| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_trace.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_log.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_error.h" |
| |
| #include <linux/iversion.h> |
| |
| struct kmem_cache *xfs_ili_cache; /* inode log item */ |
| |
| static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_inode_log_item, ili_item); |
| } |
| |
| static uint64_t |
| xfs_inode_item_sort( |
| struct xfs_log_item *lip) |
| { |
| return INODE_ITEM(lip)->ili_inode->i_ino; |
| } |
| |
| /* |
| * Prior to finally logging the inode, we have to ensure that all the |
| * per-modification inode state changes are applied. This includes VFS inode |
| * state updates, format conversions, verifier state synchronisation and |
| * ensuring the inode buffer remains in memory whilst the inode is dirty. |
| * |
| * We have to be careful when we grab the inode cluster buffer due to lock |
| * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) |
| * require AGI -> inode cluster buffer lock order. The inode cluster buffer is |
| * not locked until ->precommit, so it happens after everything else has been |
| * modified. |
| * |
| * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we |
| * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we |
| * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because |
| * it can be called on a inode (e.g. via bumplink/droplink) before we take the |
| * AGF lock modifying directory blocks. |
| * |
| * Rather than force a complete rework of all the transactions to call |
| * xfs_trans_log_inode() once and once only at the end of every transaction, we |
| * move the pinning of the inode cluster buffer to a ->precommit operation. This |
| * matches how the xfs_iunlink_item locks the inode cluster buffer, and it |
| * ensures that the inode cluster buffer locking is always done last in a |
| * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode |
| * cluster buffer. |
| * |
| * If we return the inode number as the precommit sort key then we'll also |
| * guarantee that the order all inode cluster buffer locking is the same all the |
| * inodes and unlink items in the transaction. |
| */ |
| static int |
| xfs_inode_item_precommit( |
| struct xfs_trans *tp, |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| struct inode *inode = VFS_I(ip); |
| unsigned int flags = iip->ili_dirty_flags; |
| |
| /* |
| * Don't bother with i_lock for the I_DIRTY_TIME check here, as races |
| * don't matter - we either will need an extra transaction in 24 hours |
| * to log the timestamps, or will clear already cleared fields in the |
| * worst case. |
| */ |
| if (inode->i_state & I_DIRTY_TIME) { |
| spin_lock(&inode->i_lock); |
| inode->i_state &= ~I_DIRTY_TIME; |
| spin_unlock(&inode->i_lock); |
| } |
| |
| /* |
| * If we're updating the inode core or the timestamps and it's possible |
| * to upgrade this inode to bigtime format, do so now. |
| */ |
| if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && |
| xfs_has_bigtime(ip->i_mount) && |
| !xfs_inode_has_bigtime(ip)) { |
| ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; |
| flags |= XFS_ILOG_CORE; |
| } |
| |
| /* |
| * Inode verifiers do not check that the extent size hint is an integer |
| * multiple of the rt extent size on a directory with both rtinherit |
| * and extszinherit flags set. If we're logging a directory that is |
| * misconfigured in this way, clear the hint. |
| */ |
| if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && |
| (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && |
| (ip->i_extsize % ip->i_mount->m_sb.sb_rextsize) > 0) { |
| ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | |
| XFS_DIFLAG_EXTSZINHERIT); |
| ip->i_extsize = 0; |
| flags |= XFS_ILOG_CORE; |
| } |
| |
| /* |
| * Record the specific change for fdatasync optimisation. This allows |
| * fdatasync to skip log forces for inodes that are only timestamp |
| * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it |
| * to XFS_ILOG_CORE so that the actual on-disk dirty tracking |
| * (ili_fields) correctly tracks that the version has changed. |
| */ |
| spin_lock(&iip->ili_lock); |
| iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); |
| if (flags & XFS_ILOG_IVERSION) |
| flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); |
| |
| if (!iip->ili_item.li_buf) { |
