blob: 3f58c7dbd581e1f018c7e941fc2ea1b649436c07 [file] [log] [blame]
/*
* This file implements the DMA operations for NVLink devices. The NPU
* devices all point to the same iommu table as the parent PCI device.
*
* Copyright Alistair Popple, IBM Corporation 2015.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#include <linux/mmu_notifier.h>
#include <linux/mmu_context.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/memblock.h>
#include <linux/sizes.h>
#include <asm/debugfs.h>
#include <asm/powernv.h>
#include <asm/opal.h>
#include "pci.h"
/*
* spinlock to protect initialisation of an npu_context for a particular
* mm_struct.
*/
static DEFINE_SPINLOCK(npu_context_lock);
/*
* Other types of TCE cache invalidation are not functional in the
* hardware.
*/
static struct pci_dev *get_pci_dev(struct device_node *dn)
{
struct pci_dn *pdn = PCI_DN(dn);
return pci_get_domain_bus_and_slot(pci_domain_nr(pdn->phb->bus),
pdn->busno, pdn->devfn);
}
/* Given a NPU device get the associated PCI device. */
struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev)
{
struct device_node *dn;
struct pci_dev *gpdev;
if (WARN_ON(!npdev))
return NULL;
if (WARN_ON(!npdev->dev.of_node))
return NULL;
/* Get assoicated PCI device */
dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0);
if (!dn)
return NULL;
gpdev = get_pci_dev(dn);
of_node_put(dn);
return gpdev;
}
EXPORT_SYMBOL(pnv_pci_get_gpu_dev);
/* Given the real PCI device get a linked NPU device. */
struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index)
{
struct device_node *dn;
struct pci_dev *npdev;
if (WARN_ON(!gpdev))
return NULL;
/* Not all PCI devices have device-tree nodes */
if (!gpdev->dev.of_node)
return NULL;
/* Get assoicated PCI device */
dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index);
if (!dn)
return NULL;
npdev = get_pci_dev(dn);
of_node_put(dn);
return npdev;
}
EXPORT_SYMBOL(pnv_pci_get_npu_dev);
/*
* Returns the PE assoicated with the PCI device of the given
* NPU. Returns the linked pci device if pci_dev != NULL.
*/
static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe,
struct pci_dev **gpdev)
{
struct pnv_phb *phb;
struct pci_controller *hose;
struct pci_dev *pdev;
struct pnv_ioda_pe *pe;
struct pci_dn *pdn;
pdev = pnv_pci_get_gpu_dev(npe->pdev);
if (!pdev)
return NULL;
pdn = pci_get_pdn(pdev);
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return NULL;
hose = pci_bus_to_host(pdev->bus);
phb = hose->private_data;
pe = &phb->ioda.pe_array[pdn->pe_number];
if (gpdev)
*gpdev = pdev;
return pe;
}
static long pnv_npu_unset_window(struct iommu_table_group *table_group,
int num);
static long pnv_npu_set_window(struct iommu_table_group *table_group, int num,
struct iommu_table *tbl)
{
struct pnv_ioda_pe *npe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pnv_phb *phb = npe->phb;
int64_t rc;
const unsigned long size = tbl->it_indirect_levels ?
tbl->it_level_size : tbl->it_size;
const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
const __u64 win_size = tbl->it_size << tbl->it_page_shift;
int num2 = (num == 0) ? 1 : 0;
/* NPU has just one TVE so if there is another table, remove it first */
if (npe->table_group.tables[num2])
pnv_npu_unset_window(&npe->table_group, num2);
pe_info(npe, "Setting up window %llx..%llx pg=%lx\n",
start_addr, start_addr + win_size - 1,
IOMMU_PAGE_SIZE(tbl));
rc = opal_pci_map_pe_dma_window(phb->opal_id,
npe->pe_number,
npe->pe_number,
tbl->it_indirect_levels + 1,
__pa(tbl->it_base),
size << 3,
IOMMU_PAGE_SIZE(tbl));
if (rc) {
pe_err(npe, "Failed to configure TCE table, err %lld\n", rc);
return rc;
}
pnv_pci_ioda2_tce_invalidate_entire(phb, false);
/* Add the table to the list so its TCE cache will get invalidated */
pnv_pci_link_table_and_group(phb->hose->node, num,
tbl, &npe->table_group);
return 0;
}
static long pnv_npu_unset_window(struct iommu_table_group *table_group, int num)
{
struct pnv_ioda_pe *npe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pnv_phb *phb = npe->phb;
int64_t rc;
if (!npe->table_group.tables[num])
return 0;
pe_info(npe, "Removing DMA window\n");
rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number,
npe->pe_number,
0/* levels */, 0/* table address */,
0/* table size */, 0/* page size */);
if (rc) {
pe_err(npe, "Unmapping failed, ret = %lld\n", rc);
return rc;
}
pnv_pci_ioda2_tce_invalidate_entire(phb, false);
pnv_pci_unlink_table_and_group(npe->table_group.tables[num],
&npe->table_group);
return 0;
}
/*
* Enables 32 bit DMA on NPU.
