| /* |
| * Xilinx Axi Ethernet device driver |
| * |
| * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi |
| * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> |
| * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. |
| * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> |
| * Copyright (c) 2010 - 2011 PetaLogix |
| * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. |
| * |
| * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 |
| * and Spartan6. |
| * |
| * TODO: |
| * - Add Axi Fifo support. |
| * - Factor out Axi DMA code into separate driver. |
| * - Test and fix basic multicast filtering. |
| * - Add support for extended multicast filtering. |
| * - Test basic VLAN support. |
| * - Add support for extended VLAN support. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_net.h> |
| #include <linux/of_platform.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_address.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/phy.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| |
| #include "xilinx_axienet.h" |
| |
| /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */ |
| #define TX_BD_NUM 64 |
| #define RX_BD_NUM 128 |
| |
| /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ |
| #define DRIVER_NAME "xaxienet" |
| #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" |
| #define DRIVER_VERSION "1.00a" |
| |
| #define AXIENET_REGS_N 32 |
| |
| /* Match table for of_platform binding */ |
| static const struct of_device_id axienet_of_match[] = { |
| { .compatible = "xlnx,axi-ethernet-1.00.a", }, |
| { .compatible = "xlnx,axi-ethernet-1.01.a", }, |
| { .compatible = "xlnx,axi-ethernet-2.01.a", }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(of, axienet_of_match); |
| |
| /* Option table for setting up Axi Ethernet hardware options */ |
| static struct axienet_option axienet_options[] = { |
| /* Turn on jumbo packet support for both Rx and Tx */ |
| { |
| .opt = XAE_OPTION_JUMBO, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_JUM_MASK, |
| }, { |
| .opt = XAE_OPTION_JUMBO, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_JUM_MASK, |
| }, { /* Turn on VLAN packet support for both Rx and Tx */ |
| .opt = XAE_OPTION_VLAN, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_VLAN_MASK, |
| }, { |
| .opt = XAE_OPTION_VLAN, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_VLAN_MASK, |
| }, { /* Turn on FCS stripping on receive packets */ |
| .opt = XAE_OPTION_FCS_STRIP, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_FCS_MASK, |
| }, { /* Turn on FCS insertion on transmit packets */ |
| .opt = XAE_OPTION_FCS_INSERT, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_FCS_MASK, |
| }, { /* Turn off length/type field checking on receive packets */ |
| .opt = XAE_OPTION_LENTYPE_ERR, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_LT_DIS_MASK, |
| }, { /* Turn on Rx flow control */ |
| .opt = XAE_OPTION_FLOW_CONTROL, |
| .reg = XAE_FCC_OFFSET, |
| .m_or = XAE_FCC_FCRX_MASK, |
| }, { /* Turn on Tx flow control */ |
| .opt = XAE_OPTION_FLOW_CONTROL, |
| .reg = XAE_FCC_OFFSET, |
| .m_or = XAE_FCC_FCTX_MASK, |
| }, { /* Turn on promiscuous frame filtering */ |
| .opt = XAE_OPTION_PROMISC, |
| .reg = XAE_FMI_OFFSET, |
| .m_or = XAE_FMI_PM_MASK, |
| }, { /* Enable transmitter */ |
| .opt = XAE_OPTION_TXEN, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_TX_MASK, |
| }, { /* Enable receiver */ |
| .opt = XAE_OPTION_RXEN, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_RX_MASK, |
| }, |
| {} |
| }; |
| |
| /** |
| * axienet_dma_in32 - Memory mapped Axi DMA register read |
| * @lp: Pointer to axienet local structure |
| * @reg: Address offset from the base address of the Axi DMA core |
| * |
| * Return: The contents of the Axi DMA register |
| * |
| * This function returns the contents of the corresponding Axi DMA register. |
| */ |
| static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) |
| { |
| return in_be32(lp->dma_regs + reg); |
| } |
| |
| /** |
| * axienet_dma_out32 - Memory mapped Axi DMA register write. |
| * @lp: Pointer to axienet local structure |
| * @reg: Address offset from the base address of the Axi DMA core |
| * @value: Value to be written into the Axi DMA register |
| * |
| * This function writes the desired value into the corresponding Axi DMA |
| * register. |
| */ |
| static inline void axienet_dma_out32(struct axienet_local *lp, |
| off_t reg, u32 value) |
| { |
| out_be32((lp->dma_regs + reg), value); |
| } |
| |
| /** |
| * axienet_dma_bd_release - Release buffer descriptor rings |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is used to release the descriptors allocated in |
| * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet |
| * driver stop api is called. |
| */ |
| static void axienet_dma_bd_release(struct net_device *ndev) |
| { |
| int i; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| for (i = 0; i < RX_BD_NUM; i++) { |
| dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys, |
| lp->max_frm_size, DMA_FROM_DEVICE); |
| dev_kfree_skb((struct sk_buff *) |
| (lp->rx_bd_v[i].sw_id_offset)); |
| } |
| |
| if (lp->rx_bd_v) { |
| dma_free_coherent(ndev->dev.parent, |
| sizeof(*lp->rx_bd_v) * RX_BD_NUM, |
| lp->rx_bd_v, |
| lp->rx_bd_p); |
| } |
| if (lp->tx_bd_v) { |
| dma_free_coherent(ndev->dev.parent, |
| sizeof(*lp->tx_bd_v) * TX_BD_NUM, |
| lp->tx_bd_v, |
| lp->tx_bd_p); |
| } |
| } |
| |
| /** |
| * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA |
| * @ndev: Pointer to the net_device structure |
| * |
| * Return: 0, on success -ENOMEM, on failure |
| * |
| * This function is called to initialize the Rx and Tx DMA descriptor |
| * rings. This initializes the descriptors with required default values |
| * and is called when Axi Ethernet driver reset is called. |
| */ |
| static int axienet_dma_bd_init(struct net_device *ndev) |
| { |
| u32 cr; |
| int i; |
| struct sk_buff *skb; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| /* Reset the indexes which are used for accessing the BDs */ |
| lp->tx_bd_ci = 0; |
| lp->tx_bd_tail = 0; |
| lp->rx_bd_ci = 0; |
| |
| /* Allocate the Tx and Rx buffer descriptors. */ |
| lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, |
| sizeof(*lp->tx_bd_v) * TX_BD_NUM, |
| &lp->tx_bd_p, GFP_KERNEL); |
| if (!lp->tx_bd_v) |
| goto out; |
| |
| lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, |
| sizeof(*lp->rx_bd_v) * RX_BD_NUM, |
| &lp->rx_bd_p, GFP_KERNEL); |
| if (!lp->rx_bd_v) |
| goto out; |
| |
| for (i = 0; i < TX_BD_NUM; i++) { |
| lp->tx_bd_v[i].next = lp->tx_bd_p + |