| struct xfs_buf *bp; |
| int error; |
| |
| /* |
| * We hold the ILOCK here, so this inode is not going to be |
| * flushed while we are here. Further, because there is no |
| * buffer attached to the item, we know that there is no IO in |
| * progress, so nothing will clear the ili_fields while we read |
| * in the buffer. Hence we can safely drop the spin lock and |
| * read the buffer knowing that the state will not change from |
| * here. |
| */ |
| spin_unlock(&iip->ili_lock); |
| error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); |
| if (error) |
| return error; |
| |
| /* |
| * We need an explicit buffer reference for the log item but |
| * don't want the buffer to remain attached to the transaction. |
| * Hold the buffer but release the transaction reference once |
| * we've attached the inode log item to the buffer log item |
| * list. |
| */ |
| xfs_buf_hold(bp); |
| spin_lock(&iip->ili_lock); |
| iip->ili_item.li_buf = bp; |
| bp->b_flags |= _XBF_INODES; |
| list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); |
| xfs_trans_brelse(tp, bp); |
| } |
| |
| /* |
| * Always OR in the bits from the ili_last_fields field. This is to |
| * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines |
| * in the eventual clearing of the ili_fields bits. See the big comment |
| * in xfs_iflush() for an explanation of this coordination mechanism. |
| */ |
| iip->ili_fields |= (flags | iip->ili_last_fields); |
| spin_unlock(&iip->ili_lock); |
| |
| /* |
| * We are done with the log item transaction dirty state, so clear it so |
| * that it doesn't pollute future transactions. |
| */ |
| iip->ili_dirty_flags = 0; |
| return 0; |
| } |
| |
| /* |
| * The logged size of an inode fork is always the current size of the inode |
| * fork. This means that when an inode fork is relogged, the size of the logged |
| * region is determined by the current state, not the combination of the |
| * previously logged state + the current state. This is different relogging |
| * behaviour to most other log items which will retain the size of the |
| * previously logged changes when smaller regions are relogged. |
| * |
| * Hence operations that remove data from the inode fork (e.g. shortform |
| * dir/attr remove, extent form extent removal, etc), the size of the relogged |
| * inode gets -smaller- rather than stays the same size as the previously logged |
| * size and this can result in the committing transaction reducing the amount of |
| * space being consumed by the CIL. |
| */ |
| STATIC void |
| xfs_inode_item_data_fork_size( |
| struct xfs_inode_log_item *iip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| switch (ip->i_df.if_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| if ((iip->ili_fields & XFS_ILOG_DEXT) && |
| ip->i_df.if_nextents > 0 && |
| ip->i_df.if_bytes > 0) { |
| /* worst case, doesn't subtract delalloc extents */ |
| *nbytes += xfs_inode_data_fork_size(ip); |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| if ((iip->ili_fields & XFS_ILOG_DBROOT) && |
| ip->i_df.if_broot_bytes > 0) { |
| *nbytes += ip->i_df.if_broot_bytes; |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| if ((iip->ili_fields & XFS_ILOG_DDATA) && |
| ip->i_df.if_bytes > 0) { |
| *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); |
| *nvecs += 1; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_DEV: |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| STATIC void |
| xfs_inode_item_attr_fork_size( |
| struct xfs_inode_log_item *iip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| switch (ip->i_af.if_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| if ((iip->ili_fields & XFS_ILOG_AEXT) && |
| ip->i_af.if_nextents > 0 && |
| ip->i_af.if_bytes > 0) { |
| /* worst case, doesn't subtract unused space */ |
| *nbytes += xfs_inode_attr_fork_size(ip); |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| if ((iip->ili_fields & XFS_ILOG_ABROOT) && |
| ip->i_af.if_broot_bytes > 0) { |
| *nbytes += ip->i_af.if_broot_bytes; |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| if ((iip->ili_fields & XFS_ILOG_ADATA) && |
| ip->i_af.if_bytes > 0) { |
| *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); |
| *nvecs += 1; |
| } |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| /* |
| * This returns the number of iovecs needed to log the given inode item. |