*/
static void pnv_npu_dma_set_32(struct pnv_ioda_pe *npe)
{
struct pci_dev *gpdev;
struct pnv_ioda_pe *gpe;
int64_t rc;
/*
* Find the assoicated PCI devices and get the dma window
* information from there.
*/
if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV))
return;
gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
if (!gpe)
return;
rc = pnv_npu_set_window(&npe->table_group, 0,
gpe->table_group.tables[0]);
/*
* NVLink devices use the same TCE table configuration as
* their parent device so drivers shouldn't be doing DMA
* operations directly on these devices.
*/
set_dma_ops(&npe->pdev->dev, NULL);
}
/*
* Enables bypass mode on the NPU. The NPU only supports one
* window per link, so bypass needs to be explicitly enabled or
* disabled. Unlike for a PHB3 bypass and non-bypass modes can't be
* active at the same time.
*/
static int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe)
{
struct pnv_phb *phb = npe->phb;
int64_t rc = 0;
phys_addr_t top = memblock_end_of_DRAM();
if (phb->type != PNV_PHB_NPU_NVLINK || !npe->pdev)
return -EINVAL;
rc = pnv_npu_unset_window(&npe->table_group, 0);
if (rc != OPAL_SUCCESS)
return rc;
/* Enable the bypass window */
top = roundup_pow_of_two(top);
dev_info(&npe->pdev->dev, "Enabling bypass for PE %x\n",
npe->pe_number);
rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
npe->pe_number, npe->pe_number,
0 /* bypass base */, top);
if (rc == OPAL_SUCCESS)
pnv_pci_ioda2_tce_invalidate_entire(phb, false);
return rc;
}
void pnv_npu_try_dma_set_bypass(struct pci_dev *gpdev, bool bypass)
{
int i;
struct pnv_phb *phb;
struct pci_dn *pdn;
struct pnv_ioda_pe *npe;
struct pci_dev *npdev;
for (i = 0; ; ++i) {
npdev = pnv_pci_get_npu_dev(gpdev, i);
if (!npdev)
break;
pdn = pci_get_pdn(npdev);
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return;
phb = pci_bus_to_host(npdev->bus)->private_data;
/* We only do bypass if it's enabled on the linked device */
npe = &phb->ioda.pe_array[pdn->pe_number];
if (bypass) {
dev_info(&npdev->dev,
"Using 64-bit DMA iommu bypass\n");
pnv_npu_dma_set_bypass(npe);
} else {
dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n");
pnv_npu_dma_set_32(npe);
}
}
}
#ifdef CONFIG_IOMMU_API
/* Switch ownership from platform code to external user (e.g. VFIO) */
static void pnv_npu_take_ownership(struct iommu_table_group *table_group)
{
struct pnv_ioda_pe *npe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pnv_phb *phb = npe->phb;
int64_t rc;
struct pci_dev *gpdev = NULL;
/*
* Note: NPU has just a single TVE in the hardware which means that
* while used by the kernel, it can have either 32bit window or
* DMA bypass but never both. So we deconfigure 32bit window only
* if it was enabled at the moment of ownership change.
*/
if (npe->table_group.tables[0]) {
pnv_npu_unset_window(&npe->table_group, 0);
return;
}
/* Disable bypass */
rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
npe->pe_number, npe->pe_number,
0 /* bypass base */, 0);
if (rc) {
pe_err(npe, "Failed to disable bypass, err %lld\n", rc);
return;
}
pnv_pci_ioda2_tce_invalidate_entire(npe->phb, false);
get_gpu_pci_dev_and_pe(npe, &gpdev);
if (gpdev)
pnv_npu2_unmap_lpar_dev(gpdev);
}
static void pnv_npu_release_ownership(struct iommu_table_group *table_group)
{
struct pnv_ioda_pe *npe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pci_dev *gpdev = NULL;
get_gpu_pci_dev_and_pe(npe, &gpdev);
if (gpdev)
pnv_npu2_map_lpar_dev(gpdev, 0, MSR_DR | MSR_PR | MSR_HV);
}
static struct iommu_table_group_ops pnv_pci_npu_ops = {
.set_window = pnv_npu_set_window,
.unset_window = pnv_npu_unset_window,
.take_ownership = pnv_npu_take_ownership,
.release_ownership = pnv_npu_release_ownership,
};
#endif /* !CONFIG_IOMMU_API */
/*
* NPU2 ATS
*/
/* Maximum possible number of ATSD MMIO registers per NPU */
#define NV_NMMU_ATSD_REGS 8
#define NV_NPU_MAX_PE_NUM 16
/*
* A compound NPU IOMMU group which might consist of 1 GPU + 2xNPUs (POWER8) or
* up to 3 x (GPU + 2xNPUs) (POWER9).
