blob: b52cfdefecbfe9f760b569baf757d2228fe0c6af [file] [log] [blame]
/*
* tools/testing/selftests/kvm/lib/kvm_util.c
*
* Copyright (C) 2018, Google LLC.
*
* This work is licensed under the terms of the GNU GPL, version 2.
*/
#include "test_util.h"
#include "kvm_util.h"
#include "kvm_util_internal.h"
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <linux/kernel.h>
#define KVM_UTIL_PGS_PER_HUGEPG 512
#define KVM_UTIL_MIN_PFN 2
/* Aligns x up to the next multiple of size. Size must be a power of 2. */
static void *align(void *x, size_t size)
{
size_t mask = size - 1;
TEST_ASSERT(size != 0 && !(size & (size - 1)),
"size not a power of 2: %lu", size);
return (void *) (((size_t) x + mask) & ~mask);
}
/*
* Capability
*
* Input Args:
* cap - Capability
*
* Output Args: None
*
* Return:
* On success, the Value corresponding to the capability (KVM_CAP_*)
* specified by the value of cap. On failure a TEST_ASSERT failure
* is produced.
*
* Looks up and returns the value corresponding to the capability
* (KVM_CAP_*) given by cap.
*/
int kvm_check_cap(long cap)
{
int ret;
int kvm_fd;
kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
if (kvm_fd < 0)
exit(KSFT_SKIP);
ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
" rc: %i errno: %i", ret, errno);
close(kvm_fd);
return ret;
}
/* VM Enable Capability
*
* Input Args:
* vm - Virtual Machine
* cap - Capability
*
* Output Args: None
*
* Return: On success, 0. On failure a TEST_ASSERT failure is produced.
*
* Enables a capability (KVM_CAP_*) on the VM.
*/
int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
{
int ret;
ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
" rc: %i errno: %i", ret, errno);
return ret;
}
static void vm_open(struct kvm_vm *vm, int perm, unsigned long type)
{
vm->kvm_fd = open(KVM_DEV_PATH, perm);
if (vm->kvm_fd < 0)
exit(KSFT_SKIP);
vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, type);
TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
"rc: %i errno: %i", vm->fd, errno);
}
const char * const vm_guest_mode_string[] = {
"PA-bits:52, VA-bits:48, 4K pages",
"PA-bits:52, VA-bits:48, 64K pages",
"PA-bits:48, VA-bits:48, 4K pages",
"PA-bits:48, VA-bits:48, 64K pages",
"PA-bits:40, VA-bits:48, 4K pages",
"PA-bits:40, VA-bits:48, 64K pages",
};
_Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
"Missing new mode strings?");
/*
* VM Create
*
* Input Args:
* mode - VM Mode (e.g. VM_MODE_P52V48_4K)
* phy_pages - Physical memory pages
* perm - permission
*
* Output Args: None
*
* Return:
* Pointer to opaque structure that describes the created VM.
*
* Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
* When phy_pages is non-zero, a memory region of phy_pages physical pages
* is created and mapped starting at guest physical address 0. The file
* descriptor to control the created VM is created with the permissions
* given by perm (e.g. O_RDWR).
