| /* |
| * Copyright (c) 2007, 2008, 2009 QLogic Corporation. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| #include <linux/mm.h> |
| #include <linux/types.h> |
| #include <linux/device.h> |
| #include <linux/dmapool.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/highmem.h> |
| #include <linux/io.h> |
| #include <linux/uio.h> |
| #include <linux/rbtree.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| |
| #include "qib.h" |
| #include "qib_user_sdma.h" |
| |
| /* minimum size of header */ |
| #define QIB_USER_SDMA_MIN_HEADER_LENGTH 64 |
| /* expected size of headers (for dma_pool) */ |
| #define QIB_USER_SDMA_EXP_HEADER_LENGTH 64 |
| /* attempt to drain the queue for 5secs */ |
| #define QIB_USER_SDMA_DRAIN_TIMEOUT 250 |
| |
| /* |
| * track how many times a process open this driver. |
| */ |
| static struct rb_root qib_user_sdma_rb_root = RB_ROOT; |
| |
| struct qib_user_sdma_rb_node { |
| struct rb_node node; |
| int refcount; |
| pid_t pid; |
| }; |
| |
| struct qib_user_sdma_pkt { |
| struct list_head list; /* list element */ |
| |
| u8 tiddma; /* if this is NEW tid-sdma */ |
| u8 largepkt; /* this is large pkt from kmalloc */ |
| u16 frag_size; /* frag size used by PSM */ |
| u16 index; /* last header index or push index */ |
| u16 naddr; /* dimension of addr (1..3) ... */ |
| u16 addrlimit; /* addr array size */ |
| u16 tidsmidx; /* current tidsm index */ |
| u16 tidsmcount; /* tidsm array item count */ |
| u16 payload_size; /* payload size so far for header */ |
| u32 bytes_togo; /* bytes for processing */ |
| u32 counter; /* sdma pkts queued counter for this entry */ |
| struct qib_tid_session_member *tidsm; /* tid session member array */ |
| struct qib_user_sdma_queue *pq; /* which pq this pkt belongs to */ |
| u64 added; /* global descq number of entries */ |
| |
| struct { |
| u16 offset; /* offset for kvaddr, addr */ |
| u16 length; /* length in page */ |
| u16 first_desc; /* first desc */ |
| u16 last_desc; /* last desc */ |
| u16 put_page; /* should we put_page? */ |
| u16 dma_mapped; /* is page dma_mapped? */ |
| u16 dma_length; /* for dma_unmap_page() */ |
| u16 padding; |
| struct page *page; /* may be NULL (coherent mem) */ |
| void *kvaddr; /* FIXME: only for pio hack */ |
| dma_addr_t addr; |
| } addr[4]; /* max pages, any more and we coalesce */ |
| }; |
| |
| struct qib_user_sdma_queue { |
| /* |
| * pkts sent to dma engine are queued on this |
| * list head. the type of the elements of this |
| * list are struct qib_user_sdma_pkt... |
| */ |
| struct list_head sent; |
| |
| /* |
| * Because above list will be accessed by both process and |
| * signal handler, we need a spinlock for it. |
| */ |
| spinlock_t sent_lock ____cacheline_aligned_in_smp; |
| |
| /* headers with expected length are allocated from here... */ |
| char header_cache_name[64]; |
| struct dma_pool *header_cache; |
| |
| /* packets are allocated from the slab cache... */ |
| char pkt_slab_name[64]; |
| struct kmem_cache *pkt_slab; |
| |
| /* as packets go on the queued queue, they are counted... */ |
| u32 counter; |
| u32 sent_counter; |
| /* pending packets, not sending yet */ |
| u32 num_pending; |
| /* sending packets, not complete yet */ |
| u32 num_sending; |
| /* global descq number of entry of last sending packet */ |
| u64 added; |
| |
| /* dma page table */ |
| struct rb_root dma_pages_root; |
| |
| struct qib_user_sdma_rb_node *sdma_rb_node; |
| |
| /* protect everything above... */ |
| struct mutex lock; |
| }; |
| |
| static struct qib_user_sdma_rb_node * |
| qib_user_sdma_rb_search(struct rb_root *root, pid_t pid) |
| { |
| struct qib_user_sdma_rb_node *sdma_rb_node; |
| struct rb_node *node = root->rb_node; |
| |
| while (node) { |
| sdma_rb_node = rb_entry(node, struct qib_user_sdma_rb_node, |
| node); |
| if (pid < sdma_rb_node->pid) |
| node = node->rb_left; |
| else if (pid > sdma_rb_node->pid) |
| node = node->rb_right; |
| else |
| return sdma_rb_node; |
| } |
| return NULL; |
| } |
| |
| static int |
| qib_user_sdma_rb_insert(struct rb_root *root, struct qib_user_sdma_rb_node *new) |
| { |
| struct rb_node **node = &(root->rb_node); |
| struct rb_node *parent = NULL; |
| struct qib_user_sdma_rb_node *got; |
| |
| while (*node) { |
| got = rb_entry(*node, struct qib_user_sdma_rb_node, node); |
| parent = *node; |
| if (new->pid < got->pid) |
| node = &((*node)->rb_left); |
| else if (new->pid > got->pid) |
| node = &((*node)->rb_right); |
| else |
| return 0; |
| } |
| |
| rb_link_node(&new->node, parent, node); |
| rb_insert_color(&new->node, root); |
| return 1; |
| } |
| |
| struct qib_user_sdma_queue * |
| qib_user_sdma_queue_create(struct device *dev, int unit, int ctxt, int sctxt) |
| { |
| struct qib_user_sdma_queue *pq = |
