| /* |
| * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /* |
| * GK20A does not have dedicated video memory, and to accurately represent this |
| * fact Nouveau will not create a RAM device for it. Therefore its instmem |
| * implementation must be done directly on top of system memory, while |
| * preserving coherency for read and write operations. |
| * |
| * Instmem can be allocated through two means: |
| * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory |
| * pages contiguous to the GPU. This is the preferred way. |
| * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically |
| * contiguous memory. |
| * |
| * In both cases CPU read and writes are performed by creating a write-combined |
| * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To |
| * be conservative we do this every time we acquire or release an instobj, but |
| * ideally L2 management should be handled at a higher level. |
| * |
| * To improve performance, CPU mappings are not removed upon instobj release. |
| * Instead they are placed into a LRU list to be recycled when the mapped space |
| * goes beyond a certain threshold. At the moment this limit is 1MB. |
| */ |
| #include "priv.h" |
| |
| #include <core/memory.h> |
| #include <core/mm.h> |
| #include <core/tegra.h> |
| #include <subdev/fb.h> |
| #include <subdev/ltc.h> |
| |
| struct gk20a_instobj { |
| struct nvkm_memory memory; |
| struct nvkm_mem mem; |
| struct gk20a_instmem *imem; |
| |
| /* CPU mapping */ |
| u32 *vaddr; |
| }; |
| #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) |
| |
| /* |
| * Used for objects allocated using the DMA API |
| */ |
| struct gk20a_instobj_dma { |
| struct gk20a_instobj base; |
| |
| dma_addr_t handle; |
| struct nvkm_mm_node r; |
| }; |
| #define gk20a_instobj_dma(p) \ |
| container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) |
| |
| /* |
| * Used for objects flattened using the IOMMU API |
| */ |
| struct gk20a_instobj_iommu { |
| struct gk20a_instobj base; |
| |
| /* to link into gk20a_instmem::vaddr_lru */ |
| struct list_head vaddr_node; |
| /* how many clients are using vaddr? */ |
| u32 use_cpt; |
| |
| /* will point to the higher half of pages */ |
| dma_addr_t *dma_addrs; |
| /* array of base.mem->size pages (+ dma_addr_ts) */ |
| struct page *pages[]; |
| }; |
| #define gk20a_instobj_iommu(p) \ |
| container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) |
| |
| struct gk20a_instmem { |
| struct nvkm_instmem base; |
| |
| /* protects vaddr_* and gk20a_instobj::vaddr* */ |
| struct mutex lock; |
| |
| /* CPU mappings LRU */ |
| unsigned int vaddr_use; |
| unsigned int vaddr_max; |
| struct list_head vaddr_lru; |
| |
| /* Only used if IOMMU if present */ |
| struct mutex *mm_mutex; |
| struct nvkm_mm *mm; |
| struct iommu_domain *domain; |
| unsigned long iommu_pgshift; |
| u16 iommu_bit; |
| |
| /* Only used by DMA API */ |
| unsigned long attrs; |
| }; |
| #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) |
| |
| static enum nvkm_memory_target |
| gk20a_instobj_target(struct nvkm_memory *memory) |
| { |
| return NVKM_MEM_TARGET_NCOH; |
| } |
| |
| static u8 |
| gk20a_instobj_page(struct nvkm_memory *memory) |
| { |
| return 12; |
| } |
| |
| static u64 |
| gk20a_instobj_addr(struct nvkm_memory *memory) |
| { |
| return gk20a_instobj(memory)->mem.offset; |
| } |
| |
| static u64 |
| gk20a_instobj_size(struct nvkm_memory *memory) |
| { |
| return (u64)gk20a_instobj(memory)->mem.size << 12; |
| } |
| |
| /* |
| * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held. |
| */ |
| static void |
| gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj) |
| { |
| struct gk20a_instmem *imem = obj->base.imem; |
| /* there should not be any user left... */ |
| WARN_ON(obj->use_cpt); |
| list_del(&obj->vaddr_node); |
| vunmap(obj->base.vaddr); |
| obj->base.vaddr = NULL; |
| imem->vaddr_use -= nvkm_memory_size(&obj->base.memory); |
| nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, |
| imem->vaddr_max); |
| } |
| |
| /* |
| * Must be called while holding gk20a_instmem::lock |
| */ |
| static void |
| gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) |
