| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * RDMA Transport Layer |
| * |
| * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. |
| * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. |
| * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. |
| */ |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/rculist.h> |
| #include <linux/random.h> |
| |
| #include "rtrs-clt.h" |
| #include "rtrs-log.h" |
| |
| #define RTRS_CONNECT_TIMEOUT_MS 30000 |
| /* |
| * Wait a bit before trying to reconnect after a failure |
| * in order to give server time to finish clean up which |
| * leads to "false positives" failed reconnect attempts |
| */ |
| #define RTRS_RECONNECT_BACKOFF 1000 |
| /* |
| * Wait for additional random time between 0 and 8 seconds |
| * before starting to reconnect to avoid clients reconnecting |
| * all at once in case of a major network outage |
| */ |
| #define RTRS_RECONNECT_SEED 8 |
| |
| MODULE_DESCRIPTION("RDMA Transport Client"); |
| MODULE_LICENSE("GPL"); |
| |
| static const struct rtrs_rdma_dev_pd_ops dev_pd_ops; |
| static struct rtrs_rdma_dev_pd dev_pd = { |
| .ops = &dev_pd_ops |
| }; |
| |
| static struct workqueue_struct *rtrs_wq; |
| static struct class *rtrs_clt_dev_class; |
| |
| static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt) |
| { |
| struct rtrs_clt_sess *sess; |
| bool connected = false; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) |
| connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED; |
| rcu_read_unlock(); |
| |
| return connected; |
| } |
| |
| static struct rtrs_permit * |
| __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type) |
| { |
| size_t max_depth = clt->queue_depth; |
| struct rtrs_permit *permit; |
| int bit; |
| |
| /* |
| * Adapted from null_blk get_tag(). Callers from different cpus may |
| * grab the same bit, since find_first_zero_bit is not atomic. |
| * But then the test_and_set_bit_lock will fail for all the |
| * callers but one, so that they will loop again. |
| * This way an explicit spinlock is not required. |
| */ |
| do { |
| bit = find_first_zero_bit(clt->permits_map, max_depth); |
| if (unlikely(bit >= max_depth)) |
| return NULL; |
| } while (unlikely(test_and_set_bit_lock(bit, clt->permits_map))); |
| |
| permit = get_permit(clt, bit); |
| WARN_ON(permit->mem_id != bit); |
| permit->cpu_id = raw_smp_processor_id(); |
| permit->con_type = con_type; |
| |
| return permit; |
| } |
| |
| static inline void __rtrs_put_permit(struct rtrs_clt *clt, |
| struct rtrs_permit *permit) |
| { |
| clear_bit_unlock(permit->mem_id, clt->permits_map); |
| } |
| |
| /** |
| * rtrs_clt_get_permit() - allocates permit for future RDMA operation |
| * @clt: Current session |
| * @con_type: Type of connection to use with the permit |
| * @can_wait: Wait type |
| * |
| * Description: |
| * Allocates permit for the following RDMA operation. Permit is used |
| * to preallocate all resources and to propagate memory pressure |
| * up earlier. |
| * |
| * Context: |
| * Can sleep if @wait == RTRS_TAG_WAIT |
| */ |
| struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt, |
| enum rtrs_clt_con_type con_type, |
| int can_wait) |
| { |
| struct rtrs_permit *permit; |
| DEFINE_WAIT(wait); |
| |
| permit = __rtrs_get_permit(clt, con_type); |
| if (likely(permit) || !can_wait) |
| return permit; |
| |
| do { |
| prepare_to_wait(&clt->permits_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| permit = __rtrs_get_permit(clt, con_type); |
| if (likely(permit)) |
| break; |
| |
| io_schedule(); |
| } while (1); |
| |
| finish_wait(&clt->permits_wait, &wait); |
| |
| return permit; |
| } |
| EXPORT_SYMBOL(rtrs_clt_get_permit); |
| |
| /** |
