| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Support PCI/PCIe on PowerNV platforms |
| * |
| * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/crash_dump.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/msi.h> |
| #include <linux/iommu.h> |
| #include <linux/rculist.h> |
| #include <linux/sizes.h> |
| #include <linux/debugfs.h> |
| |
| #include <asm/sections.h> |
| #include <asm/io.h> |
| #include <asm/prom.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/machdep.h> |
| #include <asm/msi_bitmap.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/opal.h> |
| #include <asm/iommu.h> |
| #include <asm/tce.h> |
| #include <asm/xics.h> |
| #include <asm/firmware.h> |
| #include <asm/pnv-pci.h> |
| #include <asm/mmzone.h> |
| #include <asm/xive.h> |
| |
| #include <misc/cxl-base.h> |
| |
| #include "powernv.h" |
| #include "pci.h" |
| #include "../../../../drivers/pci/pci.h" |
| |
| #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ |
| #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ |
| #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 |
| |
| static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_OCAPI" }; |
| |
| static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); |
| static void pnv_pci_configure_bus(struct pci_bus *bus); |
| |
| void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, |
| const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| char pfix[32]; |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| if (pe->flags & PNV_IODA_PE_DEV) |
| strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); |
| else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) |
| sprintf(pfix, "%04x:%02x ", |
| pci_domain_nr(pe->pbus), pe->pbus->number); |
| #ifdef CONFIG_PCI_IOV |
| else if (pe->flags & PNV_IODA_PE_VF) |
| sprintf(pfix, "%04x:%02x:%2x.%d", |
| pci_domain_nr(pe->parent_dev->bus), |
| (pe->rid & 0xff00) >> 8, |
| PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); |
| #endif /* CONFIG_PCI_IOV*/ |
| |
| printk("%spci %s: [PE# %.2x] %pV", |
| level, pfix, pe->pe_number, &vaf); |
| |
| va_end(args); |
| } |
| |
| static bool pnv_iommu_bypass_disabled __read_mostly; |
| static bool pci_reset_phbs __read_mostly; |
| |
| static int __init iommu_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| while (*str) { |
| if (!strncmp(str, "nobypass", 8)) { |
| pnv_iommu_bypass_disabled = true; |
| pr_info("PowerNV: IOMMU bypass window disabled.\n"); |
| break; |
| } |
| str += strcspn(str, ","); |
| if (*str == ',') |
| str++; |
| } |
| |
| return 0; |
| } |
| early_param("iommu", iommu_setup); |
| |
| static int __init pci_reset_phbs_setup(char *str) |
| { |
| pci_reset_phbs = true; |
| return 0; |
| } |
| |
| early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup); |
| |
| static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) |
| { |
| s64 rc; |
| |
| phb->ioda.pe_array[pe_no].phb = phb; |
| phb->ioda.pe_array[pe_no].pe_number = pe_no; |
| phb->ioda.pe_array[pe_no].dma_setup_done = false; |
| |
| /* |
| * Clear the PE frozen state as it might be put into frozen state |
| * in the last PCI remove path. It's not harmful to do so when the |
| * PE is already in unfrozen state. |
| */ |
| rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); |
| if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) |
| pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", |
| __func__, rc, phb->hose->global_number, pe_no); |
| |
| return &phb->ioda.pe_array[pe_no]; |
| } |
| |
| static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) |
| { |
| if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { |
| pr_warn("%s: Invalid PE %x on PHB#%x\n", |
| __func__, pe_no, phb->hose->global_number); |
| return; |
| } |
| |
| mutex_lock(&phb->ioda.pe_alloc_mutex); |
| if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) |
| pr_debug("%s: PE %x was reserved on PHB#%x\n", |
| __func__, pe_no, phb->hose->global_number); |
| mutex_unlock(&phb->ioda.pe_alloc_mutex); |
| |
| pnv_ioda_init_pe(phb, pe_no); |
| } |
| |
| struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count) |
| { |
| struct pnv_ioda_pe *ret = NULL; |
| int run = 0, pe, i; |
| |
| mutex_lock(&phb->ioda.pe_alloc_mutex); |
| |
| /* scan backwards for a run of @count cleared bits */ |
| for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { |
| if (test_bit(pe, phb->ioda.pe_alloc)) { |
| run = 0; |
| continue; |
| } |
| |
| run++; |
| if (run == count) |
| break; |
| } |
| if (run != count) |
| goto out; |
| |
| for (i = pe; i < pe + count; i++) { |
| set_bit(i, phb->ioda.pe_alloc); |
| pnv_ioda_init_pe(phb, i); |
| } |
| ret = &phb->ioda.pe_array[pe]; |
| |
| out: |
| mutex_unlock(&phb->ioda.pe_alloc_mutex); |
| return ret; |
| } |
| |
| void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) |
| { |
| struct pnv_phb *phb = pe->phb; |
| unsigned int pe_num = pe->pe_number; |
| |
| WARN_ON(pe->pdev); |
| memset(pe, 0, sizeof(struct pnv_ioda_pe)); |
| |
| mutex_lock(&phb->ioda.pe_alloc_mutex); |
| clear_bit(pe_num, phb->ioda.pe_alloc); |
| mutex_unlock(&phb->ioda.pe_alloc_mutex); |
| } |
| |
| /* The default M64 BAR is shared by all PEs */ |
| static int pnv_ioda2_init_m64(struct pnv_phb *phb) |
| { |
| const char *desc; |
| struct resource *r; |
| s64 rc; |
| |
| /* Configure the default M64 BAR */ |
| rc = opal_pci_set_phb_mem_window(phb->opal_id, |
| OPAL_M64_WINDOW_TYPE, |
| phb->ioda.m64_bar_idx, |
| phb->ioda.m64_base, |
| 0, /* unused */ |
| phb->ioda.m64_size); |
| if (rc != OPAL_SUCCESS) { |
| desc = "configuring"; |
| goto fail; |
| } |
| |
| /* Enable the default M64 BAR */ |
| rc = opal_pci_phb_mmio_enable(phb->opal_id, |
| OPAL_M64_WINDOW_TYPE, |
| phb->ioda.m64_bar_idx, |
| OPAL_ENABLE_M64_SPLIT); |
| if (rc != OPAL_SUCCESS) { |
| desc = "enabling"; |
| goto fail; |
| } |
| |
| /* |
| * Exclude the segments for reserved and root bus PE, which |
| * are first or last two PEs. |
| */ |
| r = &phb->hose->mem_resources[1]; |
| if (phb->ioda.reserved_pe_idx == 0) |
| r->start += (2 * phb->ioda.m64_segsize); |
| else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) |
| r->end -= (2 * phb->ioda.m64_segsize); |
| else |
| pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", |
| phb->ioda.reserved_pe_idx); |
| |
| return 0; |
| |
| fail: |
| pr_warn(" Failure %lld %s M64 BAR#%d\n", |
| rc, desc, phb->ioda.m64_bar_idx); |
| opal_pci_phb_mmio_enable(phb->opal_id, |
| OPAL_M64_WINDOW_TYPE, |
| phb->ioda.m64_bar_idx, |
| OPAL_DISABLE_M64); |
| return -EIO; |
| } |
| |
| static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, |
| unsigned long *pe_bitmap) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); |
| struct resource *r; |
| resource_size_t base, sgsz, start, end; |
| int segno, i; |
| |
| base = phb->ioda.m64_base; |
| sgsz = phb->ioda.m64_segsize; |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| r = &pdev->resource[i]; |
| if (!r->parent || !pnv_pci_is_m64(phb, r)) |
| continue; |
| |
| start = ALIGN_DOWN(r->start - base, sgsz); |
| end = ALIGN(r->end - base, sgsz); |
| for (segno = start / sgsz; segno < end / sgsz; segno++) { |
| if (pe_bitmap) |
| set_bit(segno, pe_bitmap); |
| else |
| pnv_ioda_reserve_pe(phb, segno); |
| } |
| } |
| } |
| |
| static int pnv_ioda1_init_m64(struct pnv_phb *phb) |
| { |
| struct resource *r; |
| int index; |
| |
| /* |
| * There are 16 M64 BARs, each of which has 8 segments. So |
| * there are as many M64 segments as the maximum number of |
| * PEs, which is 128. |
| */ |
| for (index = 0; index < PNV_IODA1_M64_NUM; index++) { |
| unsigned long base, segsz = phb->ioda.m64_segsize; |
| int64_t rc; |
| |
| base = phb->ioda.m64_base + |
| index * PNV_IODA1_M64_SEGS * segsz; |
| rc = opal_pci_set_phb_mem_window(phb->opal_id, |
| OPAL_M64_WINDOW_TYPE, index, base, 0, |
| PNV_IODA1_M64_SEGS * segsz); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", |
| rc, phb->hose->global_number, index); |
| goto fail; |
| } |
| |
| rc = opal_pci_phb_mmio_enable(phb->opal_id, |
| OPAL_M64_WINDOW_TYPE, index, |
| OPAL_ENABLE_M64_SPLIT); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", |
| rc, phb->hose->global_number, index); |
| goto fail; |
| } |
| } |
| |
| for (index = 0; index < phb->ioda.total_pe_num; index++) { |
| int64_t rc; |
| |
| /* |
| * P7IOC supports M64DT, which helps mapping M64 segment |
| * to one particular PE#. However, PHB3 has fixed mapping |
| * between M64 segment and PE#. In order to have same logic |
| * for P7IOC and PHB3, we enforce fixed mapping between M64 |
| * segment and PE# on P7IOC. |
| */ |
| rc = opal_pci_map_pe_mmio_window(phb->opal_id, |
| index, OPAL_M64_WINDOW_TYPE, |
| index / PNV_IODA1_M64_SEGS, |
| index % PNV_IODA1_M64_SEGS); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", |
| __func__, rc, phb->hose->global_number, |
| index); |
| goto fail; |
| } |
| } |
| |
| /* |
| * Exclude the segments for reserved and root bus PE, which |
| * are first or last two PEs. |
| */ |
| r = &phb->hose->mem_resources[1]; |
| if (phb->ioda.reserved_pe_idx == 0) |
| r->start += (2 * phb->ioda.m64_segsize); |
| else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) |
| r->end -= (2 * phb->ioda.m64_segsize); |
| else |
| WARN(1, "Wrong reserved PE#%x on PHB#%x\n", |
| phb->ioda.reserved_pe_idx, phb->hose->global_number); |
| |
| return 0; |
| |
| fail: |
| for ( ; index >= 0; index--) |
| opal_pci_phb_mmio_enable(phb->opal_id, |
| OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); |
| |
| return -EIO; |
| } |
| |
| static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, |
| unsigned long *pe_bitmap, |
| bool all) |
| { |
| struct pci_dev *pdev; |
| |
| list_for_each_entry(pdev, &bus->devices, bus_list) { |
| pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); |
| |
| if (all && pdev->subordinate) |
| pnv_ioda_reserve_m64_pe(pdev->subordinate, |
| pe_bitmap, all); |
| } |
| } |
| |
| static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(bus); |
| struct pnv_ioda_pe *master_pe, *pe; |
| unsigned long size, *pe_alloc; |
| int i; |
| |
| /* Root bus shouldn't use M64 */ |
| if (pci_is_root_bus(bus)) |
| return NULL; |
| |
| /* Allocate bitmap */ |
| size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); |
| pe_alloc = kzalloc(size, GFP_KERNEL); |
| if (!pe_alloc) { |
| pr_warn("%s: Out of memory !\n", |
| __func__); |
| return NULL; |
| } |
| |
| /* Figure out reserved PE numbers by the PE */ |
| pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); |
| |
| /* |
| * the current bus might not own M64 window and that's all |
| * contributed by its child buses. For the case, we needn't |
| * pick M64 dependent PE#. |
| */ |
| if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { |
| kfree(pe_alloc); |
| return NULL; |
| } |
| |
| /* |
| * Figure out the master PE and put all slave PEs to master |
| * PE's list to form compound PE. |
| */ |
| master_pe = NULL; |
| i = -1; |
| while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < |
| phb->ioda.total_pe_num) { |
| pe = &phb->ioda.pe_array[i]; |
| |
| phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; |
| if (!master_pe) { |
| pe->flags |= PNV_IODA_PE_MASTER; |
| INIT_LIST_HEAD(&pe->slaves); |
| master_pe = pe; |
| } else { |
| pe->flags |= PNV_IODA_PE_SLAVE; |
| pe->master = master_pe; |
| list_add_tail(&pe->list, &master_pe->slaves); |
| } |
| } |
| |
| kfree(pe_alloc); |
| return master_pe; |
| } |
| |
| static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) |
| { |
| struct pci_controller *hose = phb->hose; |
| struct device_node *dn = hose->dn; |
| struct resource *res; |
| u32 m64_range[2], i; |
| const __be32 *r; |
| u64 pci_addr; |
| |
| if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { |
| pr_info(" Not support M64 window\n"); |
| return; |
| } |
| |
| if (!firmware_has_feature(FW_FEATURE_OPAL)) { |
| pr_info(" Firmware too old to support M64 window\n"); |
| return; |
| } |
| |
| r = of_get_property(dn, "ibm,opal-m64-window", NULL); |
| if (!r) { |
| pr_info(" No <ibm,opal-m64-window> on %pOF\n", |
| dn); |
| return; |
| } |
| |
| /* |
| * Find the available M64 BAR range and pickup the last one for |
| * covering the whole 64-bits space. We support only one range. |
| */ |
| if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", |
| m64_range, 2)) { |
| /* In absence of the property, assume 0..15 */ |
| m64_range[0] = 0; |
| m64_range[1] = 16; |
| } |
| /* We only support 64 bits in our allocator */ |
| if (m64_range[1] > 63) { |
| pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", |
| __func__, m64_range[1], phb->hose->global_number); |
| m64_range[1] = 63; |
| } |
| /* Empty range, no m64 */ |
| if (m64_range[1] <= m64_range[0]) { |
| pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", |
| __func__, phb->hose->global_number); |
| return; |
| } |
| |
| /* Configure M64 informations */ |
| res = &hose->mem_resources[1]; |
| res->name = dn->full_name; |
| res->start = of_translate_address(dn, r + 2); |
| res->end = res->start + of_read_number(r + 4, 2) - 1; |
| res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); |
| pci_addr = of_read_number(r, 2); |
| hose->mem_offset[1] = res->start - pci_addr; |
| |
| phb->ioda.m64_size = resource_size(res); |
| phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; |
| phb->ioda.m64_base = pci_addr; |
| |
| /* This lines up nicely with the display from processing OF ranges */ |
| pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", |
| res->start, res->end, pci_addr, m64_range[0], |
| m64_range[0] + m64_range[1] - 1); |
| |
| /* Mark all M64 used up by default */ |
| phb->ioda.m64_bar_alloc = (unsigned long)-1; |
| |
| /* Use last M64 BAR to cover M64 window */ |
| m64_range[1]--; |
| phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; |
| |
| pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); |
| |
| /* Mark remaining ones free */ |
| for (i = m64_range[0]; i < m64_range[1]; i++) |
| clear_bit(i, &phb->ioda.m64_bar_alloc); |
| |
| /* |
| * Setup init functions for M64 based on IODA version, IODA3 uses |
| * the IODA2 code. |
| */ |
| if (phb->type == PNV_PHB_IODA1) |
| phb->init_m64 = pnv_ioda1_init_m64; |
| else |
| phb->init_m64 = pnv_ioda2_init_m64; |
| } |
| |
| static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) |
| { |
| struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; |
| struct pnv_ioda_pe *slave; |
| s64 rc; |
| |
| /* Fetch master PE */ |
| if (pe->flags & PNV_IODA_PE_SLAVE) { |
| pe = pe->master; |
| if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) |
| return; |
| |
| pe_no = pe->pe_number; |
| } |
| |
| /* Freeze master PE */ |
| rc = opal_pci_eeh_freeze_set(phb->opal_id, |
| pe_no, |
| OPAL_EEH_ACTION_SET_FREEZE_ALL); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", |
| __func__, rc, phb->hose->global_number, pe_no); |
| return; |
| } |
| |
| /* Freeze slave PEs */ |
| if (!(pe->flags & PNV_IODA_PE_MASTER)) |
| return; |
| |
| list_for_each_entry(slave, &pe->slaves, list) { |
| rc = opal_pci_eeh_freeze_set(phb->opal_id, |
| slave->pe_number, |
| OPAL_EEH_ACTION_SET_FREEZE_ALL); |
| if (rc != OPAL_SUCCESS) |
| pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", |
| __func__, rc, phb->hose->global_number, |
| slave->pe_number); |
| } |
| } |
| |
| static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) |
| { |
| struct pnv_ioda_pe *pe, *slave; |
| s64 rc; |
| |
| /* Find master PE */ |
| pe = &phb->ioda.pe_array[pe_no]; |
| if (pe->flags & PNV_IODA_PE_SLAVE) { |
| pe = pe->master; |
| WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); |
| pe_no = pe->pe_number; |
| } |
| |
| /* Clear frozen state for master PE */ |
| rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", |
| __func__, rc, opt, phb->hose->global_number, pe_no); |
| return -EIO; |
| } |
| |
| if (!(pe->flags & PNV_IODA_PE_MASTER)) |
| return 0; |
| |
| /* Clear frozen state for slave PEs */ |
| list_for_each_entry(slave, &pe->slaves, list) { |
| rc = opal_pci_eeh_freeze_clear(phb->opal_id, |
| slave->pe_number, |
| opt); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", |
| __func__, rc, opt, phb->hose->global_number, |
| slave->pe_number); |
| return -EIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) |
| { |
| struct pnv_ioda_pe *slave, *pe; |
| u8 fstate = 0, state; |
| __be16 pcierr = 0; |
| s64 rc; |
| |
| /* Sanity check on PE number */ |
| if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) |
| return OPAL_EEH_STOPPED_PERM_UNAVAIL; |
| |
| /* |
| * Fetch the master PE and the PE instance might be |
| * not initialized yet. |
| */ |
| pe = &phb->ioda.pe_array[pe_no]; |
| if (pe->flags & PNV_IODA_PE_SLAVE) { |
| pe = pe->master; |
| WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); |
| pe_no = pe->pe_number; |
| } |
| |
| /* Check the master PE */ |
| rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, |
| &state, &pcierr, NULL); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld getting " |
| "PHB#%x-PE#%x state\n", |
| __func__, rc, |
| phb->hose->global_number, pe_no); |
| return OPAL_EEH_STOPPED_TEMP_UNAVAIL; |
| } |
| |
| /* Check the slave PE */ |
| if (!(pe->flags & PNV_IODA_PE_MASTER)) |
| return state; |
| |
| list_for_each_entry(slave, &pe->slaves, list) { |
| rc = opal_pci_eeh_freeze_status(phb->opal_id, |
| slave->pe_number, |
| &fstate, |
| &pcierr, |
| NULL); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld getting " |
| "PHB#%x-PE#%x state\n", |
| __func__, rc, |
| phb->hose->global_number, slave->pe_number); |
| return OPAL_EEH_STOPPED_TEMP_UNAVAIL; |
| } |
| |
| /* |
| * Override the result based on the ascending |
| * priority. |
| */ |
| if (fstate > state) |
| state = fstate; |
| } |
| |
| return state; |
| } |
| |
| struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn) |
| { |
| int pe_number = phb->ioda.pe_rmap[bdfn]; |
| |
| if (pe_number == IODA_INVALID_PE) |
| return NULL; |
| |
| return &phb->ioda.pe_array[pe_number]; |
| } |
| |
| struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); |
| struct pci_dn *pdn = pci_get_pdn(dev); |
| |
| if (!pdn) |
| return NULL; |
| if (pdn->pe_number == IODA_INVALID_PE) |
| return NULL; |
| return &phb->ioda.pe_array[pdn->pe_number]; |
| } |
| |
| static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, |
| struct pnv_ioda_pe *parent, |
| struct pnv_ioda_pe *child, |
| bool is_add) |
| { |
| const char *desc = is_add ? "adding" : "removing"; |
| uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : |
| OPAL_REMOVE_PE_FROM_DOMAIN; |
| struct pnv_ioda_pe *slave; |
| long rc; |
| |
| /* Parent PE affects child PE */ |
| rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, |
| child->pe_number, op); |
| if (rc != OPAL_SUCCESS) { |
| pe_warn(child, "OPAL error %ld %s to parent PELTV\n", |
| rc, desc); |
| return -ENXIO; |
| } |
| |
| if (!(child->flags & PNV_IODA_PE_MASTER)) |
| return 0; |
| |
| /* Compound case: parent PE affects slave PEs */ |
| list_for_each_entry(slave, &child->slaves, list) { |
| rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, |
| slave->pe_number, op); |
| if (rc != OPAL_SUCCESS) { |
| pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", |
| rc, desc); |
| return -ENXIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int pnv_ioda_set_peltv(struct pnv_phb *phb, |
| struct pnv_ioda_pe *pe, |
| bool is_add) |
| { |
| struct pnv_ioda_pe *slave; |
| struct pci_dev *pdev = NULL; |
| int ret; |
| |
| /* |
| * Clear PE frozen state. If it's master PE, we need |
| * clear slave PE frozen state as well. |
| */ |
| if (is_add) { |
| opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); |
| if (pe->flags & PNV_IODA_PE_MASTER) { |
| list_for_each_entry(slave, &pe->slaves, list) |
| opal_pci_eeh_freeze_clear(phb->opal_id, |
| slave->pe_number, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); |
| } |
| } |
| |
| /* |
| * Associate PE in PELT. We need add the PE into the |
| * corresponding PELT-V as well. Otherwise, the error |
| * originated from the PE might contribute to other |
| * PEs. |
| */ |
| ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); |
| if (ret) |
| return ret; |
| |
| /* For compound PEs, any one affects all of them */ |
| if (pe->flags & PNV_IODA_PE_MASTER) { |
| list_for_each_entry(slave, &pe->slaves, list) { |
| ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) |
| pdev = pe->pbus->self; |
| else if (pe->flags & PNV_IODA_PE_DEV) |
| pdev = pe->pdev->bus->self; |
| #ifdef CONFIG_PCI_IOV |
| else if (pe->flags & PNV_IODA_PE_VF) |
| pdev = pe->parent_dev; |
| #endif /* CONFIG_PCI_IOV */ |
| while (pdev) { |
| struct pci_dn *pdn = pci_get_pdn(pdev); |
| struct pnv_ioda_pe *parent; |
| |
| if (pdn && pdn->pe_number != IODA_INVALID_PE) { |
| parent = &phb->ioda.pe_array[pdn->pe_number]; |
| ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); |
| if (ret) |
| return ret; |
| } |
| |
| pdev = pdev->bus->self; |
| } |
| |
| return 0; |
| } |
| |
| static void pnv_ioda_unset_peltv(struct pnv_phb *phb, |
| struct pnv_ioda_pe *pe, |
| struct pci_dev *parent) |
| { |
| int64_t rc; |
| |
| while (parent) { |
| struct pci_dn *pdn = pci_get_pdn(parent); |
| |
| if (pdn && pdn->pe_number != IODA_INVALID_PE) { |
| rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, |
| pe->pe_number, |
| OPAL_REMOVE_PE_FROM_DOMAIN); |
| /* XXX What to do in case of error ? */ |
| } |
| parent = parent->bus->self; |
| } |
| |
| opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); |
| |
| /* Disassociate PE in PELT */ |
| rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, |
| pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); |
| if (rc) |
| pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc); |
| } |
| |
| int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) |
| { |
| struct pci_dev *parent; |
| uint8_t bcomp, dcomp, fcomp; |
| int64_t rc; |
| long rid_end, rid; |
| |
| /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ |
| if (pe->pbus) { |
| int count; |
| |
| dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; |
| fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; |
| parent = pe->pbus->self; |
| if (pe->flags & PNV_IODA_PE_BUS_ALL) |
| count = resource_size(&pe->pbus->busn_res); |
| else |
| count = 1; |
| |
| switch(count) { |
| case 1: bcomp = OpalPciBusAll; break; |
| case 2: bcomp = OpalPciBus7Bits; break; |
| case 4: bcomp = OpalPciBus6Bits; break; |
| case 8: bcomp = OpalPciBus5Bits; break; |
| case 16: bcomp = OpalPciBus4Bits; break; |
| case 32: bcomp = OpalPciBus3Bits; break; |
| default: |
| dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", |
| count); |
| /* Do an exact match only */ |
| bcomp = OpalPciBusAll; |
| } |
| rid_end = pe->rid + (count << 8); |
| } else { |
| #ifdef CONFIG_PCI_IOV |
| if (pe->flags & PNV_IODA_PE_VF) |
| parent = pe->parent_dev; |
| else |
| #endif |
| parent = pe->pdev->bus->self; |
| bcomp = OpalPciBusAll; |
| dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; |
| fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; |
| rid_end = pe->rid + 1; |
| } |
| |
| /* Clear the reverse map */ |
| for (rid = pe->rid; rid < rid_end; rid++) |
| phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; |
| |
| /* |
| * Release from all parents PELT-V. NPUs don't have a PELTV |
| * table |
| */ |
| if (phb->type != PNV_PHB_NPU_OCAPI) |
| pnv_ioda_unset_peltv(phb, pe, parent); |
| |
| rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, |
