| /* |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| * Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/bsearch.h> |
| #include <linux/mm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/uaccess.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_host.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_coproc.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <trace/events/kvm.h> |
| #include <asm/vfp.h> |
| #include "../vfp/vfpinstr.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| #include "coproc.h" |
| |
| |
| /****************************************************************************** |
| * Co-processor emulation |
| *****************************************************************************/ |
| |
| static bool write_to_read_only(struct kvm_vcpu *vcpu, |
| const struct coproc_params *params) |
| { |
| WARN_ONCE(1, "CP15 write to read-only register\n"); |
| print_cp_instr(params); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| static bool read_from_write_only(struct kvm_vcpu *vcpu, |
| const struct coproc_params *params) |
| { |
| WARN_ONCE(1, "CP15 read to write-only register\n"); |
| print_cp_instr(params); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ |
| static u32 cache_levels; |
| |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| #define CSSELR_MAX 12 |
| |
| /* |
| * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some |
| * of cp15 registers can be viewed either as couple of two u32 registers |
| * or one u64 register. Current u64 register encoding is that least |
| * significant u32 word is followed by most significant u32 word. |
| */ |
| static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu, |
| const struct coproc_reg *r, |
| u64 val) |
| { |
| vcpu_cp15(vcpu, r->reg) = val & 0xffffffff; |
| vcpu_cp15(vcpu, r->reg + 1) = val >> 32; |
| } |
| |
| static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu, |
| const struct coproc_reg *r) |
| { |
| u64 val; |
| |
| val = vcpu_cp15(vcpu, r->reg + 1); |
| val = val << 32; |
| val = val | vcpu_cp15(vcpu, r->reg); |
| return val; |
| } |
| |
| int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| /* |
| * We can get here, if the host has been built without VFPv3 support, |
| * but the guest attempted a floating point operation. |
| */ |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) |
| { |
| /* |
| * Compute guest MPIDR. We build a virtual cluster out of the |
| * vcpu_id, but we read the 'U' bit from the underlying |
| * hardware directly. |
| */ |
| vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) | |
| ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) | |
| (vcpu->vcpu_id & 3)); |
| } |
| |
| /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */ |
| static bool access_actlr(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR); |
| return true; |
| } |
| |
| /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */ |
| static bool access_cbar(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| if (p->is_write) |
| return write_to_read_only(vcpu, p); |
| return read_zero(vcpu, p); |
| } |
| |
| /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */ |
| static bool access_l2ctlr(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR); |
| return true; |
| } |
| |
| static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) |
| { |
| u32 l2ctlr, ncores; |
| |
| asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr)); |
| l2ctlr &= ~(3 << 24); |
| ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1; |
| /* How many cores in the current cluster and the next ones */ |
| ncores -= (vcpu->vcpu_id & ~3); |
| /* Cap it to the maximum number of cores in a single cluster */ |
| ncores = min(ncores, 3U); |
| l2ctlr |= (ncores & 3) << 24; |
| |
| vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr; |
| } |
| |
| static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) |
| { |
| u32 actlr; |
| |
| /* ACTLR contains SMP bit: make sure you create all cpus first! */ |
| asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr)); |
| /* Make the SMP bit consistent with the guest configuration */ |
| if (atomic_read(&vcpu->kvm->online_vcpus) > 1) |
| actlr |= 1U << 6; |
| else |
| actlr &= ~(1U << 6); |
| |
| vcpu_cp15(vcpu, c1_ACTLR) = actlr; |
| } |
| |
| /* |
| * TRM entries: A7:4.3.50, A15:4.3.49 |
| * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored). |
| */ |
| static bool access_l2ectlr(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| *vcpu_reg(vcpu, p->Rt1) = 0; |
| return true; |
| } |
| |
| /* |
| * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| */ |
| static bool access_dcsw(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p); |
| |
| kvm_set_way_flush(vcpu); |
| return true; |
| } |
| |
| /* |
| * Generic accessor for VM registers. Only called as long as HCR_TVM |
| * is set. If the guest enables the MMU, we stop trapping the VM |
| * sys_regs and leave it in complete control of the caches. |