| sizeof(*lp->tx_bd_v) * |
| ((i + 1) % TX_BD_NUM); |
| } |
| |
| for (i = 0; i < RX_BD_NUM; i++) { |
| lp->rx_bd_v[i].next = lp->rx_bd_p + |
| sizeof(*lp->rx_bd_v) * |
| ((i + 1) % RX_BD_NUM); |
| |
| skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); |
| if (!skb) |
| goto out; |
| |
| lp->rx_bd_v[i].sw_id_offset = (u32) skb; |
| lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent, |
| skb->data, |
| lp->max_frm_size, |
| DMA_FROM_DEVICE); |
| lp->rx_bd_v[i].cntrl = lp->max_frm_size; |
| } |
| |
| /* Start updating the Rx channel control register */ |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| /* Update the interrupt coalesce count */ |
| cr = ((cr & ~XAXIDMA_COALESCE_MASK) | |
| ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT)); |
| /* Update the delay timer count */ |
| cr = ((cr & ~XAXIDMA_DELAY_MASK) | |
| (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
| /* Enable coalesce, delay timer and error interrupts */ |
| cr |= XAXIDMA_IRQ_ALL_MASK; |
| /* Write to the Rx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
| |
| /* Start updating the Tx channel control register */ |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| /* Update the interrupt coalesce count */ |
| cr = (((cr & ~XAXIDMA_COALESCE_MASK)) | |
| ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT)); |
| /* Update the delay timer count */ |
| cr = (((cr & ~XAXIDMA_DELAY_MASK)) | |
| (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
| /* Enable coalesce, delay timer and error interrupts */ |
| cr |= XAXIDMA_IRQ_ALL_MASK; |
| /* Write to the Tx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
| |
| /* Populate the tail pointer and bring the Rx Axi DMA engine out of |
| * halted state. This will make the Rx side ready for reception. |
| */ |
| axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, |
| cr | XAXIDMA_CR_RUNSTOP_MASK); |
| axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + |
| (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1))); |
| |
| /* Write to the RS (Run-stop) bit in the Tx channel control register. |
| * Tx channel is now ready to run. But only after we write to the |
| * tail pointer register that the Tx channel will start transmitting. |
| */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, |
| cr | XAXIDMA_CR_RUNSTOP_MASK); |
| |
| return 0; |
| out: |
| axienet_dma_bd_release(ndev); |
| return -ENOMEM; |
| } |
| |
| /** |
| * axienet_set_mac_address - Write the MAC address |
| * @ndev: Pointer to the net_device structure |
| * @address: 6 byte Address to be written as MAC address |
| * |
| * This function is called to initialize the MAC address of the Axi Ethernet |
| * core. It writes to the UAW0 and UAW1 registers of the core. |
| */ |
| static void axienet_set_mac_address(struct net_device *ndev, |
| const void *address) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (address) |
| memcpy(ndev->dev_addr, address, ETH_ALEN); |
| if (!is_valid_ether_addr(ndev->dev_addr)) |
| eth_hw_addr_random(ndev); |
| |
| /* Set up unicast MAC address filter set its mac address */ |
| axienet_iow(lp, XAE_UAW0_OFFSET, |
| (ndev->dev_addr[0]) | |
| (ndev->dev_addr[1] << 8) | |
| (ndev->dev_addr[2] << 16) | |
| (ndev->dev_addr[3] << 24)); |
| axienet_iow(lp, XAE_UAW1_OFFSET, |
| (((axienet_ior(lp, XAE_UAW1_OFFSET)) & |
| ~XAE_UAW1_UNICASTADDR_MASK) | |
| (ndev->dev_addr[4] | |
| (ndev->dev_addr[5] << 8)))); |
| } |
| |
| /** |
| * netdev_set_mac_address - Write the MAC address (from outside the driver) |
| * @ndev: Pointer to the net_device structure |
| * @p: 6 byte Address to be written as MAC address |
| * |
| * Return: 0 for all conditions. Presently, there is no failure case. |
| * |
| * This function is called to initialize the MAC address of the Axi Ethernet |
| * core. It calls the core specific axienet_set_mac_address. This is the |
| * function that goes into net_device_ops structure entry ndo_set_mac_address. |
| */ |
| static int netdev_set_mac_address(struct net_device *ndev, void *p) |
| { |
| struct sockaddr *addr = p; |
| axienet_set_mac_address(ndev, addr->sa_data); |
| return 0; |
| } |
| |
| /** |
| * axienet_set_multicast_list - Prepare the multicast table |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is called to initialize the multicast table during |
| * initialization. The Axi Ethernet basic multicast support has a four-entry |
| * multicast table which is initialized here. Additionally this function |
| * goes into the net_device_ops structure entry ndo_set_multicast_list. This |
| * means whenever the multicast table entries need to be updated this |
| * function gets called. |
| */ |
| static void axienet_set_multicast_list(struct net_device *ndev) |
| { |
| int i; |
| u32 reg, af0reg, af1reg; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) || |
| netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { |
| /* We must make the kernel realize we had to move into |
| * promiscuous mode. If it was a promiscuous mode request |
| * the flag is already set. If not we set it. |
| */ |
| ndev->flags |= IFF_PROMISC; |
| reg = axienet_ior(lp, XAE_FMI_OFFSET); |
| reg |= XAE_FMI_PM_MASK; |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); |
| } else if (!netdev_mc_empty(ndev)) { |
| struct netdev_hw_addr *ha; |
| |
| i = 0; |
| netdev_for_each_mc_addr(ha, ndev) { |
| if (i >= XAE_MULTICAST_CAM_TABLE_NUM) |
| break; |
| |
| af0reg = (ha->addr[0]); |
| af0reg |= (ha->addr[1] << 8); |
| af0reg |= (ha->addr[2] << 16); |
| af0reg |= (ha->addr[3] << 24); |
| |
| af1reg = (ha->addr[4]); |
| af1reg |= (ha->addr[5] << 8); |
| |
| reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; |
| reg |= i; |
| |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| axienet_iow(lp, XAE_AF0_OFFSET, af0reg); |
| axienet_iow(lp, XAE_AF1_OFFSET, af1reg); |
| i++; |
| } |
| } else { |
| reg = axienet_ior(lp, XAE_FMI_OFFSET); |
| reg &= ~XAE_FMI_PM_MASK; |
| |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| |
| for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { |
| reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; |
| reg |= i; |
| |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| axienet_iow(lp, XAE_AF0_OFFSET, 0); |
| axienet_iow(lp, XAE_AF1_OFFSET, 0); |
| } |
| |
| dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); |
| } |
| } |
| |
| /** |
| * axienet_setoptions - Set an Axi Ethernet option |
| * @ndev: Pointer to the net_device structure |
| * @options: Option to be enabled/disabled |
| * |
| * The Axi Ethernet core has multiple features which can be selectively turned |