*/
struct npu_comp {
struct iommu_table_group table_group;
int pe_num;
struct pnv_ioda_pe *pe[NV_NPU_MAX_PE_NUM];
};
/* An NPU descriptor, valid for POWER9 only */
struct npu {
int index;
__be64 *mmio_atsd_regs[NV_NMMU_ATSD_REGS];
unsigned int mmio_atsd_count;
/* Bitmask for MMIO register usage */
unsigned long mmio_atsd_usage;
/* Do we need to explicitly flush the nest mmu? */
bool nmmu_flush;
struct npu_comp npucomp;
};
#ifdef CONFIG_IOMMU_API
static long pnv_npu_peers_create_table_userspace(
struct iommu_table_group *table_group,
int num, __u32 page_shift, __u64 window_size, __u32 levels,
struct iommu_table **ptbl)
{
struct npu_comp *npucomp = container_of(table_group, struct npu_comp,
table_group);
if (!npucomp->pe_num || !npucomp->pe[0] ||
!npucomp->pe[0]->table_group.ops ||
!npucomp->pe[0]->table_group.ops->create_table)
return -EFAULT;
return npucomp->pe[0]->table_group.ops->create_table(
&npucomp->pe[0]->table_group, num, page_shift,
window_size, levels, ptbl);
}
static long pnv_npu_peers_set_window(struct iommu_table_group *table_group,
int num, struct iommu_table *tbl)
{
int i, j;
long ret = 0;
struct npu_comp *npucomp = container_of(table_group, struct npu_comp,
table_group);
for (i = 0; i < npucomp->pe_num; ++i) {
struct pnv_ioda_pe *pe = npucomp->pe[i];
if (!pe->table_group.ops->set_window)
continue;
ret = pe->table_group.ops->set_window(&pe->table_group,
num, tbl);
if (ret)
break;
}
if (ret) {
for (j = 0; j < i; ++j) {
struct pnv_ioda_pe *pe = npucomp->pe[j];
if (!pe->table_group.ops->unset_window)
continue;
ret = pe->table_group.ops->unset_window(
&pe->table_group, num);
if (ret)
break;
}
} else {
table_group->tables[num] = iommu_tce_table_get(tbl);
}
return ret;
}
static long pnv_npu_peers_unset_window(struct iommu_table_group *table_group,
int num)
{
int i, j;
long ret = 0;
struct npu_comp *npucomp = container_of(table_group, struct npu_comp,
table_group);
for (i = 0; i < npucomp->pe_num; ++i) {
struct pnv_ioda_pe *pe = npucomp->pe[i];
WARN_ON(npucomp->table_group.tables[num] !=
table_group->tables[num]);
if (!npucomp->table_group.tables[num])
continue;
if (!pe->table_group.ops->unset_window)
continue;
ret = pe->table_group.ops->unset_window(&pe->table_group, num);
if (ret)
break;
}
if (ret) {
for (j = 0; j < i; ++j) {
struct pnv_ioda_pe *pe = npucomp->pe[j];
if (!npucomp->table_group.tables[num])
continue;
if (!pe->table_group.ops->set_window)
continue;
ret = pe->table_group.ops->set_window(&pe->table_group,
num, table_group->tables[num]);
if (ret)
break;
}
} else if (table_group->tables[num]) {
iommu_tce_table_put(table_group->tables[num]);
table_group->tables[num] = NULL;
}
return ret;
}
static void pnv_npu_peers_take_ownership(struct iommu_table_group *table_group)
{
int i;
struct npu_comp *npucomp = container_of(table_group, struct npu_comp,
table_group);
for (i = 0; i < npucomp->pe_num; ++i) {
struct pnv_ioda_pe *pe = npucomp->pe[i];
if (!pe->table_group.ops->take_ownership)
continue;
pe->table_group.ops->take_ownership(&pe->table_group);
}
}
static void pnv_npu_peers_release_ownership(
struct iommu_table_group *table_group)
{
int i;
struct npu_comp *npucomp = container_of(table_group, struct npu_comp,
table_group);
for (i = 0; i < npucomp->pe_num; ++i) {
struct pnv_ioda_pe *pe = npucomp->pe[i];
if (!pe->table_group.ops->release_ownership)
continue;
pe->table_group.ops->release_ownership(&pe->table_group);
}
}
static struct iommu_table_group_ops pnv_npu_peers_ops = {
.get_table_size = pnv_pci_ioda2_get_table_size,
.create_table = pnv_npu_peers_create_table_userspace,
.set_window = pnv_npu_peers_set_window,
.unset_window = pnv_npu_peers_unset_window,
.take_ownership = pnv_npu_peers_take_ownership,