| * |
| * We need one iovec for the inode log format structure, one for the |
| * inode core, and possibly one for the inode data/extents/b-tree root |
| * and one for the inode attribute data/extents/b-tree root. |
| */ |
| STATIC void |
| xfs_inode_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| *nvecs += 2; |
| *nbytes += sizeof(struct xfs_inode_log_format) + |
| xfs_log_dinode_size(ip->i_mount); |
| |
| xfs_inode_item_data_fork_size(iip, nvecs, nbytes); |
| if (xfs_inode_has_attr_fork(ip)) |
| xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); |
| } |
| |
| STATIC void |
| xfs_inode_item_format_data_fork( |
| struct xfs_inode_log_item *iip, |
| struct xfs_inode_log_format *ilf, |
| struct xfs_log_vec *lv, |
| struct xfs_log_iovec **vecp) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| size_t data_bytes; |
| |
| switch (ip->i_df.if_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); |
| |
| if ((iip->ili_fields & XFS_ILOG_DEXT) && |
| ip->i_df.if_nextents > 0 && |
| ip->i_df.if_bytes > 0) { |
| struct xfs_bmbt_rec *p; |
| |
| ASSERT(xfs_iext_count(&ip->i_df) > 0); |
| |
| p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); |
| data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); |
| xlog_finish_iovec(lv, *vecp, data_bytes); |
| |
| ASSERT(data_bytes <= ip->i_df.if_bytes); |
| |
| ilf->ilf_dsize = data_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_DEXT; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); |
| |
| if ((iip->ili_fields & XFS_ILOG_DBROOT) && |
| ip->i_df.if_broot_bytes > 0) { |
| ASSERT(ip->i_df.if_broot != NULL); |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, |
| ip->i_df.if_broot, |
| ip->i_df.if_broot_bytes); |
| ilf->ilf_dsize = ip->i_df.if_broot_bytes; |
| ilf->ilf_size++; |
| } else { |
| ASSERT(!(iip->ili_fields & |
| XFS_ILOG_DBROOT)); |
| iip->ili_fields &= ~XFS_ILOG_DBROOT; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); |
| if ((iip->ili_fields & XFS_ILOG_DDATA) && |
| ip->i_df.if_bytes > 0) { |
| ASSERT(ip->i_df.if_u1.if_data != NULL); |
| ASSERT(ip->i_disk_size > 0); |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, |
| ip->i_df.if_u1.if_data, |
| ip->i_df.if_bytes); |
| ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_DDATA; |
| } |
| break; |
| case XFS_DINODE_FMT_DEV: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); |
| if (iip->ili_fields & XFS_ILOG_DEV) |
| ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| STATIC void |
| xfs_inode_item_format_attr_fork( |
| struct xfs_inode_log_item *iip, |
| struct xfs_inode_log_format *ilf, |
| struct xfs_log_vec *lv, |
| struct xfs_log_iovec **vecp) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| size_t data_bytes; |
| |
| switch (ip->i_af.if_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); |
| |
| if ((iip->ili_fields & XFS_ILOG_AEXT) && |
| ip->i_af.if_nextents > 0 && |
| ip->i_af.if_bytes > 0) { |
| struct xfs_bmbt_rec *p; |
| |
| ASSERT(xfs_iext_count(&ip->i_af) == |
| ip->i_af.if_nextents); |
| |
| p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); |
| data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); |
| xlog_finish_iovec(lv, *vecp, data_bytes); |
| |
| ilf->ilf_asize = data_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_AEXT; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); |
| |
| if ((iip->ili_fields & XFS_ILOG_ABROOT) && |
| ip->i_af.if_broot_bytes > 0) { |
| ASSERT(ip->i_af.if_broot != NULL); |
| |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, |
| ip->i_af.if_broot, |
| ip->i_af.if_broot_bytes); |
| ilf->ilf_asize = ip->i_af.if_broot_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_ABROOT; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_fields &= |
| ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); |
| |
| if ((iip->ili_fields & XFS_ILOG_ADATA) && |
| ip->i_af.if_bytes > 0) { |
| ASSERT(ip->i_af.if_u1.if_data != NULL); |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, |
| ip->i_af.if_u1.if_data, |
| ip->i_af.if_bytes); |
| ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_ADATA; |
| } |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| /* |
| * Convert an incore timestamp to a log timestamp. Note that the log format |
| * specifies host endian format! |
| */ |
| static inline xfs_log_timestamp_t |
| xfs_inode_to_log_dinode_ts( |
