserting INTx via PCI_STATUS. |
| * If a device implements the former but not the latter we would typically |
| * expect broken_intx_masking be set and require an exclusive interrupt. |
| * However since we do have control of the device's ability to assert INTx, |
| * we can instead pretend that the device does not implement INTx, virtualizing |
| * the pin register to report zero and maintaining DisINTx set on the host. |
| */ |
| static bool vfio_pci_nointx(struct pci_dev *pdev) |
| { |
| switch (pdev->vendor) { |
| case PCI_VENDOR_ID_INTEL: |
| switch (pdev->device) { |
| /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */ |
| case 0x1572: |
| case 0x1574: |
| case 0x1580 ... 0x1581: |
| case 0x1583 ... 0x158b: |
| case 0x37d0 ... 0x37d2: |
| /* X550 */ |
| case 0x1563: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| u16 pmcsr; |
| |
| if (!pdev->pm_cap) |
| return; |
| |
| pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| |
| vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); |
| } |
| |
| /* |
| * pci_set_power_state() wrapper handling devices which perform a soft reset on |
| * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev, |
| * restore when returned to D0. Saved separately from pci_saved_state for use |
| * by PM capability emulation and separately from pci_dev internal saved state |
| * to avoid it being overwritten and consumed around other resets. |
| */ |
| int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| bool needs_restore = false, needs_save = false; |
| int ret; |
| |
| /* Prevent changing power state for PFs with VFs enabled */ |
| if (pci_num_vf(pdev) && state > PCI_D0) |
| return -EBUSY; |
| |
| if (vdev->needs_pm_restore) { |
| if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) { |
| pci_save_state(pdev); |
| needs_save = true; |
| } |
| |
| if (pdev->current_state >= PCI_D3hot && state <= PCI_D0) |
| needs_restore = true; |
| } |
| |
| ret = pci_set_power_state(pdev, state); |
| |
| if (!ret) { |
| /* D3 might be unsupported via quirk, skip unless in D3 */ |
| if (needs_save && pdev->current_state >= PCI_D3hot) { |
| /* |
| * The current PCI state will be saved locally in |
| * 'pm_save' during the D3hot transition. When the |
| * device state is changed to D0 again with the current |
| * function, then pci_store_saved_state() will restore |
| * the state and will free the memory pointed by |
| * 'pm_save'. There are few cases where the PCI power |
| * state can be changed to D0 without the involvement |
| * of the driver. For these cases, free the earlier |
| * allocated memory first before overwriting 'pm_save' |
| * to prevent the memory leak. |
| */ |
| kfree(vdev->pm_save); |
| vdev->pm_save = pci_store_saved_state(pdev); |
| } else if (needs_restore) { |
| pci_load_and_free_saved_state(pdev, &vdev->pm_save); |
| pci_restore_state(pdev); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev, |
| struct eventfd_ctx *efdctx) |
| { |
| /* |
| * The vdev power related flags are protected with 'memory_lock' |
| * semaphore. |
| */ |
| vfio_pci_zap_and_down_write_memory_lock(vdev); |
| if (vdev->pm_runtime_engaged) { |
| up_write(&vdev->memory_lock); |
| return -EINVAL; |
| } |
| |
| vdev->pm_runtime_engaged = true; |
| vdev->pm_wake_eventfd_ctx = efdctx; |
| pm_runtime_put_noidle(&vdev->pdev->dev); |
| up_write(&vdev->memory_lock); |
| |
| return 0; |
| } |
| |
| static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags, |
| void __user *arg, size_t argsz) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(device, struct vfio_pci_core_device, vdev); |
| int ret; |
| |
| ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); |
| if (ret != 1) |
| return ret; |
| |
| /* |
| * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count |
| * will be decremented. The pm_runtime_put() will be invoked again |
| * while returning from the ioctl and then the device can go into |
| * runtime suspended state. |
| */ |
| return vfio_pci_runtime_pm_entry(vdev, NULL); |
| } |
| |
| static int vfio_pci_core_pm_entry_with_wakeup( |
| struct vfio_device *device, u32 flags, |
| struct vfio_device_low_power_entry_with_wakeup __user *arg, |
| size_t argsz) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(device, struct vfio_pci_core_device, vdev); |
| struct vfio_device_low_power_entry_with_wakeup entry; |
| struct eventfd_ctx *efdctx; |
| int ret; |
| |
| ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, |
| sizeof(entry)); |
| if (ret != 1) |
| return ret; |
| |
| if (copy_from_user(&entry, arg, sizeof(entry))) |
| return -EFAULT; |
| |
| if (entry.wakeup_eventfd < 0) |
| return -EINVAL; |
| |
| efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd); |
| if (IS_ERR(efdctx)) |
| return PTR_ERR(efdctx); |
| |
| ret = vfio_pci_runtime_pm_entry(vdev, efdctx); |
| if (ret) |
| eventfd_ctx_put(efdctx); |
| |
| return ret; |
| } |
| |
| static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) |
| { |
| if (vdev->pm_runtime_engaged) { |
| vdev->pm_runtime_engaged = false; |
| pm_runtime_get_noresume(&vdev->pdev->dev); |
| |
| if (vdev->pm_wake_eventfd_ctx) { |
| eventfd_ctx_put(vdev->pm_wake_eventfd_ctx); |
| vdev->pm_wake_eventfd_ctx = NULL; |
| } |
| } |
| } |
| |
| static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) |
| { |
| /* |
| * The vdev power related flags are protected with 'memory_lock' |
| * semaphore. |
| */ |
| down_write(&vdev->memory_lock); |
| __vfio_pci_runtime_pm_exit(vdev); |
| up_write(&vdev->memory_lock); |
| } |
| |
| static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags, |
| void __user *arg, size_t argsz) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(device, struct vfio_pci_core_device, vdev); |
| int ret; |
| |
| ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); |
| if (ret != 1) |
| return ret; |
| |
| /* |
| * The device is always in the active state here due to pm wrappers |
| * around ioctls. If the device had entered a low power state and |
| * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has |
| * already signaled the eventfd and exited low power mode itself. |
| * pm_runtime_engaged protects the redundant call here. |
| */ |
| vfio_pci_runtime_pm_exit(vdev); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int vfio_pci_core_runtime_suspend(struct device *dev) |
| { |
| struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); |
| |
| down_write(&vdev->memory_lock); |
| /* |
| * The user can move the device into D3hot state before invoking |
| * power management IOCTL. Move the device into D0 state here and then |
| * the pci-driver core runtime PM suspend function will move the device |
| * into the low power state. Also, for the devices which have |
| * NoSoftRst-, it will help in restoring the original state |
| * (saved locally in 'vdev->pm_save'). |
| */ |
| vfio_pci_set_power_state(vdev, PCI_D0); |
| up_write(&vdev->memory_lock); |
| |
| /* |
| * If INTx is enabled, then mask INTx before going into the runtime |
| * suspended state and unmask the same in the runtime resume. |
| * If INTx has already been masked by the user, then |
| * vfio_pci_intx_mask() will return false and in that case, INTx |
| * should not be unmasked in the runtime resume. |
| */ |
| vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) && |
| vfio_pci_intx_mask(vdev)); |
| |
| return 0; |
| } |
| |
| static int vfio_pci_core_runtime_resume(struct device *dev) |
| { |
| struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); |
| |
| /* |
| * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit |
| * low power mode. |
| */ |
| down_write(&vdev->memory_lock); |
| if (vdev->pm_wake_eventfd_ctx) { |
| eventfd_signal(vdev->pm_wake_eventfd_ctx, 1); |
| __vfio_pci_runtime_pm_exit(vdev); |
| } |
| up_write(&vdev->memory_lock); |
| |
| if (vdev->pm_intx_masked) |
| vfio_pci_intx_unmask(vdev); |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM */ |
| |
| /* |
| * The pci-driver core runtime PM routines always save the device state |
| * before going into suspended state. If the device is going into low power |
| * state with only with runtime PM ops, then no explicit handling is needed |
| * for the devices which have NoSoftRst-. |
| */ |
| static const struct dev_pm_ops vfio_pci_core_pm_ops = { |
| SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend, |
| vfio_pci_core_runtime_resume, |
| NULL) |
| }; |
| |
| int vfio_pci_core_enable(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int ret; |
| u16 cmd; |
| u8 msix_pos; |
| |
| if (!disable_idle_d3) { |