| kmalloc(sizeof(struct qib_user_sdma_queue), GFP_KERNEL); |
| struct qib_user_sdma_rb_node *sdma_rb_node; |
| |
| if (!pq) |
| goto done; |
| |
| pq->counter = 0; |
| pq->sent_counter = 0; |
| pq->num_pending = 0; |
| pq->num_sending = 0; |
| pq->added = 0; |
| pq->sdma_rb_node = NULL; |
| |
| INIT_LIST_HEAD(&pq->sent); |
| spin_lock_init(&pq->sent_lock); |
| mutex_init(&pq->lock); |
| |
| snprintf(pq->pkt_slab_name, sizeof(pq->pkt_slab_name), |
| "qib-user-sdma-pkts-%u-%02u.%02u", unit, ctxt, sctxt); |
| pq->pkt_slab = kmem_cache_create(pq->pkt_slab_name, |
| sizeof(struct qib_user_sdma_pkt), |
| 0, 0, NULL); |
| |
| if (!pq->pkt_slab) |
| goto err_kfree; |
| |
| snprintf(pq->header_cache_name, sizeof(pq->header_cache_name), |
| "qib-user-sdma-headers-%u-%02u.%02u", unit, ctxt, sctxt); |
| pq->header_cache = dma_pool_create(pq->header_cache_name, |
| dev, |
| QIB_USER_SDMA_EXP_HEADER_LENGTH, |
| 4, 0); |
| if (!pq->header_cache) |
| goto err_slab; |
| |
| pq->dma_pages_root = RB_ROOT; |
| |
| sdma_rb_node = qib_user_sdma_rb_search(&qib_user_sdma_rb_root, |
| current->pid); |
| if (sdma_rb_node) { |
| sdma_rb_node->refcount++; |
| } else { |
| int ret; |
| |
| sdma_rb_node = kmalloc(sizeof( |
| struct qib_user_sdma_rb_node), GFP_KERNEL); |
| if (!sdma_rb_node) |
| goto err_rb; |
| |
| sdma_rb_node->refcount = 1; |
| sdma_rb_node->pid = current->pid; |
| |
| ret = qib_user_sdma_rb_insert(&qib_user_sdma_rb_root, |
| sdma_rb_node); |
| } |
| pq->sdma_rb_node = sdma_rb_node; |
| |
| goto done; |
| |
| err_rb: |
| dma_pool_destroy(pq->header_cache); |
| err_slab: |
| kmem_cache_destroy(pq->pkt_slab); |
| err_kfree: |
| kfree(pq); |
| pq = NULL; |
| |
| done: |
| return pq; |
| } |
| |
| static void qib_user_sdma_init_frag(struct qib_user_sdma_pkt *pkt, |
| int i, u16 offset, u16 len, |
| u16 first_desc, u16 last_desc, |
| u16 put_page, u16 dma_mapped, |
| struct page *page, void *kvaddr, |
| dma_addr_t dma_addr, u16 dma_length) |
| { |
| pkt->addr[i].offset = offset; |
| pkt->addr[i].length = len; |
| pkt->addr[i].first_desc = first_desc; |
| pkt->addr[i].last_desc = last_desc; |
| pkt->addr[i].put_page = put_page; |
| pkt->addr[i].dma_mapped = dma_mapped; |
| pkt->addr[i].page = page; |
| pkt->addr[i].kvaddr = kvaddr; |
| pkt->addr[i].addr = dma_addr; |
| pkt->addr[i].dma_length = dma_length; |
| } |
| |
| static void *qib_user_sdma_alloc_header(struct qib_user_sdma_queue *pq, |
| size_t len, dma_addr_t *dma_addr) |
| { |
| void *hdr; |
| |
| if (len == QIB_USER_SDMA_EXP_HEADER_LENGTH) |
| hdr = dma_pool_alloc(pq->header_cache, GFP_KERNEL, |
| dma_addr); |
| else |
| hdr = NULL; |
| |
| if (!hdr) { |
| hdr = kmalloc(len, GFP_KERNEL); |
| if (!hdr) |
| return NULL; |
| |
| *dma_addr = 0; |
| } |
| |
| return hdr; |
| } |
| |
| static int qib_user_sdma_page_to_frags(const struct qib_devdata *dd, |
| struct qib_user_sdma_queue *pq, |
| struct qib_user_sdma_pkt *pkt, |
| struct page *page, u16 put, |
| u16 offset, u16 len, void *kvaddr) |
| { |
| __le16 *pbc16; |
| void *pbcvaddr; |
| struct qib_message_header *hdr; |
| u16 newlen, pbclen, lastdesc, dma_mapped; |
| u32 vcto; |
| union qib_seqnum seqnum; |
| dma_addr_t pbcdaddr; |
| dma_addr_t dma_addr = |
| dma_map_page(&dd->pcidev->dev, |
| page, offset, len, DMA_TO_DEVICE); |
| int ret = 0; |
| |
| if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) { |
| /* |
| * dma mapping error, pkt has not managed |
| * this page yet, return the page here so |
| * the caller can ignore this page. |
| */ |
| if (put) { |
| put_page(page); |
| } else { |
| /* coalesce case */ |
| kunmap(page); |
| __free_page(page); |
| } |
| ret = -ENOMEM; |
| goto done; |
| } |
| offset = 0; |
| dma_mapped = 1; |
| |
| |
| next_fragment: |
| |
| /* |
| * In tid-sdma, the transfer length is restricted by |
| * receiver side current tid page length. |
| */ |
| if (pkt->tiddma && len > pkt->tidsm[pkt->tidsmidx].length) |
| newlen = pkt->tidsm[pkt->tidsmidx].length; |
| else |
| newlen = len; |
| |
| /* |
| * Then the transfer length is restricted by MTU. |
| * the last descriptor flag is determined by: |
| * 1. the current packet is at frag size length. |
| * 2. the current tid page is done if tid-sdma. |
| * 3. there is no more byte togo if sdma. |
| */ |
| lastdesc = 0; |
| if ((pkt->payload_size + newlen) >= pkt->frag_size) { |
| newlen = pkt->frag_size - pkt->payload_size; |
| lastdesc = 1; |
| } else if (pkt->tiddma) { |
| if (newlen == pkt->tidsm[pkt->tidsmidx].length) |
| lastdesc = 1; |
| } else { |
| if (newlen == pkt->bytes_togo) |
| lastdesc = 1; |
| } |
| |
| /* fill the next fragment in this page */ |
| qib_user_sdma_init_frag(pkt, pkt->naddr, /* index */ |
| offset, newlen, /* offset, len */ |
| 0, lastdesc, /* first last desc */ |