| * rtrs_clt_put_permit() - puts allocated permit |
| * @clt: Current session |
| * @permit: Permit to be freed |
| * |
| * Context: |
| * Does not matter |
| */ |
| void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit) |
| { |
| if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map))) |
| return; |
| |
| __rtrs_put_permit(clt, permit); |
| |
| /* |
| * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list |
| * before calling schedule(). So if rtrs_clt_get_permit() is sleeping |
| * it must have added itself to &clt->permits_wait before |
| * __rtrs_put_permit() finished. |
| * Hence it is safe to guard wake_up() with a waitqueue_active() test. |
| */ |
| if (waitqueue_active(&clt->permits_wait)) |
| wake_up(&clt->permits_wait); |
| } |
| EXPORT_SYMBOL(rtrs_clt_put_permit); |
| |
| void *rtrs_permit_to_pdu(struct rtrs_permit *permit) |
| { |
| return permit + 1; |
| } |
| EXPORT_SYMBOL(rtrs_permit_to_pdu); |
| |
| /** |
| * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit |
| * @sess: client session pointer |
| * @permit: permit for the allocation of the RDMA buffer |
| * Note: |
| * IO connection starts from 1. |
| * 0 connection is for user messages. |
| */ |
| static |
| struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess, |
| struct rtrs_permit *permit) |
| { |
| int id = 0; |
| |
| if (likely(permit->con_type == RTRS_IO_CON)) |
| id = (permit->cpu_id % (sess->s.con_num - 1)) + 1; |
| |
| return to_clt_con(sess->s.con[id]); |
| } |
| |
| /** |
| * __rtrs_clt_change_state() - change the session state through session state |
| * machine. |
| * |
| * @sess: client session to change the state of. |
| * @new_state: state to change to. |
| * |
| * returns true if successful, false if the requested state can not be set. |
| * |
| * Locks: |
| * state_wq lock must be hold. |
| */ |
| static bool __rtrs_clt_change_state(struct rtrs_clt_sess *sess, |
| enum rtrs_clt_state new_state) |
| { |
| enum rtrs_clt_state old_state; |
| bool changed = false; |
| |
| lockdep_assert_held(&sess->state_wq.lock); |
| |
| old_state = sess->state; |
| switch (new_state) { |
| case RTRS_CLT_CONNECTING: |
| switch (old_state) { |
| case RTRS_CLT_RECONNECTING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case RTRS_CLT_RECONNECTING: |
| switch (old_state) { |
| case RTRS_CLT_CONNECTED: |
| case RTRS_CLT_CONNECTING_ERR: |
| case RTRS_CLT_CLOSED: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case RTRS_CLT_CONNECTED: |
| switch (old_state) { |
| case RTRS_CLT_CONNECTING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case RTRS_CLT_CONNECTING_ERR: |
| switch (old_state) { |
| case RTRS_CLT_CONNECTING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case RTRS_CLT_CLOSING: |
| switch (old_state) { |
| case RTRS_CLT_CONNECTING: |
| case RTRS_CLT_CONNECTING_ERR: |
| case RTRS_CLT_RECONNECTING: |
| case RTRS_CLT_CONNECTED: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case RTRS_CLT_CLOSED: |
| switch (old_state) { |
| case RTRS_CLT_CLOSING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case RTRS_CLT_DEAD: |
| switch (old_state) { |
| case RTRS_CLT_CLOSED: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| if (changed) { |
| sess->state = new_state; |
| wake_up_locked(&sess->state_wq); |
| } |
| |
| return changed; |
| } |
| |
| static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess, |
| enum rtrs_clt_state old_state, |
| enum rtrs_clt_state new_state) |
| { |
| bool changed = false; |
| |
| spin_lock_irq(&sess->state_wq.lock); |
| if (sess->state == old_state) |
| changed = __rtrs_clt_change_state(sess, new_state); |
| spin_unlock_irq(&sess->state_wq.lock); |
| |
| return changed; |
| } |
| |
| static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| |