| ret = pm_runtime_resume_and_get(&pdev->dev); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Don't allow our initial saved state to include busmaster */ |
| pci_clear_master(pdev); |
| |
| ret = pci_enable_device(pdev); |
| if (ret) |
| goto out_power; |
| |
| /* If reset fails because of the device lock, fail this path entirely */ |
| ret = pci_try_reset_function(pdev); |
| if (ret == -EAGAIN) |
| goto out_disable_device; |
| |
| vdev->reset_works = !ret; |
| pci_save_state(pdev); |
| vdev->pci_saved_state = pci_store_saved_state(pdev); |
| if (!vdev->pci_saved_state) |
| pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__); |
| |
| if (likely(!nointxmask)) { |
| if (vfio_pci_nointx(pdev)) { |
| pci_info(pdev, "Masking broken INTx support\n"); |
| vdev->nointx = true; |
| pci_intx(pdev, 0); |
| } else |
| vdev->pci_2_3 = pci_intx_mask_supported(pdev); |
| } |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &cmd); |
| if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) { |
| cmd &= ~PCI_COMMAND_INTX_DISABLE; |
| pci_write_config_word(pdev, PCI_COMMAND, cmd); |
| } |
| |
| ret = vfio_pci_zdev_open_device(vdev); |
| if (ret) |
| goto out_free_state; |
| |
| ret = vfio_config_init(vdev); |
| if (ret) |
| goto out_free_zdev; |
| |
| msix_pos = pdev->msix_cap; |
| if (msix_pos) { |
| u16 flags; |
| u32 table; |
| |
| pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags); |
| pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table); |
| |
| vdev->msix_bar = table & PCI_MSIX_TABLE_BIR; |
| vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET; |
| vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16; |
| vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev); |
| } else { |
| vdev->msix_bar = 0xFF; |
| vdev->has_dyn_msix = false; |
| } |
| |
| if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev)) |
| vdev->has_vga = true; |
| |
| |
| return 0; |
| |
| out_free_zdev: |
| vfio_pci_zdev_close_device(vdev); |
| out_free_state: |
| kfree(vdev->pci_saved_state); |
| vdev->pci_saved_state = NULL; |
| out_disable_device: |
| pci_disable_device(pdev); |
| out_power: |
| if (!disable_idle_d3) |
| pm_runtime_put(&pdev->dev); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_enable); |
| |
| void vfio_pci_core_disable(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| struct vfio_pci_dummy_resource *dummy_res, *tmp; |
| struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp; |
| int i, bar; |
| |
| /* For needs_reset */ |
| lockdep_assert_held(&vdev->vdev.dev_set->lock); |
| |
| /* |
| * This function can be invoked while the power state is non-D0. |
| * This non-D0 power state can be with or without runtime PM. |
| * vfio_pci_runtime_pm_exit() will internally increment the usage |
| * count corresponding to pm_runtime_put() called during low power |
| * feature entry and then pm_runtime_resume() will wake up the device, |
| * if the device has already gone into the suspended state. Otherwise, |
| * the vfio_pci_set_power_state() will change the device power state |
| * to D0. |
| */ |
| vfio_pci_runtime_pm_exit(vdev); |
| pm_runtime_resume(&pdev->dev); |
| |
| /* |
| * This function calls __pci_reset_function_locked() which internally |
| * can use pci_pm_reset() for the function reset. pci_pm_reset() will |
| * fail if the power state is non-D0. Also, for the devices which |
| * have NoSoftRst-, the reset function can cause the PCI config space |
| * reset without restoring the original state (saved locally in |
| * 'vdev->pm_save'). |
| */ |
| vfio_pci_set_power_state(vdev, PCI_D0); |
| |
| /* Stop the device from further DMA */ |
| pci_clear_master(pdev); |
| |
| vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE | |
| VFIO_IRQ_SET_ACTION_TRIGGER, |
| vdev->irq_type, 0, 0, NULL); |
| |
| /* Device closed, don't need mutex here */ |
| list_for_each_entry_safe(ioeventfd, ioeventfd_tmp, |
| &vdev->ioeventfds_list, next) { |
| vfio_virqfd_disable(&ioeventfd->virqfd); |
| list_del(&ioeventfd->next); |
| kfree(ioeventfd); |
| } |
| vdev->ioeventfds_nr = 0; |
| |
| vdev->virq_disabled = false; |
| |
| for (i = 0; i < vdev->num_regions; i++) |
| vdev->region[i].ops->release(vdev, &vdev->region[i]); |
| |
| vdev->num_regions = 0; |
| kfree(vdev->region); |
| vdev->region = NULL; /* don't krealloc a freed pointer */ |
| |
| vfio_config_free(vdev); |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| bar = i + PCI_STD_RESOURCES; |
| if (!vdev->barmap[bar]) |
| continue; |
| pci_iounmap(pdev, vdev->barmap[bar]); |
| pci_release_selected_regions(pdev, 1 << bar); |
| vdev->barmap[bar] = NULL; |
| } |
| |
| list_for_each_entry_safe(dummy_res, tmp, |
| &vdev->dummy_resources_list, res_next) { |
| list_del(&dummy_res->res_next); |
| release_resource(&dummy_res->resource); |
| kfree(dummy_res); |
| } |
| |
| vdev->needs_reset = true; |
| |
| vfio_pci_zdev_close_device(vdev); |
| |
| /* |
| * If we have saved state, restore it. If we can reset the device, |
| * even better. Resetting with current state seems better than |
| * nothing, but saving and restoring current state without reset |
| * is just busy work. |
| */ |
| if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) { |
| pci_info(pdev, "%s: Couldn't reload saved state\n", __func__); |
| |
| if (!vdev->reset_works) |
| goto out; |
| |
| pci_save_state(pdev); |
| } |
| |
| /* |
| * Disable INTx and MSI, presumably to avoid spurious interrupts |
| * during reset. Stolen from pci_reset_function() |
| */ |
| pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); |
| |
| /* |
| * Try to get the locks ourselves to prevent a deadlock. The |
| * success of this is dependent on being able to lock the device, |
| * which is not always possible. |
| * We can not use the "try" reset interface here, which will |
| * overwrite the previously restored configuration information. |
| */ |
| if (vdev->reset_works && pci_dev_trylock(pdev)) { |
| if (!__pci_reset_function_locked(pdev)) |
| vdev->needs_reset = false; |
| pci_dev_unlock(pdev); |
| } |
| |
| pci_restore_state(pdev); |
| out: |
| pci_disable_device(pdev); |
| |
| vfio_pci_dev_set_try_reset(vdev->vdev.dev_set); |
| |
| /* Put the pm-runtime usage counter acquired during enable */ |
| if (!disable_idle_d3) |
| pm_runtime_put(&pdev->dev); |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_disable); |
| |
| void vfio_pci_core_close_device(struct vfio_device *core_vdev) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| |
| if (vdev->sriov_pf_core_dev) { |
| mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); |
| WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users); |
| vdev->sriov_pf_core_dev->vf_token->users--; |
| mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); |
| } |
| #if IS_ENABLED(CONFIG_EEH) |
| eeh_dev_release(vdev->pdev); |
| #endif |
| vfio_pci_core_disable(vdev); |
| |
| mutex_lock(&vdev->igate); |
| if (vdev->err_trigger) { |
| eventfd_ctx_put(vdev->err_trigger); |
| vdev->err_trigger = NULL; |
| } |
| if (vdev->req_trigger) { |
| eventfd_ctx_put(vdev->req_trigger); |
| vdev->req_trigger = NULL; |
| } |
| mutex_unlock(&vdev->igate); |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_close_device); |
| |
| void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev) |
| { |
| vfio_pci_probe_mmaps(vdev); |
| #if IS_ENABLED(CONFIG_EEH) |
| eeh_dev_open(vdev->pdev); |
| #endif |
| |
| if (vdev->sriov_pf_core_dev) { |
| mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); |
| vdev->sriov_pf_core_dev->vf_token->users++; |
| mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); |
| } |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable); |
| |
| static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type) |
| { |
| if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) { |
| u8 pin; |
| |
| if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || |
| vdev->nointx || vdev->pdev->is_virtfn) |
| return 0; |
| |
| pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin); |
| |
| return pin ? 1 : 0; |
| } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) { |
| u8 pos; |
| u16 flags; |
| |
| pos = vdev->pdev->msi_cap; |
| if (pos) { |
| pci_read_config_word(vdev->pdev, |
| pos + PCI_MSI_FLAGS, &flags); |
| return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1); |
| } |
| } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) { |
| u8 pos; |
| u16 flags; |
| |
| pos = vdev->pdev->msix_cap; |
| if (pos) { |
| pci_read_config_word(vdev->pdev, |
| pos + PCI_MSIX_FLAGS, &flags); |
| |
| return (flags & PCI_MSIX_FLAGS_QSIZE) + 1; |
| } |
| } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) { |
| if (pci_is_pcie(vdev->pdev)) |
| return 1; |
| } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_pci_count_devs(struct pci_dev *pdev, void *data) |
| { |
| (*(int *)data)++; |
| return 0; |
| } |
| |
| struct vfio_pci_fill_info { |
| int max; |
| int cur; |
| struct vfio_pci_dependent_device *devices; |
| }; |
| |
| static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data) |
| { |
| struct vfio_pci_fill_info *fill = data; |
| struct iommu_group *iommu_group; |
| |
| if (fill->cur == fill->max) |
| return -EAGAIN; /* Something changed, try again */ |
| |
| iommu_group = iommu_group_get(&pdev->dev); |
| if (!iommu_group) |
| return -EPERM; /* Cannot reset non-isolated devices */ |
| |
| fill->devices[fill->cur].group_id = iommu_group_id(iommu_group); |
| fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus); |
| fill->devices[fill->cur].bus = pdev->bus->number; |
| fill->devices[fill->cur].devfn = pdev->devfn; |
| fill->cur++; |
| iommu_group_put(iommu_group); |
| return 0; |
| } |
| |
| struct vfio_pci_group_info { |
| int count; |
| struct file **files; |
| }; |
| |
| static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot) |
| { |
| for (; pdev; pdev = pdev->bus->self) |
| if (pdev->bus == slot->bus) |
| return (pdev->slot == slot); |
| return false; |
| } |
| |
| struct vfio_pci_walk_info { |
| int (*fn)(struct pci_dev *pdev, void *data); |
| void *data; |
| struct pci_dev *pdev; |
| bool slot; |
| int ret; |
| }; |
| |
| static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data) |
| { |
| struct vfio_pci_walk_info *walk = data; |
| |
| if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot)) |
| walk->ret = walk->fn(pdev, walk->data); |
| |
| return walk->ret; |
| } |
| |
| static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev, |
| int (*fn)(struct pci_dev *, |
| void *data), void *data, |
| bool slot) |
| { |
| struct vfio_pci_walk_info walk = { |
| .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0, |
| }; |
| |
| pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk); |
| |
| return walk.ret; |
| } |
| |
| static int msix_mmappable_cap(struct vfio_pci_core_device *vdev, |
| struct vfio_info_cap *caps) |
| { |
| struct vfio_info_cap_header header = { |
| .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE, |
| .version = 1 |
| }; |
| |
| return vfio_info_add_capability(caps, &header, sizeof(header)); |
| } |
| |
| int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev, |
| unsigned int type, unsigned int subtype, |
| const struct vfio_pci_regops *ops, |
| size_t size, u32 flags, void *data) |
| { |
| struct vfio_pci_region *region; |
| |
| region = krealloc(vdev->region, |
| (vdev->num_regions + 1) * sizeof(*region), |
| GFP_KERNEL_ACCOUNT); |
| if (!region) |
| return -ENOMEM; |
| |
| vdev->region = region; |
| vdev->region[vdev->num_regions].type = type; |
| vdev->region[vdev->num_regions].subtype = subtype; |
| vdev->region[vdev->num_regions].ops = ops; |
| vdev->region[vdev->num_regions].size = size; |
| vdev->region[vdev->num_regions].flags = flags; |
| vdev->region[vdev->num_regions].data = data; |
| |
| vdev->num_regions++; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region); |
| |
| static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev, |
| struct vfio_info_cap *caps) |
| { |
| struct vfio_device_info_cap_pci_atomic_comp cap = { |
| .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP, |
| .header.version = 1 |
| }; |
| struct pci_dev *pdev = pci_physfn(vdev->pdev); |
| u32 devcap2; |
| |
| pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2); |
| |
| if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) && |
| !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32)) |
| cap.flags |= VFIO_PCI_ATOMIC_COMP32; |
| |
| if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) && |
| !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64)) |
| cap.flags |= VFIO_PCI_ATOMIC_COMP64; |
| |
| if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) && |
| !pci_enable_atomic_ops_to_root(pdev, |
| PCI_EXP_DEVCAP2_ATOMIC_COMP128)) |
| cap.flags |= VFIO_PCI_ATOMIC_COMP128; |
| |
| if (!cap.flags) |
| return -ENODEV; |
| |
| return vfio_info_add_capability(caps, &cap.header, sizeof(cap)); |
| } |
| |
| static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev, |
| struct vfio_device_info __user *arg) |
| { |
| unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs); |
| struct vfio_device_info info; |
| struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; |
| unsigned long capsz; |
| int ret; |
| |
| /* For backward compatibility, cannot require this */ |
| capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset); |
| |
| if (copy_from_user(&info, arg, minsz)) |
| return -EFAULT; |
| |
| if (info.argsz < minsz) |
| return -EINVAL; |
| |
| if (info.argsz >= capsz) { |
| minsz = capsz; |
| info.cap_offset = 0; |
| } |
| |
| info.flags = VFIO_DEVICE_FLAGS_PCI; |
| |
| if (vdev->reset_works) |
| info.flags |= VFIO_DEVICE_FLAGS_RESET; |
| |
| info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions; |
| info.num_irqs = VFIO_PCI_NUM_IRQS; |
| |
| ret = vfio_pci_info_zdev_add_caps(vdev, &caps); |
| if (ret && ret != -ENODEV) { |
| pci_warn(vdev->pdev, |
| "Failed to setup zPCI info capabilities\n"); |
| return ret; |
| } |
| |
| ret = vfio_pci_info_atomic_cap(vdev, &caps); |
| if (ret && ret != -ENODEV) { |
| pci_warn(vdev->pdev, |
| "Failed to setup AtomicOps info capability\n"); |
| return ret; |
| } |
| |
| if (caps.size) { |
| info.flags |= VFIO_DEVICE_FLAGS_CAPS; |
| if (info.argsz < sizeof(info) + caps.size) { |
| info.argsz = sizeof(info) + caps.size; |
| } else { |
| vfio_info_cap_shift(&caps, sizeof(info)); |
| if (copy_to_user(arg + 1, caps.buf, caps.size)) { |
| kfree(caps.buf); |
| return -EFAULT; |
| } |
| info.cap_offset = sizeof(*arg); |
| } |
| |
| kfree(caps.buf); |
| } |
| |
| return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; |
| } |
| |
| static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev, |
| struct vfio_region_info __user *arg) |
| { |
| unsigned long minsz = offsetofend(struct vfio_region_info, offset); |
| struct pci_dev *pdev = vdev->pdev; |
| struct vfio_region_info info; |
| struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; |
| int i, ret; |
| |
| if (copy_from_user(&info, arg, minsz)) |
| return -EFAULT; |
| |
| if (info.argsz < minsz) |
| return -EINVAL; |
| |
| switch (info.index) { |
| case VFIO_PCI_CONFIG_REGION_INDEX: |
| info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); |
| info.size = pdev->cfg_size; |
| info.flags = VFIO_REGION_INFO_FLAG_READ | |
| VFIO_REGION_INFO_FLAG_WRITE; |
| break; |
| case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: |
| info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); |
| info.size = pci_resource_len(pdev, info.index); |
| if (!info.size) { |
| info.flags = 0; |
| break; |
| } |
| |
| info.flags = VFIO_REGION_INFO_FLAG_READ | |
| VFIO_REGION_INFO_FLAG_WRITE; |
| if (vdev->bar_mmap_supported[info.index]) { |
| info.flags |= VFIO_REGION_INFO_FLAG_MMAP; |
| if (info.index == vdev->msix_bar) { |
| ret = msix_mmappable_cap(vdev, &caps); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| break; |
| case VFIO_PCI_ROM_REGION_INDEX: { |
| void __iomem *io; |
| size_t size; |
| u16 cmd; |
| |
| info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); |
| info.flags = 0; |
| |
| /* Report the BAR size, not the ROM size */ |
| info.size = pci_resource_len(pdev, info.index); |
| if (!info.size) { |
| /* Shadow ROMs appear as PCI option ROMs */ |
| if (pdev->resource[PCI_ROM_RESOURCE].flags & |
| IORESOURCE_ROM_SHADOW) |
| info.size = 0x20000; |
| else |
| break; |
| } |
| |
| /* |
| * Is it really there? Enable memory decode for implicit access |
| * in pci_map_rom(). |
| */ |
| cmd = vfio_pci_memory_lock_and_enable(vdev); |
| io = pci_map_rom(pdev, &size); |
| if (io) { |
| info.flags = VFIO_REGION_INFO_FLAG_READ; |
| pci_unmap_rom(pdev, io); |
| } else { |
| info.size = 0; |
| } |
| vfio_pci_memory_unlock_and_restore(vdev, cmd); |
| |
| break; |
| } |
| case VFIO_PCI_VGA_REGION_INDEX: |
| if (!vdev->has_vga) |
| return -EINVAL; |
| |
| info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); |
| info.size = 0xc0000; |
| info.flags = VFIO_REGION_INFO_FLAG_READ | |
| VFIO_REGION_INFO_FLAG_WRITE; |
| |
| break; |
| default: { |
| struct vfio_region_info_cap_type cap_type = { |
| .header.id = VFIO_REGION_INFO_CAP_TYPE, |
| .header.version = 1 |