| bcomp, dcomp, fcomp, OPAL_UNMAP_PE); |
| if (rc) |
| pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc); |
| |
| pe->pbus = NULL; |
| pe->pdev = NULL; |
| #ifdef CONFIG_PCI_IOV |
| pe->parent_dev = NULL; |
| #endif |
| |
| return 0; |
| } |
| |
| int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) |
| { |
| uint8_t bcomp, dcomp, fcomp; |
| long rc, rid_end, rid; |
| |
| /* Bus validation ? */ |
| if (pe->pbus) { |
| int count; |
| |
| dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; |
| fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; |
| if (pe->flags & PNV_IODA_PE_BUS_ALL) |
| count = resource_size(&pe->pbus->busn_res); |
| else |
| count = 1; |
| |
| switch(count) { |
| case 1: bcomp = OpalPciBusAll; break; |
| case 2: bcomp = OpalPciBus7Bits; break; |
| case 4: bcomp = OpalPciBus6Bits; break; |
| case 8: bcomp = OpalPciBus5Bits; break; |
| case 16: bcomp = OpalPciBus4Bits; break; |
| case 32: bcomp = OpalPciBus3Bits; break; |
| default: |
| dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", |
| count); |
| /* Do an exact match only */ |
| bcomp = OpalPciBusAll; |
| } |
| rid_end = pe->rid + (count << 8); |
| } else { |
| bcomp = OpalPciBusAll; |
| dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; |
| fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; |
| rid_end = pe->rid + 1; |
| } |
| |
| /* |
| * Associate PE in PELT. We need add the PE into the |
| * corresponding PELT-V as well. Otherwise, the error |
| * originated from the PE might contribute to other |
| * PEs. |
| */ |
| rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, |
| bcomp, dcomp, fcomp, OPAL_MAP_PE); |
| if (rc) { |
| pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); |
| return -ENXIO; |
| } |
| |
| /* |
| * Configure PELTV. NPUs don't have a PELTV table so skip |
| * configuration on them. |
| */ |
| if (phb->type != PNV_PHB_NPU_OCAPI) |
| pnv_ioda_set_peltv(phb, pe, true); |
| |
| /* Setup reverse map */ |
| for (rid = pe->rid; rid < rid_end; rid++) |
| phb->ioda.pe_rmap[rid] = pe->pe_number; |
| |
| /* Setup one MVTs on IODA1 */ |
| if (phb->type != PNV_PHB_IODA1) { |
| pe->mve_number = 0; |
| goto out; |
| } |
| |
| pe->mve_number = pe->pe_number; |
| rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); |
| if (rc != OPAL_SUCCESS) { |
| pe_err(pe, "OPAL error %ld setting up MVE %x\n", |
| rc, pe->mve_number); |
| pe->mve_number = -1; |
| } else { |
| rc = opal_pci_set_mve_enable(phb->opal_id, |
| pe->mve_number, OPAL_ENABLE_MVE); |
| if (rc) { |
| pe_err(pe, "OPAL error %ld enabling MVE %x\n", |
| rc, pe->mve_number); |
| pe->mve_number = -1; |
| } |
| } |
| |
| out: |
| return 0; |
| } |
| |
| static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); |
| struct pci_dn *pdn = pci_get_pdn(dev); |
| struct pnv_ioda_pe *pe; |
| |
| if (!pdn) { |
| pr_err("%s: Device tree node not associated properly\n", |
| pci_name(dev)); |
| return NULL; |
| } |
| if (pdn->pe_number != IODA_INVALID_PE) |
| return NULL; |
| |
| pe = pnv_ioda_alloc_pe(phb, 1); |
| if (!pe) { |
| pr_warn("%s: Not enough PE# available, disabling device\n", |
| pci_name(dev)); |
| return NULL; |
| } |
| |
| /* NOTE: We don't get a reference for the pointer in the PE |
| * data structure, both the device and PE structures should be |
| * destroyed at the same time. |
| * |
| * At some point we want to remove the PDN completely anyways |
| */ |
| pdn->pe_number = pe->pe_number; |
| pe->flags = PNV_IODA_PE_DEV; |
| pe->pdev = dev; |
| pe->pbus = NULL; |
| pe->mve_number = -1; |
| pe->rid = dev->bus->number << 8 | pdn->devfn; |
| pe->device_count++; |
| |
| pe_info(pe, "Associated device to PE\n"); |
| |
| if (pnv_ioda_configure_pe(phb, pe)) { |
| /* XXX What do we do here ? */ |
| pnv_ioda_free_pe(pe); |
| pdn->pe_number = IODA_INVALID_PE; |
| pe->pdev = NULL; |
| return NULL; |
| } |
| |
| /* Put PE to the list */ |
| mutex_lock(&phb->ioda.pe_list_mutex); |
| list_add_tail(&pe->list, &phb->ioda.pe_list); |
| mutex_unlock(&phb->ioda.pe_list_mutex); |
| return pe; |
| } |
| |
| /* |
| * There're 2 types of PCI bus sensitive PEs: One that is compromised of |
| * single PCI bus. Another one that contains the primary PCI bus and its |
| * subordinate PCI devices and buses. The second type of PE is normally |
| * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. |
| */ |
| static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(bus); |
| struct pnv_ioda_pe *pe = NULL; |
| unsigned int pe_num; |
| |
| /* |
| * In partial hotplug case, the PE instance might be still alive. |
| * We should reuse it instead of allocating a new one. |
| */ |
| pe_num = phb->ioda.pe_rmap[bus->number << 8]; |
| if (WARN_ON(pe_num != IODA_INVALID_PE)) { |
| pe = &phb->ioda.pe_array[pe_num]; |
| return NULL; |
| } |
| |
| /* PE number for root bus should have been reserved */ |
| if (pci_is_root_bus(bus)) |
| pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; |
| |
| /* Check if PE is determined by M64 */ |
| if (!pe) |
| pe = pnv_ioda_pick_m64_pe(bus, all); |
| |
| /* The PE number isn't pinned by M64 */ |
| if (!pe) |
| pe = pnv_ioda_alloc_pe(phb, 1); |
| |
| if (!pe) { |
| pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n", |
| __func__, pci_domain_nr(bus), bus->number); |
| return NULL; |
| } |
| |
| pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); |
| pe->pbus = bus; |
| pe->pdev = NULL; |
| pe->mve_number = -1; |
| pe->rid = bus->busn_res.start << 8; |
| |
| if (all) |
| pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n", |
| &bus->busn_res.start, &bus->busn_res.end, |
| pe->pe_number); |
| else |
| pe_info(pe, "Secondary bus %pad associated with PE#%x\n", |
| &bus->busn_res.start, pe->pe_number); |
| |
| if (pnv_ioda_configure_pe(phb, pe)) { |
| /* XXX What do we do here ? */ |
| pnv_ioda_free_pe(pe); |
| pe->pbus = NULL; |
| return NULL; |
| } |
| |
| /* Put PE to the list */ |
| list_add_tail(&pe->list, &phb->ioda.pe_list); |
| |
| return pe; |
| } |
| |
| static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, |
| struct pnv_ioda_pe *pe); |
| |
| static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); |
| struct pci_dn *pdn = pci_get_pdn(pdev); |
| struct pnv_ioda_pe *pe; |
| |
| /* Check if the BDFN for this device is associated with a PE yet */ |
| pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8)); |
| if (!pe) { |
| /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */ |
| if (WARN_ON(pdev->is_virtfn)) |
| return; |
| |
| pnv_pci_configure_bus(pdev->bus); |
| pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8)); |
| pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff); |
| |
| |
| /* |
| * If we can't setup the IODA PE something has gone horribly |
| * wrong and we can't enable DMA for the device. |
| */ |
| if (WARN_ON(!pe)) |
| return; |
| } else { |
| pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number); |
| } |
| |
| /* |
| * We assume that bridges *probably* don't need to do any DMA so we can |
| * skip allocating a TCE table, etc unless we get a non-bridge device. |
| */ |
| if (!pe->dma_setup_done && !pci_is_bridge(pdev)) { |
| switch (phb->type) { |
| case PNV_PHB_IODA1: |
| pnv_pci_ioda1_setup_dma_pe(phb, pe); |
| break; |
| case PNV_PHB_IODA2: |
| pnv_pci_ioda2_setup_dma_pe(phb, pe); |
| break; |
| default: |
| pr_warn("%s: No DMA for PHB#%x (type %d)\n", |
| __func__, phb->hose->global_number, phb->type); |
| } |
| } |
| |
| if (pdn) |
| pdn->pe_number = pe->pe_number; |
| pe->device_count++; |
| |
| WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); |
| pdev->dev.archdata.dma_offset = pe->tce_bypass_base; |
| set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); |
| |
| /* PEs with a DMA weight of zero won't have a group */ |
| if (pe->table_group.group) |
| iommu_add_device(&pe->table_group, &pdev->dev); |
| } |
| |
| /* |
| * Reconfigure TVE#0 to be usable as 64-bit DMA space. |
| * |
| * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. |
| * Devices can only access more than that if bit 59 of the PCI address is set |
| * by hardware, which indicates TVE#1 should be used instead of TVE#0. |
| * Many PCI devices are not capable of addressing that many bits, and as a |
| * result are limited to the 4GB of virtual memory made available to 32-bit |
| * devices in TVE#0. |
| * |
| * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit |
| * devices by configuring the virtual memory past the first 4GB inaccessible |
| * by 64-bit DMAs. This should only be used by devices that want more than |
| * 4GB, and only on PEs that have no 32-bit devices. |
| * |
| * Currently this will only work on PHB3 (POWER8). |
| */ |
| static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) |
| { |
| u64 window_size, table_size, tce_count, addr; |
| struct page *table_pages; |
| u64 tce_order = 28; /* 256MB TCEs */ |
| __be64 *tces; |
| s64 rc; |
| |
| /* |
| * Window size needs to be a power of two, but needs to account for |
| * shifting memory by the 4GB offset required to skip 32bit space. |
| */ |
| window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); |
| tce_count = window_size >> tce_order; |
| table_size = tce_count << 3; |
| |
| if (table_size < PAGE_SIZE) |
| table_size = PAGE_SIZE; |
| |
| table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, |
| get_order(table_size)); |
| if (!table_pages) |
| goto err; |
| |
| tces = page_address(table_pages); |
| if (!tces) |
| goto err; |
| |
| memset(tces, 0, table_size); |
| |
| for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { |
| tces[(addr + (1ULL << 32)) >> tce_order] = |
| cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); |
| } |
| |
| rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, |
| pe->pe_number, |
| /* reconfigure window 0 */ |
| (pe->pe_number << 1) + 0, |
| 1, |
| __pa(tces), |
| table_size, |
| 1 << tce_order); |
| if (rc == OPAL_SUCCESS) { |
| pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); |
| return 0; |
| } |
| err: |
| pe_err(pe, "Error configuring 64-bit DMA bypass\n"); |
| return -EIO; |
| } |
| |
| static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev, |
| u64 dma_mask) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); |
| struct pci_dn *pdn = pci_get_pdn(pdev); |
| struct pnv_ioda_pe *pe; |
| |
| if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) |
| return false; |
| |
| pe = &phb->ioda.pe_array[pdn->pe_number]; |
| if (pe->tce_bypass_enabled) { |
| u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; |
| if (dma_mask >= top) |
| return true; |
| } |
| |
| /* |
| * If the device can't set the TCE bypass bit but still wants |
| * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to |
| * bypass the 32-bit region and be usable for 64-bit DMAs. |
| * The device needs to be able to address all of this space. |
| */ |
| if (dma_mask >> 32 && |
| dma_mask > (memory_hotplug_max() + (1ULL << 32)) && |
| /* pe->pdev should be set if it's a single device, pe->pbus if not */ |
| (pe->device_count == 1 || !pe->pbus) && |
| phb->model == PNV_PHB_MODEL_PHB3) { |
| /* Configure the bypass mode */ |
| s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe); |
| if (rc) |
| return false; |
| /* 4GB offset bypasses 32-bit space */ |
| pdev->dev.archdata.dma_offset = (1ULL << 32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, |
| bool real_mode) |
| { |
| return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : |
| (phb->regs + 0x210); |
| } |
| |
| static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, |
| unsigned long index, unsigned long npages, bool rm) |
| { |
| struct iommu_table_group_link *tgl = list_first_entry_or_null( |
| &tbl->it_group_list, struct iommu_table_group_link, |
| next); |