.release_ownership = pnv_npu_peers_release_ownership,
};
static void pnv_comp_attach_table_group(struct npu_comp *npucomp,
struct pnv_ioda_pe *pe)
{
if (WARN_ON(npucomp->pe_num == NV_NPU_MAX_PE_NUM))
return;
npucomp->pe[npucomp->pe_num] = pe;
++npucomp->pe_num;
}
struct iommu_table_group *pnv_try_setup_npu_table_group(struct pnv_ioda_pe *pe)
{
struct iommu_table_group *table_group;
struct npu_comp *npucomp;
struct pci_dev *gpdev = NULL;
struct pci_controller *hose;
struct pci_dev *npdev = NULL;
list_for_each_entry(gpdev, &pe->pbus->devices, bus_list) {
npdev = pnv_pci_get_npu_dev(gpdev, 0);
if (npdev)
break;
}
if (!npdev)
/* It is not an NPU attached device, skip */
return NULL;
hose = pci_bus_to_host(npdev->bus);
if (hose->npu) {
table_group = &hose->npu->npucomp.table_group;
if (!table_group->group) {
table_group->ops = &pnv_npu_peers_ops;
iommu_register_group(table_group,
hose->global_number,
pe->pe_number);
}
} else {
/* Create a group for 1 GPU and attached NPUs for POWER8 */
pe->npucomp = kzalloc(sizeof(*pe->npucomp), GFP_KERNEL);
table_group = &pe->npucomp->table_group;
table_group->ops = &pnv_npu_peers_ops;
iommu_register_group(table_group, hose->global_number,
pe->pe_number);
}
/* Steal capabilities from a GPU PE */
table_group->max_dynamic_windows_supported =
pe->table_group.max_dynamic_windows_supported;
table_group->tce32_start = pe->table_group.tce32_start;
table_group->tce32_size = pe->table_group.tce32_size;
table_group->max_levels = pe->table_group.max_levels;
if (!table_group->pgsizes)
table_group->pgsizes = pe->table_group.pgsizes;
npucomp = container_of(table_group, struct npu_comp, table_group);
pnv_comp_attach_table_group(npucomp, pe);
return table_group;
}
struct iommu_table_group *pnv_npu_compound_attach(struct pnv_ioda_pe *pe)
{
struct iommu_table_group *table_group;
struct npu_comp *npucomp;
struct pci_dev *gpdev = NULL;
struct pci_dev *npdev;
struct pnv_ioda_pe *gpe = get_gpu_pci_dev_and_pe(pe, &gpdev);
WARN_ON(!(pe->flags & PNV_IODA_PE_DEV));
if (!gpe)
return NULL;
/*
* IODA2 bridges get this set up from pci_controller_ops::setup_bridge
* but NPU bridges do not have this hook defined so we do it here.
* We do not setup other table group parameters as they won't be used
* anyway - NVLink bridges are subordinate PEs.
*/
pe->table_group.ops = &pnv_pci_npu_ops;
table_group = iommu_group_get_iommudata(
iommu_group_get(&gpdev->dev));
/*
* On P9 NPU PHB and PCI PHB support different page sizes,
* keep only matching. We expect here that NVLink bridge PE pgsizes is
* initialized by the caller.
*/
table_group->pgsizes &= pe->table_group.pgsizes;
npucomp = container_of(table_group, struct npu_comp, table_group);
pnv_comp_attach_table_group(npucomp, pe);
list_for_each_entry(npdev, &pe->phb->hose->bus->devices, bus_list) {
struct pci_dev *gpdevtmp = pnv_pci_get_gpu_dev(npdev);
if (gpdevtmp != gpdev)
continue;
iommu_add_device(table_group, &npdev->dev);
}
return table_group;
}
#endif /* CONFIG_IOMMU_API */
/* Maximum number of nvlinks per npu */
#define NV_MAX_LINKS 6
/* Maximum index of npu2 hosts in the system. Always < NV_MAX_NPUS */
static int max_npu2_index;
struct npu_context {
struct mm_struct *mm;
struct pci_dev *npdev[NV_MAX_NPUS][NV_MAX_LINKS];
struct mmu_notifier mn;
struct kref kref;
bool nmmu_flush;
/* Callback to stop translation requests on a given GPU */
void (*release_cb)(struct npu_context *context, void *priv);
/*
* Private pointer passed to the above callback for usage by
* device drivers.
*/
void *priv;
};
struct mmio_atsd_reg {
struct npu *npu;
int reg;
};
/*
* Find a free MMIO ATSD register and mark it in use. Return -ENOSPC
* if none are available.