| }; |
| |
| if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) |
| return -EINVAL; |
| info.index = array_index_nospec( |
| info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions); |
| |
| i = info.index - VFIO_PCI_NUM_REGIONS; |
| |
| info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); |
| info.size = vdev->region[i].size; |
| info.flags = vdev->region[i].flags; |
| |
| cap_type.type = vdev->region[i].type; |
| cap_type.subtype = vdev->region[i].subtype; |
| |
| ret = vfio_info_add_capability(&caps, &cap_type.header, |
| sizeof(cap_type)); |
| if (ret) |
| return ret; |
| |
| if (vdev->region[i].ops->add_capability) { |
| ret = vdev->region[i].ops->add_capability( |
| vdev, &vdev->region[i], &caps); |
| if (ret) |
| return ret; |
| } |
| } |
| } |
| |
| if (caps.size) { |
| info.flags |= VFIO_REGION_INFO_FLAG_CAPS; |
| if (info.argsz < sizeof(info) + caps.size) { |
| info.argsz = sizeof(info) + caps.size; |
| info.cap_offset = 0; |
| } else { |
| vfio_info_cap_shift(&caps, sizeof(info)); |
| if (copy_to_user(arg + 1, caps.buf, caps.size)) { |
| kfree(caps.buf); |
| return -EFAULT; |
| } |
| info.cap_offset = sizeof(*arg); |
| } |
| |
| kfree(caps.buf); |
| } |
| |
| return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; |
| } |
| |
| static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev, |
| struct vfio_irq_info __user *arg) |
| { |
| unsigned long minsz = offsetofend(struct vfio_irq_info, count); |
| struct vfio_irq_info info; |
| |
| if (copy_from_user(&info, arg, minsz)) |
| return -EFAULT; |
| |
| if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) |
| return -EINVAL; |
| |
| switch (info.index) { |
| case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX: |
| case VFIO_PCI_REQ_IRQ_INDEX: |
| break; |
| case VFIO_PCI_ERR_IRQ_INDEX: |
| if (pci_is_pcie(vdev->pdev)) |
| break; |
| fallthrough; |
| default: |
| return -EINVAL; |
| } |
| |
| info.flags = VFIO_IRQ_INFO_EVENTFD; |
| |
| info.count = vfio_pci_get_irq_count(vdev, info.index); |
| |
| if (info.index == VFIO_PCI_INTX_IRQ_INDEX) |
| info.flags |= |
| (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); |
| else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix) |
| info.flags |= VFIO_IRQ_INFO_NORESIZE; |
| |
| return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; |
| } |
| |
| static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev, |
| struct vfio_irq_set __user *arg) |
| { |
| unsigned long minsz = offsetofend(struct vfio_irq_set, count); |
| struct vfio_irq_set hdr; |
| u8 *data = NULL; |
| int max, ret = 0; |
| size_t data_size = 0; |
| |
| if (copy_from_user(&hdr, arg, minsz)) |
| return -EFAULT; |
| |
| max = vfio_pci_get_irq_count(vdev, hdr.index); |
| |
| ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, |
| &data_size); |
| if (ret) |
| return ret; |
| |
| if (data_size) { |
| data = memdup_user(&arg->data, data_size); |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| } |
| |
| mutex_lock(&vdev->igate); |
| |
| ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start, |
| hdr.count, data); |
| |
| mutex_unlock(&vdev->igate); |
| kfree(data); |
| |
| return ret; |
| } |
| |
| static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev, |
| void __user *arg) |
| { |
| int ret; |
| |
| if (!vdev->reset_works) |
| return -EINVAL; |
| |
| vfio_pci_zap_and_down_write_memory_lock(vdev); |
| |
| /* |
| * This function can be invoked while the power state is non-D0. If |
| * pci_try_reset_function() has been called while the power state is |
| * non-D0, then pci_try_reset_function() will internally set the power |
| * state to D0 without vfio driver involvement. For the devices which |
| * have NoSoftRst-, the reset function can cause the PCI config space |
| * reset without restoring the original state (saved locally in |
| * 'vdev->pm_save'). |
| */ |
| vfio_pci_set_power_state(vdev, PCI_D0); |
| |
| ret = pci_try_reset_function(vdev->pdev); |
| up_write(&vdev->memory_lock); |
| |
| return ret; |
| } |
| |
| static int vfio_pci_ioctl_get_pci_hot_reset_info( |
| struct vfio_pci_core_device *vdev, |
| struct vfio_pci_hot_reset_info __user *arg) |
| { |
| unsigned long minsz = |
| offsetofend(struct vfio_pci_hot_reset_info, count); |
| struct vfio_pci_hot_reset_info hdr; |
| struct vfio_pci_fill_info fill = { 0 }; |
| struct vfio_pci_dependent_device *devices = NULL; |
| bool slot = false; |
| int ret = 0; |
| |
| if (copy_from_user(&hdr, arg, minsz)) |
| return -EFAULT; |
| |
| if (hdr.argsz < minsz) |
| return -EINVAL; |
| |
| hdr.flags = 0; |
| |
| /* Can we do a slot or bus reset or neither? */ |
| if (!pci_probe_reset_slot(vdev->pdev->slot)) |
| slot = true; |
| else if (pci_probe_reset_bus(vdev->pdev->bus)) |
| return -ENODEV; |
| |
| /* How many devices are affected? */ |
| ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, |
| &fill.max, slot); |
| if (ret) |
| return ret; |
| |
| WARN_ON(!fill.max); /* Should always be at least one */ |
| |
| /* |
| * If there's enough space, fill it now, otherwise return -ENOSPC and |
| * the number of devices affected. |
| */ |
| if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) { |
| ret = -ENOSPC; |
| hdr.count = fill.max; |
| goto reset_info_exit; |
| } |
| |
| devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL); |
| if (!devices) |
| return -ENOMEM; |
| |
| fill.devices = devices; |
| |
| ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs, |
| &fill, slot); |
| |
| /* |
| * If a device was removed between counting and filling, we may come up |
| * short of fill.max. If a device was added, we'll have a return of |
| * -EAGAIN above. |
| */ |
| if (!ret) |
| hdr.count = fill.cur; |
| |
| reset_info_exit: |
| if (copy_to_user(arg, &hdr, minsz)) |
| ret = -EFAULT; |
| |
| if (!ret) { |
| if (copy_to_user(&arg->devices, devices, |
| hdr.count * sizeof(*devices))) |
| ret = -EFAULT; |
| } |
| |
| kfree(devices); |
| return ret; |
| } |
| |
| static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev, |
| struct vfio_pci_hot_reset __user *arg) |
| { |
| unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count); |
| struct vfio_pci_hot_reset hdr; |
| int32_t *group_fds; |
| struct file **files; |
| struct vfio_pci_group_info info; |
| bool slot = false; |
| int file_idx, count = 0, ret = 0; |
| |
| if (copy_from_user(&hdr, arg, minsz)) |
| return -EFAULT; |
| |
| if (hdr.argsz < minsz || hdr.flags) |
| return -EINVAL; |
| |
| /* Can we do a slot or bus reset or neither? */ |
| if (!pci_probe_reset_slot(vdev->pdev->slot)) |
| slot = true; |
| else if (pci_probe_reset_bus(vdev->pdev->bus)) |
| return -ENODEV; |
| |
| /* |
| * We can't let userspace give us an arbitrarily large buffer to copy, |
| * so verify how many we think there could be. Note groups can have |
| * multiple devices so one group per device is the max. |
| */ |
| ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, |
| &count, slot); |
| if (ret) |
| return ret; |
| |
| /* Somewhere between 1 and count is OK */ |
| if (!hdr.count || hdr.count > count) |
| return -EINVAL; |
| |
| group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL); |
| files = kcalloc(hdr.count, sizeof(*files), GFP_KERNEL); |
| if (!group_fds || !files) { |
| kfree(group_fds); |
| kfree(files); |
| return -ENOMEM; |
| } |
| |
| if (copy_from_user(group_fds, arg->group_fds, |
| hdr.count * sizeof(*group_fds))) { |
| kfree(group_fds); |
| kfree(files); |
| return -EFAULT; |
| } |
| |
| /* |
| * For each group_fd, get the group through the vfio external user |
| * interface and store the group and iommu ID. This ensures the group |
| * is held across the reset. |
| */ |
| for (file_idx = 0; file_idx < hdr.count; file_idx++) { |
| struct file *file = fget(group_fds[file_idx]); |
| |
| if (!file) { |
| ret = -EBADF; |
| break; |
| } |
| |
| /* Ensure the FD is a vfio group FD.*/ |
| if (!vfio_file_is_group(file)) { |
| fput(file); |
| ret = -EINVAL; |
| break; |
| } |
| |
| files[file_idx] = file; |
| } |
| |
| kfree(group_fds); |
| |
| /* release reference to groups on error */ |
| if (ret) |
| goto hot_reset_release; |
| |
| info.count = hdr.count; |
| info.files = files; |
| |
| ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info); |
| |
| hot_reset_release: |
| for (file_idx--; file_idx >= 0; file_idx--) |
| fput(files[file_idx]); |
| |
| kfree(files); |
| return ret; |
| } |
| |
| static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev, |
| struct vfio_device_ioeventfd __user *arg) |
| { |
| unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd); |