| if (rtrs_clt_change_state_from_to(sess, |
| RTRS_CLT_CONNECTED, |
| RTRS_CLT_RECONNECTING)) { |
| struct rtrs_clt *clt = sess->clt; |
| unsigned int delay_ms; |
| |
| /* |
| * Normal scenario, reconnect if we were successfully connected |
| */ |
| delay_ms = clt->reconnect_delay_sec * 1000; |
| queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, |
| msecs_to_jiffies(delay_ms + |
| prandom_u32() % RTRS_RECONNECT_SEED)); |
| } else { |
| /* |
| * Error can happen just on establishing new connection, |
| * so notify waiter with error state, waiter is responsible |
| * for cleaning the rest and reconnect if needed. |
| */ |
| rtrs_clt_change_state_from_to(sess, |
| RTRS_CLT_CONNECTING, |
| RTRS_CLT_CONNECTING_ERR); |
| } |
| } |
| |
| static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct rtrs_clt_con *con = cq->cq_context; |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n", |
| ib_wc_status_msg(wc->status)); |
| rtrs_rdma_error_recovery(con); |
| } |
| } |
| |
| static struct ib_cqe fast_reg_cqe = { |
| .done = rtrs_clt_fast_reg_done |
| }; |
| |
| static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, |
| bool notify, bool can_wait); |
| |
| static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct rtrs_clt_io_req *req = |
| container_of(wc->wr_cqe, typeof(*req), inv_cqe); |
| struct rtrs_clt_con *con = cq->cq_context; |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n", |
| ib_wc_status_msg(wc->status)); |
| rtrs_rdma_error_recovery(con); |
| } |
| req->need_inv = false; |
| if (likely(req->need_inv_comp)) |
| complete(&req->inv_comp); |
| else |
| /* Complete request from INV callback */ |
| complete_rdma_req(req, req->inv_errno, true, false); |
| } |
| |
| static int rtrs_inv_rkey(struct rtrs_clt_io_req *req) |
| { |
| struct rtrs_clt_con *con = req->con; |
| struct ib_send_wr wr = { |
| .opcode = IB_WR_LOCAL_INV, |
| .wr_cqe = &req->inv_cqe, |
| .send_flags = IB_SEND_SIGNALED, |
| .ex.invalidate_rkey = req->mr->rkey, |
| }; |
| req->inv_cqe.done = rtrs_clt_inv_rkey_done; |
| |
| return ib_post_send(con->c.qp, &wr, NULL); |
| } |
| |
| static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, |
| bool notify, bool can_wait) |
| { |
| struct rtrs_clt_con *con = req->con; |
| struct rtrs_clt_sess *sess; |
| int err; |
| |
| if (WARN_ON(!req->in_use)) |
| return; |
| if (WARN_ON(!req->con)) |
| return; |
| sess = to_clt_sess(con->c.sess); |
| |
| if (req->sg_cnt) { |
| if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) { |
| /* |
| * We are here to invalidate read requests |
| * ourselves. In normal scenario server should |
| * send INV for all read requests, but |
| * we are here, thus two things could happen: |
| * |
| * 1. this is failover, when errno != 0 |
| * and can_wait == 1, |
| * |
| * 2. something totally bad happened and |
| * server forgot to send INV, so we |
| * should do that ourselves. |
| */ |
| |
| if (likely(can_wait)) { |
| req->need_inv_comp = true; |
| } else { |
| /* This should be IO path, so always notify */ |
| WARN_ON(!notify); |
| /* Save errno for INV callback */ |
| req->inv_errno = errno; |
| } |
| |
| err = rtrs_inv_rkey(req); |
| if (unlikely(err)) { |
| rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n", |
| req->mr->rkey, err); |
| } else if (likely(can_wait)) { |
| wait_for_completion(&req->inv_comp); |
| } else { |
| /* |
| * Something went wrong, so request will be |
| * completed from INV callback. |
| */ |
| WARN_ON_ONCE(1); |
| |
| return; |
| } |
| } |
| ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist, |
| req->sg_cnt, req->dir); |
| } |
| if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT) |