| put, dma_mapped, /* put page, dma mapped */ |
| page, kvaddr, /* struct page, virt addr */ |
| dma_addr, len); /* dma addr, dma length */ |
| pkt->bytes_togo -= newlen; |
| pkt->payload_size += newlen; |
| pkt->naddr++; |
| if (pkt->naddr == pkt->addrlimit) { |
| ret = -EFAULT; |
| goto done; |
| } |
| |
| /* If there is no more byte togo. (lastdesc==1) */ |
| if (pkt->bytes_togo == 0) { |
| /* The packet is done, header is not dma mapped yet. |
| * it should be from kmalloc */ |
| if (!pkt->addr[pkt->index].addr) { |
| pkt->addr[pkt->index].addr = |
| dma_map_single(&dd->pcidev->dev, |
| pkt->addr[pkt->index].kvaddr, |
| pkt->addr[pkt->index].dma_length, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&dd->pcidev->dev, |
| pkt->addr[pkt->index].addr)) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| pkt->addr[pkt->index].dma_mapped = 1; |
| } |
| |
| goto done; |
| } |
| |
| /* If tid-sdma, advance tid info. */ |
| if (pkt->tiddma) { |
| pkt->tidsm[pkt->tidsmidx].length -= newlen; |
| if (pkt->tidsm[pkt->tidsmidx].length) { |
| pkt->tidsm[pkt->tidsmidx].offset += newlen; |
| } else { |
| pkt->tidsmidx++; |
| if (pkt->tidsmidx == pkt->tidsmcount) { |
| ret = -EFAULT; |
| goto done; |
| } |
| } |
| } |
| |
| /* |
| * If this is NOT the last descriptor. (newlen==len) |
| * the current packet is not done yet, but the current |
| * send side page is done. |
| */ |
| if (lastdesc == 0) |
| goto done; |
| |
| /* |
| * If running this driver under PSM with message size |
| * fitting into one transfer unit, it is not possible |
| * to pass this line. otherwise, it is a buggggg. |
| */ |
| |
| /* |
| * Since the current packet is done, and there are more |
| * bytes togo, we need to create a new sdma header, copying |
| * from previous sdma header and modify both. |
| */ |
| pbclen = pkt->addr[pkt->index].length; |
| pbcvaddr = qib_user_sdma_alloc_header(pq, pbclen, &pbcdaddr); |
| if (!pbcvaddr) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| /* Copy the previous sdma header to new sdma header */ |
| pbc16 = (__le16 *)pkt->addr[pkt->index].kvaddr; |
| memcpy(pbcvaddr, pbc16, pbclen); |
| |
| /* Modify the previous sdma header */ |
| hdr = (struct qib_message_header *)&pbc16[4]; |
| |
| /* New pbc length */ |
| pbc16[0] = cpu_to_le16(le16_to_cpu(pbc16[0])-(pkt->bytes_togo>>2)); |
| |
| /* New packet length */ |
| hdr->lrh[2] = cpu_to_be16(le16_to_cpu(pbc16[0])); |
| |
| if (pkt->tiddma) { |
| /* turn on the header suppression */ |
| hdr->iph.pkt_flags = |
| cpu_to_le16(le16_to_cpu(hdr->iph.pkt_flags)|0x2); |
| /* turn off ACK_REQ: 0x04 and EXPECTED_DONE: 0x20 */ |
| hdr->flags &= ~(0x04|0x20); |
| } else { |
| /* turn off extra bytes: 20-21 bits */ |
| hdr->bth[0] = cpu_to_be32(be32_to_cpu(hdr->bth[0])&0xFFCFFFFF); |
| /* turn off ACK_REQ: 0x04 */ |
| hdr->flags &= ~(0x04); |
| } |
| |
| /* New kdeth checksum */ |
| vcto = le32_to_cpu(hdr->iph.ver_ctxt_tid_offset); |
| hdr->iph.chksum = cpu_to_le16(QIB_LRH_BTH + |
| be16_to_cpu(hdr->lrh[2]) - |
| ((vcto>>16)&0xFFFF) - (vcto&0xFFFF) - |
| le16_to_cpu(hdr->iph.pkt_flags)); |
| |
| /* The packet is done, header is not dma mapped yet. |
| * it should be from kmalloc */ |
| if (!pkt->addr[pkt->index].addr) { |
| pkt->addr[pkt->index].addr = |
| dma_map_single(&dd->pcidev->dev, |
| pkt->addr[pkt->index].kvaddr, |
| pkt->addr[pkt->index].dma_length, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&dd->pcidev->dev, |
| pkt->addr[pkt->index].addr)) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| pkt->addr[pkt->index].dma_mapped = 1; |
| } |
| |
| /* Modify the new sdma header */ |
| pbc16 = (__le16 *)pbcvaddr; |
| hdr = (struct qib_message_header *)&pbc16[4]; |
| |
| /* New pbc length */ |
| pbc16[0] = cpu_to_le16(le16_to_cpu(pbc16[0])-(pkt->payload_size>>2)); |
| |
| /* New packet length */ |
| hdr->lrh[2] = cpu_to_be16(le16_to_cpu(pbc16[0])); |
| |
| if (pkt->tiddma) { |
| /* Set new tid and offset for new sdma header */ |
| hdr->iph.ver_ctxt_tid_offset = cpu_to_le32( |
| (le32_to_cpu(hdr->iph.ver_ctxt_tid_offset)&0xFF000000) + |
| (pkt->tidsm[pkt->tidsmidx].tid<<QLOGIC_IB_I_TID_SHIFT) + |
| (pkt->tidsm[pkt->tidsmidx].offset>>2)); |
| } else { |
| /* Middle protocol new packet offset */ |
| hdr->uwords[2] += pkt->payload_size; |
| } |
| |
| /* New kdeth checksum */ |
| vcto = le32_to_cpu(hdr->iph.ver_ctxt_tid_offset); |
| hdr->iph.chksum = cpu_to_le16(QIB_LRH_BTH + |
| be16_to_cpu(hdr->lrh[2]) - |
| ((vcto>>16)&0xFFFF) - (vcto&0xFFFF) - |
| le16_to_cpu(hdr->iph.pkt_flags)); |
| |
| /* Next sequence number in new sdma header */ |
| seqnum.val = be32_to_cpu(hdr->bth[2]); |
| if (pkt->tiddma) |
| seqnum.seq++; |
| else |
| seqnum.pkt++; |
| hdr->bth[2] = cpu_to_be32(seqnum.val); |
| |