| struct pnv_ioda_pe *pe = container_of(tgl->table_group, |
| struct pnv_ioda_pe, table_group); |
| __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); |
| unsigned long start, end, inc; |
| |
| start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); |
| end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + |
| npages - 1); |
| |
| /* p7ioc-style invalidation, 2 TCEs per write */ |
| start |= (1ull << 63); |
| end |= (1ull << 63); |
| inc = 16; |
| end |= inc - 1; /* round up end to be different than start */ |
| |
| mb(); /* Ensure above stores are visible */ |
| while (start <= end) { |
| if (rm) |
| __raw_rm_writeq_be(start, invalidate); |
| else |
| __raw_writeq_be(start, invalidate); |
| |
| start += inc; |
| } |
| |
| /* |
| * The iommu layer will do another mb() for us on build() |
| * and we don't care on free() |
| */ |
| } |
| |
| static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, |
| long npages, unsigned long uaddr, |
| enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, |
| attrs); |
| |
| if (!ret) |
| pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_IOMMU_API |
| /* Common for IODA1 and IODA2 */ |
| static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index, |
| unsigned long *hpa, enum dma_data_direction *direction, |
| bool realmode) |
| { |
| return pnv_tce_xchg(tbl, index, hpa, direction, !realmode); |
| } |
| #endif |
| |
| static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, |
| long npages) |
| { |
| pnv_tce_free(tbl, index, npages); |
| |
| pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); |
| } |
| |
| static struct iommu_table_ops pnv_ioda1_iommu_ops = { |
| .set = pnv_ioda1_tce_build, |
| #ifdef CONFIG_IOMMU_API |
| .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, |
| .tce_kill = pnv_pci_p7ioc_tce_invalidate, |
| .useraddrptr = pnv_tce_useraddrptr, |
| #endif |
| .clear = pnv_ioda1_tce_free, |
| .get = pnv_tce_get, |
| }; |
| |
| #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) |
| #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) |
| #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) |
| |
| static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) |
| { |
| /* 01xb - invalidate TCEs that match the specified PE# */ |
| __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); |
| unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); |
| |
| mb(); /* Ensure above stores are visible */ |
| __raw_writeq_be(val, invalidate); |
| } |
| |
| static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, |
| unsigned shift, unsigned long index, |
| unsigned long npages) |
| { |
| __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); |
| unsigned long start, end, inc; |
| |
| /* We'll invalidate DMA address in PE scope */ |
| start = PHB3_TCE_KILL_INVAL_ONE; |
| start |= (pe->pe_number & 0xFF); |
| end = start; |
| |
| /* Figure out the start, end and step */ |
| start |= (index << shift); |
| end |= ((index + npages - 1) << shift); |
| inc = (0x1ull << shift); |
| mb(); |
| |
| while (start <= end) { |
| if (rm) |
| __raw_rm_writeq_be(start, invalidate); |
| else |
| __raw_writeq_be(start, invalidate); |
| start += inc; |
| } |
| } |
| |
| static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) |
| { |
| struct pnv_phb *phb = pe->phb; |
| |
| if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) |
| pnv_pci_phb3_tce_invalidate_pe(pe); |
| else |
| opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, |
| pe->pe_number, 0, 0, 0); |
| } |
| |
| static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, |
| unsigned long index, unsigned long npages, bool rm) |
| { |
| struct iommu_table_group_link *tgl; |
| |
| list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { |
| struct pnv_ioda_pe *pe = container_of(tgl->table_group, |
| struct pnv_ioda_pe, table_group); |
| struct pnv_phb *phb = pe->phb; |
| unsigned int shift = tbl->it_page_shift; |
| |
| if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) |
| pnv_pci_phb3_tce_invalidate(pe, rm, shift, |
| index, npages); |
| else |
| opal_pci_tce_kill(phb->opal_id, |
| OPAL_PCI_TCE_KILL_PAGES, |
| pe->pe_number, 1u << shift, |
| index << shift, npages); |
| } |
| } |
| |
| static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, |
| long npages, unsigned long uaddr, |
| enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, |
| attrs); |
| |
| if (!ret) |
| pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); |
| |
| return ret; |
| } |
| |
| static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, |
| long npages) |
| { |
| pnv_tce_free(tbl, index, npages); |
| |
| pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); |
| } |
| |
| static struct iommu_table_ops pnv_ioda2_iommu_ops = { |
| .set = pnv_ioda2_tce_build, |
| #ifdef CONFIG_IOMMU_API |
| .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, |
| .tce_kill = pnv_pci_ioda2_tce_invalidate, |
| .useraddrptr = pnv_tce_useraddrptr, |
| #endif |
| .clear = pnv_ioda2_tce_free, |
| .get = pnv_tce_get, |
| .free = pnv_pci_ioda2_table_free_pages, |
| }; |
| |
| static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) |
| { |
| unsigned int *weight = (unsigned int *)data; |
| |
| /* This is quite simplistic. The "base" weight of a device |
| * is 10. 0 means no DMA is to be accounted for it. |
| */ |
| if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) |
| return 0; |
| |
| if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || |
| dev->class == PCI_CLASS_SERIAL_USB_OHCI || |
| dev->class == PCI_CLASS_SERIAL_USB_EHCI) |
| *weight += 3; |
| else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) |
| *weight += 15; |
| else |
| *weight += 10; |
| |
| return 0; |
| } |
| |
| static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) |
| { |
| unsigned int weight = 0; |
| |
| /* SRIOV VF has same DMA32 weight as its PF */ |
| #ifdef CONFIG_PCI_IOV |
| if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { |
| pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); |
| return weight; |
| } |
| #endif |
| |
| if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { |
| pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); |
| } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { |
| struct pci_dev *pdev; |
| |
| list_for_each_entry(pdev, &pe->pbus->devices, bus_list) |
| pnv_pci_ioda_dev_dma_weight(pdev, &weight); |
| } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { |
| pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); |
| } |
| |
| return weight; |
| } |
| |
| static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, |
| struct pnv_ioda_pe *pe) |
| { |
| |
| struct page *tce_mem = NULL; |
| struct iommu_table *tbl; |
| unsigned int weight, total_weight = 0; |
| unsigned int tce32_segsz, base, segs, avail, i; |
| int64_t rc; |
| void *addr; |
| |
| /* XXX FIXME: Handle 64-bit only DMA devices */ |
| /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ |
| /* XXX FIXME: Allocate multi-level tables on PHB3 */ |
| weight = pnv_pci_ioda_pe_dma_weight(pe); |
| if (!weight) |
| return; |
| |
| pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, |
| &total_weight); |
| segs = (weight * phb->ioda.dma32_count) / total_weight; |
| if (!segs) |
| segs = 1; |
| |
| /* |
| * Allocate contiguous DMA32 segments. We begin with the expected |
| * number of segments. With one more attempt, the number of DMA32 |
| * segments to be allocated is decreased by one until one segment |
| * is allocated successfully. |
| */ |
| do { |
| for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { |
| for (avail = 0, i = base; i < base + segs; i++) { |
| if (phb->ioda.dma32_segmap[i] == |
| IODA_INVALID_PE) |
| avail++; |
| } |
| |
| if (avail == segs) |
| goto found; |
| } |
| } while (--segs); |
| |
| if (!segs) { |
| pe_warn(pe, "No available DMA32 segments\n"); |
| return; |
| } |
| |
| found: |
| tbl = pnv_pci_table_alloc(phb->hose->node); |
| if (WARN_ON(!tbl)) |
| return; |
| |
| iommu_register_group(&pe->table_group, phb->hose->global_number, |
| pe->pe_number); |
| pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); |
| |
| /* Grab a 32-bit TCE table */ |
| pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", |
| weight, total_weight, base, segs); |
| pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", |
| base * PNV_IODA1_DMA32_SEGSIZE, |
| (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); |
| |
| /* XXX Currently, we allocate one big contiguous table for the |
| * TCEs. We only really need one chunk per 256M of TCE space |
| * (ie per segment) but that's an optimization for later, it |
| * requires some added smarts with our get/put_tce implementation |
| * |
| * Each TCE page is 4KB in size and each TCE entry occupies 8 |
| * bytes |
| */ |
| tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); |
| tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, |
| get_order(tce32_segsz * segs)); |
| if (!tce_mem) { |
| pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); |
| goto fail; |
| } |
| addr = page_address(tce_mem); |
| memset(addr, 0, tce32_segsz * segs); |
| |
| /* Configure HW */ |
| for (i = 0; i < segs; i++) { |
| rc = opal_pci_map_pe_dma_window(phb->opal_id, |
| pe->pe_number, |
| base + i, 1, |
| __pa(addr) + tce32_segsz * i, |
| tce32_segsz, IOMMU_PAGE_SIZE_4K); |
| if (rc) { |
| pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n", |
| rc); |
| goto fail; |
| } |
| } |
| |
| /* Setup DMA32 segment mapping */ |
| for (i = base; i < base + segs; i++) |
| phb->ioda.dma32_segmap[i] = pe->pe_number; |
| |
| /* Setup linux iommu table */ |
| pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, |
| base * PNV_IODA1_DMA32_SEGSIZE, |
| IOMMU_PAGE_SHIFT_4K); |
| |
| tbl->it_ops = &pnv_ioda1_iommu_ops; |
| pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; |
| pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; |
| if (!iommu_init_table(tbl, phb->hose->node, 0, 0)) |
| panic("Failed to initialize iommu table"); |
| |
| pe->dma_setup_done = true; |
| return; |
| fail: |
| /* XXX Failure: Try to fallback to 64-bit only ? */ |
| if (tce_mem) |
| __free_pages(tce_mem, get_order(tce32_segsz * segs)); |
| if (tbl) { |
| pnv_pci_unlink_table_and_group(tbl, &pe->table_group); |
| iommu_tce_table_put(tbl); |
| } |
| } |
| |
| static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, |
| int num, struct iommu_table *tbl) |
| { |
| struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, |
| table_group); |
| struct pnv_phb *phb = pe->phb; |
| int64_t rc; |
| const unsigned long size = tbl->it_indirect_levels ? |
| tbl->it_level_size : tbl->it_size; |
| const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; |
| const __u64 win_size = tbl->it_size << tbl->it_page_shift; |
| |
| pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n", |
| num, start_addr, start_addr + win_size - 1, |
| IOMMU_PAGE_SIZE(tbl)); |
| |
| /* |
| * Map TCE table through TVT. The TVE index is the PE number |
| * shifted by 1 bit for 32-bits DMA space. |
| */ |
| rc = opal_pci_map_pe_dma_window(phb->opal_id, |
| pe->pe_number, |
| (pe->pe_number << 1) + num, |
| tbl->it_indirect_levels + 1, |
| __pa(tbl->it_base), |
| size << 3, |
| IOMMU_PAGE_SIZE(tbl)); |
| if (rc) { |
| pe_err(pe, "Failed to configure TCE table, err %lld\n", rc); |
| return rc; |
| } |
| |
| pnv_pci_link_table_and_group(phb->hose->node, num, |
| tbl, &pe->table_group); |
| pnv_pci_ioda2_tce_invalidate_pe(pe); |
| |
| return 0; |
| } |
| |
| static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) |
| { |
| uint16_t window_id = (pe->pe_number << 1 ) + 1; |
| int64_t rc; |
| |
| pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); |
| if (enable) { |