| * on or off. The typical options could be jumbo frame option, basic VLAN |
| * option, promiscuous mode option etc. This function is used to set or clear |
| * these options in the Axi Ethernet hardware. This is done through |
| * axienet_option structure . |
| */ |
| static void axienet_setoptions(struct net_device *ndev, u32 options) |
| { |
| int reg; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct axienet_option *tp = &axienet_options[0]; |
| |
| while (tp->opt) { |
| reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); |
| if (options & tp->opt) |
| reg |= tp->m_or; |
| axienet_iow(lp, tp->reg, reg); |
| tp++; |
| } |
| |
| lp->options |= options; |
| } |
| |
| static void __axienet_device_reset(struct axienet_local *lp, off_t offset) |
| { |
| u32 timeout; |
| /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset |
| * process of Axi DMA takes a while to complete as all pending |
| * commands/transfers will be flushed or completed during this |
| * reset process. |
| */ |
| axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK); |
| timeout = DELAY_OF_ONE_MILLISEC; |
| while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) { |
| udelay(1); |
| if (--timeout == 0) { |
| netdev_err(lp->ndev, "%s: DMA reset timeout!\n", |
| __func__); |
| break; |
| } |
| } |
| } |
| |
| /** |
| * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is called to reset and initialize the Axi Ethernet core. This |
| * is typically called during initialization. It does a reset of the Axi DMA |
| * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines |
| * areconnected to Axi Ethernet reset lines, this in turn resets the Axi |
| * Ethernet core. No separate hardware reset is done for the Axi Ethernet |
| * core. |
| */ |
| static void axienet_device_reset(struct net_device *ndev) |
| { |
| u32 axienet_status; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET); |
| __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET); |
| |
| lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; |
| lp->options |= XAE_OPTION_VLAN; |
| lp->options &= (~XAE_OPTION_JUMBO); |
| |
| if ((ndev->mtu > XAE_MTU) && |
| (ndev->mtu <= XAE_JUMBO_MTU)) { |
| lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + |
| XAE_TRL_SIZE; |
| |
| if (lp->max_frm_size <= lp->rxmem) |
| lp->options |= XAE_OPTION_JUMBO; |
| } |
| |
| if (axienet_dma_bd_init(ndev)) { |
| netdev_err(ndev, "%s: descriptor allocation failed\n", |
| __func__); |
| } |
| |
| axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
| axienet_status &= ~XAE_RCW1_RX_MASK; |
| axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); |
| |
| axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
| if (axienet_status & XAE_INT_RXRJECT_MASK) |
| axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
| |
| axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
| |
| /* Sync default options with HW but leave receiver and |
| * transmitter disabled. |
| */ |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| axienet_set_mac_address(ndev, NULL); |
| axienet_set_multicast_list(ndev); |
| axienet_setoptions(ndev, lp->options); |
| |
| netif_trans_update(ndev); |
| } |
| |
| /** |
| * axienet_adjust_link - Adjust the PHY link speed/duplex. |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is called to change the speed and duplex setting after |
| * auto negotiation is done by the PHY. This is the function that gets |
| * registered with the PHY interface through the "of_phy_connect" call. |
| */ |
| static void axienet_adjust_link(struct net_device *ndev) |
| { |
| u32 emmc_reg; |
| u32 link_state; |
| u32 setspeed = 1; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct phy_device *phy = ndev->phydev; |
| |
| link_state = phy->speed | (phy->duplex << 1) | phy->link; |
| if (lp->last_link != link_state) { |
| if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) { |
| if (lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) |
| setspeed = 0; |
| } else { |
| if ((phy->speed == SPEED_1000) && |
| (lp->phy_mode == PHY_INTERFACE_MODE_MII)) |
| setspeed = 0; |
| } |
| |
| if (setspeed == 1) { |
| emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); |
| emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; |
| |
| switch (phy->speed) { |
| case SPEED_1000: |
| emmc_reg |= XAE_EMMC_LINKSPD_1000; |
| break; |
| case SPEED_100: |
| emmc_reg |= XAE_EMMC_LINKSPD_100; |
| break; |
| case SPEED_10: |
| emmc_reg |= XAE_EMMC_LINKSPD_10; |
| break; |
| default: |
| dev_err(&ndev->dev, "Speed other than 10, 100 " |
| "or 1Gbps is not supported\n"); |
| break; |
| } |
| |
| axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); |
| lp->last_link = link_state; |
| phy_print_status(phy); |
| } else { |
| netdev_err(ndev, |
| "Error setting Axi Ethernet mac speed\n"); |
| } |
| } |
| } |
| |
| /** |
| * axienet_start_xmit_done - Invoked once a transmit is completed by the |
| * Axi DMA Tx channel. |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is invoked from the Axi DMA Tx isr to notify the completion |
| * of transmit operation. It clears fields in the corresponding Tx BDs and |
| * unmaps the corresponding buffer so that CPU can regain ownership of the |
| * buffer. It finally invokes "netif_wake_queue" to restart transmission if |
| * required. |
| */ |
| static void axienet_start_xmit_done(struct net_device *ndev) |
| { |
| u32 size = 0; |
| u32 packets = 0; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct axidma_bd *cur_p; |
| unsigned int status = 0; |
| |
| cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; |
| status = cur_p->status; |
| while (status & XAXIDMA_BD_STS_COMPLETE_MASK) { |
| dma_unmap_single(ndev->dev.parent, cur_p->phys, |
| (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), |
| DMA_TO_DEVICE); |
| if (cur_p->app4) |
| dev_kfree_skb_irq((struct sk_buff *)cur_p->app4); |
| /*cur_p->phys = 0;*/ |
| cur_p->app0 = 0; |
| cur_p->app1 = 0; |
| cur_p->app2 = 0; |
| cur_p->app4 = 0; |
| cur_p->status = 0; |
| |
| size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; |
| packets++; |
| |
| ++lp->tx_bd_ci; |
| lp->tx_bd_ci %= TX_BD_NUM; |
| cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; |
| status = cur_p->status; |
| } |
| |
| ndev->stats.tx_packets += packets; |
| ndev->stats.tx_bytes += size; |
| netif_wake_queue(ndev); |
| } |
| |
| /** |
| * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy |
| * @lp: Pointer to the axienet_local structure |
| * @num_frag: The number of BDs to check for |
| * |
| * Return: 0, on success |