| { |
| while (imem->vaddr_use + size > imem->vaddr_max) { |
| /* no candidate that can be unmapped, abort... */ |
| if (list_empty(&imem->vaddr_lru)) |
| break; |
| |
| gk20a_instobj_iommu_recycle_vaddr( |
| list_first_entry(&imem->vaddr_lru, |
| struct gk20a_instobj_iommu, vaddr_node)); |
| } |
| } |
| |
| static void __iomem * |
| gk20a_instobj_acquire_dma(struct nvkm_memory *memory) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| struct gk20a_instmem *imem = node->imem; |
| struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; |
| |
| nvkm_ltc_flush(ltc); |
| |
| return node->vaddr; |
| } |
| |
| static void __iomem * |
| gk20a_instobj_acquire_iommu(struct nvkm_memory *memory) |
| { |
| struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); |
| struct gk20a_instmem *imem = node->base.imem; |
| struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; |
| const u64 size = nvkm_memory_size(memory); |
| |
| nvkm_ltc_flush(ltc); |
| |
| mutex_lock(&imem->lock); |
| |
| if (node->base.vaddr) { |
| if (!node->use_cpt) { |
| /* remove from LRU list since mapping in use again */ |
| list_del(&node->vaddr_node); |
| } |
| goto out; |
| } |
| |
| /* try to free some address space if we reached the limit */ |
| gk20a_instmem_vaddr_gc(imem, size); |
| |
| /* map the pages */ |
| node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP, |
| pgprot_writecombine(PAGE_KERNEL)); |
| if (!node->base.vaddr) { |
| nvkm_error(&imem->base.subdev, "cannot map instobj - " |
| "this is not going to end well...\n"); |
| goto out; |
| } |
| |
| imem->vaddr_use += size; |
| nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", |
| imem->vaddr_use, imem->vaddr_max); |
| |
| out: |
| node->use_cpt++; |
| mutex_unlock(&imem->lock); |
| |
| return node->base.vaddr; |
| } |
| |
| static void |
| gk20a_instobj_release_dma(struct nvkm_memory *memory) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| struct gk20a_instmem *imem = node->imem; |
| struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; |
| |
| /* in case we got a write-combined mapping */ |
| wmb(); |
| nvkm_ltc_invalidate(ltc); |
| } |
| |
| static void |
| gk20a_instobj_release_iommu(struct nvkm_memory *memory) |
| { |
| struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); |
| struct gk20a_instmem *imem = node->base.imem; |
| struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; |
| |
| mutex_lock(&imem->lock); |
| |
| /* we should at least have one user to release... */ |
| if (WARN_ON(node->use_cpt == 0)) |
| goto out; |
| |
| /* add unused objs to the LRU list to recycle their mapping */ |
| if (--node->use_cpt == 0) |
| list_add_tail(&node->vaddr_node, &imem->vaddr_lru); |
| |
| out: |
| mutex_unlock(&imem->lock); |
| |
| wmb(); |
| nvkm_ltc_invalidate(ltc); |
| } |
| |
| static u32 |
| gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| |
| return node->vaddr[offset / 4]; |
| } |
| |
| static void |
| gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| |
| node->vaddr[offset / 4] = data; |
| } |
| |
| static int |
| gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm, |
| struct nvkm_vma *vma, void *argv, u32 argc) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| nvkm_vm_map_at(vma, 0, &node->mem); |
| return 0; |
| } |
| |
| static void * |
| gk20a_instobj_dtor_dma(struct nvkm_memory *memory) |
| { |
| struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); |
| struct gk20a_instmem *imem = node->base.imem; |
| struct device *dev = imem->base.subdev.device->dev; |
| |
| if (unlikely(!node->base.vaddr)) |
| goto out; |
| |
| dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->base.vaddr, |
| node->handle, imem->attrs); |
| |
| out: |
| return node; |
| } |
| |
| static void * |
| gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) |
| { |
| struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); |
| struct gk20a_instmem *imem = node->base.imem; |
| struct device *dev = imem->base.subdev.device->dev; |
| struct nvkm_mm_node *r = node->base.mem.mem; |
| int i; |
| |
| if (unlikely(!r)) |
| goto out; |
| |
| mutex_lock(&imem->lock); |
| |