| atomic_dec(&sess->stats->inflight); |
| |
| req->in_use = false; |
| req->con = NULL; |
| |
| if (notify) |
| req->conf(req->priv, errno); |
| } |
| |
| static int rtrs_post_send_rdma(struct rtrs_clt_con *con, |
| struct rtrs_clt_io_req *req, |
| struct rtrs_rbuf *rbuf, u32 off, |
| u32 imm, struct ib_send_wr *wr) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| enum ib_send_flags flags; |
| struct ib_sge sge; |
| |
| if (unlikely(!req->sg_size)) { |
| rtrs_wrn(con->c.sess, |
| "Doing RDMA Write failed, no data supplied\n"); |
| return -EINVAL; |
| } |
| |
| /* user data and user message in the first list element */ |
| sge.addr = req->iu->dma_addr; |
| sge.length = req->sg_size; |
| sge.lkey = sess->s.dev->ib_pd->local_dma_lkey; |
| |
| /* |
| * From time to time we have to post signalled sends, |
| * or send queue will fill up and only QP reset can help. |
| */ |
| flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ? |
| 0 : IB_SEND_SIGNALED; |
| |
| ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr, |
| req->sg_size, DMA_TO_DEVICE); |
| |
| return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1, |
| rbuf->rkey, rbuf->addr + off, |
| imm, flags, wr); |
| } |
| |
| static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id, |
| s16 errno, bool w_inval) |
| { |
| struct rtrs_clt_io_req *req; |
| |
| if (WARN_ON(msg_id >= sess->queue_depth)) |
| return; |
| |
| req = &sess->reqs[msg_id]; |
| /* Drop need_inv if server responded with send with invalidation */ |
| req->need_inv &= !w_inval; |
| complete_rdma_req(req, errno, true, false); |
| } |
| |
| static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc) |
| { |
| struct rtrs_iu *iu; |
| int err; |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| |
| WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F); |
| iu = container_of(wc->wr_cqe, struct rtrs_iu, |
| cqe); |
| err = rtrs_iu_post_recv(&con->c, iu); |
| if (unlikely(err)) { |
| rtrs_err(con->c.sess, "post iu failed %d\n", err); |
| rtrs_rdma_error_recovery(con); |
| } |
| } |
| |
| static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| struct rtrs_msg_rkey_rsp *msg; |
| u32 imm_type, imm_payload; |
| bool w_inval = false; |
| struct rtrs_iu *iu; |
| u32 buf_id; |
| int err; |
| |
| WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F); |
| |
| iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); |
| |
| if (unlikely(wc->byte_len < sizeof(*msg))) { |
| rtrs_err(con->c.sess, "rkey response is malformed: size %d\n", |
| wc->byte_len); |
| goto out; |
| } |
| ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr, |
| iu->size, DMA_FROM_DEVICE); |
| msg = iu->buf; |
| if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) { |
| rtrs_err(sess->clt, "rkey response is malformed: type %d\n", |
| le16_to_cpu(msg->type)); |
| goto out; |
| } |
| buf_id = le16_to_cpu(msg->buf_id); |
| if (WARN_ON(buf_id >= sess->queue_depth)) |
| goto out; |
| |
| rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload); |
| if (likely(imm_type == RTRS_IO_RSP_IMM || |
| imm_type == RTRS_IO_RSP_W_INV_IMM)) { |
| u32 msg_id; |
| |
| w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); |
| rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); |
| |
| if (WARN_ON(buf_id != msg_id)) |
| goto out; |
| sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey); |
| process_io_rsp(sess, msg_id, err, w_inval); |
| } |
| ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr, |
| iu->size, DMA_FROM_DEVICE); |
| return rtrs_clt_recv_done(con, wc); |
| out: |
| rtrs_rdma_error_recovery(con); |
| } |
| |
| static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc); |
| |
| static struct ib_cqe io_comp_cqe = { |
| .done = rtrs_clt_rdma_done |