*/
static int get_mmio_atsd_reg(struct npu *npu)
{
int i;
for (i = 0; i < npu->mmio_atsd_count; i++) {
if (!test_bit(i, &npu->mmio_atsd_usage))
if (!test_and_set_bit_lock(i, &npu->mmio_atsd_usage))
return i;
}
return -ENOSPC;
}
static void put_mmio_atsd_reg(struct npu *npu, int reg)
{
clear_bit_unlock(reg, &npu->mmio_atsd_usage);
}
/* MMIO ATSD register offsets */
#define XTS_ATSD_LAUNCH 0
#define XTS_ATSD_AVA 1
#define XTS_ATSD_STAT 2
static unsigned long get_atsd_launch_val(unsigned long pid, unsigned long psize)
{
unsigned long launch = 0;
if (psize == MMU_PAGE_COUNT) {
/* IS set to invalidate entire matching PID */
launch |= PPC_BIT(12);
} else {
/* AP set to invalidate region of psize */
launch |= (u64)mmu_get_ap(psize) << PPC_BITLSHIFT(17);
}
/* PRS set to process-scoped */
launch |= PPC_BIT(13);
/* PID */
launch |= pid << PPC_BITLSHIFT(38);
/* Leave "No flush" (bit 39) 0 so every ATSD performs a flush */
return launch;
}
static void mmio_atsd_regs_write(struct mmio_atsd_reg
mmio_atsd_reg[NV_MAX_NPUS], unsigned long offset,
unsigned long val)
{
struct npu *npu;
int i, reg;
for (i = 0; i <= max_npu2_index; i++) {
reg = mmio_atsd_reg[i].reg;
if (reg < 0)
continue;
npu = mmio_atsd_reg[i].npu;
__raw_writeq_be(val, npu->mmio_atsd_regs[reg] + offset);
}
}
static void mmio_invalidate_pid(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS],
unsigned long pid)
{
unsigned long launch = get_atsd_launch_val(pid, MMU_PAGE_COUNT);
/* Invalidating the entire process doesn't use a va */
mmio_atsd_regs_write(mmio_atsd_reg, XTS_ATSD_LAUNCH, launch);
}
static void mmio_invalidate_range(struct mmio_atsd_reg
mmio_atsd_reg[NV_MAX_NPUS], unsigned long pid,
unsigned long start, unsigned long psize)
{
unsigned long launch = get_atsd_launch_val(pid, psize);
/* Write all VAs first */
mmio_atsd_regs_write(mmio_atsd_reg, XTS_ATSD_AVA, start);
/* Issue one barrier for all address writes */
eieio();
/* Launch */
mmio_atsd_regs_write(mmio_atsd_reg, XTS_ATSD_LAUNCH, launch);
}
#define mn_to_npu_context(x) container_of(x, struct npu_context, mn)
static void mmio_invalidate_wait(
struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS])
{
struct npu *npu;
int i, reg;
/* Wait for all invalidations to complete */
for (i = 0; i <= max_npu2_index; i++) {
if (mmio_atsd_reg[i].reg < 0)
continue;
/* Wait for completion */
npu = mmio_atsd_reg[i].npu;
reg = mmio_atsd_reg[i].reg;
while (__raw_readq(npu->mmio_atsd_regs[reg] + XTS_ATSD_STAT))
cpu_relax();
}
}
/*
* Acquires all the address translation shootdown (ATSD) registers required to
* launch an ATSD on all links this npu_context is active on.
*/
static void acquire_atsd_reg(struct npu_context *npu_context,
struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS])
{
int i, j;
struct npu *npu;
struct pci_dev *npdev;
for (i = 0; i <= max_npu2_index; i++) {
mmio_atsd_reg[i].reg = -1;
for (j = 0; j < NV_MAX_LINKS; j++) {
/*
* There are no ordering requirements with respect to
* the setup of struct npu_context, but to ensure
* consistent behaviour we need to ensure npdev[][] is
* only read once.
*/
npdev = READ_ONCE(npu_context->npdev[i][j]);
if (!npdev)
continue;
npu = pci_bus_to_host(npdev->bus)->npu;
if (!npu)
continue;
mmio_atsd_reg[i].npu = npu;
mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu);
while (mmio_atsd_reg[i].reg < 0) {
mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu);
cpu_relax();
}
break;
}
}
}
/*
* Release previously acquired ATSD registers. To avoid deadlocks the registers
* must be released in the same order they were acquired above in
* acquire_atsd_reg.
*/
static void release_atsd_reg(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS])
{
int i;
for (i = 0; i <= max_npu2_index; i++) {
/*
* We can't rely on npu_context->npdev[][] being the same here
* as when acquire_atsd_reg() was called, hence we use the
* values stored in mmio_atsd_reg during the acquire phase
* rather than re-reading npdev[][].