*/
struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages,
int perm, unsigned long type)
{
struct kvm_vm *vm;
int kvm_fd;
vm = calloc(1, sizeof(*vm));
TEST_ASSERT(vm != NULL, "Insufficient Memory");
vm->mode = mode;
vm->type = type;
vm_open(vm, perm, type);
/* Setup mode specific traits. */
switch (vm->mode) {
case VM_MODE_P52V48_4K:
vm->pgtable_levels = 4;
vm->pa_bits = 52;
vm->va_bits = 48;
vm->page_size = 0x1000;
vm->page_shift = 12;
break;
case VM_MODE_P52V48_64K:
vm->pgtable_levels = 3;
vm->pa_bits = 52;
vm->va_bits = 48;
vm->page_size = 0x10000;
vm->page_shift = 16;
break;
case VM_MODE_P48V48_4K:
vm->pgtable_levels = 4;
vm->pa_bits = 48;
vm->va_bits = 48;
vm->page_size = 0x1000;
vm->page_shift = 12;
break;
case VM_MODE_P48V48_64K:
vm->pgtable_levels = 3;
vm->pa_bits = 48;
vm->va_bits = 48;
vm->page_size = 0x10000;
vm->page_shift = 16;
break;
case VM_MODE_P40V48_4K:
vm->pgtable_levels = 4;
vm->pa_bits = 40;
vm->va_bits = 48;
vm->page_size = 0x1000;
vm->page_shift = 12;
break;
case VM_MODE_P40V48_64K:
vm->pgtable_levels = 3;
vm->pa_bits = 40;
vm->va_bits = 48;
vm->page_size = 0x10000;
vm->page_shift = 16;
break;
default:
TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
}
/* Limit to VA-bit canonical virtual addresses. */
vm->vpages_valid = sparsebit_alloc();
sparsebit_set_num(vm->vpages_valid,
0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
sparsebit_set_num(vm->vpages_valid,
(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
/* Limit physical addresses to PA-bits. */
vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
/* Allocate and setup memory for guest. */
vm->vpages_mapped = sparsebit_alloc();
if (phy_pages != 0)
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
0, 0, phy_pages, 0);
return vm;
}
struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
{
return _vm_create(mode, phy_pages, perm, 0);
}
/*
* VM Restart
*
* Input Args:
* vm - VM that has been released before
* perm - permission
*
* Output Args: None
*
* Reopens the file descriptors associated to the VM and reinstates the
* global state, such as the irqchip and the memory regions that are mapped
* into the guest.
*/
void kvm_vm_restart(struct kvm_vm *vmp, int perm)
{
struct userspace_mem_region *region;
vm_open(vmp, perm, vmp->type);
if (vmp->has_irqchip)
vm_create_irqchip(vmp);
for (region = vmp->userspace_mem_region_head; region;
region = region->next) {
int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
" rc: %i errno: %i\n"
" slot: %u flags: 0x%x\n"
" guest_phys_addr: 0x%lx size: 0x%lx",
ret, errno, region->region.slot,
region->region.flags,
region->region.guest_phys_addr,
region->region.memory_size);
}
}
void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
{
struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
int ret;
ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
strerror(-ret));
}
void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
uint64_t first_page, uint32_t num_pages)
{
struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
.first_page = first_page,
.num_pages = num_pages };
int ret;
ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
strerror(-ret));
}
/*
* Userspace Memory Region Find
*
* Input Args:
* vm - Virtual Machine
* start - Starting VM physical address
* end - Ending VM physical address, inclusive.
*
* Output Args: None
*
* Return:
* Pointer to overlapping region, NULL if no such region.
*
* Searches for a region with any physical memory that overlaps with
* any portion of the guest physical addresses from start to end
* inclusive. If multiple overlapping regions exist, a pointer to any
* of the regions is returned. Null is returned only when no overlapping
* region exists.
*/
static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
{
struct userspace_mem_region *region;
for (region = vm->userspace_mem_region_head; region;
region = region->next) {
uint64_t existing_start = region->region.guest_phys_addr;
uint64_t existing_end = region->region.guest_phys_addr
+ region->region.memory_size - 1;
if (start <= existing_end && end >= existing_start)
return region;
}
return NULL;
}
/*
* KVM Userspace Memory Region Find
*
* Input Args:
* vm - Virtual Machine
* start - Starting VM physical address
* end - Ending VM physical address, inclusive.
*
* Output Args: None
*
* Return:
* Pointer to overlapping region, NULL if no such region.
*
* Public interface to userspace_mem_region_find. Allows tests to look up
* the memslot datastructure for a given range of guest physical memory.
*/
struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
uint64_t end)
{
struct userspace_mem_region *region;
region = userspace_mem_region_find(vm, start, end);
if (!region)
return NULL;
return &region->region;
}
/*
* VCPU Find
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
*
* Output Args: None
*
* Return:
* Pointer to VCPU structure
*
* Locates a vcpu structure that describes the VCPU specified by vcpuid and
* returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
* for the specified vcpuid.