| struct xfs_inode *ip, |
| const struct timespec64 tv) |
| { |
| struct xfs_log_legacy_timestamp *lits; |
| xfs_log_timestamp_t its; |
| |
| if (xfs_inode_has_bigtime(ip)) |
| return xfs_inode_encode_bigtime(tv); |
| |
| lits = (struct xfs_log_legacy_timestamp *)&its; |
| lits->t_sec = tv.tv_sec; |
| lits->t_nsec = tv.tv_nsec; |
| |
| return its; |
| } |
| |
| /* |
| * The legacy DMAPI fields are only present in the on-disk and in-log inodes, |
| * but not in the in-memory one. But we are guaranteed to have an inode buffer |
| * in memory when logging an inode, so we can just copy it from the on-disk |
| * inode to the in-log inode here so that recovery of file system with these |
| * fields set to non-zero values doesn't lose them. For all other cases we zero |
| * the fields. |
| */ |
| static void |
| xfs_copy_dm_fields_to_log_dinode( |
| struct xfs_inode *ip, |
| struct xfs_log_dinode *to) |
| { |
| struct xfs_dinode *dip; |
| |
| dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, |
| ip->i_imap.im_boffset); |
| |
| if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { |
| to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); |
| to->di_dmstate = be16_to_cpu(dip->di_dmstate); |
| } else { |
| to->di_dmevmask = 0; |
| to->di_dmstate = 0; |
| } |
| } |
| |
| static inline void |
| xfs_inode_to_log_dinode_iext_counters( |
| struct xfs_inode *ip, |
| struct xfs_log_dinode *to) |
| { |
| if (xfs_inode_has_large_extent_counts(ip)) { |
| to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); |
| to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); |
| to->di_nrext64_pad = 0; |
| } else { |
| to->di_nextents = xfs_ifork_nextents(&ip->i_df); |
| to->di_anextents = xfs_ifork_nextents(&ip->i_af); |
| } |
| } |
| |
| static void |
| xfs_inode_to_log_dinode( |
| struct xfs_inode *ip, |
| struct xfs_log_dinode *to, |
| xfs_lsn_t lsn) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| to->di_magic = XFS_DINODE_MAGIC; |
| to->di_format = xfs_ifork_format(&ip->i_df); |
| to->di_uid = i_uid_read(inode); |
| to->di_gid = i_gid_read(inode); |
| to->di_projid_lo = ip->i_projid & 0xffff; |
| to->di_projid_hi = ip->i_projid >> 16; |
| |
| memset(to->di_pad3, 0, sizeof(to->di_pad3)); |
| to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); |
| to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); |
| to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); |
| to->di_nlink = inode->i_nlink; |
| to->di_gen = inode->i_generation; |
| to->di_mode = inode->i_mode; |
| |
| to->di_size = ip->i_disk_size; |
| to->di_nblocks = ip->i_nblocks; |
| to->di_extsize = ip->i_extsize; |
| to->di_forkoff = ip->i_forkoff; |
| to->di_aformat = xfs_ifork_format(&ip->i_af); |
| to->di_flags = ip->i_diflags; |
| |
| xfs_copy_dm_fields_to_log_dinode(ip, to); |
| |
| /* log a dummy value to ensure log structure is fully initialised */ |
| to->di_next_unlinked = NULLAGINO; |
| |
| if (xfs_has_v3inodes(ip->i_mount)) { |
| to->di_version = 3; |
| to->di_changecount = inode_peek_iversion(inode); |
| to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); |
| to->di_flags2 = ip->i_diflags2; |
| to->di_cowextsize = ip->i_cowextsize; |
| to->di_ino = ip->i_ino; |
| to->di_lsn = lsn; |
| memset(to->di_pad2, 0, sizeof(to->di_pad2)); |
| uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); |
| to->di_v3_pad = 0; |
| } else { |
| to->di_version = 2; |
| to->di_flushiter = ip->i_flushiter; |
| memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); |
| } |
| |
| xfs_inode_to_log_dinode_iext_counters(ip, to); |
| } |
| |
| /* |
| * Format the inode core. Current timestamp data is only in the VFS inode |
| * fields, so we need to grab them from there. Hence rather than just copying |
| * the XFS inode core structure, format the fields directly into the iovec. |
| */ |
| static void |
| xfs_inode_item_format_core( |
| struct xfs_inode *ip, |
| struct xfs_log_vec *lv, |
| struct xfs_log_iovec **vecp) |
| { |
| struct xfs_log_dinode *dic; |
| |
| dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); |
| xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); |
| xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the given inode |
| * log item. It fills the first item with an inode log format structure, |
| * the second with the on-disk inode structure, and a possible third and/or |