*/
if (mmio_atsd_reg[i].reg < 0)
continue;
put_mmio_atsd_reg(mmio_atsd_reg[i].npu, mmio_atsd_reg[i].reg);
}
}
/*
* Invalidate a virtual address range
*/
static void mmio_invalidate(struct npu_context *npu_context,
unsigned long start, unsigned long size)
{
struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS];
unsigned long pid = npu_context->mm->context.id;
unsigned long atsd_start = 0;
unsigned long end = start + size - 1;
int atsd_psize = MMU_PAGE_COUNT;
/*
* Convert the input range into one of the supported sizes. If the range
* doesn't fit, use the next larger supported size. Invalidation latency
* is high, so over-invalidation is preferred to issuing multiple
* invalidates.
*
* A 4K page size isn't supported by NPU/GPU ATS, so that case is
* ignored.
*/
if (size == SZ_64K) {
atsd_start = start;
atsd_psize = MMU_PAGE_64K;
} else if (ALIGN_DOWN(start, SZ_2M) == ALIGN_DOWN(end, SZ_2M)) {
atsd_start = ALIGN_DOWN(start, SZ_2M);
atsd_psize = MMU_PAGE_2M;
} else if (ALIGN_DOWN(start, SZ_1G) == ALIGN_DOWN(end, SZ_1G)) {
atsd_start = ALIGN_DOWN(start, SZ_1G);
atsd_psize = MMU_PAGE_1G;
}
if (npu_context->nmmu_flush)
/*
* Unfortunately the nest mmu does not support flushing specific
* addresses so we have to flush the whole mm once before
* shooting down the GPU translation.
*/
flush_all_mm(npu_context->mm);
/*
* Loop over all the NPUs this process is active on and launch
* an invalidate.
*/
acquire_atsd_reg(npu_context, mmio_atsd_reg);
if (atsd_psize == MMU_PAGE_COUNT)
mmio_invalidate_pid(mmio_atsd_reg, pid);
else
mmio_invalidate_range(mmio_atsd_reg, pid, atsd_start,
atsd_psize);
mmio_invalidate_wait(mmio_atsd_reg);
/*
* The GPU requires two flush ATSDs to ensure all entries have been
* flushed. We use PID 0 as it will never be used for a process on the
* GPU.
*/
mmio_invalidate_pid(mmio_atsd_reg, 0);
mmio_invalidate_wait(mmio_atsd_reg);
mmio_invalidate_pid(mmio_atsd_reg, 0);
mmio_invalidate_wait(mmio_atsd_reg);
release_atsd_reg(mmio_atsd_reg);
}
static void pnv_npu2_mn_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct npu_context *npu_context = mn_to_npu_context(mn);
/* Call into device driver to stop requests to the NMMU */
if (npu_context->release_cb)
npu_context->release_cb(npu_context, npu_context->priv);
/*
* There should be no more translation requests for this PID, but we
* need to ensure any entries for it are removed from the TLB.
*/
mmio_invalidate(npu_context, 0, ~0UL);
}
static void pnv_npu2_mn_change_pte(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address,
pte_t pte)
{
struct npu_context *npu_context = mn_to_npu_context(mn);
mmio_invalidate(npu_context, address, PAGE_SIZE);
}
static void pnv_npu2_mn_invalidate_range(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start, unsigned long end)
{
struct npu_context *npu_context = mn_to_npu_context(mn);
mmio_invalidate(npu_context, start, end - start);
}
static const struct mmu_notifier_ops nv_nmmu_notifier_ops = {
.release = pnv_npu2_mn_release,
.change_pte = pnv_npu2_mn_change_pte,
.invalidate_range = pnv_npu2_mn_invalidate_range,
};
/*
* Call into OPAL to setup the nmmu context for the current task in
* the NPU. This must be called to setup the context tables before the
* GPU issues ATRs. pdev should be a pointed to PCIe GPU device.
*
* A release callback should be registered to allow a device driver to
* be notified that it should not launch any new translation requests
* as the final TLB invalidate is about to occur.
*
* Returns an error if there no contexts are currently available or a
* npu_context which should be passed to pnv_npu2_handle_fault().
*
* mmap_sem must be held in write mode and must not be called from interrupt
* context.
*/
struct npu_context *pnv_npu2_init_context(struct pci_dev *gpdev,
unsigned long flags,
void (*cb)(struct npu_context *, void *),
void *priv)
{
int rc;
u32 nvlink_index;
struct device_node *nvlink_dn;
struct mm_struct *mm = current->mm;
struct npu *npu;
struct npu_context *npu_context;
struct pci_controller *hose;
/*
* At present we don't support GPUs connected to multiple NPUs and I'm
* not sure the hardware does either.