*/
struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpup;
for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
if (vcpup->id == vcpuid)
return vcpup;
}
return NULL;
}
/*
* VM VCPU Remove
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
*
* Output Args: None
*
* Return: None, TEST_ASSERT failures for all error conditions
*
* Within the VM specified by vm, removes the VCPU given by vcpuid.
*/
static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
ret = munmap(vcpu->state, sizeof(*vcpu->state));
TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
"errno: %i", ret, errno);
close(vcpu->fd);
TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
"errno: %i", ret, errno);
if (vcpu->next)
vcpu->next->prev = vcpu->prev;
if (vcpu->prev)
vcpu->prev->next = vcpu->next;
else
vm->vcpu_head = vcpu->next;
free(vcpu);
}
void kvm_vm_release(struct kvm_vm *vmp)
{
int ret;
while (vmp->vcpu_head)
vm_vcpu_rm(vmp, vmp->vcpu_head->id);
ret = close(vmp->fd);
TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
" vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
close(vmp->kvm_fd);
TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
" vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
}
/*
* Destroys and frees the VM pointed to by vmp.
*/
void kvm_vm_free(struct kvm_vm *vmp)
{
int ret;
if (vmp == NULL)
return;
/* Free userspace_mem_regions. */
while (vmp->userspace_mem_region_head) {
struct userspace_mem_region *region
= vmp->userspace_mem_region_head;
region->region.memory_size = 0;
ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
&region->region);
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
"rc: %i errno: %i", ret, errno);
vmp->userspace_mem_region_head = region->next;
sparsebit_free(&region->unused_phy_pages);
ret = munmap(region->mmap_start, region->mmap_size);
TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
ret, errno);
free(region);
}
/* Free sparsebit arrays. */
sparsebit_free(&vmp->vpages_valid);
sparsebit_free(&vmp->vpages_mapped);
kvm_vm_release(vmp);
/* Free the structure describing the VM. */
free(vmp);
}
/*
* Memory Compare, host virtual to guest virtual
*
* Input Args:
* hva - Starting host virtual address
* vm - Virtual Machine
* gva - Starting guest virtual address
* len - number of bytes to compare
*
* Output Args: None
*
* Input/Output Args: None
*
* Return:
* Returns 0 if the bytes starting at hva for a length of len
* are equal the guest virtual bytes starting at gva. Returns
* a value < 0, if bytes at hva are less than those at gva.
* Otherwise a value > 0 is returned.
*
* Compares the bytes starting at the host virtual address hva, for
* a length of len, to the guest bytes starting at the guest virtual
* address given by gva.
*/
int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
{
size_t amt;
/*
* Compare a batch of bytes until either a match is found
* or all the bytes have been compared.
*/
for (uintptr_t offset = 0; offset < len; offset += amt) {
uintptr_t ptr1 = (uintptr_t)hva + offset;
/*
* Determine host address for guest virtual address
* at offset.
*/
uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
/*
* Determine amount to compare on this pass.
* Don't allow the comparsion to cross a page boundary.
*/
amt = len - offset;
if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
amt = vm->page_size - (ptr1 % vm->page_size);
if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
amt = vm->page_size - (ptr2 % vm->page_size);
assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
/*
* Perform the comparison. If there is a difference
* return that result to the caller, otherwise need
* to continue on looking for a mismatch.
*/
int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
if (ret != 0)
return ret;
}
/*
* No mismatch found. Let the caller know the two memory
* areas are equal.
*/
return 0;
}
/*
* VM Userspace Memory Region Add
*
* Input Args:
* vm - Virtual Machine
* backing_src - Storage source for this region.
* NULL to use anonymous memory.
* guest_paddr - Starting guest physical address
* slot - KVM region slot
* npages - Number of physical pages
* flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
*
* Output Args: None
*
* Return: None
*
* Allocates a memory area of the number of pages specified by npages
* and maps it to the VM specified by vm, at a starting physical address
* given by guest_paddr. The region is created with a KVM region slot
* given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
* region is created with the flags given by flags.