| * NETDEV_TX_BUSY, if any of the descriptors are not free |
| * |
| * This function is invoked before BDs are allocated and transmission starts. |
| * This function returns 0 if a BD or group of BDs can be allocated for |
| * transmission. If the BD or any of the BDs are not free the function |
| * returns a busy status. This is invoked from axienet_start_xmit. |
| */ |
| static inline int axienet_check_tx_bd_space(struct axienet_local *lp, |
| int num_frag) |
| { |
| struct axidma_bd *cur_p; |
| cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM]; |
| if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK) |
| return NETDEV_TX_BUSY; |
| return 0; |
| } |
| |
| /** |
| * axienet_start_xmit - Starts the transmission. |
| * @skb: sk_buff pointer that contains data to be Txed. |
| * @ndev: Pointer to net_device structure. |
| * |
| * Return: NETDEV_TX_OK, on success |
| * NETDEV_TX_BUSY, if any of the descriptors are not free |
| * |
| * This function is invoked from upper layers to initiate transmission. The |
| * function uses the next available free BDs and populates their fields to |
| * start the transmission. Additionally if checksum offloading is supported, |
| * it populates AXI Stream Control fields with appropriate values. |
| */ |
| static netdev_tx_t |
| axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| u32 ii; |
| u32 num_frag; |
| u32 csum_start_off; |
| u32 csum_index_off; |
| skb_frag_t *frag; |
| dma_addr_t tail_p; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct axidma_bd *cur_p; |
| |
| num_frag = skb_shinfo(skb)->nr_frags; |
| cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; |
| |
| if (axienet_check_tx_bd_space(lp, num_frag)) { |
| if (!netif_queue_stopped(ndev)) |
| netif_stop_queue(ndev); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { |
| /* Tx Full Checksum Offload Enabled */ |
| cur_p->app0 |= 2; |
| } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) { |
| csum_start_off = skb_transport_offset(skb); |
| csum_index_off = csum_start_off + skb->csum_offset; |
| /* Tx Partial Checksum Offload Enabled */ |
| cur_p->app0 |= 1; |
| cur_p->app1 = (csum_start_off << 16) | csum_index_off; |
| } |
| } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ |
| } |
| |
| cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; |
| cur_p->phys = dma_map_single(ndev->dev.parent, skb->data, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| |
| for (ii = 0; ii < num_frag; ii++) { |
| ++lp->tx_bd_tail; |
| lp->tx_bd_tail %= TX_BD_NUM; |
| cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; |
| frag = &skb_shinfo(skb)->frags[ii]; |
| cur_p->phys = dma_map_single(ndev->dev.parent, |
| skb_frag_address(frag), |
| skb_frag_size(frag), |
| DMA_TO_DEVICE); |
| cur_p->cntrl = skb_frag_size(frag); |
| } |
| |
| cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; |
| cur_p->app4 = (unsigned long)skb; |
| |
| tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; |
| /* Start the transfer */ |
| axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); |
| ++lp->tx_bd_tail; |
| lp->tx_bd_tail %= TX_BD_NUM; |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * axienet_recv - Is called from Axi DMA Rx Isr to complete the received |
| * BD processing. |
| * @ndev: Pointer to net_device structure. |
| * |
| * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It |
| * does minimal processing and invokes "netif_rx" to complete further |
| * processing. |
| */ |
| static void axienet_recv(struct net_device *ndev) |
| { |
| u32 length; |
| u32 csumstatus; |
| u32 size = 0; |
| u32 packets = 0; |
| dma_addr_t tail_p = 0; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct sk_buff *skb, *new_skb; |
| struct axidma_bd *cur_p; |
| |
| cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
| |
| while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { |
| tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; |
| skb = (struct sk_buff *) (cur_p->sw_id_offset); |
| length = cur_p->app4 & 0x0000FFFF; |
| |
| dma_unmap_single(ndev->dev.parent, cur_p->phys, |
| lp->max_frm_size, |
| DMA_FROM_DEVICE); |
| |
| skb_put(skb, length); |
| skb->protocol = eth_type_trans(skb, ndev); |
| /*skb_checksum_none_assert(skb);*/ |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* if we're doing Rx csum offload, set it up */ |
| if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { |
| csumstatus = (cur_p->app2 & |
| XAE_FULL_CSUM_STATUS_MASK) >> 3; |
| if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) || |
| (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 && |
| skb->protocol == htons(ETH_P_IP) && |
| skb->len > 64) { |
| skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } |
| |
| netif_rx(skb); |
| |
| size += length; |
| packets++; |
| |
| new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); |
| if (!new_skb) |
| return; |
| |
| cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data, |
| lp->max_frm_size, |
| DMA_FROM_DEVICE); |
| cur_p->cntrl = lp->max_frm_size; |
| cur_p->status = 0; |
| cur_p->sw_id_offset = (u32) new_skb; |
| |
| ++lp->rx_bd_ci; |
| lp->rx_bd_ci %= RX_BD_NUM; |
| cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
| } |
| |
| ndev->stats.rx_packets += packets; |
| ndev->stats.rx_bytes += size; |
| |
| if (tail_p) |
| axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); |
| } |
| |
| /** |
| * axienet_tx_irq - Tx Done Isr. |
| * @irq: irq number |
| * @_ndev: net_device pointer |
| * |
| * Return: IRQ_HANDLED for all cases. |
| * |
| * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done" |
| * to complete the BD processing. |
| */ |
| static irqreturn_t axienet_tx_irq(int irq, void *_ndev) |
| { |
| u32 cr; |
| unsigned int status; |
| struct net_device *ndev = _ndev; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) { |
| axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); |
| axienet_start_xmit_done(lp->ndev); |
| goto out; |
| } |
| if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
| dev_err(&ndev->dev, "No interrupts asserted in Tx path\n"); |
| if (status & XAXIDMA_IRQ_ERROR_MASK) { |
| dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status); |
| dev_err(&ndev->dev, "Current BD is at: 0x%x\n", |
| (lp->tx_bd_v[lp->tx_bd_ci]).phys); |
| |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| /* Disable coalesce, delay timer and error interrupts */ |
| cr &= (~XAXIDMA_IRQ_ALL_MASK); |
| /* Write to the Tx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
| |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| /* Disable coalesce, delay timer and error interrupts */ |