| phys_addr_t top = memblock_end_of_DRAM(); |
| |
| top = roundup_pow_of_two(top); |
| rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, |
| pe->pe_number, |
| window_id, |
| pe->tce_bypass_base, |
| top); |
| } else { |
| rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, |
| pe->pe_number, |
| window_id, |
| pe->tce_bypass_base, |
| 0); |
| } |
| if (rc) |
| pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); |
| else |
| pe->tce_bypass_enabled = enable; |
| } |
| |
| static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, |
| int num, __u32 page_shift, __u64 window_size, __u32 levels, |
| bool alloc_userspace_copy, struct iommu_table **ptbl) |
| { |
| struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, |
| table_group); |
| int nid = pe->phb->hose->node; |
| __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; |
| long ret; |
| struct iommu_table *tbl; |
| |
| tbl = pnv_pci_table_alloc(nid); |
| if (!tbl) |
| return -ENOMEM; |
| |
| tbl->it_ops = &pnv_ioda2_iommu_ops; |
| |
| ret = pnv_pci_ioda2_table_alloc_pages(nid, |
| bus_offset, page_shift, window_size, |
| levels, alloc_userspace_copy, tbl); |
| if (ret) { |
| iommu_tce_table_put(tbl); |
| return ret; |
| } |
| |
| *ptbl = tbl; |
| |
| return 0; |
| } |
| |
| static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) |
| { |
| struct iommu_table *tbl = NULL; |
| long rc; |
| unsigned long res_start, res_end; |
| |
| /* |
| * crashkernel= specifies the kdump kernel's maximum memory at |
| * some offset and there is no guaranteed the result is a power |
| * of 2, which will cause errors later. |
| */ |
| const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); |
| |
| /* |
| * In memory constrained environments, e.g. kdump kernel, the |
| * DMA window can be larger than available memory, which will |
| * cause errors later. |
| */ |
| const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1); |
| |
| /* |
| * We create the default window as big as we can. The constraint is |
| * the max order of allocation possible. The TCE table is likely to |
| * end up being multilevel and with on-demand allocation in place, |
| * the initial use is not going to be huge as the default window aims |
| * to support crippled devices (i.e. not fully 64bit DMAble) only. |
| */ |
| /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */ |
| const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory); |
| /* Each TCE level cannot exceed maxblock so go multilevel if needed */ |
| unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT); |
| unsigned long tcelevel_order = ilog2(maxblock >> 3); |
| unsigned int levels = tces_order / tcelevel_order; |
| |
| if (tces_order % tcelevel_order) |
| levels += 1; |
| /* |
| * We try to stick to default levels (which is >1 at the moment) in |
| * order to save memory by relying on on-demain TCE level allocation. |
| */ |
| levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS); |
| |
| rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT, |
| window_size, levels, false, &tbl); |
| if (rc) { |
| pe_err(pe, "Failed to create 32-bit TCE table, err %ld", |
| rc); |
| return rc; |
| } |
| |
| /* We use top part of 32bit space for MMIO so exclude it from DMA */ |
| res_start = 0; |
| res_end = 0; |
| if (window_size > pe->phb->ioda.m32_pci_base) { |
| res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift; |
| res_end = min(window_size, SZ_4G) >> tbl->it_page_shift; |
| } |
| |
| if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end)) |
| rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); |
| else |
| rc = -ENOMEM; |
| if (rc) { |
| pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc); |
| iommu_tce_table_put(tbl); |
| tbl = NULL; /* This clears iommu_table_base below */ |
| } |
| if (!pnv_iommu_bypass_disabled) |
| pnv_pci_ioda2_set_bypass(pe, true); |
| |
| /* |
| * Set table base for the case of IOMMU DMA use. Usually this is done |
| * from dma_dev_setup() which is not called when a device is returned |
| * from VFIO so do it here. |
| */ |
| if (pe->pdev) |
| set_iommu_table_base(&pe->pdev->dev, tbl); |
| |
| return 0; |
| } |
| |
| static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, |
| int num) |
| { |
| struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, |
| table_group); |
| struct pnv_phb *phb = pe->phb; |
| long ret; |
| |
| pe_info(pe, "Removing DMA window #%d\n", num); |
| |
| ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, |
| (pe->pe_number << 1) + num, |
| 0/* levels */, 0/* table address */, |
| 0/* table size */, 0/* page size */); |
| if (ret) |
| pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); |
| else |
| pnv_pci_ioda2_tce_invalidate_pe(pe); |
| |
| pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_IOMMU_API |
| unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, |
| __u64 window_size, __u32 levels) |
| { |
| unsigned long bytes = 0; |
| const unsigned window_shift = ilog2(window_size); |
| unsigned entries_shift = window_shift - page_shift; |
| unsigned table_shift = entries_shift + 3; |
| unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); |
| unsigned long direct_table_size; |
| |
| if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || |
| !is_power_of_2(window_size)) |
| return 0; |
| |
| /* Calculate a direct table size from window_size and levels */ |
| entries_shift = (entries_shift + levels - 1) / levels; |
| table_shift = entries_shift + 3; |
| table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); |
| direct_table_size = 1UL << table_shift; |
| |
| for ( ; levels; --levels) { |
| bytes += ALIGN(tce_table_size, direct_table_size); |
| |
| tce_table_size /= direct_table_size; |
| tce_table_size <<= 3; |
| tce_table_size = max_t(unsigned long, |
| tce_table_size, direct_table_size); |
| } |
| |
| return bytes + bytes; /* one for HW table, one for userspace copy */ |
| } |
| |
| static long pnv_pci_ioda2_create_table_userspace( |
| struct iommu_table_group *table_group, |
| int num, __u32 page_shift, __u64 window_size, __u32 levels, |
| struct iommu_table **ptbl) |
| { |
| long ret = pnv_pci_ioda2_create_table(table_group, |
| num, page_shift, window_size, levels, true, ptbl); |
| |
| if (!ret) |
| (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size( |
| page_shift, window_size, levels); |
| return ret; |
| } |
| |
| static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); |
| dev->dev.archdata.dma_offset = pe->tce_bypass_base; |
| |
| if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) |
| pnv_ioda_setup_bus_dma(pe, dev->subordinate); |
| } |
| } |
| |
| static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) |
| { |
| struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, |
| table_group); |
| /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ |
| struct iommu_table *tbl = pe->table_group.tables[0]; |
| |
| pnv_pci_ioda2_set_bypass(pe, false); |
| pnv_pci_ioda2_unset_window(&pe->table_group, 0); |
| if (pe->pbus) |
| pnv_ioda_setup_bus_dma(pe, pe->pbus); |
| else if (pe->pdev) |
| set_iommu_table_base(&pe->pdev->dev, NULL); |
| iommu_tce_table_put(tbl); |
| } |
| |
| static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) |
| { |
| struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, |
| table_group); |
| |
| pnv_pci_ioda2_setup_default_config(pe); |
| if (pe->pbus) |
| pnv_ioda_setup_bus_dma(pe, pe->pbus); |
| } |
| |
| static struct iommu_table_group_ops pnv_pci_ioda2_ops = { |
| .get_table_size = pnv_pci_ioda2_get_table_size, |
| .create_table = pnv_pci_ioda2_create_table_userspace, |
| .set_window = pnv_pci_ioda2_set_window, |
| .unset_window = pnv_pci_ioda2_unset_window, |
| .take_ownership = pnv_ioda2_take_ownership, |
| .release_ownership = pnv_ioda2_release_ownership, |
| }; |
| #endif |
| |
| void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, |
| struct pnv_ioda_pe *pe) |
| { |
| int64_t rc; |
| |
| /* TVE #1 is selected by PCI address bit 59 */ |
| pe->tce_bypass_base = 1ull << 59; |
| |
| /* The PE will reserve all possible 32-bits space */ |
| pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", |
| phb->ioda.m32_pci_base); |
| |
| /* Setup linux iommu table */ |
| pe->table_group.tce32_start = 0; |
| pe->table_group.tce32_size = phb->ioda.m32_pci_base; |
| pe->table_group.max_dynamic_windows_supported = |
| IOMMU_TABLE_GROUP_MAX_TABLES; |
| pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; |
| pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb); |
| |
| rc = pnv_pci_ioda2_setup_default_config(pe); |
| if (rc) |
| return; |
| |
| #ifdef CONFIG_IOMMU_API |
| pe->table_group.ops = &pnv_pci_ioda2_ops; |
| iommu_register_group(&pe->table_group, phb->hose->global_number, |
| pe->pe_number); |
| #endif |
| pe->dma_setup_done = true; |
| } |
| |
| /* |
| * Called from KVM in real mode to EOI passthru interrupts. The ICP |
| * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru(). |
| * |
| * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call |
| * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ |
| * numbers of the in-the-middle MSI domain are vector numbers and it's |
| * good enough for OPAL. Use that. |
| */ |
| int64_t pnv_opal_pci_msi_eoi(struct irq_data *d) |
| { |
| struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data); |
| struct pnv_phb *phb = hose->private_data; |
| |
| return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq); |
| } |
| |
| /* |
| * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers |
| */ |
| static void pnv_ioda2_msi_eoi(struct irq_data *d) |
| { |
| int64_t rc; |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| struct pci_controller *hose = irq_data_get_irq_chip_data(d); |
| struct pnv_phb *phb = hose->private_data; |
| |
| rc = opal_pci_msi_eoi(phb->opal_id, hw_irq); |
| WARN_ON_ONCE(rc); |
| |
| icp_native_eoi(d); |
| } |
| |
| /* P8/CXL only */ |
| void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) |
| { |
| struct irq_data *idata; |
| struct irq_chip *ichip; |
| |
| /* The MSI EOI OPAL call is only needed on PHB3 */ |
| if (phb->model != PNV_PHB_MODEL_PHB3) |
| return; |
| |
| if (!phb->ioda.irq_chip_init) { |
| /* |
| * First time we setup an MSI IRQ, we need to setup the |
| * corresponding IRQ chip to route correctly. |
| */ |
| idata = irq_get_irq_data(virq); |
| ichip = irq_data_get_irq_chip(idata); |
| phb->ioda.irq_chip_init = 1; |
| phb->ioda.irq_chip = *ichip; |
| phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; |
| } |
| irq_set_chip(virq, &phb->ioda.irq_chip); |
| irq_set_chip_data(virq, phb->hose); |
| } |
| |
| static struct irq_chip pnv_pci_msi_irq_chip; |
| |
| /* |
| * Returns true iff chip is something that we could call |
| * pnv_opal_pci_msi_eoi for. |
| */ |
| bool is_pnv_opal_msi(struct irq_chip *chip) |
| { |
| return chip == &pnv_pci_msi_irq_chip; |
| } |
| EXPORT_SYMBOL_GPL(is_pnv_opal_msi); |
| |
| static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, |
| unsigned int xive_num, |
| unsigned int is_64, struct msi_msg *msg) |
| { |
| struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); |
| __be32 data; |
| int rc; |
| |
| dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__, |
| is_64 ? "64" : "32", xive_num); |
| |
| /* No PE assigned ? bail out ... no MSI for you ! */ |
| if (pe == NULL) |
| return -ENXIO; |
| |
| /* Check if we have an MVE */ |
| if (pe->mve_number < 0) |
| return -ENXIO; |
| |
| /* Force 32-bit MSI on some broken devices */ |
| if (dev->no_64bit_msi) |
| is_64 = 0; |
| |
| /* Assign XIVE to PE */ |
| rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); |
| if (rc) { |
| pr_warn("%s: OPAL error %d setting XIVE %d PE\n", |
| pci_name(dev), rc, xive_num); |
| return -EIO; |