| struct vfio_device_ioeventfd ioeventfd; |
| int count; |
| |
| if (copy_from_user(&ioeventfd, arg, minsz)) |
| return -EFAULT; |
| |
| if (ioeventfd.argsz < minsz) |
| return -EINVAL; |
| |
| if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK) |
| return -EINVAL; |
| |
| count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK; |
| |
| if (hweight8(count) != 1 || ioeventfd.fd < -1) |
| return -EINVAL; |
| |
| return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count, |
| ioeventfd.fd); |
| } |
| |
| long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| void __user *uarg = (void __user *)arg; |
| |
| switch (cmd) { |
| case VFIO_DEVICE_GET_INFO: |
| return vfio_pci_ioctl_get_info(vdev, uarg); |
| case VFIO_DEVICE_GET_IRQ_INFO: |
| return vfio_pci_ioctl_get_irq_info(vdev, uarg); |
| case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO: |
| return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg); |
| case VFIO_DEVICE_GET_REGION_INFO: |
| return vfio_pci_ioctl_get_region_info(vdev, uarg); |
| case VFIO_DEVICE_IOEVENTFD: |
| return vfio_pci_ioctl_ioeventfd(vdev, uarg); |
| case VFIO_DEVICE_PCI_HOT_RESET: |
| return vfio_pci_ioctl_pci_hot_reset(vdev, uarg); |
| case VFIO_DEVICE_RESET: |
| return vfio_pci_ioctl_reset(vdev, uarg); |
| case VFIO_DEVICE_SET_IRQS: |
| return vfio_pci_ioctl_set_irqs(vdev, uarg); |
| default: |
| return -ENOTTY; |
| } |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl); |
| |
| static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags, |
| uuid_t __user *arg, size_t argsz) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(device, struct vfio_pci_core_device, vdev); |
| uuid_t uuid; |
| int ret; |
| |
| if (!vdev->vf_token) |
| return -ENOTTY; |
| /* |
| * We do not support GET of the VF Token UUID as this could |
| * expose the token of the previous device user. |
| */ |
| ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, |
| sizeof(uuid)); |
| if (ret != 1) |
| return ret; |
| |
| if (copy_from_user(&uuid, arg, sizeof(uuid))) |
| return -EFAULT; |
| |
| mutex_lock(&vdev->vf_token->lock); |
| uuid_copy(&vdev->vf_token->uuid, &uuid); |
| mutex_unlock(&vdev->vf_token->lock); |
| return 0; |
| } |
| |
| int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags, |
| void __user *arg, size_t argsz) |
| { |
| switch (flags & VFIO_DEVICE_FEATURE_MASK) { |
| case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY: |
| return vfio_pci_core_pm_entry(device, flags, arg, argsz); |
| case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP: |
| return vfio_pci_core_pm_entry_with_wakeup(device, flags, |
| arg, argsz); |
| case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT: |
| return vfio_pci_core_pm_exit(device, flags, arg, argsz); |
| case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN: |
| return vfio_pci_core_feature_token(device, flags, arg, argsz); |
| default: |
| return -ENOTTY; |
| } |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature); |
| |
| static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf, |
| size_t count, loff_t *ppos, bool iswrite) |
| { |
| unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); |
| int ret; |
| |
| if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) |
| return -EINVAL; |
| |
| ret = pm_runtime_resume_and_get(&vdev->pdev->dev); |
| if (ret) { |
| pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n", |
| ret); |
| return -EIO; |
| } |
| |
| switch (index) { |
| case VFIO_PCI_CONFIG_REGION_INDEX: |
| ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite); |
| break; |
| |
| case VFIO_PCI_ROM_REGION_INDEX: |
| if (iswrite) |
| ret = -EINVAL; |
| else |
| ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false); |
| break; |
| |
| case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: |
| ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite); |
| break; |
| |
| case VFIO_PCI_VGA_REGION_INDEX: |
| ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite); |
| break; |
| |
| default: |
| index -= VFIO_PCI_NUM_REGIONS; |
| ret = vdev->region[index].ops->rw(vdev, buf, |
| count, ppos, iswrite); |
| break; |
| } |
| |
| pm_runtime_put(&vdev->pdev->dev); |
| return ret; |
| } |
| |
| ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| |
| if (!count) |
| return 0; |
| |
| return vfio_pci_rw(vdev, buf, count, ppos, false); |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_read); |
| |
| ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| |
| if (!count) |
| return 0; |
| |
| return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true); |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_write); |
| |
| /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */ |
| static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try) |
| { |
| struct vfio_pci_mmap_vma *mmap_vma, *tmp; |
| |
| /* |
| * Lock ordering: |
| * vma_lock is nested under mmap_lock for vm_ops callback paths. |
| * The memory_lock semaphore is used by both code paths calling |
| * into this function to zap vmas and the vm_ops.fault callback |
| * to protect the memory enable state of the device. |
| * |
| * When zapping vmas we need to maintain the mmap_lock => vma_lock |
| * ordering, which requires using vma_lock to walk vma_list to |
| * acquire an mm, then dropping vma_lock to get the mmap_lock and |
| * reacquiring vma_lock. This logic is derived from similar |
| * requirements in uverbs_user_mmap_disassociate(). |
| * |
| * mmap_lock must always be the top-level lock when it is taken. |
| * Therefore we can only hold the memory_lock write lock when |
| * vma_list is empty, as we'd need to take mmap_lock to clear |
| * entries. vma_list can only be guaranteed empty when holding |
| * vma_lock, thus memory_lock is nested under vma_lock. |
| * |
| * This enables the vm_ops.fault callback to acquire vma_lock, |
| * followed by memory_lock read lock, while already holding |
| * mmap_lock without risk of deadlock. |
| */ |
| while (1) { |
| struct mm_struct *mm = NULL; |
| |
| if (try) { |
| if (!mutex_trylock(&vdev->vma_lock)) |
| return 0; |
| } else { |
| mutex_lock(&vdev->vma_lock); |
| } |
| while (!list_empty(&vdev->vma_list)) { |
| mmap_vma = list_first_entry(&vdev->vma_list, |
| struct vfio_pci_mmap_vma, |
| vma_next); |
| mm = mmap_vma->vma->vm_mm; |
| if (mmget_not_zero(mm)) |
| break; |
| |
| list_del(&mmap_vma->vma_next); |
| kfree(mmap_vma); |
| mm = NULL; |
| } |
| if (!mm) |
| return 1; |
| mutex_unlock(&vdev->vma_lock); |
| |
| if (try) { |
| if (!mmap_read_trylock(mm)) { |
| mmput(mm); |
| return 0; |
| } |
| } else { |
| mmap_read_lock(mm); |
| } |
| if (try) { |
| if (!mutex_trylock(&vdev->vma_lock)) { |
| mmap_read_unlock(mm); |
| mmput(mm); |
| return 0; |
| } |
| } else { |
| mutex_lock(&vdev->vma_lock); |
| } |
| list_for_each_entry_safe(mmap_vma, tmp, |
| &vdev->vma_list, vma_next) { |
| struct vm_area_struct *vma = mmap_vma->vma; |
| |
| if (vma->vm_mm != mm) |
| continue; |
| |
| list_del(&mmap_vma->vma_next); |
| kfree(mmap_vma); |
| |
| zap_vma_ptes(vma, vma->vm_start, |
| vma->vm_end - vma->vm_start); |
| } |
| mutex_unlock(&vdev->vma_lock); |
| mmap_read_unlock(mm); |
| mmput(mm); |
| } |
| } |
| |
| void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev) |
| { |
| vfio_pci_zap_and_vma_lock(vdev, false); |
| down_write(&vdev->memory_lock); |
| mutex_unlock(&vdev->vma_lock); |
| } |
| |
| u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev) |
| { |
| u16 cmd; |
| |
| down_write(&vdev->memory_lock); |
| pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd); |
| if (!(cmd & PCI_COMMAND_MEMORY)) |
| pci_write_config_word(vdev->pdev, PCI_COMMAND, |
| cmd | PCI_COMMAND_MEMORY); |
| |
| return cmd; |
| } |
| |
| void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd) |
| { |
| pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd); |
| up_write(&vdev->memory_lock); |
| } |
| |
| /* Caller holds vma_lock */ |
| static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev, |
| struct vm_area_struct *vma) |
| { |
| struct vfio_pci_mmap_vma *mmap_vma; |
| |
| mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT); |
| if (!mmap_vma) |
| return -ENOMEM; |
| |
| mmap_vma->vma = vma; |
| list_add(&mmap_vma->vma_next, &vdev->vma_list); |
| |
| return 0; |
| } |
| |
| /* |
| * Zap mmaps on open so that we can fault them in on access and therefore |
| * our vma_list only tracks mappings accessed since last zap. |
| */ |
| static void vfio_pci_mmap_open(struct vm_area_struct *vma) |
| { |
| zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); |