| /* Init new sdma header. */ |
| qib_user_sdma_init_frag(pkt, pkt->naddr, /* index */ |
| 0, pbclen, /* offset, len */ |
| 1, 0, /* first last desc */ |
| 0, 0, /* put page, dma mapped */ |
| NULL, pbcvaddr, /* struct page, virt addr */ |
| pbcdaddr, pbclen); /* dma addr, dma length */ |
| pkt->index = pkt->naddr; |
| pkt->payload_size = 0; |
| pkt->naddr++; |
| if (pkt->naddr == pkt->addrlimit) { |
| ret = -EFAULT; |
| goto done; |
| } |
| |
| /* Prepare for next fragment in this page */ |
| if (newlen != len) { |
| if (dma_mapped) { |
| put = 0; |
| dma_mapped = 0; |
| page = NULL; |
| kvaddr = NULL; |
| } |
| len -= newlen; |
| offset += newlen; |
| |
| goto next_fragment; |
| } |
| |
| done: |
| return ret; |
| } |
| |
| /* we've too many pages in the iovec, coalesce to a single page */ |
| static int qib_user_sdma_coalesce(const struct qib_devdata *dd, |
| struct qib_user_sdma_queue *pq, |
| struct qib_user_sdma_pkt *pkt, |
| const struct iovec *iov, |
| unsigned long niov) |
| { |
| int ret = 0; |
| struct page *page = alloc_page(GFP_KERNEL); |
| void *mpage_save; |
| char *mpage; |
| int i; |
| int len = 0; |
| |
| if (!page) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| mpage = kmap(page); |
| mpage_save = mpage; |
| for (i = 0; i < niov; i++) { |
| int cfur; |
| |
| cfur = copy_from_user(mpage, |
| iov[i].iov_base, iov[i].iov_len); |
| if (cfur) { |
| ret = -EFAULT; |
| goto free_unmap; |
| } |
| |
| mpage += iov[i].iov_len; |
| len += iov[i].iov_len; |
| } |
| |
| ret = qib_user_sdma_page_to_frags(dd, pq, pkt, |
| page, 0, 0, len, mpage_save); |
| goto done; |
| |
| free_unmap: |
| kunmap(page); |
| __free_page(page); |
| done: |
| return ret; |
| } |
| |
| /* |
| * How many pages in this iovec element? |
| */ |
| static int qib_user_sdma_num_pages(const struct iovec *iov) |
| { |
| const unsigned long addr = (unsigned long) iov->iov_base; |
| const unsigned long len = iov->iov_len; |
| const unsigned long spage = addr & PAGE_MASK; |
| const unsigned long epage = (addr + len - 1) & PAGE_MASK; |
| |
| return 1 + ((epage - spage) >> PAGE_SHIFT); |
| } |
| |
| static void qib_user_sdma_free_pkt_frag(struct device *dev, |
| struct qib_user_sdma_queue *pq, |
| struct qib_user_sdma_pkt *pkt, |
| int frag) |
| { |
| const int i = frag; |
| |
| if (pkt->addr[i].page) { |
| /* only user data has page */ |
| if (pkt->addr[i].dma_mapped) |
| dma_unmap_page(dev, |
| pkt->addr[i].addr, |
| pkt->addr[i].dma_length, |
| DMA_TO_DEVICE); |
| |
| if (pkt->addr[i].kvaddr) |
| kunmap(pkt->addr[i].page); |
| |
| if (pkt->addr[i].put_page) |
| put_page(pkt->addr[i].page); |
| else |
| __free_page(pkt->addr[i].page); |
| } else if (pkt->addr[i].kvaddr) { |
| /* for headers */ |
| if (pkt->addr[i].dma_mapped) { |
| /* from kmalloc & dma mapped */ |
| dma_unmap_single(dev, |
| pkt->addr[i].addr, |
| pkt->addr[i].dma_length, |
| DMA_TO_DEVICE); |
| kfree(pkt->addr[i].kvaddr); |
| } else if (pkt->addr[i].addr) { |
| /* free coherent mem from cache... */ |
| dma_pool_free(pq->header_cache, |
| pkt->addr[i].kvaddr, pkt->addr[i].addr); |
| } else { |
| /* from kmalloc but not dma mapped */ |
| kfree(pkt->addr[i].kvaddr); |
| } |
| } |
| } |
| |
| /* return number of pages pinned... */ |
| static int qib_user_sdma_pin_pages(const struct qib_devdata *dd, |
| struct qib_user_sdma_queue *pq, |
| struct qib_user_sdma_pkt *pkt, |
| unsigned long addr, int tlen, int npages) |
| { |
| struct page *pages[8]; |
| int i, j; |
| int ret = 0; |
| |
| while (npages) { |
| if (npages > 8) |
| j = 8; |
| else |
| j = npages; |
| |
| ret = get_user_pages_fast(addr, j, 0, pages); |
| if (ret != j) { |
| i = 0; |
| j = ret; |
| ret = -ENOMEM; |
| goto free_pages; |
| } |
| |
| for (i = 0; i < j; i++) { |
| /* map the pages... */ |
| unsigned long fofs = addr & ~PAGE_MASK; |
| int flen = ((fofs + tlen) > PAGE_SIZE) ? |
| (PAGE_SIZE - fofs) : tlen; |
| |
| ret = qib_user_sdma_page_to_frags(dd, pq, pkt, |
| pages[i], 1, fofs, flen, NULL); |
| if (ret < 0) { |
| /* current page has beed taken |
| * care of inside above call. |
| */ |
| i++; |
| goto free_pages; |
| } |
| |
| addr += flen; |
| tlen -= flen; |
| } |
| |
| npages -= j; |
| } |
| |
| goto done; |
| |
| /* if error, return all pages not managed by pkt */ |
| free_pages: |
| while (i < j) |
| put_page(pages[i++]); |
| |
| done: |
| return ret; |
| } |
| |
| static int qib_user_sdma_pin_pkt(const struct qib_devdata *dd, |
| struct qib_user_sdma_queue *pq, |
| struct qib_user_sdma_pkt *pkt, |
| const struct iovec *iov, |
| unsigned long niov) |
| { |
| int ret = 0; |
| unsigned long idx; |
| |
| for (idx = 0; idx < niov; idx++) { |
| const int npages = qib_user_sdma_num_pages(iov + idx); |
| const unsigned long addr = (unsigned long) iov[idx].iov_base; |