| } |
| |
| if (is_64) { |
| __be64 addr64; |
| |
| rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, |
| &addr64, &data); |
| if (rc) { |
| pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", |
| pci_name(dev), rc); |
| return -EIO; |
| } |
| msg->address_hi = be64_to_cpu(addr64) >> 32; |
| msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; |
| } else { |
| __be32 addr32; |
| |
| rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, |
| &addr32, &data); |
| if (rc) { |
| pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", |
| pci_name(dev), rc); |
| return -EIO; |
| } |
| msg->address_hi = 0; |
| msg->address_lo = be32_to_cpu(addr32); |
| } |
| msg->data = be32_to_cpu(data); |
| |
| return 0; |
| } |
| |
| /* |
| * The msi_free() op is called before irq_domain_free_irqs_top() when |
| * the handler data is still available. Use that to clear the XIVE |
| * controller. |
| */ |
| static void pnv_msi_ops_msi_free(struct irq_domain *domain, |
| struct msi_domain_info *info, |
| unsigned int irq) |
| { |
| if (xive_enabled()) |
| xive_irq_free_data(irq); |
| } |
| |
| static struct msi_domain_ops pnv_pci_msi_domain_ops = { |
| .msi_free = pnv_msi_ops_msi_free, |
| }; |
| |
| static void pnv_msi_shutdown(struct irq_data *d) |
| { |
| d = d->parent_data; |
| if (d->chip->irq_shutdown) |
| d->chip->irq_shutdown(d); |
| } |
| |
| static void pnv_msi_mask(struct irq_data *d) |
| { |
| pci_msi_mask_irq(d); |
| irq_chip_mask_parent(d); |
| } |
| |
| static void pnv_msi_unmask(struct irq_data *d) |
| { |
| pci_msi_unmask_irq(d); |
| irq_chip_unmask_parent(d); |
| } |
| |
| static struct irq_chip pnv_pci_msi_irq_chip = { |
| .name = "PNV-PCI-MSI", |
| .irq_shutdown = pnv_msi_shutdown, |
| .irq_mask = pnv_msi_mask, |
| .irq_unmask = pnv_msi_unmask, |
| .irq_eoi = irq_chip_eoi_parent, |
| }; |
| |
| static struct msi_domain_info pnv_msi_domain_info = { |
| .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX), |
| .ops = &pnv_pci_msi_domain_ops, |
| .chip = &pnv_pci_msi_irq_chip, |
| }; |
| |
| static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg) |
| { |
| struct msi_desc *entry = irq_data_get_msi_desc(d); |
| struct pci_dev *pdev = msi_desc_to_pci_dev(entry); |
| struct pci_controller *hose = irq_data_get_irq_chip_data(d); |
| struct pnv_phb *phb = hose->private_data; |
| int rc; |
| |
| rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq, |
| entry->msi_attrib.is_64, msg); |
| if (rc) |
| dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n", |
| entry->msi_attrib.is_64 ? "64" : "32", d->hwirq, rc); |
| } |
| |
| /* |
| * The IRQ data is mapped in the MSI domain in which HW IRQ numbers |
| * correspond to vector numbers. |
| */ |
| static void pnv_msi_eoi(struct irq_data *d) |
| { |
| struct pci_controller *hose = irq_data_get_irq_chip_data(d); |
| struct pnv_phb *phb = hose->private_data; |
| |
| if (phb->model == PNV_PHB_MODEL_PHB3) { |
| /* |
| * The EOI OPAL call takes an OPAL HW IRQ number but |
| * since it is translated into a vector number in |
| * OPAL, use that directly. |
| */ |
| WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq)); |
| } |
| |
| irq_chip_eoi_parent(d); |
| } |
| |
| static struct irq_chip pnv_msi_irq_chip = { |
| .name = "PNV-MSI", |
| .irq_shutdown = pnv_msi_shutdown, |
| .irq_mask = irq_chip_mask_parent, |
| .irq_unmask = irq_chip_unmask_parent, |
| .irq_eoi = pnv_msi_eoi, |
| .irq_set_affinity = irq_chip_set_affinity_parent, |
| .irq_compose_msi_msg = pnv_msi_compose_msg, |
| }; |
| |
| static int pnv_irq_parent_domain_alloc(struct irq_domain *domain, |
| unsigned int virq, int hwirq) |
| { |
| struct irq_fwspec parent_fwspec; |
| int ret; |
| |
| parent_fwspec.fwnode = domain->parent->fwnode; |
| parent_fwspec.param_count = 2; |
| parent_fwspec.param[0] = hwirq; |
| parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING; |
| |
| ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| struct pci_controller *hose = domain->host_data; |
| struct pnv_phb *phb = hose->private_data; |
| msi_alloc_info_t *info = arg; |
| struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc); |
| int hwirq; |
| int i, ret; |
| |
| hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs); |
| if (hwirq < 0) { |
| dev_warn(&pdev->dev, "failed to find a free MSI\n"); |
| return -ENOSPC; |
| } |
| |
| dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__, |
| hose->dn, virq, hwirq, nr_irqs); |
| |
| for (i = 0; i < nr_irqs; i++) { |
| ret = pnv_irq_parent_domain_alloc(domain, virq + i, |
| phb->msi_base + hwirq + i); |
| if (ret) |
| goto out; |
| |
| irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i, |
| &pnv_msi_irq_chip, hose); |
| } |
| |
| return 0; |
| |
| out: |
| irq_domain_free_irqs_parent(domain, virq, i - 1); |
| msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs); |
| return ret; |
| } |
| |
| static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| struct irq_data *d = irq_domain_get_irq_data(domain, virq); |
| struct pci_controller *hose = irq_data_get_irq_chip_data(d); |
| struct pnv_phb *phb = hose->private_data; |
| |
| pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn, |
| virq, d->hwirq, nr_irqs); |
| |
| msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs); |
| /* XIVE domain is cleared through ->msi_free() */ |
| } |
| |
| static const struct irq_domain_ops pnv_irq_domain_ops = { |
| .alloc = pnv_irq_domain_alloc, |
| .free = pnv_irq_domain_free, |
| }; |
| |
| static int pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| struct irq_domain *parent = irq_get_default_host(); |
| |
| hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id); |
| if (!hose->fwnode) |
| return -ENOMEM; |
| |
| hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count, |
| hose->fwnode, |
| &pnv_irq_domain_ops, hose); |
| if (!hose->dev_domain) { |
| pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n", |
| hose->dn, hose->global_number); |
| irq_domain_free_fwnode(hose->fwnode); |
| return -ENOMEM; |
| } |
| |
| hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn), |
| &pnv_msi_domain_info, |
| hose->dev_domain); |
| if (!hose->msi_domain) { |
| pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n", |
| hose->dn, hose->global_number); |
| irq_domain_free_fwnode(hose->fwnode); |
| irq_domain_remove(hose->dev_domain); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) |
| { |
| unsigned int count; |
| const __be32 *prop = of_get_property(phb->hose->dn, |
| "ibm,opal-msi-ranges", NULL); |
| if (!prop) { |
| /* BML Fallback */ |
| prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); |
| } |
| if (!prop) |
| return; |
| |
| phb->msi_base = be32_to_cpup(prop); |
| count = be32_to_cpup(prop + 1); |
| if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { |
| pr_err("PCI %d: Failed to allocate MSI bitmap !\n", |
| phb->hose->global_number); |
| return; |
| } |
| |
| pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", |
| count, phb->msi_base); |
| |
| pnv_msi_allocate_domains(phb->hose, count); |
| } |
| |
| static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, |
| struct resource *res) |
| { |
| struct pnv_phb *phb = pe->phb; |
| struct pci_bus_region region; |
| int index; |
| int64_t rc; |
| |
| if (!res || !res->flags || res->start > res->end) |
| return; |
| |
| if (res->flags & IORESOURCE_IO) { |
| region.start = res->start - phb->ioda.io_pci_base; |
| region.end = res->end - phb->ioda.io_pci_base; |
| index = region.start / phb->ioda.io_segsize; |
| |
| while (index < phb->ioda.total_pe_num && |
| region.start <= region.end) { |
| phb->ioda.io_segmap[index] = pe->pe_number; |
| rc = opal_pci_map_pe_mmio_window(phb->opal_id, |
| pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); |
| if (rc != OPAL_SUCCESS) { |
| pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", |
| __func__, rc, index, pe->pe_number); |
| break; |
| } |
| |
| region.start += phb->ioda.io_segsize; |
| index++; |
| } |
| } else if ((res->flags & IORESOURCE_MEM) && |
| !pnv_pci_is_m64(phb, res)) { |
| region.start = res->start - |
| phb->hose->mem_offset[0] - |
| phb->ioda.m32_pci_base; |
| region.end = res->end - |
| phb->hose->mem_offset[0] - |
| phb->ioda.m32_pci_base; |
| index = region.start / phb->ioda.m32_segsize; |
| |
| while (index < phb->ioda.total_pe_num && |
| region.start <= region.end) { |
| phb->ioda.m32_segmap[index] = pe->pe_number; |
| rc = opal_pci_map_pe_mmio_window(phb->opal_id, |
| pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); |
| if (rc != OPAL_SUCCESS) { |
| pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", |
| __func__, rc, index, pe->pe_number); |
| break; |
| } |
| |
| region.start += phb->ioda.m32_segsize; |
| index++; |
| } |
| } |
| } |
| |
| /* |
| * This function is supposed to be called on basis of PE from top |
| * to bottom style. So the the I/O or MMIO segment assigned to |
| * parent PE could be overridden by its child PEs if necessary. |
| */ |
| static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) |
| { |
| struct pci_dev *pdev; |
| int i; |
| |
| /* |
| * NOTE: We only care PCI bus based PE for now. For PCI |
| * device based PE, for example SRIOV sensitive VF should |
| * be figured out later. |
| */ |
| BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); |
| |
| list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) |
| pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); |
| |
| /* |
| * If the PE contains all subordinate PCI buses, the |
| * windows of the child bridges should be mapped to |
| * the PE as well. |
| */ |
| if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) |
| continue; |
| for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) |
| pnv_ioda_setup_pe_res(pe, |
| &pdev->resource[PCI_BRIDGE_RESOURCES + i]); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int pnv_pci_diag_data_set(void *data, u64 val) |
| { |
| struct pnv_phb *phb = data; |
| s64 ret; |
| |
| /* Retrieve the diag data from firmware */ |
| ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, |
| phb->diag_data_size); |
| if (ret != OPAL_SUCCESS) |
| return -EIO; |
| |
| /* Print the diag data to the kernel log */ |
| pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set, |
| "%llu\n"); |
| |
| static int pnv_pci_ioda_pe_dump(void *data, u64 val) |
| { |
| struct pnv_phb *phb = data; |
| int pe_num; |
| |
| for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { |
| struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num]; |
| |
| if (!test_bit(pe_num, phb->ioda.pe_alloc)) |
| continue; |
| |
| pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n", |
| pe->rid, pe->device_count, |
| (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "", |
| (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "", |
| (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "", |
| (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "", |
| (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "", |
| (pe->flags & PNV_IODA_PE_VF) ? "vf " : ""); |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL, |
| pnv_pci_ioda_pe_dump, "%llu\n"); |
| |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| static void pnv_pci_ioda_create_dbgfs(void) |
| { |
| #ifdef CONFIG_DEBUG_FS |
| struct pci_controller *hose, *tmp; |
| struct pnv_phb *phb; |
| char name[16]; |
| |
| list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { |
| phb = hose->private_data; |
| |
| sprintf(name, "PCI%04x", hose->global_number); |
| phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir); |
| |
| debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs, |
| phb, &pnv_pci_diag_data_fops); |
| debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs, |