| /* vaddr has already been recycled */ |
| if (node->base.vaddr) |
| gk20a_instobj_iommu_recycle_vaddr(node); |
| |
| mutex_unlock(&imem->lock); |
| |
| /* clear IOMMU bit to unmap pages */ |
| r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift); |
| |
| /* Unmap pages from GPU address space and free them */ |
| for (i = 0; i < node->base.mem.size; i++) { |
| iommu_unmap(imem->domain, |
| (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); |
| dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, |
| DMA_BIDIRECTIONAL); |
| __free_page(node->pages[i]); |
| } |
| |
| /* Release area from GPU address space */ |
| mutex_lock(imem->mm_mutex); |
| nvkm_mm_free(imem->mm, &r); |
| mutex_unlock(imem->mm_mutex); |
| |
| out: |
| return node; |
| } |
| |
| static const struct nvkm_memory_func |
| gk20a_instobj_func_dma = { |
| .dtor = gk20a_instobj_dtor_dma, |
| .target = gk20a_instobj_target, |
| .page = gk20a_instobj_page, |
| .addr = gk20a_instobj_addr, |
| .size = gk20a_instobj_size, |
| .acquire = gk20a_instobj_acquire_dma, |
| .release = gk20a_instobj_release_dma, |
| .map = gk20a_instobj_map, |
| }; |
| |
| static const struct nvkm_memory_func |
| gk20a_instobj_func_iommu = { |
| .dtor = gk20a_instobj_dtor_iommu, |
| .target = gk20a_instobj_target, |
| .page = gk20a_instobj_page, |
| .addr = gk20a_instobj_addr, |
| .size = gk20a_instobj_size, |
| .acquire = gk20a_instobj_acquire_iommu, |
| .release = gk20a_instobj_release_iommu, |
| .map = gk20a_instobj_map, |
| }; |
| |
| static const struct nvkm_memory_ptrs |
| gk20a_instobj_ptrs = { |
| .rd32 = gk20a_instobj_rd32, |
| .wr32 = gk20a_instobj_wr32, |
| }; |
| |
| static int |
| gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, |
| struct gk20a_instobj **_node) |
| { |
| struct gk20a_instobj_dma *node; |
| struct nvkm_subdev *subdev = &imem->base.subdev; |
| struct device *dev = subdev->device->dev; |
| |
| if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) |
| return -ENOMEM; |
| *_node = &node->base; |
| |
| nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory); |
| node->base.memory.ptrs = &gk20a_instobj_ptrs; |
| |
| node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, |
| &node->handle, GFP_KERNEL, |
| imem->attrs); |
| if (!node->base.vaddr) { |
| nvkm_error(subdev, "cannot allocate DMA memory\n"); |
| return -ENOMEM; |
| } |
| |
| /* alignment check */ |
| if (unlikely(node->handle & (align - 1))) |
| nvkm_warn(subdev, |
| "memory not aligned as requested: %pad (0x%x)\n", |
| &node->handle, align); |
| |
| /* present memory for being mapped using small pages */ |
| node->r.type = 12; |
| node->r.offset = node->handle >> 12; |
| node->r.length = (npages << PAGE_SHIFT) >> 12; |
| |
| node->base.mem.offset = node->handle; |
| node->base.mem.mem = &node->r; |
| return 0; |
| } |
| |
| static int |
| gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, |
| struct gk20a_instobj **_node) |
| { |
| struct gk20a_instobj_iommu *node; |
| struct nvkm_subdev *subdev = &imem->base.subdev; |
| struct device *dev = subdev->device->dev; |
| struct nvkm_mm_node *r; |
| int ret; |
| int i; |
| |
| /* |
| * despite their variable size, instmem allocations are small enough |
| * (< 1 page) to be handled by kzalloc |
| */ |
| if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + |
| sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) |
| return -ENOMEM; |
| *_node = &node->base; |
| node->dma_addrs = (void *)(node->pages + npages); |
| |
| nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory); |
| node->base.memory.ptrs = &gk20a_instobj_ptrs; |
| |
| /* Allocate backing memory */ |
| for (i = 0; i < npages; i++) { |
| struct page *p = alloc_page(GFP_KERNEL); |
| dma_addr_t dma_adr; |
| |
| if (p == NULL) { |
| ret = -ENOMEM; |
| goto free_pages; |
| } |
| node->pages[i] = p; |
| dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(dev, dma_adr)) { |
| nvkm_error(subdev, "DMA mapping error!\n"); |
| ret = -ENOMEM; |
| goto free_pages; |
| } |
| node->dma_addrs[i] = dma_adr; |
| } |
| |
| mutex_lock(imem->mm_mutex); |
| /* Reserve area from GPU address space */ |
| ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, |