*/
void vm_userspace_mem_region_add(struct kvm_vm *vm,
enum vm_mem_backing_src_type src_type,
uint64_t guest_paddr, uint32_t slot, uint64_t npages,
uint32_t flags)
{
int ret;
unsigned long pmem_size = 0;
struct userspace_mem_region *region;
size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
"address not on a page boundary.\n"
" guest_paddr: 0x%lx vm->page_size: 0x%x",
guest_paddr, vm->page_size);
TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
<= vm->max_gfn, "Physical range beyond maximum "
"supported physical address,\n"
" guest_paddr: 0x%lx npages: 0x%lx\n"
" vm->max_gfn: 0x%lx vm->page_size: 0x%x",
guest_paddr, npages, vm->max_gfn, vm->page_size);
/*
* Confirm a mem region with an overlapping address doesn't
* already exist.
*/
region = (struct userspace_mem_region *) userspace_mem_region_find(
vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
if (region != NULL)
TEST_ASSERT(false, "overlapping userspace_mem_region already "
"exists\n"
" requested guest_paddr: 0x%lx npages: 0x%lx "
"page_size: 0x%x\n"
" existing guest_paddr: 0x%lx size: 0x%lx",
guest_paddr, npages, vm->page_size,
(uint64_t) region->region.guest_phys_addr,
(uint64_t) region->region.memory_size);
/* Confirm no region with the requested slot already exists. */
for (region = vm->userspace_mem_region_head; region;
region = region->next) {
if (region->region.slot == slot)
break;
}
if (region != NULL)
TEST_ASSERT(false, "A mem region with the requested slot "
"already exists.\n"
" requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
" existing slot: %u paddr: 0x%lx size: 0x%lx",
slot, guest_paddr, npages,
region->region.slot,
(uint64_t) region->region.guest_phys_addr,
(uint64_t) region->region.memory_size);
/* Allocate and initialize new mem region structure. */
region = calloc(1, sizeof(*region));
TEST_ASSERT(region != NULL, "Insufficient Memory");
region->mmap_size = npages * vm->page_size;
/* Enough memory to align up to a huge page. */
if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
region->mmap_size += huge_page_size;
region->mmap_start = mmap(NULL, region->mmap_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS
| (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
-1, 0);
TEST_ASSERT(region->mmap_start != MAP_FAILED,
"test_malloc failed, mmap_start: %p errno: %i",
region->mmap_start, errno);
/* Align THP allocation up to start of a huge page. */
region->host_mem = align(region->mmap_start,
src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1);
/* As needed perform madvise */
if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
ret = madvise(region->host_mem, npages * vm->page_size,
src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
TEST_ASSERT(ret == 0, "madvise failed,\n"
" addr: %p\n"
" length: 0x%lx\n"
" src_type: %x",
region->host_mem, npages * vm->page_size, src_type);
}
region->unused_phy_pages = sparsebit_alloc();
sparsebit_set_num(region->unused_phy_pages,
guest_paddr >> vm->page_shift, npages);
region->region.slot = slot;
region->region.flags = flags;
region->region.guest_phys_addr = guest_paddr;
region->region.memory_size = npages * vm->page_size;
region->region.userspace_addr = (uintptr_t) region->host_mem;
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
" rc: %i errno: %i\n"
" slot: %u flags: 0x%x\n"
" guest_phys_addr: 0x%lx size: 0x%lx",
ret, errno, slot, flags,
guest_paddr, (uint64_t) region->region.memory_size);
/* Add to linked-list of memory regions. */
if (vm->userspace_mem_region_head)
vm->userspace_mem_region_head->prev = region;
region->next = vm->userspace_mem_region_head;
vm->userspace_mem_region_head = region;
}
/*
* Memslot to region
*
* Input Args:
* vm - Virtual Machine
* memslot - KVM memory slot ID
*
* Output Args: None
*
* Return:
* Pointer to memory region structure that describe memory region
* using kvm memory slot ID given by memslot. TEST_ASSERT failure
* on error (e.g. currently no memory region using memslot as a KVM
* memory slot ID).