| } |
| |
| static void vfio_pci_mmap_close(struct vm_area_struct *vma) |
| { |
| struct vfio_pci_core_device *vdev = vma->vm_private_data; |
| struct vfio_pci_mmap_vma *mmap_vma; |
| |
| mutex_lock(&vdev->vma_lock); |
| list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { |
| if (mmap_vma->vma == vma) { |
| list_del(&mmap_vma->vma_next); |
| kfree(mmap_vma); |
| break; |
| } |
| } |
| mutex_unlock(&vdev->vma_lock); |
| } |
| |
| static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) |
| { |
| struct vm_area_struct *vma = vmf->vma; |
| struct vfio_pci_core_device *vdev = vma->vm_private_data; |
| struct vfio_pci_mmap_vma *mmap_vma; |
| vm_fault_t ret = VM_FAULT_NOPAGE; |
| |
| mutex_lock(&vdev->vma_lock); |
| down_read(&vdev->memory_lock); |
| |
| /* |
| * Memory region cannot be accessed if the low power feature is engaged |
| * or memory access is disabled. |
| */ |
| if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) { |
| ret = VM_FAULT_SIGBUS; |
| goto up_out; |
| } |
| |
| /* |
| * We populate the whole vma on fault, so we need to test whether |
| * the vma has already been mapped, such as for concurrent faults |
| * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if |
| * we ask it to fill the same range again. |
| */ |
| list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { |
| if (mmap_vma->vma == vma) |
| goto up_out; |
| } |
| |
| if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot)) { |
| ret = VM_FAULT_SIGBUS; |
| zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); |
| goto up_out; |
| } |
| |
| if (__vfio_pci_add_vma(vdev, vma)) { |
| ret = VM_FAULT_OOM; |
| zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); |
| } |
| |
| up_out: |
| up_read(&vdev->memory_lock); |
| mutex_unlock(&vdev->vma_lock); |
| return ret; |
| } |
| |
| static const struct vm_operations_struct vfio_pci_mmap_ops = { |
| .open = vfio_pci_mmap_open, |
| .close = vfio_pci_mmap_close, |
| .fault = vfio_pci_mmap_fault, |
| }; |
| |
| int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| struct pci_dev *pdev = vdev->pdev; |
| unsigned int index; |
| u64 phys_len, req_len, pgoff, req_start; |
| int ret; |
| |
| index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); |
| |
| if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) |
| return -EINVAL; |
| if (vma->vm_end < vma->vm_start) |
| return -EINVAL; |
| if ((vma->vm_flags & VM_SHARED) == 0) |
| return -EINVAL; |
| if (index >= VFIO_PCI_NUM_REGIONS) { |
| int regnum = index - VFIO_PCI_NUM_REGIONS; |
| struct vfio_pci_region *region = vdev->region + regnum; |
| |
| if (region->ops && region->ops->mmap && |
| (region->flags & VFIO_REGION_INFO_FLAG_MMAP)) |
| return region->ops->mmap(vdev, region, vma); |
| return -EINVAL; |
| } |
| if (index >= VFIO_PCI_ROM_REGION_INDEX) |
| return -EINVAL; |
| if (!vdev->bar_mmap_supported[index]) |
| return -EINVAL; |
| |
| phys_len = PAGE_ALIGN(pci_resource_len(pdev, index)); |
| req_len = vma->vm_end - vma->vm_start; |
| pgoff = vma->vm_pgoff & |
| ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); |
| req_start = pgoff << PAGE_SHIFT; |
| |
| if (req_start + req_len > phys_len) |
| return -EINVAL; |
| |
| /* |
| * Even though we don't make use of the barmap for the mmap, |
| * we need to request the region and the barmap tracks that. |
| */ |
| if (!vdev->barmap[index]) { |
| ret = pci_request_selected_regions(pdev, |
| 1 << index, "vfio-pci"); |
| if (ret) |
| return ret; |
| |
| vdev->barmap[index] = pci_iomap(pdev, index, 0); |
| if (!vdev->barmap[index]) { |
| pci_release_selected_regions(pdev, 1 << index); |
| return -ENOMEM; |
| } |
| } |
| |
| vma->vm_private_data = vdev; |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff; |
| |
| /* |
| * See remap_pfn_range(), called from vfio_pci_fault() but we can't |
| * change vm_flags within the fault handler. Set them now. |
| */ |
| vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); |
| vma->vm_ops = &vfio_pci_mmap_ops; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_mmap); |
| |
| void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| struct pci_dev *pdev = vdev->pdev; |
| |
| mutex_lock(&vdev->igate); |
| |
| if (vdev->req_trigger) { |
| if (!(count % 10)) |
| pci_notice_ratelimited(pdev, |
| "Relaying device request to user (#%u)\n", |
| count); |
| eventfd_signal(vdev->req_trigger, 1); |
| } else if (count == 0) { |
| pci_warn(pdev, |
| "No device request channel registered, blocked until released by user\n"); |
| } |
| |
| mutex_unlock(&vdev->igate); |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_request); |
| |
| static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev, |
| bool vf_token, uuid_t *uuid) |
| { |
| /* |
| * There's always some degree of trust or collaboration between SR-IOV |
| * PF and VFs, even if just that the PF hosts the SR-IOV capability and |
| * can disrupt VFs with a reset, but often the PF has more explicit |
| * access to deny service to the VF or access data passed through the |
| * VF. We therefore require an opt-in via a shared VF token (UUID) to |
| * represent this trust. This both prevents that a VF driver might |
| * assume the PF driver is a trusted, in-kernel driver, and also that |
| * a PF driver might be replaced with a rogue driver, unknown to in-use |
| * VF drivers. |
| * |
| * Therefore when presented with a VF, if the PF is a vfio device and |
| * it is bound to the vfio-pci driver, the user needs to provide a VF |
| * token to access the device, in the form of appending a vf_token to |
| * the device name, for example: |
| * |
| * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3" |
| * |
| * When presented with a PF which has VFs in use, the user must also |
| * provide the current VF token to prove collaboration with existing |
| * VF users. If VFs are not in use, the VF token provided for the PF |
| * device will act to set the VF token. |
| * |
| * If the VF token is provided but unused, an error is generated. |
| */ |
| if (vdev->pdev->is_virtfn) { |
| struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev; |
| bool match; |
| |
| if (!pf_vdev) { |
| if (!vf_token) |
| return 0; /* PF is not vfio-pci, no VF token */ |
| |
| pci_info_ratelimited(vdev->pdev, |
| "VF token incorrectly provided, PF not bound to vfio-pci\n"); |
| return -EINVAL; |
| } |
| |
| if (!vf_token) { |
| pci_info_ratelimited(vdev->pdev, |
| "VF token required to access device\n"); |
| return -EACCES; |
| } |
| |
| mutex_lock(&pf_vdev->vf_token->lock); |
| match = uuid_equal(uuid, &pf_vdev->vf_token->uuid); |
| mutex_unlock(&pf_vdev->vf_token->lock); |
| |
| if (!match) { |
| pci_info_ratelimited(vdev->pdev, |
| "Incorrect VF token provided for device\n"); |
| return -EACCES; |
| } |
| } else if (vdev->vf_token) { |
| mutex_lock(&vdev->vf_token->lock); |
| if (vdev->vf_token->users) { |
| if (!vf_token) { |
| mutex_unlock(&vdev->vf_token->lock); |
| pci_info_ratelimited(vdev->pdev, |
| "VF token required to access device\n"); |
| return -EACCES; |
| } |
| |
| if (!uuid_equal(uuid, &vdev->vf_token->uuid)) { |
| mutex_unlock(&vdev->vf_token->lock); |
| pci_info_ratelimited(vdev->pdev, |
| "Incorrect VF token provided for device\n"); |
| return -EACCES; |
| } |
| } else if (vf_token) { |
| uuid_copy(&vdev->vf_token->uuid, uuid); |
| } |
| |
| mutex_unlock(&vdev->vf_token->lock); |
| } else if (vf_token) { |
| pci_info_ratelimited(vdev->pdev, |
| "VF token incorrectly provided, not a PF or VF\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #define VF_TOKEN_ARG "vf_token=" |
| |
| int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| bool vf_token = false; |
| uuid_t uuid; |
| int ret; |
| |
| if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev)))) |
| return 0; /* No match */ |
| |
| if (strlen(buf) > strlen(pci_name(vdev->pdev))) { |
| buf += strlen(pci_name(vdev->pdev)); |
| |
| if (*buf != ' ') |
| return 0; /* No match: non-whitespace after name */ |
| |
| while (*buf) { |
| if (*buf == ' ') { |
| buf++; |
| continue; |
| } |
| |
| if (!vf_token && !strncmp(buf, VF_TOKEN_ARG, |
| strlen(VF_TOKEN_ARG))) { |
| buf += strlen(VF_TOKEN_ARG); |
| |
| if (strlen(buf) < UUID_STRING_LEN) |
| return -EINVAL; |
| |
| ret = uuid_parse(buf, &uuid); |
| if (ret) |
| return ret; |
| |
| vf_token = true; |
| buf += UUID_STRING_LEN; |
| } else { |
| /* Unknown/duplicate option */ |
| return -EINVAL; |
| } |
| } |
| } |
| |
| ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid); |
| if (ret) |
| return ret; |
| |
| return 1; /* Match */ |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_match); |