| * fourth with the inode data/extents/b-tree root and inode attributes |
| * data/extents/b-tree root. |
| * |
| * Note: Always use the 64 bit inode log format structure so we don't |
| * leave an uninitialised hole in the format item on 64 bit systems. Log |
| * recovery on 32 bit systems handles this just fine, so there's no reason |
| * for not using an initialising the properly padded structure all the time. |
| */ |
| STATIC void |
| xfs_inode_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| struct xfs_log_iovec *vecp = NULL; |
| struct xfs_inode_log_format *ilf; |
| |
| ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); |
| ilf->ilf_type = XFS_LI_INODE; |
| ilf->ilf_ino = ip->i_ino; |
| ilf->ilf_blkno = ip->i_imap.im_blkno; |
| ilf->ilf_len = ip->i_imap.im_len; |
| ilf->ilf_boffset = ip->i_imap.im_boffset; |
| ilf->ilf_fields = XFS_ILOG_CORE; |
| ilf->ilf_size = 2; /* format + core */ |
| |
| /* |
| * make sure we don't leak uninitialised data into the log in the case |
| * when we don't log every field in the inode. |
| */ |
| ilf->ilf_dsize = 0; |
| ilf->ilf_asize = 0; |
| ilf->ilf_pad = 0; |
| memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); |
| |
| xlog_finish_iovec(lv, vecp, sizeof(*ilf)); |
| |
| xfs_inode_item_format_core(ip, lv, &vecp); |
| xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); |
| if (xfs_inode_has_attr_fork(ip)) { |
| xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); |
| } else { |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); |
| } |
| |
| /* update the format with the exact fields we actually logged */ |
| ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); |
| } |
| |
| /* |
| * This is called to pin the inode associated with the inode log |
| * item in memory so it cannot be written out. |
| */ |
| STATIC void |
| xfs_inode_item_pin( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(lip->li_buf); |
| |
| trace_xfs_inode_pin(ip, _RET_IP_); |
| atomic_inc(&ip->i_pincount); |
| } |
| |
| |
| /* |
| * This is called to unpin the inode associated with the inode log |
| * item which was previously pinned with a call to xfs_inode_item_pin(). |
| * |
| * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. |
| * |
| * Note that unpin can race with inode cluster buffer freeing marking the buffer |
| * stale. In that case, flush completions are run from the buffer unpin call, |
| * which may happen before the inode is unpinned. If we lose the race, there |
| * will be no buffer attached to the log item, but the inode will be marked |
| * XFS_ISTALE. |
| */ |
| STATIC void |
| xfs_inode_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; |
| |
| trace_xfs_inode_unpin(ip, _RET_IP_); |
| ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); |
| ASSERT(atomic_read(&ip->i_pincount) > 0); |
| if (atomic_dec_and_test(&ip->i_pincount)) |
| wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); |
| } |
| |
| STATIC uint |
| xfs_inode_item_push( |
| struct xfs_log_item *lip, |
| struct list_head *buffer_list) |
| __releases(&lip->li_ailp->ail_lock) |
| __acquires(&lip->li_ailp->ail_lock) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| struct xfs_buf *bp = lip->li_buf; |
| uint rval = XFS_ITEM_SUCCESS; |
| int error; |
| |
| if (!bp || (ip->i_flags & XFS_ISTALE)) { |
| /* |
| * Inode item/buffer is being aborted due to cluster |
| * buffer deletion. Trigger a log force to have that operation |
| * completed and items removed from the AIL before the next push |
| * attempt. |
| */ |
| return XFS_ITEM_PINNED; |
| } |
| |
| if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) |
| return XFS_ITEM_PINNED; |
| |
| if (xfs_iflags_test(ip, XFS_IFLUSHING)) |
| return XFS_ITEM_FLUSHING; |
| |
| if (!xfs_buf_trylock(bp)) |
| return XFS_ITEM_LOCKED; |
| |
| spin_unlock(&lip->li_ailp->ail_lock); |
| |
| /* |
| * We need to hold a reference for flushing the cluster buffer as it may |
| * fail the buffer without IO submission. In which case, we better get a |
| * reference for that completion because otherwise we don't get a |
| * reference for IO until we queue the buffer for delwri submission. |
| */ |
| xfs_buf_hold(bp); |
| error = xfs_iflush_cluster(bp); |
| if (!error) { |
| if (!xfs_buf_delwri_queue(bp, buffer_list)) |
| rval = XFS_ITEM_FLUSHING; |
| xfs_buf_relse(bp); |
| } else { |
| /* |
