| #ifdef CONFIG_SMP | 
 | #include "sched-pelt.h" | 
 |  | 
 | int __update_load_avg_blocked_se(u64 now, struct sched_entity *se); | 
 | int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se); | 
 | int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq); | 
 | int update_rt_rq_load_avg(u64 now, struct rq *rq, int running); | 
 | int update_dl_rq_load_avg(u64 now, struct rq *rq, int running); | 
 |  | 
 | #ifdef CONFIG_SCHED_THERMAL_PRESSURE | 
 | int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity); | 
 |  | 
 | static inline u64 thermal_load_avg(struct rq *rq) | 
 | { | 
 | 	return READ_ONCE(rq->avg_thermal.load_avg); | 
 | } | 
 | #else | 
 | static inline int | 
 | update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline u64 thermal_load_avg(struct rq *rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ | 
 | int update_irq_load_avg(struct rq *rq, u64 running); | 
 | #else | 
 | static inline int | 
 | update_irq_load_avg(struct rq *rq, u64 running) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static inline u32 get_pelt_divider(struct sched_avg *avg) | 
 | { | 
 | 	return LOAD_AVG_MAX - 1024 + avg->period_contrib; | 
 | } | 
 |  | 
 | static inline void cfs_se_util_change(struct sched_avg *avg) | 
 | { | 
 | 	unsigned int enqueued; | 
 |  | 
 | 	if (!sched_feat(UTIL_EST)) | 
 | 		return; | 
 |  | 
 | 	/* Avoid store if the flag has been already reset */ | 
 | 	enqueued = avg->util_est.enqueued; | 
 | 	if (!(enqueued & UTIL_AVG_UNCHANGED)) | 
 | 		return; | 
 |  | 
 | 	/* Reset flag to report util_avg has been updated */ | 
 | 	enqueued &= ~UTIL_AVG_UNCHANGED; | 
 | 	WRITE_ONCE(avg->util_est.enqueued, enqueued); | 
 | } | 
 |  | 
 | /* | 
 |  * The clock_pelt scales the time to reflect the effective amount of | 
 |  * computation done during the running delta time but then sync back to | 
 |  * clock_task when rq is idle. | 
 |  * | 
 |  * | 
 |  * absolute time   | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16 | 
 |  * @ max capacity  ------******---------------******--------------- | 
 |  * @ half capacity ------************---------************--------- | 
 |  * clock pelt      | 1| 2|    3|    4| 7| 8| 9|   10|   11|14|15|16 | 
 |  * | 
 |  */ | 
 | static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) | 
 | { | 
 | 	if (unlikely(is_idle_task(rq->curr))) { | 
 | 		/* The rq is idle, we can sync to clock_task */ | 
 | 		rq->clock_pelt  = rq_clock_task(rq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When a rq runs at a lower compute capacity, it will need | 
 | 	 * more time to do the same amount of work than at max | 
 | 	 * capacity. In order to be invariant, we scale the delta to | 
 | 	 * reflect how much work has been really done. | 
 | 	 * Running longer results in stealing idle time that will | 
 | 	 * disturb the load signal compared to max capacity. This | 
 | 	 * stolen idle time will be automatically reflected when the | 
 | 	 * rq will be idle and the clock will be synced with | 
 | 	 * rq_clock_task. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Scale the elapsed time to reflect the real amount of | 
 | 	 * computation | 
 | 	 */ | 
 | 	delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq))); | 
 | 	delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq))); | 
 |  | 
 | 	rq->clock_pelt += delta; | 
 | } | 
 |  | 
 | /* | 
 |  * When rq becomes idle, we have to check if it has lost idle time | 
 |  * because it was fully busy. A rq is fully used when the /Sum util_sum | 
 |  * is greater or equal to: | 
 |  * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT; | 
 |  * For optimization and computing rounding purpose, we don't take into account | 
 |  * the position in the current window (period_contrib) and we use the higher | 
 |  * bound of util_sum to decide. | 
 |  */ | 
 | static inline void update_idle_rq_clock_pelt(struct rq *rq) | 
 | { | 
 | 	u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX; | 
 | 	u32 util_sum = rq->cfs.avg.util_sum; | 
 | 	util_sum += rq->avg_rt.util_sum; | 
 | 	util_sum += rq->avg_dl.util_sum; | 
 |  | 
 | 	/* | 
 | 	 * Reflecting stolen time makes sense only if the idle | 
 | 	 * phase would be present at max capacity. As soon as the | 
 | 	 * utilization of a rq has reached the maximum value, it is | 
 | 	 * considered as an always running rq without idle time to | 
 | 	 * steal. This potential idle time is considered as lost in | 
 | 	 * this case. We keep track of this lost idle time compare to | 
 | 	 * rq's clock_task. | 
 | 	 */ | 
 | 	if (util_sum >= divider) | 
 | 		rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt; | 
 | } | 
 |  | 
 | static inline u64 rq_clock_pelt(struct rq *rq) | 
 | { | 
 | 	lockdep_assert_rq_held(rq); | 
 | 	assert_clock_updated(rq); | 
 |  | 
 | 	return rq->clock_pelt - rq->lost_idle_time; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ | 
 | static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (unlikely(cfs_rq->throttle_count)) | 
 | 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; | 
 |  | 
 | 	return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; | 
 | } | 
 | #else | 
 | static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return rq_clock_pelt(rq_of(cfs_rq)); | 
 | } | 
 | #endif | 
 |  | 
 | #else | 
 |  | 
 | static inline int | 
 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | update_rt_rq_load_avg(u64 now, struct rq *rq, int running) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | update_dl_rq_load_avg(u64 now, struct rq *rq, int running) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline u64 thermal_load_avg(struct rq *rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | update_irq_load_avg(struct rq *rq, u64 running) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline u64 rq_clock_pelt(struct rq *rq) | 
 | { | 
 | 	return rq_clock_task(rq); | 
 | } | 
 |  | 
 | static inline void | 
 | update_rq_clock_pelt(struct rq *rq, s64 delta) { } | 
 |  | 
 | static inline void | 
 | update_idle_rq_clock_pelt(struct rq *rq) { } | 
 |  | 
 | #endif | 
 |  | 
 |  |