| phb, &pnv_pci_ioda_pe_dump_fops); |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| } |
| |
| static void pnv_pci_enable_bridge(struct pci_bus *bus) |
| { |
| struct pci_dev *dev = bus->self; |
| struct pci_bus *child; |
| |
| /* Empty bus ? bail */ |
| if (list_empty(&bus->devices)) |
| return; |
| |
| /* |
| * If there's a bridge associated with that bus enable it. This works |
| * around races in the generic code if the enabling is done during |
| * parallel probing. This can be removed once those races have been |
| * fixed. |
| */ |
| if (dev) { |
| int rc = pci_enable_device(dev); |
| if (rc) |
| pci_err(dev, "Error enabling bridge (%d)\n", rc); |
| pci_set_master(dev); |
| } |
| |
| /* Perform the same to child busses */ |
| list_for_each_entry(child, &bus->children, node) |
| pnv_pci_enable_bridge(child); |
| } |
| |
| static void pnv_pci_enable_bridges(void) |
| { |
| struct pci_controller *hose; |
| |
| list_for_each_entry(hose, &hose_list, list_node) |
| pnv_pci_enable_bridge(hose->bus); |
| } |
| |
| static void pnv_pci_ioda_fixup(void) |
| { |
| pnv_pci_ioda_create_dbgfs(); |
| |
| pnv_pci_enable_bridges(); |
| |
| #ifdef CONFIG_EEH |
| pnv_eeh_post_init(); |
| #endif |
| } |
| |
| /* |
| * Returns the alignment for I/O or memory windows for P2P |
| * bridges. That actually depends on how PEs are segmented. |
| * For now, we return I/O or M32 segment size for PE sensitive |
| * P2P bridges. Otherwise, the default values (4KiB for I/O, |
| * 1MiB for memory) will be returned. |
| * |
| * The current PCI bus might be put into one PE, which was |
| * create against the parent PCI bridge. For that case, we |
| * needn't enlarge the alignment so that we can save some |
| * resources. |
| */ |
| static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, |
| unsigned long type) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(bus); |
| int num_pci_bridges = 0; |
| struct pci_dev *bridge; |
| |
| bridge = bus->self; |
| while (bridge) { |
| if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { |
| num_pci_bridges++; |
| if (num_pci_bridges >= 2) |
| return 1; |
| } |
| |
| bridge = bridge->bus->self; |
| } |
| |
| /* |
| * We fall back to M32 if M64 isn't supported. We enforce the M64 |
| * alignment for any 64-bit resource, PCIe doesn't care and |
| * bridges only do 64-bit prefetchable anyway. |
| */ |
| if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) |
| return phb->ioda.m64_segsize; |
| if (type & IORESOURCE_MEM) |
| return phb->ioda.m32_segsize; |
| |
| return phb->ioda.io_segsize; |
| } |
| |
| /* |
| * We are updating root port or the upstream port of the |
| * bridge behind the root port with PHB's windows in order |
| * to accommodate the changes on required resources during |
| * PCI (slot) hotplug, which is connected to either root |
| * port or the downstream ports of PCIe switch behind the |
| * root port. |
| */ |
| static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, |
| unsigned long type) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| struct pnv_phb *phb = hose->private_data; |
| struct pci_dev *bridge = bus->self; |
| struct resource *r, *w; |
| bool msi_region = false; |
| int i; |
| |
| /* Check if we need apply fixup to the bridge's windows */ |
| if (!pci_is_root_bus(bridge->bus) && |
| !pci_is_root_bus(bridge->bus->self->bus)) |
| return; |
| |
| /* Fixup the resources */ |
| for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { |
| r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; |
| if (!r->flags || !r->parent) |
| continue; |
| |
| w = NULL; |
| if (r->flags & type & IORESOURCE_IO) |
| w = &hose->io_resource; |
| else if (pnv_pci_is_m64(phb, r) && |
| (type & IORESOURCE_PREFETCH) && |
| phb->ioda.m64_segsize) |
| w = &hose->mem_resources[1]; |
| else if (r->flags & type & IORESOURCE_MEM) { |
| w = &hose->mem_resources[0]; |
| msi_region = true; |
| } |
| |
| r->start = w->start; |
| r->end = w->end; |
| |
| /* The 64KB 32-bits MSI region shouldn't be included in |
| * the 32-bits bridge window. Otherwise, we can see strange |
| * issues. One of them is EEH error observed on Garrison. |
| * |
| * Exclude top 1MB region which is the minimal alignment of |
| * 32-bits bridge window. |
| */ |
| if (msi_region) { |
| r->end += 0x10000; |
| r->end -= 0x100000; |
| } |
| } |
| } |
| |
| static void pnv_pci_configure_bus(struct pci_bus *bus) |
| { |
| struct pci_dev *bridge = bus->self; |
| struct pnv_ioda_pe *pe; |
| bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); |
| |
| dev_info(&bus->dev, "Configuring PE for bus\n"); |
| |
| /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ |
| if (WARN_ON(list_empty(&bus->devices))) |
| return; |
| |
| /* Reserve PEs according to used M64 resources */ |
| pnv_ioda_reserve_m64_pe(bus, NULL, all); |
| |
| /* |
| * Assign PE. We might run here because of partial hotplug. |
| * For the case, we just pick up the existing PE and should |
| * not allocate resources again. |
| */ |
| pe = pnv_ioda_setup_bus_PE(bus, all); |
| if (!pe) |
| return; |
| |
| pnv_ioda_setup_pe_seg(pe); |
| } |
| |
| static resource_size_t pnv_pci_default_alignment(void) |
| { |
| return PAGE_SIZE; |
| } |
| |
| /* Prevent enabling devices for which we couldn't properly |
| * assign a PE |
| */ |
| static bool pnv_pci_enable_device_hook(struct pci_dev *dev) |
| { |
| struct pci_dn *pdn; |
| |
| pdn = pci_get_pdn(dev); |
| if (!pdn || pdn->pe_number == IODA_INVALID_PE) { |
| pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev) |
| { |
| struct pci_dn *pdn; |
| struct pnv_ioda_pe *pe; |
| |
| pdn = pci_get_pdn(dev); |
| if (!pdn) |
| return false; |
| |
| if (pdn->pe_number == IODA_INVALID_PE) { |
| pe = pnv_ioda_setup_dev_PE(dev); |
| if (!pe) |
| return false; |
| } |
| return true; |
| } |
| |
| static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, |
| int num) |
| { |
| struct pnv_ioda_pe *pe = container_of(table_group, |
| struct pnv_ioda_pe, table_group); |
| struct pnv_phb *phb = pe->phb; |
| unsigned int idx; |
| long rc; |
| |
| pe_info(pe, "Removing DMA window #%d\n", num); |
| for (idx = 0; idx < phb->ioda.dma32_count; idx++) { |
| if (phb->ioda.dma32_segmap[idx] != pe->pe_number) |
| continue; |
| |
| rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, |
| idx, 0, 0ul, 0ul, 0ul); |
| if (rc != OPAL_SUCCESS) { |
| pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", |
| rc, idx); |
| return rc; |
| } |
| |
| phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; |
| } |
| |
| pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); |
| return OPAL_SUCCESS; |
| } |
| |
| static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) |
| { |
| struct iommu_table *tbl = pe->table_group.tables[0]; |
| int64_t rc; |
| |
| if (!pe->dma_setup_done) |
| return; |
| |
| rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); |
| if (rc != OPAL_SUCCESS) |
| return; |
| |
| pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); |
| if (pe->table_group.group) { |
| iommu_group_put(pe->table_group.group); |
| WARN_ON(pe->table_group.group); |
| } |
| |
| free_pages(tbl->it_base, get_order(tbl->it_size << 3)); |
| iommu_tce_table_put(tbl); |
| } |
| |
| void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) |
| { |
| struct iommu_table *tbl = pe->table_group.tables[0]; |
| int64_t rc; |
| |
| if (!pe->dma_setup_done) |
| return; |
| |
| rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); |
| if (rc) |
| pe_warn(pe, "OPAL error %lld release DMA window\n", rc); |
| |
| pnv_pci_ioda2_set_bypass(pe, false); |
| if (pe->table_group.group) { |
| iommu_group_put(pe->table_group.group); |
| WARN_ON(pe->table_group.group); |
| } |
| |
| iommu_tce_table_put(tbl); |
| } |
| |
| static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, |
| unsigned short win, |
| unsigned int *map) |
| { |
| struct pnv_phb *phb = pe->phb; |
| int idx; |
| int64_t rc; |
| |
| for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { |
| if (map[idx] != pe->pe_number) |
| continue; |
| |
| rc = opal_pci_map_pe_mmio_window(phb->opal_id, |
| phb->ioda.reserved_pe_idx, win, 0, idx); |
| |
| if (rc != OPAL_SUCCESS) |
| pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n", |
| rc, win, idx); |
| |
| map[idx] = IODA_INVALID_PE; |
| } |
| } |
| |
| static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) |
| { |
| struct pnv_phb *phb = pe->phb; |
| |
| if (phb->type == PNV_PHB_IODA1) { |
| pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, |
| phb->ioda.io_segmap); |
| pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, |
| phb->ioda.m32_segmap); |
| /* M64 is pre-configured by pnv_ioda1_init_m64() */ |
| } else if (phb->type == PNV_PHB_IODA2) { |
| pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, |
| phb->ioda.m32_segmap); |
| } |
| } |
| |
| static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) |
| { |
| struct pnv_phb *phb = pe->phb; |
| struct pnv_ioda_pe *slave, *tmp; |
| |
| pe_info(pe, "Releasing PE\n"); |
| |
| mutex_lock(&phb->ioda.pe_list_mutex); |
| list_del(&pe->list); |
| mutex_unlock(&phb->ioda.pe_list_mutex); |
| |
| switch (phb->type) { |
| case PNV_PHB_IODA1: |
| pnv_pci_ioda1_release_pe_dma(pe); |
| break; |
| case PNV_PHB_IODA2: |
| pnv_pci_ioda2_release_pe_dma(pe); |
| break; |
| case PNV_PHB_NPU_OCAPI: |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| pnv_ioda_release_pe_seg(pe); |
| pnv_ioda_deconfigure_pe(pe->phb, pe); |
| |
| /* Release slave PEs in the compound PE */ |
| if (pe->flags & PNV_IODA_PE_MASTER) { |
| list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { |
| list_del(&slave->list); |
| pnv_ioda_free_pe(slave); |
| } |
| } |
| |
| /* |
| * The PE for root bus can be removed because of hotplug in EEH |
| * recovery for fenced PHB error. We need to mark the PE dead so |
| * that it can be populated again in PCI hot add path. The PE |
| * shouldn't be destroyed as it's the global reserved resource. |
| */ |
| if (phb->ioda.root_pe_idx == pe->pe_number) |
| return; |
| |
| pnv_ioda_free_pe(pe); |
| } |
| |
| static void pnv_pci_release_device(struct pci_dev *pdev) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); |
| struct pci_dn *pdn = pci_get_pdn(pdev); |
| struct pnv_ioda_pe *pe; |
| |
| /* The VF PE state is torn down when sriov_disable() is called */ |
| if (pdev->is_virtfn) |
| return; |
| |
| if (!pdn || pdn->pe_number == IODA_INVALID_PE) |
| return; |
| |
| #ifdef CONFIG_PCI_IOV |
| /* |
| * FIXME: Try move this to sriov_disable(). It's here since we allocate |
| * the iov state at probe time since we need to fiddle with the IOV |
| * resources. |
| */ |
| if (pdev->is_physfn) |
| kfree(pdev->dev.archdata.iov_data); |
| #endif |
| |
| /* |
| * PCI hotplug can happen as part of EEH error recovery. The @pdn |
| * isn't removed and added afterwards in this scenario. We should |
| * set the PE number in @pdn to an invalid one. Otherwise, the PE's |
| * device count is decreased on removing devices while failing to |
| * be increased on adding devices. It leads to unbalanced PE's device |
| * count and eventually make normal PCI hotplug path broken. |
| */ |
| pe = &phb->ioda.pe_array[pdn->pe_number]; |
| pdn->pe_number = IODA_INVALID_PE; |
| |
| WARN_ON(--pe->device_count < 0); |
| if (pe->device_count == 0) |
| pnv_ioda_release_pe(pe); |
| } |
| |
| static void pnv_pci_ioda_shutdown(struct pci_controller *hose) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| |
| opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, |
| OPAL_ASSERT_RESET); |
| } |
| |
| static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(bus); |
| struct pnv_ioda_pe *pe; |
| |
| list_for_each_entry(pe, &phb->ioda.pe_list, list) { |