| |
| static int vfio_pci_bus_notifier(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct vfio_pci_core_device *vdev = container_of(nb, |
| struct vfio_pci_core_device, nb); |
| struct device *dev = data; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct pci_dev *physfn = pci_physfn(pdev); |
| |
| if (action == BUS_NOTIFY_ADD_DEVICE && |
| pdev->is_virtfn && physfn == vdev->pdev) { |
| pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n", |
| pci_name(pdev)); |
| pdev->driver_override = kasprintf(GFP_KERNEL, "%s", |
| vdev->vdev.ops->name); |
| } else if (action == BUS_NOTIFY_BOUND_DRIVER && |
| pdev->is_virtfn && physfn == vdev->pdev) { |
| struct pci_driver *drv = pci_dev_driver(pdev); |
| |
| if (drv && drv != pci_dev_driver(vdev->pdev)) |
| pci_warn(vdev->pdev, |
| "VF %s bound to driver %s while PF bound to driver %s\n", |
| pci_name(pdev), drv->name, |
| pci_dev_driver(vdev->pdev)->name); |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| struct vfio_pci_core_device *cur; |
| struct pci_dev *physfn; |
| int ret; |
| |
| if (pdev->is_virtfn) { |
| /* |
| * If this VF was created by our vfio_pci_core_sriov_configure() |
| * then we can find the PF vfio_pci_core_device now, and due to |
| * the locking in pci_disable_sriov() it cannot change until |
| * this VF device driver is removed. |
| */ |
| physfn = pci_physfn(vdev->pdev); |
| mutex_lock(&vfio_pci_sriov_pfs_mutex); |
| list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) { |
| if (cur->pdev == physfn) { |
| vdev->sriov_pf_core_dev = cur; |
| break; |
| } |
| } |
| mutex_unlock(&vfio_pci_sriov_pfs_mutex); |
| return 0; |
| } |
| |
| /* Not a SRIOV PF */ |
| if (!pdev->is_physfn) |
| return 0; |
| |
| vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL); |
| if (!vdev->vf_token) |
| return -ENOMEM; |
| |
| mutex_init(&vdev->vf_token->lock); |
| uuid_gen(&vdev->vf_token->uuid); |
| |
| vdev->nb.notifier_call = vfio_pci_bus_notifier; |
| ret = bus_register_notifier(&pci_bus_type, &vdev->nb); |
| if (ret) { |
| kfree(vdev->vf_token); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev) |
| { |
| if (!vdev->vf_token) |
| return; |
| |
| bus_unregister_notifier(&pci_bus_type, &vdev->nb); |
| WARN_ON(vdev->vf_token->users); |
| mutex_destroy(&vdev->vf_token->lock); |
| kfree(vdev->vf_token); |
| } |
| |
| static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int ret; |
| |
| if (!vfio_pci_is_vga(pdev)) |
| return 0; |
| |
| ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name); |
| if (ret) |
| return ret; |
| |
| ret = vga_client_register(pdev, vfio_pci_set_decode); |
| if (ret) |
| return ret; |
| vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false)); |
| return 0; |
| } |
| |
| static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| |
| if (!vfio_pci_is_vga(pdev)) |
| return; |
| vga_client_unregister(pdev); |
| vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | |
| VGA_RSRC_LEGACY_IO | |
| VGA_RSRC_LEGACY_MEM); |
| } |
| |
| int vfio_pci_core_init_dev(struct vfio_device *core_vdev) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| |
| vdev->pdev = to_pci_dev(core_vdev->dev); |
| vdev->irq_type = VFIO_PCI_NUM_IRQS; |
| mutex_init(&vdev->igate); |
| spin_lock_init(&vdev->irqlock); |
| mutex_init(&vdev->ioeventfds_lock); |
| INIT_LIST_HEAD(&vdev->dummy_resources_list); |
| INIT_LIST_HEAD(&vdev->ioeventfds_list); |
| mutex_init(&vdev->vma_lock); |
| INIT_LIST_HEAD(&vdev->vma_list); |
| INIT_LIST_HEAD(&vdev->sriov_pfs_item); |
| init_rwsem(&vdev->memory_lock); |
| xa_init(&vdev->ctx); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev); |
| |
| void vfio_pci_core_release_dev(struct vfio_device *core_vdev) |
| { |
| struct vfio_pci_core_device *vdev = |
| container_of(core_vdev, struct vfio_pci_core_device, vdev); |
| |
| mutex_destroy(&vdev->igate); |
| mutex_destroy(&vdev->ioeventfds_lock); |
| mutex_destroy(&vdev->vma_lock); |
| kfree(vdev->region); |
| kfree(vdev->pm_save); |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev); |
| |
| int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| /* Drivers must set the vfio_pci_core_device to their drvdata */ |
| if (WARN_ON(vdev != dev_get_drvdata(dev))) |
| return -EINVAL; |
| |
| if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL) |
| return -EINVAL; |
| |
| if (vdev->vdev.mig_ops) { |
| if (!(vdev->vdev.mig_ops->migration_get_state && |
| vdev->vdev.mig_ops->migration_set_state && |
| vdev->vdev.mig_ops->migration_get_data_size) || |
| !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY)) |
| return -EINVAL; |
| } |
| |
| if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start && |
| vdev->vdev.log_ops->log_stop && |
| vdev->vdev.log_ops->log_read_and_clear)) |
| return -EINVAL; |
| |
| /* |
| * Prevent binding to PFs with VFs enabled, the VFs might be in use |
| * by the host or other users. We cannot capture the VFs if they |
| * already exist, nor can we track VF users. Disabling SR-IOV here |
| * would initiate removing the VFs, which would unbind the driver, |
| * which is prone to blocking if that VF is also in use by vfio-pci. |
| * Just reject these PFs and let the user sort it out. |
| */ |
| if (pci_num_vf(pdev)) { |
| pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n"); |
| return -EBUSY; |
| } |
| |
| if (pci_is_root_bus(pdev->bus)) { |
| ret = vfio_assign_device_set(&vdev->vdev, vdev); |
| } else if (!pci_probe_reset_slot(pdev->slot)) { |
| ret = vfio_assign_device_set(&vdev->vdev, pdev->slot); |
| } else { |
| /* |
| * If there is no slot reset support for this device, the whole |
| * bus needs to be grouped together to support bus-wide resets. |
| */ |
| ret = vfio_assign_device_set(&vdev->vdev, pdev->bus); |
| } |
| |
| if (ret) |
| return ret; |
| ret = vfio_pci_vf_init(vdev); |
| if (ret) |
| return ret; |
| ret = vfio_pci_vga_init(vdev); |
| if (ret) |
| goto out_vf; |
| |
| vfio_pci_probe_power_state(vdev); |
| |
| /* |
| * pci-core sets the device power state to an unknown value at |
| * bootup and after being removed from a driver. The only |
| * transition it allows from this unknown state is to D0, which |
| * typically happens when a driver calls pci_enable_device(). |
| * We're not ready to enable the device yet, but we do want to |
| * be able to get to D3. Therefore first do a D0 transition |
| * before enabling runtime PM. |
| */ |
| vfio_pci_set_power_state(vdev, PCI_D0); |
| |
| dev->driver->pm = &vfio_pci_core_pm_ops; |
| pm_runtime_allow(dev); |
| if (!disable_idle_d3) |
| pm_runtime_put(dev); |
| |
| ret = vfio_register_group_dev(&vdev->vdev); |
| if (ret) |
| goto out_power; |
| return 0; |
| |
| out_power: |
| if (!disable_idle_d3) |
| pm_runtime_get_noresume(dev); |
| |
| pm_runtime_forbid(dev); |
| out_vf: |
| vfio_pci_vf_uninit(vdev); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_register_device); |
| |
| void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev) |
| { |
| vfio_pci_core_sriov_configure(vdev, 0); |
| |
| vfio_unregister_group_dev(&vdev->vdev); |
| |
| vfio_pci_vf_uninit(vdev); |
| vfio_pci_vga_uninit(vdev); |
| |
| if (!disable_idle_d3) |
| pm_runtime_get_noresume(&vdev->pdev->dev); |
| |
| pm_runtime_forbid(&vdev->pdev->dev); |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device); |
| |
| pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev); |
| |
| mutex_lock(&vdev->igate); |
| |
| if (vdev->err_trigger) |
| eventfd_signal(vdev->err_trigger, 1); |
| |
| mutex_unlock(&vdev->igate); |
| |
| return PCI_ERS_RESULT_CAN_RECOVER; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected); |
| |
| int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev, |
| int nr_virtfn) |
| { |
| struct pci_dev *pdev = vdev->pdev; |
| int ret = 0; |
| |
| device_lock_assert(&pdev->dev); |
| |
| if (nr_virtfn) { |
| mutex_lock(&vfio_pci_sriov_pfs_mutex); |
| /* |
| * The thread that adds the vdev to the list is the only thread |
| * that gets to call pci_enable_sriov() and we will only allow |
| * it to be called once without going through |
| * pci_disable_sriov() |
| */ |
| if (!list_empty(&vdev->sriov_pfs_item)) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs); |
| mutex_unlock(&vfio_pci_sriov_pfs_mutex); |
| |
| /* |
| * The PF power state should always be higher than the VF power |
| * state. The PF can be in low power state either with runtime |
| * power management (when there is no user) or PCI_PM_CTRL |
| * register write by the user. If PF is in the low power state, |
| * then change the power state to D0 first before enabling |