| cr &= (~XAXIDMA_IRQ_ALL_MASK); |
| /* Write to the Rx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
| |
| tasklet_schedule(&lp->dma_err_tasklet); |
| axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); |
| } |
| out: |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * axienet_rx_irq - Rx Isr. |
| * @irq: irq number |
| * @_ndev: net_device pointer |
| * |
| * Return: IRQ_HANDLED for all cases. |
| * |
| * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD |
| * processing. |
| */ |
| static irqreturn_t axienet_rx_irq(int irq, void *_ndev) |
| { |
| u32 cr; |
| unsigned int status; |
| struct net_device *ndev = _ndev; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) { |
| axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); |
| axienet_recv(lp->ndev); |
| goto out; |
| } |
| if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
| dev_err(&ndev->dev, "No interrupts asserted in Rx path\n"); |
| if (status & XAXIDMA_IRQ_ERROR_MASK) { |
| dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status); |
| dev_err(&ndev->dev, "Current BD is at: 0x%x\n", |
| (lp->rx_bd_v[lp->rx_bd_ci]).phys); |
| |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| /* Disable coalesce, delay timer and error interrupts */ |
| cr &= (~XAXIDMA_IRQ_ALL_MASK); |
| /* Finally write to the Tx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
| |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| /* Disable coalesce, delay timer and error interrupts */ |
| cr &= (~XAXIDMA_IRQ_ALL_MASK); |
| /* write to the Rx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
| |
| tasklet_schedule(&lp->dma_err_tasklet); |
| axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); |
| } |
| out: |
| return IRQ_HANDLED; |
| } |
| |
| static void axienet_dma_err_handler(unsigned long data); |
| |
| /** |
| * axienet_open - Driver open routine. |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0, on success. |
| * non-zero error value on failure |
| * |
| * This is the driver open routine. It calls phy_start to start the PHY device. |
| * It also allocates interrupt service routines, enables the interrupt lines |
| * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer |
| * descriptors are initialized. |
| */ |
| static int axienet_open(struct net_device *ndev) |
| { |
| int ret, mdio_mcreg; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct phy_device *phydev = NULL; |
| |
| dev_dbg(&ndev->dev, "axienet_open()\n"); |
| |
| mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
| ret = axienet_mdio_wait_until_ready(lp); |
| if (ret < 0) |
| return ret; |
| /* Disable the MDIO interface till Axi Ethernet Reset is completed. |
| * When we do an Axi Ethernet reset, it resets the complete core |
| * including the MDIO. If MDIO is not disabled when the reset |
| * process is started, MDIO will be broken afterwards. |
| */ |
| axienet_iow(lp, XAE_MDIO_MC_OFFSET, |
| (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK))); |
| axienet_device_reset(ndev); |
| /* Enable the MDIO */ |
| axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg); |
| ret = axienet_mdio_wait_until_ready(lp); |
| if (ret < 0) |
| return ret; |
| |
| if (lp->phy_node) { |
| phydev = of_phy_connect(lp->ndev, lp->phy_node, |
| axienet_adjust_link, 0, lp->phy_mode); |
| |
| if (!phydev) |
| dev_err(lp->dev, "of_phy_connect() failed\n"); |
| else |
| phy_start(phydev); |
| } |
| |
| /* Enable tasklets for Axi DMA error handling */ |
| tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler, |
| (unsigned long) lp); |
| |
| /* Enable interrupts for Axi DMA Tx */ |
| ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev); |
| if (ret) |
| goto err_tx_irq; |
| /* Enable interrupts for Axi DMA Rx */ |
| ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev); |
| if (ret) |
| goto err_rx_irq; |
| |
| return 0; |
| |
| err_rx_irq: |
| free_irq(lp->tx_irq, ndev); |
| err_tx_irq: |
| if (phydev) |
| phy_disconnect(phydev); |
| tasklet_kill(&lp->dma_err_tasklet); |
| dev_err(lp->dev, "request_irq() failed\n"); |
| return ret; |
| } |
| |
| /** |
| * axienet_stop - Driver stop routine. |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0, on success. |
| * |
| * This is the driver stop routine. It calls phy_disconnect to stop the PHY |
| * device. It also removes the interrupt handlers and disables the interrupts. |
| * The Axi DMA Tx/Rx BDs are released. |
| */ |
| static int axienet_stop(struct net_device *ndev) |
| { |
| u32 cr; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| dev_dbg(&ndev->dev, "axienet_close()\n"); |
| |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, |
| cr & (~XAXIDMA_CR_RUNSTOP_MASK)); |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, |
| cr & (~XAXIDMA_CR_RUNSTOP_MASK)); |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| |
| tasklet_kill(&lp->dma_err_tasklet); |
| |
| free_irq(lp->tx_irq, ndev); |
| free_irq(lp->rx_irq, ndev); |
| |
| if (ndev->phydev) |
| phy_disconnect(ndev->phydev); |
| |
| axienet_dma_bd_release(ndev); |
| return 0; |
| } |
| |
| /** |
| * axienet_change_mtu - Driver change mtu routine. |
| * @ndev: Pointer to net_device structure |
| * @new_mtu: New mtu value to be applied |
| * |
| * Return: Always returns 0 (success). |
| * |
| * This is the change mtu driver routine. It checks if the Axi Ethernet |
| * hardware supports jumbo frames before changing the mtu. This can be |
| * called only when the device is not up. |
| */ |
| static int axienet_change_mtu(struct net_device *ndev, int new_mtu) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (netif_running(ndev)) |
| return -EBUSY; |
| |
| if ((new_mtu + VLAN_ETH_HLEN + |
| XAE_TRL_SIZE) > lp->rxmem) |
| return -EINVAL; |
| |
| ndev->mtu = new_mtu; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /** |
| * axienet_poll_controller - Axi Ethernet poll mechanism. |
| * @ndev: Pointer to net_device structure |
| * |
| * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior |
| * to polling the ISRs and are enabled back after the polling is done. |
| */ |
| static void axienet_poll_controller(struct net_device *ndev) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| disable_irq(lp->tx_irq); |
| disable_irq(lp->rx_irq); |
| axienet_rx_irq(lp->tx_irq, ndev); |
| axienet_tx_irq(lp->rx_irq, ndev); |
| enable_irq(lp->tx_irq); |
| enable_irq(lp->rx_irq); |
| } |
| #endif |
| |
| static const struct net_device_ops axienet_netdev_ops = { |
| .ndo_open = axienet_open, |
| .ndo_stop = axienet_stop, |
| .ndo_start_xmit = axienet_start_xmit, |
| .ndo_change_mtu = axienet_change_mtu, |