| * Release the buffer if we were unable to flush anything. On |
| * any other error, the buffer has already been released. |
| */ |
| if (error == -EAGAIN) |
| xfs_buf_relse(bp); |
| rval = XFS_ITEM_LOCKED; |
| } |
| |
| spin_lock(&lip->li_ailp->ail_lock); |
| return rval; |
| } |
| |
| /* |
| * Unlock the inode associated with the inode log item. |
| */ |
| STATIC void |
| xfs_inode_item_release( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| unsigned short lock_flags; |
| |
| ASSERT(ip->i_itemp != NULL); |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| |
| lock_flags = iip->ili_lock_flags; |
| iip->ili_lock_flags = 0; |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| } |
| |
| /* |
| * This is called to find out where the oldest active copy of the inode log |
| * item in the on disk log resides now that the last log write of it completed |
| * at the given lsn. Since we always re-log all dirty data in an inode, the |
| * latest copy in the on disk log is the only one that matters. Therefore, |
| * simply return the given lsn. |
| * |
| * If the inode has been marked stale because the cluster is being freed, we |
| * don't want to (re-)insert this inode into the AIL. There is a race condition |
| * where the cluster buffer may be unpinned before the inode is inserted into |
| * the AIL during transaction committed processing. If the buffer is unpinned |
| * before the inode item has been committed and inserted, then it is possible |
| * for the buffer to be written and IO completes before the inode is inserted |
| * into the AIL. In that case, we'd be inserting a clean, stale inode into the |
| * AIL which will never get removed. It will, however, get reclaimed which |
| * triggers an assert in xfs_inode_free() complaining about freein an inode |
| * still in the AIL. |
| * |
| * To avoid this, just unpin the inode directly and return a LSN of -1 so the |
| * transaction committed code knows that it does not need to do any further |
| * processing on the item. |
| */ |
| STATIC xfs_lsn_t |
| xfs_inode_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| if (xfs_iflags_test(ip, XFS_ISTALE)) { |
| xfs_inode_item_unpin(lip, 0); |
| return -1; |
| } |
| return lsn; |
| } |
| |
| STATIC void |
| xfs_inode_item_committing( |
| struct xfs_log_item *lip, |
| xfs_csn_t seq) |
| { |
| INODE_ITEM(lip)->ili_commit_seq = seq; |
| return xfs_inode_item_release(lip); |
| } |
| |
| static const struct xfs_item_ops xfs_inode_item_ops = { |
| .iop_sort = xfs_inode_item_sort, |
| .iop_precommit = xfs_inode_item_precommit, |
| .iop_size = xfs_inode_item_size, |
| .iop_format = xfs_inode_item_format, |
| .iop_pin = xfs_inode_item_pin, |
| .iop_unpin = xfs_inode_item_unpin, |
| .iop_release = xfs_inode_item_release, |
| .iop_committed = xfs_inode_item_committed, |
| .iop_push = xfs_inode_item_push, |
| .iop_committing = xfs_inode_item_committing, |
| }; |
| |
| |
| /* |
| * Initialize the inode log item for a newly allocated (in-core) inode. |
| */ |
| void |
| xfs_inode_item_init( |
| struct xfs_inode *ip, |
| struct xfs_mount *mp) |
| { |
| struct xfs_inode_log_item *iip; |
| |
| ASSERT(ip->i_itemp == NULL); |
| iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, |
| GFP_KERNEL | __GFP_NOFAIL); |
| |
| iip->ili_inode = ip; |
| spin_lock_init(&iip->ili_lock); |
| xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, |
| &xfs_inode_item_ops); |
| } |
| |
| /* |
| * Free the inode log item and any memory hanging off of it. |
| */ |
| void |
| xfs_inode_item_destroy( |
| struct xfs_inode *ip) |
| { |
| struct xfs_inode_log_item *iip = ip->i_itemp; |
| |
| ASSERT(iip->ili_item.li_buf == NULL); |
| |
| ip->i_itemp = NULL; |
| kmem_free(iip->ili_item.li_lv_shadow); |
| kmem_cache_free(xfs_ili_cache, iip); |
| } |
| |
| |
| /* |
| * We only want to pull the item from the AIL if it is actually there |
| * and its location in the log has not changed since we started the |
| * flush. Thus, we only bother if the inode's lsn has not changed. |
| */ |
| static void |
| xfs_iflush_ail_updates( |
| struct xfs_ail *ailp, |
| struct list_head *list) |
| { |
| struct xfs_log_item *lip; |
| xfs_lsn_t tail_lsn = 0; |
| |
| /* this is an opencoded batch version of xfs_trans_ail_delete */ |
| spin_lock(&ailp->ail_lock); |
| list_for_each_entry(lip, list, li_bio_list) { |
| xfs_lsn_t lsn; |
| |