| |
| ret = qib_user_sdma_pin_pages(dd, pq, pkt, addr, |
| iov[idx].iov_len, npages); |
| if (ret < 0) |
| goto free_pkt; |
| } |
| |
| goto done; |
| |
| free_pkt: |
| /* we need to ignore the first entry here */ |
| for (idx = 1; idx < pkt->naddr; idx++) |
| qib_user_sdma_free_pkt_frag(&dd->pcidev->dev, pq, pkt, idx); |
| |
| /* need to dma unmap the first entry, this is to restore to |
| * the original state so that caller can free the memory in |
| * error condition. Caller does not know if dma mapped or not*/ |
| if (pkt->addr[0].dma_mapped) { |
| dma_unmap_single(&dd->pcidev->dev, |
| pkt->addr[0].addr, |
| pkt->addr[0].dma_length, |
| DMA_TO_DEVICE); |
| pkt->addr[0].addr = 0; |
| pkt->addr[0].dma_mapped = 0; |
| } |
| |
| done: |
| return ret; |
| } |
| |
| static int qib_user_sdma_init_payload(const struct qib_devdata *dd, |
| struct qib_user_sdma_queue *pq, |
| struct qib_user_sdma_pkt *pkt, |
| const struct iovec *iov, |
| unsigned long niov, int npages) |
| { |
| int ret = 0; |
| |
| if (pkt->frag_size == pkt->bytes_togo && |
| npages >= ARRAY_SIZE(pkt->addr)) |
| ret = qib_user_sdma_coalesce(dd, pq, pkt, iov, niov); |
| else |
| ret = qib_user_sdma_pin_pkt(dd, pq, pkt, iov, niov); |
| |
| return ret; |
| } |
| |
| /* free a packet list -- return counter value of last packet */ |
| static void qib_user_sdma_free_pkt_list(struct device *dev, |
| struct qib_user_sdma_queue *pq, |
| struct list_head *list) |
| { |
| struct qib_user_sdma_pkt *pkt, *pkt_next; |
| |
| list_for_each_entry_safe(pkt, pkt_next, list, list) { |
| int i; |
| |
| for (i = 0; i < pkt->naddr; i++) |
| qib_user_sdma_free_pkt_frag(dev, pq, pkt, i); |
| |
| if (pkt->largepkt) |
| kfree(pkt); |
| else |
| kmem_cache_free(pq->pkt_slab, pkt); |
| } |
| INIT_LIST_HEAD(list); |
| } |
| |
| /* |
| * copy headers, coalesce etc -- pq->lock must be held |
| * |
| * we queue all the packets to list, returning the |
| * number of bytes total. list must be empty initially, |
| * as, if there is an error we clean it... |
| */ |
| static int qib_user_sdma_queue_pkts(const struct qib_devdata *dd, |
| struct qib_pportdata *ppd, |
| struct qib_user_sdma_queue *pq, |
| const struct iovec *iov, |
| unsigned long niov, |
| struct list_head *list, |
| int *maxpkts, int *ndesc) |
| { |
| unsigned long idx = 0; |
| int ret = 0; |
| int npkts = 0; |
| __le32 *pbc; |
| dma_addr_t dma_addr; |
| struct qib_user_sdma_pkt *pkt = NULL; |
| size_t len; |
| size_t nw; |
| u32 counter = pq->counter; |
| u16 frag_size; |
| |
| while (idx < niov && npkts < *maxpkts) { |
| const unsigned long addr = (unsigned long) iov[idx].iov_base; |
| const unsigned long idx_save = idx; |
| unsigned pktnw; |
| unsigned pktnwc; |
| int nfrags = 0; |
| int npages = 0; |
| int bytes_togo = 0; |
| int tiddma = 0; |
| int cfur; |
| |
| len = iov[idx].iov_len; |
| nw = len >> 2; |
| |
| if (len < QIB_USER_SDMA_MIN_HEADER_LENGTH || |
| len > PAGE_SIZE || len & 3 || addr & 3) { |
| ret = -EINVAL; |
| goto free_list; |
| } |
| |
| pbc = qib_user_sdma_alloc_header(pq, len, &dma_addr); |
| if (!pbc) { |
| ret = -ENOMEM; |
| goto free_list; |
| } |
| |
| cfur = copy_from_user(pbc, iov[idx].iov_base, len); |
| if (cfur) { |
| ret = -EFAULT; |
| goto free_pbc; |
| } |
| |
| /* |
| * This assignment is a bit strange. it's because the |
| * the pbc counts the number of 32 bit words in the full |
| * packet _except_ the first word of the pbc itself... |
| */ |
| pktnwc = nw - 1; |
| |
| /* |
| * pktnw computation yields the number of 32 bit words |
| * that the caller has indicated in the PBC. note that |
| * this is one less than the total number of words that |
| * goes to the send DMA engine as the first 32 bit word |
| * of the PBC itself is not counted. Armed with this count, |
| * we can verify that the packet is consistent with the |
| * iovec lengths. |
| */ |
| pktnw = le32_to_cpu(*pbc) & 0xFFFF; |
| if (pktnw < pktnwc) { |
| ret = -EINVAL; |
| goto free_pbc; |
| } |
| |
| idx++; |
| while (pktnwc < pktnw && idx < niov) { |
| const size_t slen = iov[idx].iov_len; |
| const unsigned long faddr = |
| (unsigned long) iov[idx].iov_base; |
| |
| if (slen & 3 || faddr & 3 || !slen) { |
| ret = -EINVAL; |
| goto free_pbc; |
| } |
| |
| npages += qib_user_sdma_num_pages(&iov[idx]); |
| |
| bytes_togo += slen; |
| pktnwc += slen >> 2; |
| idx++; |
| nfrags++; |
| } |
| |
| if (pktnwc != pktnw) { |
| ret = -EINVAL; |
| goto free_pbc; |
| } |
| |
| frag_size = ((le32_to_cpu(*pbc))>>16) & 0xFFFF; |
| if (((frag_size ? frag_size : bytes_togo) + len) > |
| ppd->ibmaxlen) { |
| ret = -EINVAL; |
| goto free_pbc; |
| } |
| |
| if (frag_size) { |
| int pktsize, tidsmsize, n; |
| |
| n = npages*((2*PAGE_SIZE/frag_size)+1); |
| pktsize = sizeof(*pkt) + sizeof(pkt->addr[0])*n; |