*/
static struct userspace_mem_region *
memslot2region(struct kvm_vm *vm, uint32_t memslot)
{
struct userspace_mem_region *region;
for (region = vm->userspace_mem_region_head; region;
region = region->next) {
if (region->region.slot == memslot)
break;
}
if (region == NULL) {
fprintf(stderr, "No mem region with the requested slot found,\n"
" requested slot: %u\n", memslot);
fputs("---- vm dump ----\n", stderr);
vm_dump(stderr, vm, 2);
TEST_ASSERT(false, "Mem region not found");
}
return region;
}
/*
* VM Memory Region Flags Set
*
* Input Args:
* vm - Virtual Machine
* flags - Starting guest physical address
*
* Output Args: None
*
* Return: None
*
* Sets the flags of the memory region specified by the value of slot,
* to the values given by flags.
*/
void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
{
int ret;
struct userspace_mem_region *region;
region = memslot2region(vm, slot);
region->region.flags = flags;
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
" rc: %i errno: %i slot: %u flags: 0x%x",
ret, errno, slot, flags);
}
/*
* VCPU mmap Size
*
* Input Args: None
*
* Output Args: None
*
* Return:
* Size of VCPU state
*
* Returns the size of the structure pointed to by the return value
* of vcpu_state().
*/
static int vcpu_mmap_sz(void)
{
int dev_fd, ret;
dev_fd = open(KVM_DEV_PATH, O_RDONLY);
if (dev_fd < 0)
exit(KSFT_SKIP);
ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
TEST_ASSERT(ret >= sizeof(struct kvm_run),
"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
__func__, ret, errno);
close(dev_fd);
return ret;
}
/*
* VM VCPU Add
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
*
* Output Args: None
*
* Return: None
*
* Creates and adds to the VM specified by vm and virtual CPU with
* the ID given by vcpuid.
*/
void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot,
int gdt_memslot)
{
struct vcpu *vcpu;
/* Confirm a vcpu with the specified id doesn't already exist. */
vcpu = vcpu_find(vm, vcpuid);
if (vcpu != NULL)
TEST_ASSERT(false, "vcpu with the specified id "
"already exists,\n"
" requested vcpuid: %u\n"
" existing vcpuid: %u state: %p",
vcpuid, vcpu->id, vcpu->state);
/* Allocate and initialize new vcpu structure. */
vcpu = calloc(1, sizeof(*vcpu));
TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
vcpu->id = vcpuid;
vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
vcpu->fd, errno);
TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
vcpu_mmap_sz(), sizeof(*vcpu->state));
vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
"vcpu id: %u errno: %i", vcpuid, errno);
/* Add to linked-list of VCPUs. */
if (vm->vcpu_head)
vm->vcpu_head->prev = vcpu;
vcpu->next = vm->vcpu_head;
vm->vcpu_head = vcpu;
vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
}
/*
* VM Virtual Address Unused Gap
*
* Input Args:
* vm - Virtual Machine
* sz - Size (bytes)
* vaddr_min - Minimum Virtual Address
*
* Output Args: None
*
* Return:
* Lowest virtual address at or below vaddr_min, with at least
* sz unused bytes. TEST_ASSERT failure if no area of at least
* size sz is available.
*
* Within the VM specified by vm, locates the lowest starting virtual
* address >= vaddr_min, that has at least sz unallocated bytes. A
* TEST_ASSERT failure occurs for invalid input or no area of at least
* sz unallocated bytes >= vaddr_min is available.
*/
static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
vm_vaddr_t vaddr_min)
{
uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
/* Determine lowest permitted virtual page index. */
uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
if ((pgidx_start * vm->page_size) < vaddr_min)
goto no_va_found;
/* Loop over section with enough valid virtual page indexes. */
if (!sparsebit_is_set_num(vm->vpages_valid,
pgidx_start, pages))
pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
pgidx_start, pages);
do {
/*
* Are there enough unused virtual pages available at
* the currently proposed starting virtual page index.
* If not, adjust proposed starting index to next
* possible.
*/
if (sparsebit_is_clear_num(vm->vpages_mapped,
pgidx_start, pages))
goto va_found;
pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
pgidx_start, pages);
if (pgidx_start == 0)
goto no_va_found;
/*
* If needed, adjust proposed starting virtual address,
* to next range of valid virtual addresses.