| align >> imem->iommu_pgshift, &r); |
| mutex_unlock(imem->mm_mutex); |
| if (ret) { |
| nvkm_error(subdev, "IOMMU space is full!\n"); |
| goto free_pages; |
| } |
| |
| /* Map into GPU address space */ |
| for (i = 0; i < npages; i++) { |
| u32 offset = (r->offset + i) << imem->iommu_pgshift; |
| |
| ret = iommu_map(imem->domain, offset, node->dma_addrs[i], |
| PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); |
| if (ret < 0) { |
| nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); |
| |
| while (i-- > 0) { |
| offset -= PAGE_SIZE; |
| iommu_unmap(imem->domain, offset, PAGE_SIZE); |
| } |
| goto release_area; |
| } |
| } |
| |
| /* IOMMU bit tells that an address is to be resolved through the IOMMU */ |
| r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift); |
| |
| node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift; |
| node->base.mem.mem = r; |
| return 0; |
| |
| release_area: |
| mutex_lock(imem->mm_mutex); |
| nvkm_mm_free(imem->mm, &r); |
| mutex_unlock(imem->mm_mutex); |
| |
| free_pages: |
| for (i = 0; i < npages && node->pages[i] != NULL; i++) { |
| dma_addr_t dma_addr = node->dma_addrs[i]; |
| if (dma_addr) |
| dma_unmap_page(dev, dma_addr, PAGE_SIZE, |
| DMA_BIDIRECTIONAL); |
| __free_page(node->pages[i]); |
| } |
| |
| return ret; |
| } |
| |
| static int |
| gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, |
| struct nvkm_memory **pmemory) |
| { |
| struct gk20a_instmem *imem = gk20a_instmem(base); |
| struct nvkm_subdev *subdev = &imem->base.subdev; |
| struct gk20a_instobj *node = NULL; |
| int ret; |
| |
| nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, |
| imem->domain ? "IOMMU" : "DMA", size, align); |
| |
| /* Round size and align to page bounds */ |
| size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); |
| align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); |
| |
| if (imem->domain) |
| ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, |
| align, &node); |
| else |
| ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, |
| align, &node); |
| *pmemory = node ? &node->memory : NULL; |
| if (ret) |
| return ret; |
| |
| node->imem = imem; |
| |
| /* present memory for being mapped using small pages */ |
| node->mem.size = size >> 12; |
| node->mem.memtype = 0; |
| node->mem.memory = &node->memory; |
| |
| nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", |
| size, align, node->mem.offset); |
| |
| return 0; |
| } |
| |
| static void * |
| gk20a_instmem_dtor(struct nvkm_instmem *base) |
| { |
| struct gk20a_instmem *imem = gk20a_instmem(base); |
| |
| /* perform some sanity checks... */ |
| if (!list_empty(&imem->vaddr_lru)) |
| nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); |
| |
| if (imem->vaddr_use != 0) |
| nvkm_warn(&base->subdev, "instobj vmap area not empty! " |
| "0x%x bytes still mapped\n", imem->vaddr_use); |
| |
| return imem; |
| } |
| |
| static const struct nvkm_instmem_func |
| gk20a_instmem = { |
| .dtor = gk20a_instmem_dtor, |
| .memory_new = gk20a_instobj_new, |
| .zero = false, |
| }; |
| |
| int |
| gk20a_instmem_new(struct nvkm_device *device, int index, |
| struct nvkm_instmem **pimem) |
| { |
| struct nvkm_device_tegra *tdev = device->func->tegra(device); |
| struct gk20a_instmem *imem; |
| |
| if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) |
| return -ENOMEM; |
| nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base); |
| mutex_init(&imem->lock); |
| *pimem = &imem->base; |
| |
| /* do not allow more than 1MB of CPU-mapped instmem */ |
| imem->vaddr_use = 0; |
| imem->vaddr_max = 0x100000; |
| INIT_LIST_HEAD(&imem->vaddr_lru); |
| |
| if (tdev->iommu.domain) { |
| imem->mm_mutex = &tdev->iommu.mutex; |
| imem->mm = &tdev->iommu.mm; |
| imem->domain = tdev->iommu.domain; |
| imem->iommu_pgshift = tdev->iommu.pgshift; |
| imem->iommu_bit = tdev->func->iommu_bit; |
| |
| nvkm_info(&imem->base.subdev, "using IOMMU\n"); |
| } else { |
| imem->attrs = DMA_ATTR_NON_CONSISTENT | |
| DMA_ATTR_WEAK_ORDERING | |
| DMA_ATTR_WRITE_COMBINE; |
| |
| nvkm_info(&imem->base.subdev, "using DMA API\n"); |
| } |
| |
| return 0; |
| } |