*/
struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
if (!npdev)
/* No nvlink associated with this GPU device */
return ERR_PTR(-ENODEV);
/* We only support DR/PR/HV in pnv_npu2_map_lpar_dev() */
if (flags & ~(MSR_DR | MSR_PR | MSR_HV))
return ERR_PTR(-EINVAL);
nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0);
if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index",
&nvlink_index)))
return ERR_PTR(-ENODEV);
if (!mm || mm->context.id == 0) {
/*
* Kernel thread contexts are not supported and context id 0 is
* reserved on the GPU.
*/
return ERR_PTR(-EINVAL);
}
hose = pci_bus_to_host(npdev->bus);
npu = hose->npu;
if (!npu)
return ERR_PTR(-ENODEV);
/*
* We store the npu pci device so we can more easily get at the
* associated npus.
*/
spin_lock(&npu_context_lock);
npu_context = mm->context.npu_context;
if (npu_context) {
if (npu_context->release_cb != cb ||
npu_context->priv != priv) {
spin_unlock(&npu_context_lock);
return ERR_PTR(-EINVAL);
}
WARN_ON(!kref_get_unless_zero(&npu_context->kref));
}
spin_unlock(&npu_context_lock);
if (!npu_context) {
/*
* We can set up these fields without holding the
* npu_context_lock as the npu_context hasn't been returned to
* the caller meaning it can't be destroyed. Parallel allocation
* is protected against by mmap_sem.
*/
rc = -ENOMEM;
npu_context = kzalloc(sizeof(struct npu_context), GFP_KERNEL);
if (npu_context) {
kref_init(&npu_context->kref);
npu_context->mm = mm;
npu_context->mn.ops = &nv_nmmu_notifier_ops;
rc = __mmu_notifier_register(&npu_context->mn, mm);
}
if (rc) {
kfree(npu_context);
return ERR_PTR(rc);
}
mm->context.npu_context = npu_context;
}
npu_context->release_cb = cb;
npu_context->priv = priv;
/*
* npdev is a pci_dev pointer setup by the PCI code. We assign it to
* npdev[][] to indicate to the mmu notifiers that an invalidation
* should also be sent over this nvlink. The notifiers don't use any
* other fields in npu_context, so we just need to ensure that when they
* deference npu_context->npdev[][] it is either a valid pointer or
* NULL.
*/
WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], npdev);
if (!npu->nmmu_flush) {
/*
* If we're not explicitly flushing ourselves we need to mark
* the thread for global flushes
*/
npu_context->nmmu_flush = false;
mm_context_add_copro(mm);
} else
npu_context->nmmu_flush = true;
return npu_context;
}
EXPORT_SYMBOL(pnv_npu2_init_context);
static void pnv_npu2_release_context(struct kref *kref)
{
struct npu_context *npu_context =
container_of(kref, struct npu_context, kref);
if (!npu_context->nmmu_flush)
mm_context_remove_copro(npu_context->mm);
npu_context->mm->context.npu_context = NULL;
}
/*
* Destroy a context on the given GPU. May free the npu_context if it is no
* longer active on any GPUs. Must not be called from interrupt context.
*/
void pnv_npu2_destroy_context(struct npu_context *npu_context,
struct pci_dev *gpdev)
{
int removed;
struct npu *npu;
struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
struct device_node *nvlink_dn;
u32 nvlink_index;
struct pci_controller *hose;
if (WARN_ON(!npdev))
return;
hose = pci_bus_to_host(npdev->bus);
npu = hose->npu;
if (!npu)
return;
nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0);
if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index",
&nvlink_index)))
return;
WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], NULL);
spin_lock(&npu_context_lock);
removed = kref_put(&npu_context->kref, pnv_npu2_release_context);
spin_unlock(&npu_context_lock);
/*
* We need to do this outside of pnv_npu2_release_context so that it is
* outside the spinlock as mmu_notifier_destroy uses SRCU.
*/
if (removed) {
mmu_notifier_unregister(&npu_context->mn,
npu_context->mm);
kfree(npu_context);
}
}
EXPORT_SYMBOL(pnv_npu2_destroy_context);
/*
* Assumes mmap_sem is held for the contexts associated mm.