| * |
| * Used by the cpu-specific code. |
| */ |
| bool access_vm_reg(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| bool was_enabled = vcpu_has_cache_enabled(vcpu); |
| |
| BUG_ON(!p->is_write); |
| |
| vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1); |
| if (p->is_64bit) |
| vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2); |
| |
| kvm_toggle_cache(vcpu, was_enabled); |
| return true; |
| } |
| |
| static bool access_gic_sgi(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| u64 reg; |
| bool g1; |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p); |
| |
| reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32; |
| reg |= *vcpu_reg(vcpu, p->Rt1) ; |
| |
| /* |
| * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates |
| * Group0 SGIs only, while ICC_SGI1R can generate either group, |
| * depending on the SGI configuration. ICC_ASGI1R is effectively |
| * equivalent to ICC_SGI0R, as there is no "alternative" secure |
| * group. |
| */ |
| switch (p->Op1) { |
| default: /* Keep GCC quiet */ |
| case 0: /* ICC_SGI1R */ |
| g1 = true; |
| break; |
| case 1: /* ICC_ASGI1R */ |
| case 2: /* ICC_SGI0R */ |
| g1 = false; |
| break; |
| } |
| |
| vgic_v3_dispatch_sgi(vcpu, reg, g1); |
| |
| return true; |
| } |
| |
| static bool access_gic_sre(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; |
| |
| return true; |
| } |
| |
| static bool access_cntp_tval(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| u64 now = kvm_phys_timer_read(); |
| u64 val; |
| |
| if (p->is_write) { |
| val = *vcpu_reg(vcpu, p->Rt1); |
| kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now); |
| } else { |
| val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); |
| *vcpu_reg(vcpu, p->Rt1) = val - now; |
| } |
| |
| return true; |
| } |
| |
| static bool access_cntp_ctl(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| u32 val; |
| |
| if (p->is_write) { |
| val = *vcpu_reg(vcpu, p->Rt1); |
| kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val); |
| } else { |
| val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL); |
| *vcpu_reg(vcpu, p->Rt1) = val; |
| } |
| |
| return true; |
| } |
| |
| static bool access_cntp_cval(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| u64 val; |
| |
| if (p->is_write) { |
| val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32; |
| val |= *vcpu_reg(vcpu, p->Rt1); |
| kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val); |
| } else { |
| val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); |
| *vcpu_reg(vcpu, p->Rt1) = val; |
| *vcpu_reg(vcpu, p->Rt2) = val >> 32; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * We could trap ID_DFR0 and tell the guest we don't support performance |
| * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was |
| * NAKed, so it will read the PMCR anyway. |
| * |
| * Therefore we tell the guest we have 0 counters. Unfortunately, we |
| * must always support PMCCNTR (the cycle counter): we just RAZ/WI for |
| * all PM registers, which doesn't crash the guest kernel at least. |
| */ |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu, |
| const struct coproc_params *p, |
| const struct coproc_reg *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| else |
| return read_zero(vcpu, p); |
| } |
| |
| #define access_pmcr trap_raz_wi |
| #define access_pmcntenset trap_raz_wi |
| #define access_pmcntenclr trap_raz_wi |
| #define access_pmovsr trap_raz_wi |
| #define access_pmselr trap_raz_wi |
| #define access_pmceid0 trap_raz_wi |
| #define access_pmceid1 trap_raz_wi |
| #define access_pmccntr trap_raz_wi |
| #define access_pmxevtyper trap_raz_wi |
| #define access_pmxevcntr trap_raz_wi |
| #define access_pmuserenr trap_raz_wi |
| #define access_pmintenset trap_raz_wi |
| #define access_pmintenclr trap_raz_wi |
| |
| /* Architected CP15 registers. |
| * CRn denotes the primary register number, but is copied to the CRm in the |
| * user space API for 64-bit register access in line with the terminology used |
| * in the ARM ARM. |
| * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit |
| * registers preceding 32-bit ones. |
| */ |
| static const struct coproc_reg cp15_regs[] = { |
| /* MPIDR: we use VMPIDR for guest access. */ |
| { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32, |
| NULL, reset_mpidr, c0_MPIDR }, |
| |
| /* CSSELR: swapped by interrupt.S. */ |
| { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32, |
| NULL, reset_unknown, c0_CSSELR }, |
| |
| /* ACTLR: trapped by HCR.TAC bit. */ |
| { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32, |
| access_actlr, reset_actlr, c1_ACTLR }, |
| |
| /* CPACR: swapped by interrupt.S. */ |
| { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32, |
| NULL, reset_val, c1_CPACR, 0x00000000 }, |
| |
| /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */ |
| { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 }, |
| { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32, |