| |
| /* |
| * Determine if this is tid-sdma or just sdma. |
| */ |
| tiddma = (((le32_to_cpu(pbc[7])>> |
| QLOGIC_IB_I_TID_SHIFT)& |
| QLOGIC_IB_I_TID_MASK) != |
| QLOGIC_IB_I_TID_MASK); |
| |
| if (tiddma) |
| tidsmsize = iov[idx].iov_len; |
| else |
| tidsmsize = 0; |
| |
| pkt = kmalloc(pktsize+tidsmsize, GFP_KERNEL); |
| if (!pkt) { |
| ret = -ENOMEM; |
| goto free_pbc; |
| } |
| pkt->largepkt = 1; |
| pkt->frag_size = frag_size; |
| pkt->addrlimit = n + ARRAY_SIZE(pkt->addr); |
| |
| if (tiddma) { |
| char *tidsm = (char *)pkt + pktsize; |
| |
| cfur = copy_from_user(tidsm, |
| iov[idx].iov_base, tidsmsize); |
| if (cfur) { |
| ret = -EFAULT; |
| goto free_pkt; |
| } |
| pkt->tidsm = |
| (struct qib_tid_session_member *)tidsm; |
| pkt->tidsmcount = tidsmsize/ |
| sizeof(struct qib_tid_session_member); |
| pkt->tidsmidx = 0; |
| idx++; |
| } |
| |
| /* |
| * pbc 'fill1' field is borrowed to pass frag size, |
| * we need to clear it after picking frag size, the |
| * hardware requires this field to be zero. |
| */ |
| *pbc = cpu_to_le32(le32_to_cpu(*pbc) & 0x0000FFFF); |
| } else { |
| pkt = kmem_cache_alloc(pq->pkt_slab, GFP_KERNEL); |
| if (!pkt) { |
| ret = -ENOMEM; |
| goto free_pbc; |
| } |
| pkt->largepkt = 0; |
| pkt->frag_size = bytes_togo; |
| pkt->addrlimit = ARRAY_SIZE(pkt->addr); |
| } |
| pkt->bytes_togo = bytes_togo; |
| pkt->payload_size = 0; |
| pkt->counter = counter; |
| pkt->tiddma = tiddma; |
| |
| /* setup the first header */ |
| qib_user_sdma_init_frag(pkt, 0, /* index */ |
| 0, len, /* offset, len */ |
| 1, 0, /* first last desc */ |
| 0, 0, /* put page, dma mapped */ |
| NULL, pbc, /* struct page, virt addr */ |
| dma_addr, len); /* dma addr, dma length */ |
| pkt->index = 0; |
| pkt->naddr = 1; |
| |
| if (nfrags) { |
| ret = qib_user_sdma_init_payload(dd, pq, pkt, |
| iov + idx_save + 1, |
| nfrags, npages); |
| if (ret < 0) |
| goto free_pkt; |
| } else { |
| /* since there is no payload, mark the |
| * header as the last desc. */ |
| pkt->addr[0].last_desc = 1; |
| |
| if (dma_addr == 0) { |
| /* |
| * the header is not dma mapped yet. |
| * it should be from kmalloc. |
| */ |
| dma_addr = dma_map_single(&dd->pcidev->dev, |
| pbc, len, DMA_TO_DEVICE); |
| if (dma_mapping_error(&dd->pcidev->dev, |
| dma_addr)) { |
| ret = -ENOMEM; |
| goto free_pkt; |
| } |
| pkt->addr[0].addr = dma_addr; |
| pkt->addr[0].dma_mapped = 1; |
| } |
| } |
| |
| counter++; |
| npkts++; |
| pkt->pq = pq; |
| pkt->index = 0; /* reset index for push on hw */ |
| *ndesc += pkt->naddr; |
| |
| list_add_tail(&pkt->list, list); |
| } |
| |
| *maxpkts = npkts; |
| ret = idx; |
| goto done; |
| |
| free_pkt: |
| if (pkt->largepkt) |
| kfree(pkt); |
| else |
| kmem_cache_free(pq->pkt_slab, pkt); |
| free_pbc: |
| if (dma_addr) |
| dma_pool_free(pq->header_cache, pbc, dma_addr); |
| else |
| kfree(pbc); |
| free_list: |
| qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, list); |
| done: |
| return ret; |
| } |
| |
| static void qib_user_sdma_set_complete_counter(struct qib_user_sdma_queue *pq, |
| u32 c) |
| { |
| pq->sent_counter = c; |
| } |
| |
| /* try to clean out queue -- needs pq->lock */ |
| static int qib_user_sdma_queue_clean(struct qib_pportdata *ppd, |
| struct qib_user_sdma_queue *pq) |
| { |
| struct qib_devdata *dd = ppd->dd; |
| struct list_head free_list; |
| struct qib_user_sdma_pkt *pkt; |
| struct qib_user_sdma_pkt *pkt_prev; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!pq->num_sending) |
| return 0; |
| |
| INIT_LIST_HEAD(&free_list); |
| |
| /* |
| * We need this spin lock here because interrupt handler |
| * might modify this list in qib_user_sdma_send_desc(), also |
| * we can not get interrupted, otherwise it is a deadlock. |
| */ |
| spin_lock_irqsave(&pq->sent_lock, flags); |
| list_for_each_entry_safe(pkt, pkt_prev, &pq->sent, list) { |
| s64 descd = ppd->sdma_descq_removed - pkt->added; |
| |
| if (descd < 0) |
| break; |
| |
| list_move_tail(&pkt->list, &free_list); |
| |
| /* one more packet cleaned */ |
| ret++; |
| pq->num_sending--; |
| } |
| spin_unlock_irqrestore(&pq->sent_lock, flags); |
| |
| if (!list_empty(&free_list)) { |
| u32 counter; |
| |
| pkt = list_entry(free_list.prev, |
| struct qib_user_sdma_pkt, list); |
| counter = pkt->counter; |
| |
| qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list); |
| qib_user_sdma_set_complete_counter(pq, counter); |
| } |
| |
| return ret; |
| } |
| |
| void qib_user_sdma_queue_destroy(struct qib_user_sdma_queue *pq) |
| { |
| if (!pq) |
| return; |
| |
| pq->sdma_rb_node->refcount--; |
| if (pq->sdma_rb_node->refcount == 0) { |
| rb_erase(&pq->sdma_rb_node->node, &qib_user_sdma_rb_root); |
| kfree(pq->sdma_rb_node); |
| } |