| .ndo_set_mac_address = netdev_set_mac_address, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_rx_mode = axienet_set_multicast_list, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = axienet_poll_controller, |
| #endif |
| }; |
| |
| /** |
| * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. |
| * @ndev: Pointer to net_device structure |
| * @ed: Pointer to ethtool_drvinfo structure |
| * |
| * This implements ethtool command for getting the driver information. |
| * Issue "ethtool -i ethX" under linux prompt to execute this function. |
| */ |
| static void axienet_ethtools_get_drvinfo(struct net_device *ndev, |
| struct ethtool_drvinfo *ed) |
| { |
| strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); |
| strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); |
| } |
| |
| /** |
| * axienet_ethtools_get_regs_len - Get the total regs length present in the |
| * AxiEthernet core. |
| * @ndev: Pointer to net_device structure |
| * |
| * This implements ethtool command for getting the total register length |
| * information. |
| * |
| * Return: the total regs length |
| */ |
| static int axienet_ethtools_get_regs_len(struct net_device *ndev) |
| { |
| return sizeof(u32) * AXIENET_REGS_N; |
| } |
| |
| /** |
| * axienet_ethtools_get_regs - Dump the contents of all registers present |
| * in AxiEthernet core. |
| * @ndev: Pointer to net_device structure |
| * @regs: Pointer to ethtool_regs structure |
| * @ret: Void pointer used to return the contents of the registers. |
| * |
| * This implements ethtool command for getting the Axi Ethernet register dump. |
| * Issue "ethtool -d ethX" to execute this function. |
| */ |
| static void axienet_ethtools_get_regs(struct net_device *ndev, |
| struct ethtool_regs *regs, void *ret) |
| { |
| u32 *data = (u32 *) ret; |
| size_t len = sizeof(u32) * AXIENET_REGS_N; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| regs->version = 0; |
| regs->len = len; |
| |
| memset(data, 0, len); |
| data[0] = axienet_ior(lp, XAE_RAF_OFFSET); |
| data[1] = axienet_ior(lp, XAE_TPF_OFFSET); |
| data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); |
| data[3] = axienet_ior(lp, XAE_IS_OFFSET); |
| data[4] = axienet_ior(lp, XAE_IP_OFFSET); |
| data[5] = axienet_ior(lp, XAE_IE_OFFSET); |
| data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); |
| data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); |
| data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); |
| data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); |
| data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); |
| data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); |
| data[12] = axienet_ior(lp, XAE_PPST_OFFSET); |
| data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); |
| data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); |
| data[15] = axienet_ior(lp, XAE_TC_OFFSET); |
| data[16] = axienet_ior(lp, XAE_FCC_OFFSET); |
| data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); |
| data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); |
| data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
| data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); |
| data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); |
| data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); |
| data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET); |
| data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET); |
| data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET); |
| data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET); |
| data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); |
| data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); |
| data[29] = axienet_ior(lp, XAE_FMI_OFFSET); |
| data[30] = axienet_ior(lp, XAE_AF0_OFFSET); |
| data[31] = axienet_ior(lp, XAE_AF1_OFFSET); |
| } |
| |
| /** |
| * axienet_ethtools_get_pauseparam - Get the pause parameter setting for |
| * Tx and Rx paths. |
| * @ndev: Pointer to net_device structure |
| * @epauseparm: Pointer to ethtool_pauseparam structure. |
| * |
| * This implements ethtool command for getting axi ethernet pause frame |
| * setting. Issue "ethtool -a ethX" to execute this function. |
| */ |
| static void |
| axienet_ethtools_get_pauseparam(struct net_device *ndev, |
| struct ethtool_pauseparam *epauseparm) |
| { |
| u32 regval; |
| struct axienet_local *lp = netdev_priv(ndev); |
| epauseparm->autoneg = 0; |
| regval = axienet_ior(lp, XAE_FCC_OFFSET); |
| epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK; |
| epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK; |
| } |
| |
| /** |
| * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) |
| * settings. |
| * @ndev: Pointer to net_device structure |
| * @epauseparm:Pointer to ethtool_pauseparam structure |
| * |
| * This implements ethtool command for enabling flow control on Rx and Tx |
| * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this |
| * function. |
| * |
| * Return: 0 on success, -EFAULT if device is running |
| */ |
| static int |
| axienet_ethtools_set_pauseparam(struct net_device *ndev, |
| struct ethtool_pauseparam *epauseparm) |
| { |
| u32 regval = 0; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (netif_running(ndev)) { |
| netdev_err(ndev, |
| "Please stop netif before applying configuration\n"); |
| return -EFAULT; |
| } |
| |
| regval = axienet_ior(lp, XAE_FCC_OFFSET); |
| if (epauseparm->tx_pause) |
| regval |= XAE_FCC_FCTX_MASK; |
| else |
| regval &= ~XAE_FCC_FCTX_MASK; |
| if (epauseparm->rx_pause) |
| regval |= XAE_FCC_FCRX_MASK; |
| else |
| regval &= ~XAE_FCC_FCRX_MASK; |
| axienet_iow(lp, XAE_FCC_OFFSET, regval); |
| |
| return 0; |
| } |
| |
| /** |
| * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. |
| * @ndev: Pointer to net_device structure |
| * @ecoalesce: Pointer to ethtool_coalesce structure |
| * |
| * This implements ethtool command for getting the DMA interrupt coalescing |
| * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to |
| * execute this function. |
| * |
| * Return: 0 always |
| */ |
| static int axienet_ethtools_get_coalesce(struct net_device *ndev, |
| struct ethtool_coalesce *ecoalesce) |
| { |
| u32 regval = 0; |
| struct axienet_local *lp = netdev_priv(ndev); |
| regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK) |
| >> XAXIDMA_COALESCE_SHIFT; |
| regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK) |
| >> XAXIDMA_COALESCE_SHIFT; |
| return 0; |
| } |
| |
| /** |
| * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. |
| * @ndev: Pointer to net_device structure |