| access_vm_reg, reset_unknown, c2_TTBR0 }, |
| { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32, |
| access_vm_reg, reset_unknown, c2_TTBR1 }, |
| { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32, |
| access_vm_reg, reset_val, c2_TTBCR, 0x00000000 }, |
| { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 }, |
| |
| |
| /* DACR: swapped by interrupt.S. */ |
| { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32, |
| access_vm_reg, reset_unknown, c3_DACR }, |
| |
| /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */ |
| { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32, |
| access_vm_reg, reset_unknown, c5_DFSR }, |
| { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32, |
| access_vm_reg, reset_unknown, c5_IFSR }, |
| { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32, |
| access_vm_reg, reset_unknown, c5_ADFSR }, |
| { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32, |
| access_vm_reg, reset_unknown, c5_AIFSR }, |
| |
| /* DFAR/IFAR: swapped by interrupt.S. */ |
| { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32, |
| access_vm_reg, reset_unknown, c6_DFAR }, |
| { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32, |
| access_vm_reg, reset_unknown, c6_IFAR }, |
| |
| /* PAR swapped by interrupt.S */ |
| { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR }, |
| |
| /* |
| * DC{C,I,CI}SW operations: |
| */ |
| { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw}, |
| { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw}, |
| { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw}, |
| /* |
| * L2CTLR access (guest wants to know #CPUs). |
| */ |
| { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32, |
| access_l2ctlr, reset_l2ctlr, c9_L2CTLR }, |
| { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr}, |
| |
| /* |
| * Dummy performance monitor implementation. |
| */ |
| { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr}, |
| { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset}, |
| { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr}, |
| { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr}, |
| { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr}, |
| { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0}, |
| { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1}, |
| { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr}, |
| { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper}, |
| { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr}, |
| { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr}, |
| { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset}, |
| { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr}, |
| |
| /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */ |
| { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32, |
| access_vm_reg, reset_unknown, c10_PRRR}, |
| { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32, |
| access_vm_reg, reset_unknown, c10_NMRR}, |
| |
| /* AMAIR0/AMAIR1: swapped by interrupt.S. */ |
| { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32, |
| access_vm_reg, reset_unknown, c10_AMAIR0}, |
| { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32, |
| access_vm_reg, reset_unknown, c10_AMAIR1}, |
| |
| /* ICC_SGI1R */ |
| { CRm64(12), Op1( 0), is64, access_gic_sgi}, |
| |
| /* VBAR: swapped by interrupt.S. */ |
| { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32, |
| NULL, reset_val, c12_VBAR, 0x00000000 }, |
| |
| /* ICC_ASGI1R */ |
| { CRm64(12), Op1( 1), is64, access_gic_sgi}, |
| /* ICC_SGI0R */ |
| { CRm64(12), Op1( 2), is64, access_gic_sgi}, |
| /* ICC_SRE */ |
| { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre }, |
| |
| /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */ |
| { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32, |
| access_vm_reg, reset_val, c13_CID, 0x00000000 }, |
| { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32, |
| NULL, reset_unknown, c13_TID_URW }, |
| { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32, |
| NULL, reset_unknown, c13_TID_URO }, |
| { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32, |
| NULL, reset_unknown, c13_TID_PRIV }, |
| |
| /* CNTP */ |
| { CRm64(14), Op1( 2), is64, access_cntp_cval}, |
| |
| /* CNTKCTL: swapped by interrupt.S. */ |
| { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32, |
| NULL, reset_val, c14_CNTKCTL, 0x00000000 }, |
| |
| /* CNTP */ |
| { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval }, |
| { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl }, |
| |
| /* The Configuration Base Address Register. */ |
| { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar}, |
| }; |
| |
| static int check_reg_table(const struct coproc_reg *table, unsigned int n) |
| { |
| unsigned int i; |
| |
| for (i = 1; i < n; i++) { |
| if (cmp_reg(&table[i-1], &table[i]) >= 0) { |
| kvm_err("reg table %p out of order (%d)\n", table, i - 1); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Target specific emulation tables */ |