*/
int pnv_npu2_handle_fault(struct npu_context *context, uintptr_t *ea,
unsigned long *flags, unsigned long *status, int count)
{
u64 rc = 0, result = 0;
int i, is_write;
struct page *page[1];
const char __user *u;
char c;
/* mmap_sem should be held so the struct_mm must be present */
struct mm_struct *mm = context->mm;
WARN_ON(!rwsem_is_locked(&mm->mmap_sem));
for (i = 0; i < count; i++) {
is_write = flags[i] & NPU2_WRITE;
rc = get_user_pages_remote(NULL, mm, ea[i], 1,
is_write ? FOLL_WRITE : 0,
page, NULL, NULL);
if (rc != 1) {
status[i] = rc;
result = -EFAULT;
continue;
}
/* Make sure partition scoped tree gets a pte */
u = page_address(page[0]);
if (__get_user(c, u))
result = -EFAULT;
status[i] = 0;
put_page(page[0]);
}
return result;
}
EXPORT_SYMBOL(pnv_npu2_handle_fault);
int pnv_npu2_init(struct pci_controller *hose)
{
unsigned int i;
u64 mmio_atsd;
static int npu_index;
struct npu *npu;
int ret;
npu = kzalloc(sizeof(*npu), GFP_KERNEL);
if (!npu)
return -ENOMEM;
npu->nmmu_flush = of_property_read_bool(hose->dn, "ibm,nmmu-flush");
for (i = 0; i < ARRAY_SIZE(npu->mmio_atsd_regs) &&
!of_property_read_u64_index(hose->dn, "ibm,mmio-atsd",
i, &mmio_atsd); i++)
npu->mmio_atsd_regs[i] = ioremap(mmio_atsd, 32);
pr_info("NPU%d: Found %d MMIO ATSD registers", hose->global_number, i);
npu->mmio_atsd_count = i;
npu->mmio_atsd_usage = 0;
npu_index++;
if (WARN_ON(npu_index >= NV_MAX_NPUS)) {
ret = -ENOSPC;
goto fail_exit;
}
max_npu2_index = npu_index;
npu->index = npu_index;
hose->npu = npu;
return 0;
fail_exit:
for (i = 0; i < npu->mmio_atsd_count; ++i)
iounmap(npu->mmio_atsd_regs[i]);
kfree(npu);
return ret;
}
int pnv_npu2_map_lpar_dev(struct pci_dev *gpdev, unsigned int lparid,
unsigned long msr)
{
int ret;
struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
struct pci_controller *hose;
struct pnv_phb *nphb;
if (!npdev)
return -ENODEV;
hose = pci_bus_to_host(npdev->bus);
nphb = hose->private_data;
dev_dbg(&gpdev->dev, "Map LPAR opalid=%llu lparid=%u\n",
nphb->opal_id, lparid);
/*
* Currently we only support radix and non-zero LPCR only makes sense
* for hash tables so skiboot expects the LPCR parameter to be a zero.
*/
ret = opal_npu_map_lpar(nphb->opal_id,
PCI_DEVID(gpdev->bus->number, gpdev->devfn), lparid,
0 /* LPCR bits */);
if (ret) {
dev_err(&gpdev->dev, "Error %d mapping device to LPAR\n", ret);
return ret;
}
dev_dbg(&gpdev->dev, "init context opalid=%llu msr=%lx\n",
nphb->opal_id, msr);
ret = opal_npu_init_context(nphb->opal_id, 0/*__unused*/, msr,
PCI_DEVID(gpdev->bus->number, gpdev->devfn));
if (ret < 0)
dev_err(&gpdev->dev, "Failed to init context: %d\n", ret);
else
ret = 0;
return 0;
}
EXPORT_SYMBOL_GPL(pnv_npu2_map_lpar_dev);
void pnv_npu2_map_lpar(struct pnv_ioda_pe *gpe, unsigned long msr)
{
struct pci_dev *gpdev;
list_for_each_entry(gpdev, &gpe->pbus->devices, bus_list)
pnv_npu2_map_lpar_dev(gpdev, 0, msr);
}
int pnv_npu2_unmap_lpar_dev(struct pci_dev *gpdev)
{
int ret;
struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
struct pci_controller *hose;
struct pnv_phb *nphb;
if (!npdev)
return -ENODEV;
hose = pci_bus_to_host(npdev->bus);
nphb = hose->private_data;
dev_dbg(&gpdev->dev, "destroy context opalid=%llu\n",
nphb->opal_id);
ret = opal_npu_destroy_context(nphb->opal_id, 0/*__unused*/,
PCI_DEVID(gpdev->bus->number, gpdev->devfn));
if (ret < 0) {
dev_err(&gpdev->dev, "Failed to destroy context: %d\n", ret);
return ret;
}
/* Set LPID to 0 anyway, just to be safe */
dev_dbg(&gpdev->dev, "Map LPAR opalid=%llu lparid=0\n", nphb->opal_id);
ret = opal_npu_map_lpar(nphb->opal_id,
PCI_DEVID(gpdev->bus->number, gpdev->devfn), 0 /*LPID*/,
0 /* LPCR bits */);
if (ret)
dev_err(&gpdev->dev, "Error %d mapping device to LPAR\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(pnv_npu2_unmap_lpar_dev);