| * SR-IOV. Also, this function can be called at any time, and |
| * userspace PCI_PM_CTRL write can race against this code path, |
| * so protect the same with 'memory_lock'. |
| */ |
| ret = pm_runtime_resume_and_get(&pdev->dev); |
| if (ret) |
| goto out_del; |
| |
| down_write(&vdev->memory_lock); |
| vfio_pci_set_power_state(vdev, PCI_D0); |
| ret = pci_enable_sriov(pdev, nr_virtfn); |
| up_write(&vdev->memory_lock); |
| if (ret) { |
| pm_runtime_put(&pdev->dev); |
| goto out_del; |
| } |
| return nr_virtfn; |
| } |
| |
| if (pci_num_vf(pdev)) { |
| pci_disable_sriov(pdev); |
| pm_runtime_put(&pdev->dev); |
| } |
| |
| out_del: |
| mutex_lock(&vfio_pci_sriov_pfs_mutex); |
| list_del_init(&vdev->sriov_pfs_item); |
| out_unlock: |
| mutex_unlock(&vfio_pci_sriov_pfs_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure); |
| |
| const struct pci_error_handlers vfio_pci_core_err_handlers = { |
| .error_detected = vfio_pci_core_aer_err_detected, |
| }; |
| EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers); |
| |
| static bool vfio_dev_in_groups(struct vfio_pci_core_device *vdev, |
| struct vfio_pci_group_info *groups) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < groups->count; i++) |
| if (vfio_file_has_dev(groups->files[i], &vdev->vdev)) |
| return true; |
| return false; |
| } |
| |
| static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data) |
| { |
| struct vfio_device_set *dev_set = data; |
| struct vfio_device *cur; |
| |
| list_for_each_entry(cur, &dev_set->device_list, dev_set_list) |
| if (cur->dev == &pdev->dev) |
| return 0; |
| return -EBUSY; |
| } |
| |
| /* |
| * vfio-core considers a group to be viable and will create a vfio_device even |
| * if some devices are bound to drivers like pci-stub or pcieport. Here we |
| * require all PCI devices to be inside our dev_set since that ensures they stay |
| * put and that every driver controlling the device can co-ordinate with the |
| * device reset. |
| * |
| * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be |
| * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise. |
| */ |
| static struct pci_dev * |
| vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set) |
| { |
| struct pci_dev *pdev; |
| |
| lockdep_assert_held(&dev_set->lock); |
| |
| /* |
| * By definition all PCI devices in the dev_set share the same PCI |
| * reset, so any pci_dev will have the same outcomes for |
| * pci_probe_reset_*() and pci_reset_bus(). |
| */ |
| pdev = list_first_entry(&dev_set->device_list, |
| struct vfio_pci_core_device, |
| vdev.dev_set_list)->pdev; |
| |
| /* pci_reset_bus() is supported */ |
| if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus)) |
| return NULL; |
| |
| if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set, |
| dev_set, |
| !pci_probe_reset_slot(pdev->slot))) |
| return NULL; |
| return pdev; |
| } |
| |
| static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set) |
| { |
| struct vfio_pci_core_device *cur; |
| int ret; |
| |
| list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { |
| ret = pm_runtime_resume_and_get(&cur->pdev->dev); |
| if (ret) |
| goto unwind; |
| } |
| |
| return 0; |
| |
| unwind: |
| list_for_each_entry_continue_reverse(cur, &dev_set->device_list, |
| vdev.dev_set_list) |
| pm_runtime_put(&cur->pdev->dev); |
| |
| return ret; |
| } |
| |
| /* |
| * We need to get memory_lock for each device, but devices can share mmap_lock, |
| * therefore we need to zap and hold the vma_lock for each device, and only then |
| * get each memory_lock. |
| */ |
| static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, |
| struct vfio_pci_group_info *groups) |
| { |
| struct vfio_pci_core_device *cur_mem; |
| struct vfio_pci_core_device *cur_vma; |
| struct vfio_pci_core_device *cur; |
| struct pci_dev *pdev; |
| bool is_mem = true; |
| int ret; |
| |
| mutex_lock(&dev_set->lock); |
| cur_mem = list_first_entry(&dev_set->device_list, |
| struct vfio_pci_core_device, |
| vdev.dev_set_list); |
| |
| pdev = vfio_pci_dev_set_resettable(dev_set); |
| if (!pdev) { |
| ret = -EINVAL; |
| goto err_unlock; |
| } |
| |
| /* |
| * Some of the devices in the dev_set can be in the runtime suspended |
| * state. Increment the usage count for all the devices in the dev_set |
| * before reset and decrement the same after reset. |
| */ |
| ret = vfio_pci_dev_set_pm_runtime_get(dev_set); |
| if (ret) |
| goto err_unlock; |
| |
| list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) { |
| /* |
| * Test whether all the affected devices are contained by the |
| * set of groups provided by the user. |
| */ |
| if (!vfio_dev_in_groups(cur_vma, groups)) { |
| ret = -EINVAL; |
| goto err_undo; |
| } |
| |
| /* |
| * Locking multiple devices is prone to deadlock, runaway and |
| * unwind if we hit contention. |
| */ |
| if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) { |
| ret = -EBUSY; |
| goto err_undo; |
| } |
| } |
| cur_vma = NULL; |
| |
| list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) { |
| if (!down_write_trylock(&cur_mem->memory_lock)) { |
| ret = -EBUSY; |
| goto err_undo; |
| } |
| mutex_unlock(&cur_mem->vma_lock); |
| } |
| cur_mem = NULL; |
| |
| /* |
| * The pci_reset_bus() will reset all the devices in the bus. |
| * The power state can be non-D0 for some of the devices in the bus. |
| * For these devices, the pci_reset_bus() will internally set |
| * the power state to D0 without vfio driver involvement. |
| * For the devices which have NoSoftRst-, the reset function can |
| * cause the PCI config space reset without restoring the original |
| * state (saved locally in 'vdev->pm_save'). |
| */ |
| list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) |
| vfio_pci_set_power_state(cur, PCI_D0); |
| |
| ret = pci_reset_bus(pdev); |
| |
| err_undo: |
| list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { |
| if (cur == cur_mem) |
| is_mem = false; |
| if (cur == cur_vma) |
| break; |
| if (is_mem) |
| up_write(&cur->memory_lock); |
| else |
| mutex_unlock(&cur->vma_lock); |
| } |
| |
| list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) |
| pm_runtime_put(&cur->pdev->dev); |
| err_unlock: |
| mutex_unlock(&dev_set->lock); |
| return ret; |
| } |
| |
| static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set) |
| { |
| struct vfio_pci_core_device *cur; |
| bool needs_reset = false; |
| |
| /* No other VFIO device in the set can be open. */ |
| if (vfio_device_set_open_count(dev_set) > 1) |
| return false; |
| |
| list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) |
| needs_reset |= cur->needs_reset; |
| return needs_reset; |
| } |
| |
| /* |
| * If a bus or slot reset is available for the provided dev_set and: |
| * - All of the devices affected by that bus or slot reset are unused |
| * - At least one of the affected devices is marked dirty via |
| * needs_reset (such as by lack of FLR support) |
| * Then attempt to perform that bus or slot reset. |
| */ |
| static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set) |
| { |
| struct vfio_pci_core_device *cur; |
| struct pci_dev *pdev; |
| bool reset_done = false; |
| |
| if (!vfio_pci_dev_set_needs_reset(dev_set)) |
| return; |
| |
| pdev = vfio_pci_dev_set_resettable(dev_set); |
| if (!pdev) |
| return; |
| |
| /* |
| * Some of the devices in the bus can be in the runtime suspended |
| * state. Increment the usage count for all the devices in the dev_set |
| * before reset and decrement the same after reset. |
| */ |
| if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set)) |
| return; |
| |
| if (!pci_reset_bus(pdev)) |
| reset_done = true; |
| |
| list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { |
| if (reset_done) |
| cur->needs_reset = false; |
| |
| if (!disable_idle_d3) |
| pm_runtime_put(&cur->pdev->dev); |
| } |
| } |
| |
| void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga, |
| bool is_disable_idle_d3) |
| { |
| nointxmask = is_nointxmask; |
| disable_vga = is_disable_vga; |
| disable_idle_d3 = is_disable_idle_d3; |
| } |
| EXPORT_SYMBOL_GPL(vfio_pci_core_set_params); |
| |
| static void vfio_pci_core_cleanup(void) |
| { |
| vfio_pci_uninit_perm_bits(); |
| } |
| |
| static int __init vfio_pci_core_init(void) |
| { |
| /* Allocate shared config space permission data used by all devices */ |
| return vfio_pci_init_perm_bits(); |
| } |
| |
| module_init(vfio_pci_core_init); |
| module_exit(vfio_pci_core_cleanup); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR(DRIVER_AUTHOR); |
| MODULE_DESCRIPTION(DRIVER_DESC); |