| static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS]; |
| |
| void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table) |
| { |
| BUG_ON(check_reg_table(table->table, table->num)); |
| target_tables[table->target] = table; |
| } |
| |
| /* Get specific register table for this target. */ |
| static const struct coproc_reg *get_target_table(unsigned target, size_t *num) |
| { |
| struct kvm_coproc_target_table *table; |
| |
| table = target_tables[target]; |
| *num = table->num; |
| return table->table; |
| } |
| |
| #define reg_to_match_value(x) \ |
| ({ \ |
| unsigned long val; \ |
| val = (x)->CRn << 11; \ |
| val |= (x)->CRm << 7; \ |
| val |= (x)->Op1 << 4; \ |
| val |= (x)->Op2 << 1; \ |
| val |= !(x)->is_64bit; \ |
| val; \ |
| }) |
| |
| static int match_reg(const void *key, const void *elt) |
| { |
| const unsigned long pval = (unsigned long)key; |
| const struct coproc_reg *r = elt; |
| |
| return pval - reg_to_match_value(r); |
| } |
| |
| static const struct coproc_reg *find_reg(const struct coproc_params *params, |
| const struct coproc_reg table[], |
| unsigned int num) |
| { |
| unsigned long pval = reg_to_match_value(params); |
| |
| return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg); |
| } |
| |
| static int emulate_cp15(struct kvm_vcpu *vcpu, |
| const struct coproc_params *params) |
| { |
| size_t num; |
| const struct coproc_reg *table, *r; |
| |
| trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn, |
| params->CRm, params->Op2, params->is_write); |
| |
| table = get_target_table(vcpu->arch.target, &num); |
| |
| /* Search target-specific then generic table. */ |
| r = find_reg(params, table, num); |
| if (!r) |
| r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| |
| if (likely(r)) { |
| /* If we don't have an accessor, we should never get here! */ |
| BUG_ON(!r->access); |
| |
| if (likely(r->access(vcpu, params, r))) { |
| /* Skip instruction, since it was emulated */ |
| kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| } |
| } else { |
| /* If access function fails, it should complain. */ |
| kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n", |
| *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
| print_cp_instr(params); |
| kvm_inject_undefined(vcpu); |
| } |
| |
| return 1; |
| } |
| |
| static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu) |
| { |
| struct coproc_params params; |
| |
| params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; |
| params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; |
| params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); |
| params.is_64bit = true; |
| |
| params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf; |
| params.Op2 = 0; |
| params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; |
| params.CRm = 0; |
| |
| return params; |
| } |
| |
| /** |
| * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| struct coproc_params params = decode_64bit_hsr(vcpu); |
| |
| return emulate_cp15(vcpu, ¶ms); |
| } |
| |
| /** |
| * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| struct coproc_params params = decode_64bit_hsr(vcpu); |
| |
| /* raz_wi cp14 */ |
| trap_raz_wi(vcpu, ¶ms, NULL); |
| |
| /* handled */ |
| kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| return 1; |
| } |
| |
| static void reset_coproc_regs(struct kvm_vcpu *vcpu, |
| const struct coproc_reg *table, size_t num) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < num; i++) |
| if (table[i].reset) |
| table[i].reset(vcpu, &table[i]); |
| } |
| |
| static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu) |
| { |
| struct coproc_params params; |
| |
| params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; |
| params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; |
| params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); |
| params.is_64bit = false; |
| |
| params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; |
| params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7; |
| params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7; |
| params.Rt2 = 0; |
| |
| return params; |
| } |
| |
| /** |
| * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| struct coproc_params params = decode_32bit_hsr(vcpu); |
| return emulate_cp15(vcpu, ¶ms); |
| } |
| |
| /** |
| * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| struct coproc_params params = decode_32bit_hsr(vcpu); |
| |
| /* raz_wi cp14 */ |
| trap_raz_wi(vcpu, ¶ms, NULL); |
| |
| /* handled */ |
| kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| return 1; |
| } |
| |
| /****************************************************************************** |
| * Userspace API |
| *****************************************************************************/ |
| |
| static bool index_to_params(u64 id, struct coproc_params *params) |
| { |
| switch (id & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| /* Any unused index bits means it's not valid. */ |