| if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))) |
| continue; |
| |
| if (!pe->pbus) |
| continue; |
| |
| if (bus->number == ((pe->rid >> 8) & 0xFF)) { |
| pe->pbus = bus; |
| break; |
| } |
| } |
| } |
| |
| static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { |
| .dma_dev_setup = pnv_pci_ioda_dma_dev_setup, |
| .dma_bus_setup = pnv_pci_ioda_dma_bus_setup, |
| .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported, |
| .enable_device_hook = pnv_pci_enable_device_hook, |
| .release_device = pnv_pci_release_device, |
| .window_alignment = pnv_pci_window_alignment, |
| .setup_bridge = pnv_pci_fixup_bridge_resources, |
| .reset_secondary_bus = pnv_pci_reset_secondary_bus, |
| .shutdown = pnv_pci_ioda_shutdown, |
| }; |
| |
| static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = { |
| .enable_device_hook = pnv_ocapi_enable_device_hook, |
| .release_device = pnv_pci_release_device, |
| .window_alignment = pnv_pci_window_alignment, |
| .reset_secondary_bus = pnv_pci_reset_secondary_bus, |
| .shutdown = pnv_pci_ioda_shutdown, |
| }; |
| |
| static void __init pnv_pci_init_ioda_phb(struct device_node *np, |
| u64 hub_id, int ioda_type) |
| { |
| struct pci_controller *hose; |
| struct pnv_phb *phb; |
| unsigned long size, m64map_off, m32map_off, pemap_off; |
| unsigned long iomap_off = 0, dma32map_off = 0; |
| struct pnv_ioda_pe *root_pe; |
| struct resource r; |
| const __be64 *prop64; |
| const __be32 *prop32; |
| int len; |
| unsigned int segno; |
| u64 phb_id; |
| void *aux; |
| long rc; |
| |
| if (!of_device_is_available(np)) |
| return; |
| |
| pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); |
| |
| prop64 = of_get_property(np, "ibm,opal-phbid", NULL); |
| if (!prop64) { |
| pr_err(" Missing \"ibm,opal-phbid\" property !\n"); |
| return; |
| } |
| phb_id = be64_to_cpup(prop64); |
| pr_debug(" PHB-ID : 0x%016llx\n", phb_id); |
| |
| phb = kzalloc(sizeof(*phb), GFP_KERNEL); |
| if (!phb) |
| panic("%s: Failed to allocate %zu bytes\n", __func__, |
| sizeof(*phb)); |
| |
| /* Allocate PCI controller */ |
| phb->hose = hose = pcibios_alloc_controller(np); |
| if (!phb->hose) { |
| pr_err(" Can't allocate PCI controller for %pOF\n", |
| np); |
| memblock_free(phb, sizeof(struct pnv_phb)); |
| return; |
| } |
| |
| spin_lock_init(&phb->lock); |
| prop32 = of_get_property(np, "bus-range", &len); |
| if (prop32 && len == 8) { |
| hose->first_busno = be32_to_cpu(prop32[0]); |
| hose->last_busno = be32_to_cpu(prop32[1]); |
| } else { |
| pr_warn(" Broken <bus-range> on %pOF\n", np); |
| hose->first_busno = 0; |
| hose->last_busno = 0xff; |
| } |
| hose->private_data = phb; |
| phb->hub_id = hub_id; |
| phb->opal_id = phb_id; |
| phb->type = ioda_type; |
| mutex_init(&phb->ioda.pe_alloc_mutex); |
| |
| /* Detect specific models for error handling */ |
| if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) |
| phb->model = PNV_PHB_MODEL_P7IOC; |
| else if (of_device_is_compatible(np, "ibm,power8-pciex")) |
| phb->model = PNV_PHB_MODEL_PHB3; |
| else |
| phb->model = PNV_PHB_MODEL_UNKNOWN; |
| |
| /* Initialize diagnostic data buffer */ |
| prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); |
| if (prop32) |
| phb->diag_data_size = be32_to_cpup(prop32); |
| else |
| phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; |
| |
| phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL); |
| if (!phb->diag_data) |
| panic("%s: Failed to allocate %u bytes\n", __func__, |
| phb->diag_data_size); |
| |
| /* Parse 32-bit and IO ranges (if any) */ |
| pci_process_bridge_OF_ranges(hose, np, !hose->global_number); |
| |
| /* Get registers */ |
| if (!of_address_to_resource(np, 0, &r)) { |
| phb->regs_phys = r.start; |
| phb->regs = ioremap(r.start, resource_size(&r)); |
| if (phb->regs == NULL) |
| pr_err(" Failed to map registers !\n"); |
| } |
| |
| /* Initialize more IODA stuff */ |
| phb->ioda.total_pe_num = 1; |
| prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); |
| if (prop32) |
| phb->ioda.total_pe_num = be32_to_cpup(prop32); |
| prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); |
| if (prop32) |
| phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); |
| |
| /* Invalidate RID to PE# mapping */ |
| for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) |
| phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; |
| |
| /* Parse 64-bit MMIO range */ |
| pnv_ioda_parse_m64_window(phb); |
| |
| phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); |
| /* FW Has already off top 64k of M32 space (MSI space) */ |
| phb->ioda.m32_size += 0x10000; |
| |
| phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; |
| phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; |
| phb->ioda.io_size = hose->pci_io_size; |
| phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; |
| phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ |
| |
| /* Calculate how many 32-bit TCE segments we have */ |
| phb->ioda.dma32_count = phb->ioda.m32_pci_base / |
| PNV_IODA1_DMA32_SEGSIZE; |
| |
| /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ |
| size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, |
| sizeof(unsigned long)); |
| m64map_off = size; |
| size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); |
| m32map_off = size; |
| size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); |
| if (phb->type == PNV_PHB_IODA1) { |
| iomap_off = size; |
| size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); |
| dma32map_off = size; |
| size += phb->ioda.dma32_count * |
| sizeof(phb->ioda.dma32_segmap[0]); |
| } |
| pemap_off = size; |
| size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); |
| aux = kzalloc(size, GFP_KERNEL); |
| if (!aux) |
| panic("%s: Failed to allocate %lu bytes\n", __func__, size); |
| |
| phb->ioda.pe_alloc = aux; |
| phb->ioda.m64_segmap = aux + m64map_off; |
| phb->ioda.m32_segmap = aux + m32map_off; |
| for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { |
| phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; |
| phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; |
| } |
| if (phb->type == PNV_PHB_IODA1) { |
| phb->ioda.io_segmap = aux + iomap_off; |
| for (segno = 0; segno < phb->ioda.total_pe_num; segno++) |
| phb->ioda.io_segmap[segno] = IODA_INVALID_PE; |
| |
| phb->ioda.dma32_segmap = aux + dma32map_off; |
| for (segno = 0; segno < phb->ioda.dma32_count; segno++) |
| phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; |
| } |
| phb->ioda.pe_array = aux + pemap_off; |
| |
| /* |
| * Choose PE number for root bus, which shouldn't have |
| * M64 resources consumed by its child devices. To pick |
| * the PE number adjacent to the reserved one if possible. |
| */ |
| pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); |
| if (phb->ioda.reserved_pe_idx == 0) { |
| phb->ioda.root_pe_idx = 1; |
| pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); |
| } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { |
| phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; |
| pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); |
| } else { |
| /* otherwise just allocate one */ |
| root_pe = pnv_ioda_alloc_pe(phb, 1); |
| phb->ioda.root_pe_idx = root_pe->pe_number; |
| } |
| |
| INIT_LIST_HEAD(&phb->ioda.pe_list); |
| mutex_init(&phb->ioda.pe_list_mutex); |
| |
| /* Calculate how many 32-bit TCE segments we have */ |
| phb->ioda.dma32_count = phb->ioda.m32_pci_base / |
| PNV_IODA1_DMA32_SEGSIZE; |
| |
| #if 0 /* We should really do that ... */ |
| rc = opal_pci_set_phb_mem_window(opal->phb_id, |
| window_type, |
| window_num, |
| starting_real_address, |
| starting_pci_address, |
| segment_size); |
| #endif |
| |
| pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", |
| phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, |
| phb->ioda.m32_size, phb->ioda.m32_segsize); |
| if (phb->ioda.m64_size) |
| pr_info(" M64: 0x%lx [segment=0x%lx]\n", |
| phb->ioda.m64_size, phb->ioda.m64_segsize); |
| if (phb->ioda.io_size) |
| pr_info(" IO: 0x%x [segment=0x%x]\n", |
| phb->ioda.io_size, phb->ioda.io_segsize); |
| |
| |
| phb->hose->ops = &pnv_pci_ops; |
| phb->get_pe_state = pnv_ioda_get_pe_state; |
| phb->freeze_pe = pnv_ioda_freeze_pe; |
| phb->unfreeze_pe = pnv_ioda_unfreeze_pe; |
| |
| /* Setup MSI support */ |
| pnv_pci_init_ioda_msis(phb); |
| |
| /* |
| * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here |
| * to let the PCI core do resource assignment. It's supposed |
| * that the PCI core will do correct I/O and MMIO alignment |
| * for the P2P bridge bars so that each PCI bus (excluding |
| * the child P2P bridges) can form individual PE. |
| */ |
| ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; |
| |
| switch (phb->type) { |
| case PNV_PHB_NPU_OCAPI: |
| hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops; |
| break; |
| default: |
| hose->controller_ops = pnv_pci_ioda_controller_ops; |
| } |
| |
| ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; |
| |
| #ifdef CONFIG_PCI_IOV |
| ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov; |
| ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; |
| ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable; |
| ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable; |
| #endif |
| |
| pci_add_flags(PCI_REASSIGN_ALL_RSRC); |
| |
| /* Reset IODA tables to a clean state */ |
| rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); |
| if (rc) |
| pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc); |
| |
| /* |
| * If we're running in kdump kernel, the previous kernel never |
| * shutdown PCI devices correctly. We already got IODA table |
| * cleaned out. So we have to issue PHB reset to stop all PCI |
| * transactions from previous kernel. The ppc_pci_reset_phbs |
| * kernel parameter will force this reset too. Additionally, |
| * if the IODA reset above failed then use a bigger hammer. |
| * This can happen if we get a PHB fatal error in very early |
| * boot. |
| */ |
| if (is_kdump_kernel() || pci_reset_phbs || rc) { |
| pr_info(" Issue PHB reset ...\n"); |
| pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); |
| pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); |
| } |
| |
| /* Remove M64 resource if we can't configure it successfully */ |
| if (!phb->init_m64 || phb->init_m64(phb)) |
| hose->mem_resources[1].flags = 0; |
| |
| /* create pci_dn's for DT nodes under this PHB */ |
| pci_devs_phb_init_dynamic(hose); |
| } |
| |
| void __init pnv_pci_init_ioda2_phb(struct device_node *np) |
| { |
| pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); |
| } |
| |
| void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np) |
| { |
| pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI); |
| } |
| |
| static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev) |
| { |
| struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); |
| |
| if (!machine_is(powernv)) |
| return; |
| |
| if (phb->type == PNV_PHB_NPU_OCAPI) |
| dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE; |
| } |
| DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup); |
| |
| void __init pnv_pci_init_ioda_hub(struct device_node *np) |
| { |
| struct device_node *phbn; |
| const __be64 *prop64; |
| u64 hub_id; |
| |
| pr_info("Probing IODA IO-Hub %pOF\n", np); |
| |
| prop64 = of_get_property(np, "ibm,opal-hubid", NULL); |
| if (!prop64) { |
| pr_err(" Missing \"ibm,opal-hubid\" property !\n"); |
| return; |
| } |
| hub_id = be64_to_cpup(prop64); |
| pr_devel(" HUB-ID : 0x%016llx\n", hub_id); |
| |
| /* Count child PHBs */ |
| for_each_child_of_node(np, phbn) { |
| /* Look for IODA1 PHBs */ |
| if (of_device_is_compatible(phbn, "ibm,ioda-phb")) |
| pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); |
| } |
| } |