*/
if (!sparsebit_is_set_num(vm->vpages_valid,
pgidx_start, pages)) {
pgidx_start = sparsebit_next_set_num(
vm->vpages_valid, pgidx_start, pages);
if (pgidx_start == 0)
goto no_va_found;
}
} while (pgidx_start != 0);
no_va_found:
TEST_ASSERT(false, "No vaddr of specified pages available, "
"pages: 0x%lx", pages);
/* NOT REACHED */
return -1;
va_found:
TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
pgidx_start, pages),
"Unexpected, invalid virtual page index range,\n"
" pgidx_start: 0x%lx\n"
" pages: 0x%lx",
pgidx_start, pages);
TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
pgidx_start, pages),
"Unexpected, pages already mapped,\n"
" pgidx_start: 0x%lx\n"
" pages: 0x%lx",
pgidx_start, pages);
return pgidx_start * vm->page_size;
}
/*
* VM Virtual Address Allocate
*
* Input Args:
* vm - Virtual Machine
* sz - Size in bytes
* vaddr_min - Minimum starting virtual address
* data_memslot - Memory region slot for data pages
* pgd_memslot - Memory region slot for new virtual translation tables
*
* Output Args: None
*
* Return:
* Starting guest virtual address
*
* Allocates at least sz bytes within the virtual address space of the vm
* given by vm. The allocated bytes are mapped to a virtual address >=
* the address given by vaddr_min. Note that each allocation uses a
* a unique set of pages, with the minimum real allocation being at least
* a page.
*/
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
uint32_t data_memslot, uint32_t pgd_memslot)
{
uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
virt_pgd_alloc(vm, pgd_memslot);
/*
* Find an unused range of virtual page addresses of at least
* pages in length.
*/
vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
/* Map the virtual pages. */
for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
pages--, vaddr += vm->page_size) {
vm_paddr_t paddr;
paddr = vm_phy_page_alloc(vm,
KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
virt_pg_map(vm, vaddr, paddr, pgd_memslot);
sparsebit_set(vm->vpages_mapped,
vaddr >> vm->page_shift);
}
return vaddr_start;
}
/*
* Map a range of VM virtual address to the VM's physical address
*
* Input Args:
* vm - Virtual Machine
* vaddr - Virtuall address to map
* paddr - VM Physical Address
* size - The size of the range to map
* pgd_memslot - Memory region slot for new virtual translation tables
*
* Output Args: None
*
* Return: None
*
* Within the VM given by vm, creates a virtual translation for the
* page range starting at vaddr to the page range starting at paddr.
*/
void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
size_t size, uint32_t pgd_memslot)
{
size_t page_size = vm->page_size;
size_t npages = size / page_size;
TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
while (npages--) {
virt_pg_map(vm, vaddr, paddr, pgd_memslot);
vaddr += page_size;
paddr += page_size;
}
}
/*
* Address VM Physical to Host Virtual
*
* Input Args:
* vm - Virtual Machine
* gpa - VM physical address
*
* Output Args: None
*
* Return:
* Equivalent host virtual address
*
* Locates the memory region containing the VM physical address given
* by gpa, within the VM given by vm. When found, the host virtual
* address providing the memory to the vm physical address is returned.
* A TEST_ASSERT failure occurs if no region containing gpa exists.
*/
void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
{
struct userspace_mem_region *region;
for (region = vm->userspace_mem_region_head; region;
region = region->next) {
if ((gpa >= region->region.guest_phys_addr)
&& (gpa <= (region->region.guest_phys_addr
+ region->region.memory_size - 1)))
return (void *) ((uintptr_t) region->host_mem
+ (gpa - region->region.guest_phys_addr));
}
TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
return NULL;
}
/*
* Address Host Virtual to VM Physical
*
* Input Args:
* vm - Virtual Machine
* hva - Host virtual address
*
* Output Args: None
*
* Return:
* Equivalent VM physical address
*
* Locates the memory region containing the host virtual address given
* by hva, within the VM given by vm. When found, the equivalent
* VM physical address is returned. A TEST_ASSERT failure occurs if no
* region containing hva exists.