| if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| | KVM_REG_ARM_COPROC_MASK |
| | KVM_REG_ARM_32_CRN_MASK |
| | KVM_REG_ARM_CRM_MASK |
| | KVM_REG_ARM_OPC1_MASK |
| | KVM_REG_ARM_32_OPC2_MASK)) |
| return false; |
| |
| params->is_64bit = false; |
| params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK) |
| >> KVM_REG_ARM_32_CRN_SHIFT); |
| params->CRm = ((id & KVM_REG_ARM_CRM_MASK) |
| >> KVM_REG_ARM_CRM_SHIFT); |
| params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) |
| >> KVM_REG_ARM_OPC1_SHIFT); |
| params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK) |
| >> KVM_REG_ARM_32_OPC2_SHIFT); |
| return true; |
| case KVM_REG_SIZE_U64: |
| /* Any unused index bits means it's not valid. */ |
| if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| | KVM_REG_ARM_COPROC_MASK |
| | KVM_REG_ARM_CRM_MASK |
| | KVM_REG_ARM_OPC1_MASK)) |
| return false; |
| params->is_64bit = true; |
| /* CRm to CRn: see cp15_to_index for details */ |
| params->CRn = ((id & KVM_REG_ARM_CRM_MASK) |
| >> KVM_REG_ARM_CRM_SHIFT); |
| params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) |
| >> KVM_REG_ARM_OPC1_SHIFT); |
| params->Op2 = 0; |
| params->CRm = 0; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* Decode an index value, and find the cp15 coproc_reg entry. */ |
| static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu, |
| u64 id) |
| { |
| size_t num; |
| const struct coproc_reg *table, *r; |
| struct coproc_params params; |
| |
| /* We only do cp15 for now. */ |
| if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15) |
| return NULL; |
| |
| if (!index_to_params(id, ¶ms)) |
| return NULL; |
| |
| table = get_target_table(vcpu->arch.target, &num); |
| r = find_reg(¶ms, table, num); |
| if (!r) |
| r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| |
| /* Not saved in the cp15 array? */ |
| if (r && !r->reg) |
| r = NULL; |
| |
| return r; |
| } |
| |
| /* |
| * These are the invariant cp15 registers: we let the guest see the host |
| * versions of these, so they're part of the guest state. |
| * |
| * A future CPU may provide a mechanism to present different values to |
| * the guest, or a future kvm may trap them. |
| */ |
| /* Unfortunately, there's no register-argument for mrc, so generate. */ |
| #define FUNCTION_FOR32(crn, crm, op1, op2, name) \ |
| static void get_##name(struct kvm_vcpu *v, \ |
| const struct coproc_reg *r) \ |
| { \ |
| u32 val; \ |
| \ |
| asm volatile("mrc p15, " __stringify(op1) \ |
| ", %0, c" __stringify(crn) \ |
| ", c" __stringify(crm) \ |
| ", " __stringify(op2) "\n" : "=r" (val)); \ |
| ((struct coproc_reg *)r)->val = val; \ |
| } |
| |
| FUNCTION_FOR32(0, 0, 0, 0, MIDR) |
| FUNCTION_FOR32(0, 0, 0, 1, CTR) |
| FUNCTION_FOR32(0, 0, 0, 2, TCMTR) |
| FUNCTION_FOR32(0, 0, 0, 3, TLBTR) |
| FUNCTION_FOR32(0, 0, 0, 6, REVIDR) |
| FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0) |
| FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1) |
| FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0) |
| FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0) |
| FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0) |
| FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1) |
| FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2) |
| FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3) |
| FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0) |
| FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1) |
| FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2) |
| FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3) |
| FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4) |
| FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5) |
| FUNCTION_FOR32(0, 0, 1, 1, CLIDR) |
| FUNCTION_FOR32(0, 0, 1, 7, AIDR) |
| |
| /* ->val is filled in by kvm_invariant_coproc_table_init() */ |
| static struct coproc_reg invariant_cp15[] = { |
| { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR }, |
| { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR }, |
| { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR }, |
| { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR }, |
| { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR }, |
| |
| { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR }, |
| { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR }, |
| |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 }, |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 }, |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 }, |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 }, |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 }, |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 }, |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 }, |
| { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 }, |
| |
| { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 }, |
| { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 }, |
| { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 }, |
| { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 }, |
| { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 }, |
| { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 }, |
| }; |
| |
| /* |
| * Reads a register value from a userspace address to a kernel |
| * variable. Make sure that register size matches sizeof(*__val). |
| */ |
| static int reg_from_user(void *val, const void __user *uaddr, u64 id) |
| { |
| if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* |
| * Writes a register value to a userspace address from a kernel variable. |
| * Make sure that register size matches sizeof(*__val). |
| */ |
| static int reg_to_user(void __user *uaddr, const void *val, u64 id) |
| { |
| if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_invariant_cp15(u64 id, void __user *uaddr) |
| { |
| struct coproc_params params; |
| const struct coproc_reg *r; |
| int ret; |
| |
| if (!index_to_params(id, ¶ms)) |
| return -ENOENT; |
| |
| r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); |
| if (!r) |
| return -ENOENT; |
| |
| ret = -ENOENT; |
| if (KVM_REG_SIZE(id) == 4) { |
| u32 val = r->val; |
| |
| ret = reg_to_user(uaddr, &val, id); |
| } else if (KVM_REG_SIZE(id) == 8) { |
| ret = reg_to_user(uaddr, &r->val, id); |
| } |
| return ret; |
| } |
| |
| static int set_invariant_cp15(u64 id, void __user *uaddr) |
| { |
| struct coproc_params params; |
| const struct coproc_reg *r; |
| int err; |
| u64 val; |
| |
| if (!index_to_params(id, ¶ms)) |
| return -ENOENT; |
| r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); |
| if (!r) |
| return -ENOENT; |
| |
| err = -ENOENT; |
| if (KVM_REG_SIZE(id) == 4) { |
| u32 val32; |
| |
| err = reg_from_user(&val32, uaddr, id); |
| if (!err) |
| val = val32; |
| } else if (KVM_REG_SIZE(id) == 8) { |
| err = reg_from_user(&val, uaddr, id); |
| } |
| if (err) |
| return err; |
| |
| /* This is what we mean by invariant: you can't change it. */ |
| if (r->val != val) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool is_valid_cache(u32 val) |
| { |
| u32 level, ctype; |
| |
| if (val >= CSSELR_MAX) |
| return false; |
| |
| /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ |
| level = (val >> 1); |
| ctype = (cache_levels >> (level * 3)) & 7; |
| |
| switch (ctype) { |
| case 0: /* No cache */ |
| return false; |
| case 1: /* Instruction cache only */ |
| return (val & 1); |
| case 2: /* Data cache only */ |
| case 4: /* Unified cache */ |
| return !(val & 1); |
| case 3: /* Separate instruction and data caches */ |
| return true; |
| default: /* Reserved: we can't know instruction or data. */ |
| return false; |
| } |
| } |
| |
| /* Which cache CCSIDR represents depends on CSSELR value. */ |
| static u32 get_ccsidr(u32 csselr) |
| { |
| u32 ccsidr; |
| |
| /* Make sure noone else changes CSSELR during this! */ |
| local_irq_disable(); |
| /* Put value into CSSELR */ |
| asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr)); |
| isb(); |
| /* Read result out of CCSIDR */ |
| asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr)); |
| local_irq_enable(); |
| |
| return ccsidr; |
| } |
| |
| static int demux_c15_get(u64 id, void __user *uaddr) |
| { |
| u32 val; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| return put_user(get_ccsidr(val), uval); |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| static int demux_c15_set(u64 id, void __user *uaddr) |
| { |
| u32 val, newval; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| if (get_user(newval, uval)) |
| return -EFAULT; |
| |
| /* This is also invariant: you can't change it. */ |
| if (newval != get_ccsidr(val)) |
| return -EINVAL; |
| return 0; |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| #ifdef CONFIG_VFPv3 |
| static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC, |
| KVM_REG_ARM_VFP_FPSCR, |
| KVM_REG_ARM_VFP_FPINST, |
| KVM_REG_ARM_VFP_FPINST2, |
| KVM_REG_ARM_VFP_MVFR0, |
| KVM_REG_ARM_VFP_MVFR1, |
| KVM_REG_ARM_VFP_FPSID }; |
| |
| static unsigned int num_fp_regs(void) |
| { |
| if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2) |
| return 32; |
| else |
| return 16; |
| } |
| |
| static unsigned int num_vfp_regs(void) |
| { |
| /* Normal FP regs + control regs. */ |
| return num_fp_regs() + ARRAY_SIZE(vfp_sysregs); |
| } |
| |
| static int copy_vfp_regids(u64 __user *uindices) |
| { |
| unsigned int i; |
| const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP; |
| const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; |
| |
| for (i = 0; i < num_fp_regs(); i++) { |
| if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i, |
| uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) { |
| if (put_user(u32reg | vfp_sysregs[i], uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| return num_vfp_regs(); |
| } |
| |
| static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| { |
| u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); |