| dma_pool_destroy(pq->header_cache); |
| kmem_cache_destroy(pq->pkt_slab); |
| kfree(pq); |
| } |
| |
| /* clean descriptor queue, returns > 0 if some elements cleaned */ |
| static int qib_user_sdma_hwqueue_clean(struct qib_pportdata *ppd) |
| { |
| int ret; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ppd->sdma_lock, flags); |
| ret = qib_sdma_make_progress(ppd); |
| spin_unlock_irqrestore(&ppd->sdma_lock, flags); |
| |
| return ret; |
| } |
| |
| /* we're in close, drain packets so that we can cleanup successfully... */ |
| void qib_user_sdma_queue_drain(struct qib_pportdata *ppd, |
| struct qib_user_sdma_queue *pq) |
| { |
| struct qib_devdata *dd = ppd->dd; |
| unsigned long flags; |
| int i; |
| |
| if (!pq) |
| return; |
| |
| for (i = 0; i < QIB_USER_SDMA_DRAIN_TIMEOUT; i++) { |
| mutex_lock(&pq->lock); |
| if (!pq->num_pending && !pq->num_sending) { |
| mutex_unlock(&pq->lock); |
| break; |
| } |
| qib_user_sdma_hwqueue_clean(ppd); |
| qib_user_sdma_queue_clean(ppd, pq); |
| mutex_unlock(&pq->lock); |
| msleep(20); |
| } |
| |
| if (pq->num_pending || pq->num_sending) { |
| struct qib_user_sdma_pkt *pkt; |
| struct qib_user_sdma_pkt *pkt_prev; |
| struct list_head free_list; |
| |
| mutex_lock(&pq->lock); |
| spin_lock_irqsave(&ppd->sdma_lock, flags); |
| /* |
| * Since we hold sdma_lock, it is safe without sent_lock. |
| */ |
| if (pq->num_pending) { |
| list_for_each_entry_safe(pkt, pkt_prev, |
| &ppd->sdma_userpending, list) { |
| if (pkt->pq == pq) { |
| list_move_tail(&pkt->list, &pq->sent); |
| pq->num_pending--; |
| pq->num_sending++; |
| } |
| } |
| } |
| spin_unlock_irqrestore(&ppd->sdma_lock, flags); |
| |
| qib_dev_err(dd, "user sdma lists not empty: forcing!\n"); |
| INIT_LIST_HEAD(&free_list); |
| list_splice_init(&pq->sent, &free_list); |
| pq->num_sending = 0; |
| qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list); |
| mutex_unlock(&pq->lock); |
| } |
| } |
| |
| static inline __le64 qib_sdma_make_desc0(u8 gen, |
| u64 addr, u64 dwlen, u64 dwoffset) |
| { |
| return cpu_to_le64(/* SDmaPhyAddr[31:0] */ |
| ((addr & 0xfffffffcULL) << 32) | |
| /* SDmaGeneration[1:0] */ |
| ((gen & 3ULL) << 30) | |
| /* SDmaDwordCount[10:0] */ |
| ((dwlen & 0x7ffULL) << 16) | |
| /* SDmaBufOffset[12:2] */ |
| (dwoffset & 0x7ffULL)); |
| } |
| |
| static inline __le64 qib_sdma_make_first_desc0(__le64 descq) |
| { |
| return descq | cpu_to_le64(1ULL << 12); |
| } |
| |
| static inline __le64 qib_sdma_make_last_desc0(__le64 descq) |
| { |
| /* last */ /* dma head */ |
| return descq | cpu_to_le64(1ULL << 11 | 1ULL << 13); |
| } |
| |
| static inline __le64 qib_sdma_make_desc1(u64 addr) |
| { |
| /* SDmaPhyAddr[47:32] */ |
| return cpu_to_le64(addr >> 32); |
| } |
| |
| static void qib_user_sdma_send_frag(struct qib_pportdata *ppd, |
| struct qib_user_sdma_pkt *pkt, int idx, |
| unsigned ofs, u16 tail, u8 gen) |
| { |
| const u64 addr = (u64) pkt->addr[idx].addr + |
| (u64) pkt->addr[idx].offset; |
| const u64 dwlen = (u64) pkt->addr[idx].length / 4; |
| __le64 *descqp; |
| __le64 descq0; |
| |
| descqp = &ppd->sdma_descq[tail].qw[0]; |
| |
| descq0 = qib_sdma_make_desc0(gen, addr, dwlen, ofs); |
| if (pkt->addr[idx].first_desc) |
| descq0 = qib_sdma_make_first_desc0(descq0); |
| if (pkt->addr[idx].last_desc) { |
| descq0 = qib_sdma_make_last_desc0(descq0); |
| if (ppd->sdma_intrequest) { |
| descq0 |= cpu_to_le64(1ULL << 15); |
| ppd->sdma_intrequest = 0; |
| } |
| } |
| |
| descqp[0] = descq0; |
| descqp[1] = qib_sdma_make_desc1(addr); |
| } |
| |
| void qib_user_sdma_send_desc(struct qib_pportdata *ppd, |
| struct list_head *pktlist) |
| { |
| struct qib_devdata *dd = ppd->dd; |
| u16 nfree, nsent; |
| u16 tail, tail_c; |
| u8 gen, gen_c; |
| |
| nfree = qib_sdma_descq_freecnt(ppd); |
| if (!nfree) |
| return; |
| |
| retry: |
| nsent = 0; |
| tail_c = tail = ppd->sdma_descq_tail; |
| gen_c = gen = ppd->sdma_generation; |
| while (!list_empty(pktlist)) { |
| struct qib_user_sdma_pkt *pkt = |
| list_entry(pktlist->next, struct qib_user_sdma_pkt, |
| list); |
| int i, j, c = 0; |
| unsigned ofs = 0; |
| u16 dtail = tail; |
| |
| for (i = pkt->index; i < pkt->naddr && nfree; i++) { |
| qib_user_sdma_send_frag(ppd, pkt, i, ofs, tail, gen); |
| ofs += pkt->addr[i].length >> 2; |
| |
| if (++tail == ppd->sdma_descq_cnt) { |
| tail = 0; |
| ++gen; |
| ppd->sdma_intrequest = 1; |
| } else if (tail == (ppd->sdma_descq_cnt>>1)) { |
| ppd->sdma_intrequest = 1; |
| } |
| nfree--; |
| if (pkt->addr[i].last_desc == 0) |
| continue; |
| |
| /* |
| * If the packet is >= 2KB mtu equivalent, we |
| * have to use the large buffers, and have to |
| * mark each descriptor as part of a large |
| * buffer packet. |
| */ |
| if (ofs > dd->piosize2kmax_dwords) { |