*/
vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
{
struct userspace_mem_region *region;
for (region = vm->userspace_mem_region_head; region;
region = region->next) {
if ((hva >= region->host_mem)
&& (hva <= (region->host_mem
+ region->region.memory_size - 1)))
return (vm_paddr_t) ((uintptr_t)
region->region.guest_phys_addr
+ (hva - (uintptr_t) region->host_mem));
}
TEST_ASSERT(false, "No mapping to a guest physical address, "
"hva: %p", hva);
return -1;
}
/*
* VM Create IRQ Chip
*
* Input Args:
* vm - Virtual Machine
*
* Output Args: None
*
* Return: None
*
* Creates an interrupt controller chip for the VM specified by vm.
*/
void vm_create_irqchip(struct kvm_vm *vm)
{
int ret;
ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
"rc: %i errno: %i", ret, errno);
vm->has_irqchip = true;
}
/*
* VM VCPU State
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
*
* Output Args: None
*
* Return:
* Pointer to structure that describes the state of the VCPU.
*
* Locates and returns a pointer to a structure that describes the
* state of the VCPU with the given vcpuid.
*/
struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
return vcpu->state;
}
/*
* VM VCPU Run
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
*
* Output Args: None
*
* Return: None
*
* Switch to executing the code for the VCPU given by vcpuid, within the VM
* given by vm.
*/
void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
{
int ret = _vcpu_run(vm, vcpuid);
TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
"rc: %i errno: %i", ret, errno);
}
int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int rc;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
do {
rc = ioctl(vcpu->fd, KVM_RUN, NULL);
} while (rc == -1 && errno == EINTR);
return rc;
}
/*
* VM VCPU Set MP State
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* mp_state - mp_state to be set
*
* Output Args: None
*
* Return: None
*
* Sets the MP state of the VCPU given by vcpuid, to the state given
* by mp_state.
*/
void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
struct kvm_mp_state *mp_state)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
"rc: %i errno: %i", ret, errno);
}
/*
* VM VCPU Regs Get
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
*
* Output Args:
* regs - current state of VCPU regs
*
* Return: None
*
* Obtains the current register state for the VCPU specified by vcpuid
* and stores it at the location given by regs.
*/
void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
ret, errno);
}
/*
* VM VCPU Regs Set
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* regs - Values to set VCPU regs to
*
* Output Args: None
*
* Return: None
*
* Sets the regs of the VCPU specified by vcpuid to the values
* given by regs.
*/
void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
ret, errno);
}
void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
struct kvm_vcpu_events *events)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
ret, errno);
}
void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
struct kvm_vcpu_events *events)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
ret, errno);
}
/*
* VM VCPU System Regs Get
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
*
* Output Args:
* sregs - current state of VCPU system regs
*
* Return: None
*
* Obtains the current system register state for the VCPU specified by
* vcpuid and stores it at the location given by sregs.
*/
void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
ret, errno);
}
/*
* VM VCPU System Regs Set
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* sregs - Values to set VCPU system regs to
*
* Output Args: None
*
* Return: None
*
* Sets the system regs of the VCPU specified by vcpuid to the values
* given by sregs.
*/
void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
{
int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
"rc: %i errno: %i", ret, errno);
}
int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
}
/*
* VCPU Ioctl
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* cmd - Ioctl number
* arg - Argument to pass to the ioctl
*
* Return: None
*
* Issues an arbitrary ioctl on a VCPU fd.
*/
void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
unsigned long cmd, void *arg)
{
int ret;
ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
cmd, ret, errno, strerror(errno));
}
int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
unsigned long cmd, void *arg)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int ret;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
ret = ioctl(vcpu->fd, cmd, arg);
return ret;
}
/*
* VM Ioctl
*
* Input Args:
* vm - Virtual Machine
* cmd - Ioctl number
* arg - Argument to pass to the ioctl
*
* Return: None
*
* Issues an arbitrary ioctl on a VM fd.
*/
void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
{
int ret;
ret = ioctl(vm->fd, cmd, arg);
TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
cmd, ret, errno, strerror(errno));
}
/*
* VM Dump
*
* Input Args:
* vm - Virtual Machine
* indent - Left margin indent amount
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the current state of the VM given by vm, to the FILE stream
* given by stream.