| u32 val; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| if (vfpid < num_fp_regs()) { |
| if (KVM_REG_SIZE(id) != 8) |
| return -ENOENT; |
| return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid], |
| id); |
| } |
| |
| /* FP control registers are all 32 bit. */ |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| |
| switch (vfpid) { |
| case KVM_REG_ARM_VFP_FPEXC: |
| return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id); |
| case KVM_REG_ARM_VFP_FPSCR: |
| return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id); |
| case KVM_REG_ARM_VFP_FPINST: |
| return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id); |
| case KVM_REG_ARM_VFP_FPINST2: |
| return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id); |
| case KVM_REG_ARM_VFP_MVFR0: |
| val = fmrx(MVFR0); |
| return reg_to_user(uaddr, &val, id); |
| case KVM_REG_ARM_VFP_MVFR1: |
| val = fmrx(MVFR1); |
| return reg_to_user(uaddr, &val, id); |
| case KVM_REG_ARM_VFP_FPSID: |
| val = fmrx(FPSID); |
| return reg_to_user(uaddr, &val, id); |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) |
| { |
| u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); |
| u32 val; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| if (vfpid < num_fp_regs()) { |
| if (KVM_REG_SIZE(id) != 8) |
| return -ENOENT; |
| return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid], |
| uaddr, id); |
| } |
| |
| /* FP control registers are all 32 bit. */ |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| |
| switch (vfpid) { |
| case KVM_REG_ARM_VFP_FPEXC: |
| return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id); |
| case KVM_REG_ARM_VFP_FPSCR: |
| return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id); |
| case KVM_REG_ARM_VFP_FPINST: |
| return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id); |
| case KVM_REG_ARM_VFP_FPINST2: |
| return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id); |
| /* These are invariant. */ |
| case KVM_REG_ARM_VFP_MVFR0: |
| if (reg_from_user(&val, uaddr, id)) |
| return -EFAULT; |
| if (val != fmrx(MVFR0)) |
| return -EINVAL; |
| return 0; |
| case KVM_REG_ARM_VFP_MVFR1: |
| if (reg_from_user(&val, uaddr, id)) |
| return -EFAULT; |
| if (val != fmrx(MVFR1)) |
| return -EINVAL; |
| return 0; |
| case KVM_REG_ARM_VFP_FPSID: |
| if (reg_from_user(&val, uaddr, id)) |
| return -EFAULT; |
| if (val != fmrx(FPSID)) |
| return -EINVAL; |
| return 0; |
| default: |
| return -ENOENT; |
| } |
| } |
| #else /* !CONFIG_VFPv3 */ |
| static unsigned int num_vfp_regs(void) |
| { |
| return 0; |
| } |
| |
| static int copy_vfp_regids(u64 __user *uindices) |
| { |
| return 0; |
| } |
| |
| static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| { |
| return -ENOENT; |
| } |
| |
| static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) |
| { |
| return -ENOENT; |
| } |
| #endif /* !CONFIG_VFPv3 */ |
| |
| int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct coproc_reg *r; |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| int ret; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_get(reg->id, uaddr); |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) |
| return vfp_get_reg(vcpu, reg->id, uaddr); |
| |
| r = index_to_coproc_reg(vcpu, reg->id); |
| if (!r) |
| return get_invariant_cp15(reg->id, uaddr); |
| |
| ret = -ENOENT; |
| if (KVM_REG_SIZE(reg->id) == 8) { |
| u64 val; |
| |
| val = vcpu_cp15_reg64_get(vcpu, r); |
| ret = reg_to_user(uaddr, &val, reg->id); |
| } else if (KVM_REG_SIZE(reg->id) == 4) { |
| ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id); |
| } |
| |
| return ret; |
| } |
| |
| int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct coproc_reg *r; |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| int ret; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_set(reg->id, uaddr); |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) |
| return vfp_set_reg(vcpu, reg->id, uaddr); |
| |
| r = index_to_coproc_reg(vcpu, reg->id); |
| if (!r) |
| return set_invariant_cp15(reg->id, uaddr); |
| |
| ret = -ENOENT; |
| if (KVM_REG_SIZE(reg->id) == 8) { |
| u64 val; |
| |
| ret = reg_from_user(&val, uaddr, reg->id); |
| if (!ret) |
| vcpu_cp15_reg64_set(vcpu, r, val); |
| } else if (KVM_REG_SIZE(reg->id) == 4) { |
| ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id); |
| } |
| |
| return ret; |
| } |
| |
| static unsigned int num_demux_regs(void) |
| { |
| unsigned int i, count = 0; |
| |
| for (i = 0; i < CSSELR_MAX; i++) |
| if (is_valid_cache(i)) |
| count++; |
| |
| return count; |
| } |
| |
| static int write_demux_regids(u64 __user *uindices) |
| { |
| u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| unsigned int i; |
| |
| val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| for (i = 0; i < CSSELR_MAX; i++) { |
| if (!is_valid_cache(i)) |
| continue; |
| if (put_user(val | i, uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| return 0; |
| } |