| * @ecoalesce: Pointer to ethtool_coalesce structure |
| * |
| * This implements ethtool command for setting the DMA interrupt coalescing |
| * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux |
| * prompt to execute this function. |
| * |
| * Return: 0, on success, Non-zero error value on failure. |
| */ |
| static int axienet_ethtools_set_coalesce(struct net_device *ndev, |
| struct ethtool_coalesce *ecoalesce) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (netif_running(ndev)) { |
| netdev_err(ndev, |
| "Please stop netif before applying configuration\n"); |
| return -EFAULT; |
| } |
| |
| if ((ecoalesce->rx_coalesce_usecs) || |
| (ecoalesce->rx_coalesce_usecs_irq) || |
| (ecoalesce->rx_max_coalesced_frames_irq) || |
| (ecoalesce->tx_coalesce_usecs) || |
| (ecoalesce->tx_coalesce_usecs_irq) || |
| (ecoalesce->tx_max_coalesced_frames_irq) || |
| (ecoalesce->stats_block_coalesce_usecs) || |
| (ecoalesce->use_adaptive_rx_coalesce) || |
| (ecoalesce->use_adaptive_tx_coalesce) || |
| (ecoalesce->pkt_rate_low) || |
| (ecoalesce->rx_coalesce_usecs_low) || |
| (ecoalesce->rx_max_coalesced_frames_low) || |
| (ecoalesce->tx_coalesce_usecs_low) || |
| (ecoalesce->tx_max_coalesced_frames_low) || |
| (ecoalesce->pkt_rate_high) || |
| (ecoalesce->rx_coalesce_usecs_high) || |
| (ecoalesce->rx_max_coalesced_frames_high) || |
| (ecoalesce->tx_coalesce_usecs_high) || |
| (ecoalesce->tx_max_coalesced_frames_high) || |
| (ecoalesce->rate_sample_interval)) |
| return -EOPNOTSUPP; |
| if (ecoalesce->rx_max_coalesced_frames) |
| lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; |
| if (ecoalesce->tx_max_coalesced_frames) |
| lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; |
| |
| return 0; |
| } |
| |
| static const struct ethtool_ops axienet_ethtool_ops = { |
| .get_drvinfo = axienet_ethtools_get_drvinfo, |
| .get_regs_len = axienet_ethtools_get_regs_len, |
| .get_regs = axienet_ethtools_get_regs, |
| .get_link = ethtool_op_get_link, |
| .get_pauseparam = axienet_ethtools_get_pauseparam, |
| .set_pauseparam = axienet_ethtools_set_pauseparam, |
| .get_coalesce = axienet_ethtools_get_coalesce, |
| .set_coalesce = axienet_ethtools_set_coalesce, |
| .get_link_ksettings = phy_ethtool_get_link_ksettings, |
| .set_link_ksettings = phy_ethtool_set_link_ksettings, |
| }; |
| |
| /** |
| * axienet_dma_err_handler - Tasklet handler for Axi DMA Error |
| * @data: Data passed |
| * |
| * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the |
| * Tx/Rx BDs. |
| */ |
| static void axienet_dma_err_handler(unsigned long data) |
| { |
| u32 axienet_status; |
| u32 cr, i; |
| int mdio_mcreg; |
| struct axienet_local *lp = (struct axienet_local *) data; |
| struct net_device *ndev = lp->ndev; |
| struct axidma_bd *cur_p; |
| |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
| axienet_mdio_wait_until_ready(lp); |
| /* Disable the MDIO interface till Axi Ethernet Reset is completed. |
| * When we do an Axi Ethernet reset, it resets the complete core |
| * including the MDIO. So if MDIO is not disabled when the reset |
| * process is started, MDIO will be broken afterwards. |
| */ |
| axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg & |
| ~XAE_MDIO_MC_MDIOEN_MASK)); |
| |
| __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET); |
| __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET); |
| |
| axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg); |
| axienet_mdio_wait_until_ready(lp); |
| |
| for (i = 0; i < TX_BD_NUM; i++) { |
| cur_p = &lp->tx_bd_v[i]; |
| if (cur_p->phys) |
| dma_unmap_single(ndev->dev.parent, cur_p->phys, |
| (cur_p->cntrl & |
| XAXIDMA_BD_CTRL_LENGTH_MASK), |
| DMA_TO_DEVICE); |
| if (cur_p->app4) |
| dev_kfree_skb_irq((struct sk_buff *) cur_p->app4); |
| cur_p->phys = 0; |
| cur_p->cntrl = 0; |
| cur_p->status = 0; |
| cur_p->app0 = 0; |
| cur_p->app1 = 0; |
| cur_p->app2 = 0; |
| cur_p->app3 = 0; |
| cur_p->app4 = 0; |
| cur_p->sw_id_offset = 0; |
| } |
| |
| for (i = 0; i < RX_BD_NUM; i++) { |
| cur_p = &lp->rx_bd_v[i]; |
| cur_p->status = 0; |
| cur_p->app0 = 0; |
| cur_p->app1 = 0; |
| cur_p->app2 = 0; |
| cur_p->app3 = 0; |
| cur_p->app4 = 0; |
| } |
| |
| lp->tx_bd_ci = 0; |
| lp->tx_bd_tail = 0; |
| lp->rx_bd_ci = 0; |
| |
| /* Start updating the Rx channel control register */ |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| /* Update the interrupt coalesce count */ |
| cr = ((cr & ~XAXIDMA_COALESCE_MASK) | |
| (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT)); |
| /* Update the delay timer count */ |
| cr = ((cr & ~XAXIDMA_DELAY_MASK) | |
| (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
| /* Enable coalesce, delay timer and error interrupts */ |
| cr |= XAXIDMA_IRQ_ALL_MASK; |
| /* Finally write to the Rx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
| |
| /* Start updating the Tx channel control register */ |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| /* Update the interrupt coalesce count */ |
| cr = (((cr & ~XAXIDMA_COALESCE_MASK)) | |
| (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT)); |
| /* Update the delay timer count */ |
| cr = (((cr & ~XAXIDMA_DELAY_MASK)) | |
| (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
| /* Enable coalesce, delay timer and error interrupts */ |
| cr |= XAXIDMA_IRQ_ALL_MASK; |
| /* Finally write to the Tx channel control register */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
| |
| /* Populate the tail pointer and bring the Rx Axi DMA engine out of |
| * halted state. This will make the Rx side ready for reception. |
| */ |
| axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, |
| cr | XAXIDMA_CR_RUNSTOP_MASK); |
| axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + |
| (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1))); |
| |
| /* Write to the RS (Run-stop) bit in the Tx channel control register. |
| * Tx channel is now ready to run. But only after we write to the |
| * tail pointer register that the Tx channel will start transmitting |
| */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, |
| cr | XAXIDMA_CR_RUNSTOP_MASK); |
| |
| axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
| axienet_status &= ~XAE_RCW1_RX_MASK; |
| axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); |
| |
| axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
| if (axienet_status & XAE_INT_RXRJECT_MASK) |
| axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
| axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
| |
| /* Sync default options with HW but leave receiver and |
| * transmitter disabled. |