*/
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
struct userspace_mem_region *region;
struct vcpu *vcpu;
fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
fprintf(stream, "%*sMem Regions:\n", indent, "");
for (region = vm->userspace_mem_region_head; region;
region = region->next) {
fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
"host_virt: %p\n", indent + 2, "",
(uint64_t) region->region.guest_phys_addr,
(uint64_t) region->region.memory_size,
region->host_mem);
fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
sparsebit_dump(stream, region->unused_phy_pages, 0);
}
fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
fprintf(stream, "%*spgd_created: %u\n", indent, "",
vm->pgd_created);
if (vm->pgd_created) {
fprintf(stream, "%*sVirtual Translation Tables:\n",
indent + 2, "");
virt_dump(stream, vm, indent + 4);
}
fprintf(stream, "%*sVCPUs:\n", indent, "");
for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
vcpu_dump(stream, vm, vcpu->id, indent + 2);
}
/* Known KVM exit reasons */
static struct exit_reason {
unsigned int reason;
const char *name;
} exit_reasons_known[] = {
{KVM_EXIT_UNKNOWN, "UNKNOWN"},
{KVM_EXIT_EXCEPTION, "EXCEPTION"},
{KVM_EXIT_IO, "IO"},
{KVM_EXIT_HYPERCALL, "HYPERCALL"},
{KVM_EXIT_DEBUG, "DEBUG"},
{KVM_EXIT_HLT, "HLT"},
{KVM_EXIT_MMIO, "MMIO"},
{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
{KVM_EXIT_INTR, "INTR"},
{KVM_EXIT_SET_TPR, "SET_TPR"},
{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
{KVM_EXIT_S390_RESET, "S390_RESET"},
{KVM_EXIT_DCR, "DCR"},
{KVM_EXIT_NMI, "NMI"},
{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
{KVM_EXIT_OSI, "OSI"},
{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
#endif
};
/*
* Exit Reason String
*
* Input Args:
* exit_reason - Exit reason
*
* Output Args: None
*
* Return:
* Constant string pointer describing the exit reason.
*
* Locates and returns a constant string that describes the KVM exit
* reason given by exit_reason. If no such string is found, a constant
* string of "Unknown" is returned.
*/
const char *exit_reason_str(unsigned int exit_reason)
{
unsigned int n1;
for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
if (exit_reason == exit_reasons_known[n1].reason)
return exit_reasons_known[n1].name;
}
return "Unknown";
}
/*
* Physical Contiguous Page Allocator
*
* Input Args:
* vm - Virtual Machine
* num - number of pages
* paddr_min - Physical address minimum
* memslot - Memory region to allocate page from
*
* Output Args: None
*
* Return:
* Starting physical address
*
* Within the VM specified by vm, locates a range of available physical
* pages at or above paddr_min. If found, the pages are marked as in use
* and their base address is returned. A TEST_ASSERT failure occurs if
* not enough pages are available at or above paddr_min.
*/
vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
vm_paddr_t paddr_min, uint32_t memslot)
{
struct userspace_mem_region *region;
sparsebit_idx_t pg, base;
TEST_ASSERT(num > 0, "Must allocate at least one page");
TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
"not divisible by page size.\n"
" paddr_min: 0x%lx page_size: 0x%x",
paddr_min, vm->page_size);
region = memslot2region(vm, memslot);
base = pg = paddr_min >> vm->page_shift;
do {
for (; pg < base + num; ++pg) {
if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
break;
}
}
} while (pg && pg != base + num);
if (pg == 0) {
fprintf(stderr, "No guest physical page available, "
"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
paddr_min, vm->page_size, memslot);
fputs("---- vm dump ----\n", stderr);
vm_dump(stderr, vm, 2);
abort();
}
for (pg = base; pg < base + num; ++pg)
sparsebit_clear(region->unused_phy_pages, pg);
return base * vm->page_size;
}
vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
uint32_t memslot)
{
return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
}
/*
* Address Guest Virtual to Host Virtual
*
* Input Args:
* vm - Virtual Machine
* gva - VM virtual address
*
* Output Args: None
*
* Return:
* Equivalent host virtual address
*/
void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
{
return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
}