| |
| static u64 cp15_to_index(const struct coproc_reg *reg) |
| { |
| u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT); |
| if (reg->is_64bit) { |
| val |= KVM_REG_SIZE_U64; |
| val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); |
| /* |
| * CRn always denotes the primary coproc. reg. nr. for the |
| * in-kernel representation, but the user space API uses the |
| * CRm for the encoding, because it is modelled after the |
| * MRRC/MCRR instructions: see the ARM ARM rev. c page |
| * B3-1445 |
| */ |
| val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT); |
| } else { |
| val |= KVM_REG_SIZE_U32; |
| val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); |
| val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT); |
| val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT); |
| val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT); |
| } |
| return val; |
| } |
| |
| static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind) |
| { |
| if (!*uind) |
| return true; |
| |
| if (put_user(cp15_to_index(reg), *uind)) |
| return false; |
| |
| (*uind)++; |
| return true; |
| } |
| |
| /* Assumed ordered tables, see kvm_coproc_table_init. */ |
| static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind) |
| { |
| const struct coproc_reg *i1, *i2, *end1, *end2; |
| unsigned int total = 0; |
| size_t num; |
| |
| /* We check for duplicates here, to allow arch-specific overrides. */ |
| i1 = get_target_table(vcpu->arch.target, &num); |
| end1 = i1 + num; |
| i2 = cp15_regs; |
| end2 = cp15_regs + ARRAY_SIZE(cp15_regs); |
| |
| BUG_ON(i1 == end1 || i2 == end2); |
| |
| /* Walk carefully, as both tables may refer to the same register. */ |
| while (i1 || i2) { |
| int cmp = cmp_reg(i1, i2); |
| /* target-specific overrides generic entry. */ |
| if (cmp <= 0) { |
| /* Ignore registers we trap but don't save. */ |
| if (i1->reg) { |
| if (!copy_reg_to_user(i1, &uind)) |
| return -EFAULT; |
| total++; |
| } |
| } else { |
| /* Ignore registers we trap but don't save. */ |
| if (i2->reg) { |
| if (!copy_reg_to_user(i2, &uind)) |
| return -EFAULT; |
| total++; |
| } |
| } |
| |
| if (cmp <= 0 && ++i1 == end1) |
| i1 = NULL; |
| if (cmp >= 0 && ++i2 == end2) |
| i2 = NULL; |
| } |
| return total; |
| } |
| |
| unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu) |
| { |
| return ARRAY_SIZE(invariant_cp15) |
| + num_demux_regs() |
| + num_vfp_regs() |
| + walk_cp15(vcpu, (u64 __user *)NULL); |
| } |
| |
| int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| unsigned int i; |
| int err; |
| |
| /* Then give them all the invariant registers' indices. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) { |
| if (put_user(cp15_to_index(&invariant_cp15[i]), uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| err = walk_cp15(vcpu, uindices); |
| if (err < 0) |
| return err; |
| uindices += err; |
| |
| err = copy_vfp_regids(uindices); |
| if (err < 0) |
| return err; |
| uindices += err; |
| |
| return write_demux_regids(uindices); |
| } |
| |
| void kvm_coproc_table_init(void) |
| { |
| unsigned int i; |
| |
| /* Make sure tables are unique and in order. */ |
| BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); |
| BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15))); |
| |
| /* We abuse the reset function to overwrite the table itself. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) |
| invariant_cp15[i].reset(NULL, &invariant_cp15[i]); |
| |
| /* |
| * CLIDR format is awkward, so clean it up. See ARM B4.1.20: |
| * |
| * If software reads the Cache Type fields from Ctype1 |
| * upwards, once it has seen a value of 0b000, no caches |
| * exist at further-out levels of the hierarchy. So, for |
| * example, if Ctype3 is the first Cache Type field with a |
| * value of 0b000, the values of Ctype4 to Ctype7 must be |
| * ignored. |
| */ |
| asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels)); |
| for (i = 0; i < 7; i++) |
| if (((cache_levels >> (i*3)) & 7) == 0) |
| break; |
| /* Clear all higher bits. */ |
| cache_levels &= (1 << (i*3))-1; |
| } |
| |
| /** |
| * kvm_reset_coprocs - sets cp15 registers to reset value |
| * @vcpu: The VCPU pointer |
| * |
| * This function finds the right table above and sets the registers on the |
| * virtual CPU struct to their architecturally defined reset values. |
| */ |
| void kvm_reset_coprocs(struct kvm_vcpu *vcpu) |
| { |
| size_t num; |
| const struct coproc_reg *table; |
| |
| /* Catch someone adding a register without putting in reset entry. */ |
| memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15)); |
| |
| /* Generic chip reset first (so target could override). */ |
| reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| |
| table = get_target_table(vcpu->arch.target, &num); |
| reset_coproc_regs(vcpu, table, num); |
| |
| for (num = 1; num < NR_CP15_REGS; num++) |
| WARN(vcpu_cp15(vcpu, num) == 0x42424242, |
| "Didn't reset vcpu_cp15(vcpu, %zi)", num); |
| } |