| for (j = pkt->index; j <= i; j++) { |
| ppd->sdma_descq[dtail].qw[0] |= |
| cpu_to_le64(1ULL << 14); |
| if (++dtail == ppd->sdma_descq_cnt) |
| dtail = 0; |
| } |
| } |
| c += i + 1 - pkt->index; |
| pkt->index = i + 1; /* index for next first */ |
| tail_c = dtail = tail; |
| gen_c = gen; |
| ofs = 0; /* reset for next packet */ |
| } |
| |
| ppd->sdma_descq_added += c; |
| nsent += c; |
| if (pkt->index == pkt->naddr) { |
| pkt->added = ppd->sdma_descq_added; |
| pkt->pq->added = pkt->added; |
| pkt->pq->num_pending--; |
| spin_lock(&pkt->pq->sent_lock); |
| pkt->pq->num_sending++; |
| list_move_tail(&pkt->list, &pkt->pq->sent); |
| spin_unlock(&pkt->pq->sent_lock); |
| } |
| if (!nfree || (nsent<<2) > ppd->sdma_descq_cnt) |
| break; |
| } |
| |
| /* advance the tail on the chip if necessary */ |
| if (ppd->sdma_descq_tail != tail_c) { |
| ppd->sdma_generation = gen_c; |
| dd->f_sdma_update_tail(ppd, tail_c); |
| } |
| |
| if (nfree && !list_empty(pktlist)) |
| goto retry; |
| } |
| |
| /* pq->lock must be held, get packets on the wire... */ |
| static int qib_user_sdma_push_pkts(struct qib_pportdata *ppd, |
| struct qib_user_sdma_queue *pq, |
| struct list_head *pktlist, int count) |
| { |
| unsigned long flags; |
| |
| if (unlikely(!(ppd->lflags & QIBL_LINKACTIVE))) |
| return -ECOMM; |
| |
| /* non-blocking mode */ |
| if (pq->sdma_rb_node->refcount > 1) { |
| spin_lock_irqsave(&ppd->sdma_lock, flags); |
| if (unlikely(!__qib_sdma_running(ppd))) { |
| spin_unlock_irqrestore(&ppd->sdma_lock, flags); |
| return -ECOMM; |
| } |
| pq->num_pending += count; |
| list_splice_tail_init(pktlist, &ppd->sdma_userpending); |
| qib_user_sdma_send_desc(ppd, &ppd->sdma_userpending); |
| spin_unlock_irqrestore(&ppd->sdma_lock, flags); |
| return 0; |
| } |
| |
| /* In this case, descriptors from this process are not |
| * linked to ppd pending queue, interrupt handler |
| * won't update this process, it is OK to directly |
| * modify without sdma lock. |
| */ |
| |
| |
| pq->num_pending += count; |
| /* |
| * Blocking mode for single rail process, we must |
| * release/regain sdma_lock to give other process |
| * chance to make progress. This is important for |
| * performance. |
| */ |
| do { |
| spin_lock_irqsave(&ppd->sdma_lock, flags); |
| if (unlikely(!__qib_sdma_running(ppd))) { |
| spin_unlock_irqrestore(&ppd->sdma_lock, flags); |
| return -ECOMM; |
| } |
| qib_user_sdma_send_desc(ppd, pktlist); |
| if (!list_empty(pktlist)) |
| qib_sdma_make_progress(ppd); |
| spin_unlock_irqrestore(&ppd->sdma_lock, flags); |
| } while (!list_empty(pktlist)); |
| |
| return 0; |
| } |
| |
| int qib_user_sdma_writev(struct qib_ctxtdata *rcd, |
| struct qib_user_sdma_queue *pq, |
| const struct iovec *iov, |
| unsigned long dim) |
| { |
| struct qib_devdata *dd = rcd->dd; |
| struct qib_pportdata *ppd = rcd->ppd; |
| int ret = 0; |
| struct list_head list; |
| int npkts = 0; |
| |
| INIT_LIST_HEAD(&list); |
| |
| mutex_lock(&pq->lock); |
| |
| /* why not -ECOMM like qib_user_sdma_push_pkts() below? */ |
| if (!qib_sdma_running(ppd)) |
| goto done_unlock; |
| |
| /* if I have packets not complete yet */ |
| if (pq->added > ppd->sdma_descq_removed) |
| qib_user_sdma_hwqueue_clean(ppd); |
| /* if I have complete packets to be freed */ |
| if (pq->num_sending) |
| qib_user_sdma_queue_clean(ppd, pq); |
| |
| while (dim) { |
| int mxp = 1; |
| int ndesc = 0; |
| |
| ret = qib_user_sdma_queue_pkts(dd, ppd, pq, |
| iov, dim, &list, &mxp, &ndesc); |
| if (ret < 0) |
| goto done_unlock; |
| else { |
| dim -= ret; |
| iov += ret; |
| } |
| |
| /* force packets onto the sdma hw queue... */ |
| if (!list_empty(&list)) { |
| /* |
| * Lazily clean hw queue. |
| */ |
| if (qib_sdma_descq_freecnt(ppd) < ndesc) { |
| qib_user_sdma_hwqueue_clean(ppd); |
| if (pq->num_sending) |
| qib_user_sdma_queue_clean(ppd, pq); |
| } |
| |
| ret = qib_user_sdma_push_pkts(ppd, pq, &list, mxp); |
| if (ret < 0) |
| goto done_unlock; |
| else { |
| npkts += mxp; |
| pq->counter += mxp; |
| } |
| } |
| } |
| |
| done_unlock: |
| if (!list_empty(&list)) |
| qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &list); |
| mutex_unlock(&pq->lock); |
| |
| return (ret < 0) ? ret : npkts; |
| } |
| |
| int qib_user_sdma_make_progress(struct qib_pportdata *ppd, |
| struct qib_user_sdma_queue *pq) |
| { |
| int ret = 0; |
| |
| mutex_lock(&pq->lock); |
| qib_user_sdma_hwqueue_clean(ppd); |
| ret = qib_user_sdma_queue_clean(ppd, pq); |
| mutex_unlock(&pq->lock); |
| |
| return ret; |
| } |
| |
| u32 qib_user_sdma_complete_counter(const struct qib_user_sdma_queue *pq) |
| { |
| return pq ? pq->sent_counter : 0; |
| } |
| |
| u32 qib_user_sdma_inflight_counter(struct qib_user_sdma_queue *pq) |
| { |
| return pq ? pq->counter : 0; |
| } |