| clear_bit(XFS_LI_FAILED, &lip->li_flags); |
| if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) |
| continue; |
| |
| /* |
| * dgc: Not sure how this happens, but it happens very |
| * occassionaly via generic/388. xfs_iflush_abort() also |
| * silently handles this same "under writeback but not in AIL at |
| * shutdown" condition via xfs_trans_ail_delete(). |
| */ |
| if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { |
| ASSERT(xlog_is_shutdown(lip->li_log)); |
| continue; |
| } |
| |
| lsn = xfs_ail_delete_one(ailp, lip); |
| if (!tail_lsn && lsn) |
| tail_lsn = lsn; |
| } |
| xfs_ail_update_finish(ailp, tail_lsn); |
| } |
| |
| /* |
| * Walk the list of inodes that have completed their IOs. If they are clean |
| * remove them from the list and dissociate them from the buffer. Buffers that |
| * are still dirty remain linked to the buffer and on the list. Caller must |
| * handle them appropriately. |
| */ |
| static void |
| xfs_iflush_finish( |
| struct xfs_buf *bp, |
| struct list_head *list) |
| { |
| struct xfs_log_item *lip, *n; |
| |
| list_for_each_entry_safe(lip, n, list, li_bio_list) { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| bool drop_buffer = false; |
| |
| spin_lock(&iip->ili_lock); |
| |
| /* |
| * Remove the reference to the cluster buffer if the inode is |
| * clean in memory and drop the buffer reference once we've |
| * dropped the locks we hold. |
| */ |
| ASSERT(iip->ili_item.li_buf == bp); |
| if (!iip->ili_fields) { |
| iip->ili_item.li_buf = NULL; |
| list_del_init(&lip->li_bio_list); |
| drop_buffer = true; |
| } |
| iip->ili_last_fields = 0; |
| iip->ili_flush_lsn = 0; |
| spin_unlock(&iip->ili_lock); |
| xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); |
| if (drop_buffer) |
| xfs_buf_rele(bp); |
| } |
| } |
| |
| /* |
| * Inode buffer IO completion routine. It is responsible for removing inodes |
| * attached to the buffer from the AIL if they have not been re-logged and |
| * completing the inode flush. |
| */ |
| void |
| xfs_buf_inode_iodone( |
| struct xfs_buf *bp) |
| { |
| struct xfs_log_item *lip, *n; |
| LIST_HEAD(flushed_inodes); |
| LIST_HEAD(ail_updates); |
| |
| /* |
| * Pull the attached inodes from the buffer one at a time and take the |
| * appropriate action on them. |
| */ |
| list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| |
| if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { |
| xfs_iflush_abort(iip->ili_inode); |
| continue; |
| } |
| if (!iip->ili_last_fields) |
| continue; |
| |
| /* Do an unlocked check for needing the AIL lock. */ |
| if (iip->ili_flush_lsn == lip->li_lsn || |
| test_bit(XFS_LI_FAILED, &lip->li_flags)) |
| list_move_tail(&lip->li_bio_list, &ail_updates); |
| else |
| list_move_tail(&lip->li_bio_list, &flushed_inodes); |
| } |
| |
| if (!list_empty(&ail_updates)) { |
| xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); |
| list_splice_tail(&ail_updates, &flushed_inodes); |
| } |
| |
| xfs_iflush_finish(bp, &flushed_inodes); |
| if (!list_empty(&flushed_inodes)) |
| list_splice_tail(&flushed_inodes, &bp->b_li_list); |
| } |
| |
| void |
| xfs_buf_inode_io_fail( |
| struct xfs_buf *bp) |
| { |
| struct xfs_log_item *lip; |
| |
| list_for_each_entry(lip, &bp->b_li_list, li_bio_list) |
| set_bit(XFS_LI_FAILED, &lip->li_flags); |
| } |
| |
| /* |
| * Clear the inode logging fields so no more flushes are attempted. If we are |
| * on a buffer list, it is now safe to remove it because the buffer is |
| * guaranteed to be locked. The caller will drop the reference to the buffer |
| * the log item held. |
| */ |
| static void |
| xfs_iflush_abort_clean( |
| struct xfs_inode_log_item *iip) |
| { |
| iip->ili_last_fields = 0; |
| iip->ili_fields = 0; |
| iip->ili_fsync_fields = 0; |
| iip->ili_flush_lsn = 0; |
| iip->ili_item.li_buf = NULL; |
| list_del_init(&iip->ili_item.li_bio_list); |
| } |
| |
| /* |
| * Abort flushing the inode from a context holding the cluster buffer locked. |
| * |
| * This is the normal runtime method of aborting writeback of an inode that is |
| * attached to a cluster buffer. It occurs when the inode and the backing |
| * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster |
| * flushing or buffer IO completion encounters a log shutdown situation. |
| * |
| * If we need to abort inode writeback and we don't already hold the buffer |
| * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be |
| * necessary in a shutdown situation. |
| */ |
| void |
| xfs_iflush_abort( |
| struct xfs_inode *ip) |
| { |
| struct xfs_inode_log_item *iip = ip->i_itemp; |
| struct xfs_buf *bp; |
| |
| if (!iip) { |
| /* clean inode, nothing to do */ |
| xfs_iflags_clear(ip, XFS_IFLUSHING); |
| return; |
| } |
| |
| /* |
| * Remove the inode item from the AIL before we clear its internal |
| * state. Whilst the inode is in the AIL, it should have a valid buffer |
| * pointer for push operations to access - it is only safe to remove the |
| * inode from the buffer once it has been removed from the AIL. |
| * |
| * We also clear the failed bit before removing the item from the AIL |
| * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer |
| * references the inode item owns and needs to hold until we've fully |
| * aborted the inode log item and detached it from the buffer. |
| */ |
| clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); |
| xfs_trans_ail_delete(&iip->ili_item, 0); |
| |
| /* |
| * Grab the inode buffer so can we release the reference the inode log |
| * item holds on it. |
| */ |
| spin_lock(&iip->ili_lock); |
| bp = iip->ili_item.li_buf; |
| xfs_iflush_abort_clean(iip); |
| spin_unlock(&iip->ili_lock); |
| |
| xfs_iflags_clear(ip, XFS_IFLUSHING); |
| if (bp) |
| xfs_buf_rele(bp); |
| } |
| |
| /* |
| * Abort an inode flush in the case of a shutdown filesystem. This can be called |
| * from anywhere with just an inode reference and does not require holding the |
| * inode cluster buffer locked. If the inode is attached to a cluster buffer, |
| * it will grab and lock it safely, then abort the inode flush. |
| */ |
| void |
| xfs_iflush_shutdown_abort( |
| struct xfs_inode *ip) |
| { |
| struct xfs_inode_log_item *iip = ip->i_itemp; |
| struct xfs_buf *bp; |
| |
| if (!iip) { |
| /* clean inode, nothing to do */ |
| xfs_iflags_clear(ip, XFS_IFLUSHING); |
| return; |
| } |
| |
| spin_lock(&iip->ili_lock); |
| bp = iip->ili_item.li_buf; |
| if (!bp) { |
| spin_unlock(&iip->ili_lock); |
| xfs_iflush_abort(ip); |
| return; |
| } |
| |
| /* |
| * We have to take a reference to the buffer so that it doesn't get |
| * freed when we drop the ili_lock and then wait to lock the buffer. |
| * We'll clean up the extra reference after we pick up the ili_lock |
| * again. |
| */ |
| xfs_buf_hold(bp); |
| spin_unlock(&iip->ili_lock); |
| xfs_buf_lock(bp); |
| |
| spin_lock(&iip->ili_lock); |
| if (!iip->ili_item.li_buf) { |
| /* |
| * Raced with another removal, hold the only reference |
| * to bp now. Inode should not be in the AIL now, so just clean |
| * up and return; |
| */ |
| ASSERT(list_empty(&iip->ili_item.li_bio_list)); |
| ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); |
| xfs_iflush_abort_clean(iip); |
| spin_unlock(&iip->ili_lock); |
| xfs_iflags_clear(ip, XFS_IFLUSHING); |
| xfs_buf_relse(bp); |
| return; |
| } |
| |
| /* |
| * Got two references to bp. The first will get dropped by |
| * xfs_iflush_abort() when the item is removed from the buffer list, but |
| * we can't drop our reference until _abort() returns because we have to |
| * unlock the buffer as well. Hence we abort and then unlock and release |
| * our reference to the buffer. |
| */ |
| ASSERT(iip->ili_item.li_buf == bp); |
| spin_unlock(&iip->ili_lock); |
| xfs_iflush_abort(ip); |
| xfs_buf_relse(bp); |
| } |
| |
| |
| /* |
| * convert an xfs_inode_log_format struct from the old 32 bit version |
| * (which can have different field alignments) to the native 64 bit version |
| */ |
| int |
| xfs_inode_item_format_convert( |
| struct xfs_log_iovec *buf, |
| struct xfs_inode_log_format *in_f) |
| { |
| struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; |
| |
| if (buf->i_len != sizeof(*in_f32)) { |
| XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); |
| return -EFSCORRUPTED; |
| } |
| |
| in_f->ilf_type = in_f32->ilf_type; |
| in_f->ilf_size = in_f32->ilf_size; |
| in_f->ilf_fields = in_f32->ilf_fields; |
| in_f->ilf_asize = in_f32->ilf_asize; |
| in_f->ilf_dsize = in_f32->ilf_dsize; |
| in_f->ilf_ino = in_f32->ilf_ino; |
| memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); |
| in_f->ilf_blkno = in_f32->ilf_blkno; |
| in_f->ilf_len = in_f32->ilf_len; |
| in_f->ilf_boffset = in_f32->ilf_boffset; |
| return 0; |
| } |