| */ |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| axienet_set_mac_address(ndev, NULL); |
| axienet_set_multicast_list(ndev); |
| axienet_setoptions(ndev, lp->options); |
| } |
| |
| /** |
| * axienet_probe - Axi Ethernet probe function. |
| * @pdev: Pointer to platform device structure. |
| * |
| * Return: 0, on success |
| * Non-zero error value on failure. |
| * |
| * This is the probe routine for Axi Ethernet driver. This is called before |
| * any other driver routines are invoked. It allocates and sets up the Ethernet |
| * device. Parses through device tree and populates fields of |
| * axienet_local. It registers the Ethernet device. |
| */ |
| static int axienet_probe(struct platform_device *pdev) |
| { |
| int ret; |
| struct device_node *np; |
| struct axienet_local *lp; |
| struct net_device *ndev; |
| const void *mac_addr; |
| struct resource *ethres, dmares; |
| u32 value; |
| |
| ndev = alloc_etherdev(sizeof(*lp)); |
| if (!ndev) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, ndev); |
| |
| SET_NETDEV_DEV(ndev, &pdev->dev); |
| ndev->flags &= ~IFF_MULTICAST; /* clear multicast */ |
| ndev->features = NETIF_F_SG; |
| ndev->netdev_ops = &axienet_netdev_ops; |
| ndev->ethtool_ops = &axienet_ethtool_ops; |
| |
| /* MTU range: 64 - 9000 */ |
| ndev->min_mtu = 64; |
| ndev->max_mtu = XAE_JUMBO_MTU; |
| |
| lp = netdev_priv(ndev); |
| lp->ndev = ndev; |
| lp->dev = &pdev->dev; |
| lp->options = XAE_OPTION_DEFAULTS; |
| /* Map device registers */ |
| ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| lp->regs = devm_ioremap_resource(&pdev->dev, ethres); |
| if (IS_ERR(lp->regs)) { |
| dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n"); |
| ret = PTR_ERR(lp->regs); |
| goto free_netdev; |
| } |
| |
| /* Setup checksum offload, but default to off if not specified */ |
| lp->features = 0; |
| |
| ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); |
| if (!ret) { |
| switch (value) { |
| case 1: |
| lp->csum_offload_on_tx_path = |
| XAE_FEATURE_PARTIAL_TX_CSUM; |
| lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; |
| /* Can checksum TCP/UDP over IPv4. */ |
| ndev->features |= NETIF_F_IP_CSUM; |
| break; |
| case 2: |
| lp->csum_offload_on_tx_path = |
| XAE_FEATURE_FULL_TX_CSUM; |
| lp->features |= XAE_FEATURE_FULL_TX_CSUM; |
| /* Can checksum TCP/UDP over IPv4. */ |
| ndev->features |= NETIF_F_IP_CSUM; |
| break; |
| default: |
| lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD; |
| } |
| } |
| ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); |
| if (!ret) { |
| switch (value) { |
| case 1: |
| lp->csum_offload_on_rx_path = |
| XAE_FEATURE_PARTIAL_RX_CSUM; |
| lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; |
| break; |
| case 2: |
| lp->csum_offload_on_rx_path = |
| XAE_FEATURE_FULL_RX_CSUM; |
| lp->features |= XAE_FEATURE_FULL_RX_CSUM; |
| break; |
| default: |
| lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD; |
| } |
| } |
| /* For supporting jumbo frames, the Axi Ethernet hardware must have |
| * a larger Rx/Tx Memory. Typically, the size must be large so that |
| * we can enable jumbo option and start supporting jumbo frames. |
| * Here we check for memory allocated for Rx/Tx in the hardware from |
| * the device-tree and accordingly set flags. |
| */ |
| of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); |
| |
| /* Start with the proprietary, and broken phy_type */ |
| ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); |
| if (!ret) { |
| netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); |
| switch (value) { |
| case XAE_PHY_TYPE_MII: |
| lp->phy_mode = PHY_INTERFACE_MODE_MII; |
| break; |
| case XAE_PHY_TYPE_GMII: |
| lp->phy_mode = PHY_INTERFACE_MODE_GMII; |
| break; |
| case XAE_PHY_TYPE_RGMII_2_0: |
| lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; |
| break; |
| case XAE_PHY_TYPE_SGMII: |
| lp->phy_mode = PHY_INTERFACE_MODE_SGMII; |
| break; |
| case XAE_PHY_TYPE_1000BASE_X: |
| lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; |
| break; |
| default: |
| ret = -EINVAL; |
| goto free_netdev; |
| } |
| } else { |
| lp->phy_mode = of_get_phy_mode(pdev->dev.of_node); |
| if (lp->phy_mode < 0) { |
| ret = -EINVAL; |
| goto free_netdev; |
| } |
| } |
| |
| /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ |
| np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); |
| if (!np) { |
| dev_err(&pdev->dev, "could not find DMA node\n"); |
| ret = -ENODEV; |
| goto free_netdev; |
| } |
| ret = of_address_to_resource(np, 0, &dmares); |
| if (ret) { |
| dev_err(&pdev->dev, "unable to get DMA resource\n"); |
| goto free_netdev; |
| } |
| lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares); |
| if (IS_ERR(lp->dma_regs)) { |
| dev_err(&pdev->dev, "could not map DMA regs\n"); |
| ret = PTR_ERR(lp->dma_regs); |
| goto free_netdev; |
| } |
| lp->rx_irq = irq_of_parse_and_map(np, 1); |
| lp->tx_irq = irq_of_parse_and_map(np, 0); |
| of_node_put(np); |
| if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) { |
| dev_err(&pdev->dev, "could not determine irqs\n"); |
| ret = -ENOMEM; |
| goto free_netdev; |
| } |
| |
| /* Retrieve the MAC address */ |
| mac_addr = of_get_mac_address(pdev->dev.of_node); |
| if (!mac_addr) { |
| dev_err(&pdev->dev, "could not find MAC address\n"); |
| goto free_netdev; |
| } |
| axienet_set_mac_address(ndev, mac_addr); |
| |
| lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; |
| lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; |
| |
| lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); |
| if (lp->phy_node) { |
| ret = axienet_mdio_setup(lp, pdev->dev.of_node); |
| if (ret) |
| dev_warn(&pdev->dev, "error registering MDIO bus\n"); |
| } |
| |
| ret = register_netdev(lp->ndev); |
| if (ret) { |
| dev_err(lp->dev, "register_netdev() error (%i)\n", ret); |
| goto free_netdev; |
| } |
| |
| return 0; |
| |
| free_netdev: |
| free_netdev(ndev); |
| |
| return ret; |
| } |
| |
| static int axienet_remove(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| axienet_mdio_teardown(lp); |
| unregister_netdev(ndev); |
| |
| of_node_put(lp->phy_node); |
| lp->phy_node = NULL; |
| |
| free_netdev(ndev); |
| |
| return 0; |
| } |
| |
| static struct platform_driver axienet_driver = { |
| .probe = axienet_probe, |
| .remove = axienet_remove, |
| .driver = { |
| .name = "xilinx_axienet", |
| .of_match_table = axienet_of_match, |
| }, |
| }; |
| |
| module_platform_driver(axienet_driver); |
| |
| MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); |
| MODULE_AUTHOR("Xilinx"); |
| MODULE_LICENSE("GPL"); |