| }; |
| |
| /* |
| * Post x2 empty WRs: first is for this RDMA with IMM, |
| * second is for RECV with INV, which happened earlier. |
| */ |
| static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe) |
| { |
| struct ib_recv_wr wr_arr[2], *wr; |
| int i; |
| |
| memset(wr_arr, 0, sizeof(wr_arr)); |
| for (i = 0; i < ARRAY_SIZE(wr_arr); i++) { |
| wr = &wr_arr[i]; |
| wr->wr_cqe = cqe; |
| if (i) |
| /* Chain backwards */ |
| wr->next = &wr_arr[i - 1]; |
| } |
| |
| return ib_post_recv(con->qp, wr, NULL); |
| } |
| |
| static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct rtrs_clt_con *con = cq->cq_context; |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| u32 imm_type, imm_payload; |
| bool w_inval = false; |
| int err; |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| if (wc->status != IB_WC_WR_FLUSH_ERR) { |
| rtrs_err(sess->clt, "RDMA failed: %s\n", |
| ib_wc_status_msg(wc->status)); |
| rtrs_rdma_error_recovery(con); |
| } |
| return; |
| } |
| rtrs_clt_update_wc_stats(con); |
| |
| switch (wc->opcode) { |
| case IB_WC_RECV_RDMA_WITH_IMM: |
| /* |
| * post_recv() RDMA write completions of IO reqs (read/write) |
| * and hb |
| */ |
| if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done)) |
| return; |
| rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), |
| &imm_type, &imm_payload); |
| if (likely(imm_type == RTRS_IO_RSP_IMM || |
| imm_type == RTRS_IO_RSP_W_INV_IMM)) { |
| u32 msg_id; |
| |
| w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); |
| rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); |
| |
| process_io_rsp(sess, msg_id, err, w_inval); |
| } else if (imm_type == RTRS_HB_MSG_IMM) { |
| WARN_ON(con->c.cid); |
| rtrs_send_hb_ack(&sess->s); |
| if (sess->flags == RTRS_MSG_NEW_RKEY_F) |
| return rtrs_clt_recv_done(con, wc); |
| } else if (imm_type == RTRS_HB_ACK_IMM) { |
| WARN_ON(con->c.cid); |
| sess->s.hb_missed_cnt = 0; |
| if (sess->flags == RTRS_MSG_NEW_RKEY_F) |
| return rtrs_clt_recv_done(con, wc); |
| } else { |
| rtrs_wrn(con->c.sess, "Unknown IMM type %u\n", |
| imm_type); |
| } |
| if (w_inval) |
| /* |
| * Post x2 empty WRs: first is for this RDMA with IMM, |
| * second is for RECV with INV, which happened earlier. |
| */ |
| err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe); |
| else |
| err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); |
| if (unlikely(err)) { |
| rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n", |
| err); |
| rtrs_rdma_error_recovery(con); |
| break; |
| } |
| break; |
| case IB_WC_RECV: |
| /* |
| * Key invalidations from server side |
| */ |
| WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE || |
| wc->wc_flags & IB_WC_WITH_IMM)); |
| WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done); |
| if (sess->flags == RTRS_MSG_NEW_RKEY_F) { |
| if (wc->wc_flags & IB_WC_WITH_INVALIDATE) |
| return rtrs_clt_recv_done(con, wc); |
| |
| return rtrs_clt_rkey_rsp_done(con, wc); |
| } |
| break; |
| case IB_WC_RDMA_WRITE: |
| /* |
| * post_send() RDMA write completions of IO reqs (read/write) |
| * and hb |
| */ |
| break; |
| |
| default: |
| rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode); |
| return; |
| } |
| } |
| |
| static int post_recv_io(struct rtrs_clt_con *con, size_t q_size) |
| { |
| int err, i; |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| |
| for (i = 0; i < q_size; i++) { |
| if (sess->flags == RTRS_MSG_NEW_RKEY_F) { |
| struct rtrs_iu *iu = &con->rsp_ius[i]; |
| |
| err = rtrs_iu_post_recv(&con->c, iu); |
| } else { |
| err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); |
| } |
| if (unlikely(err)) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int post_recv_sess(struct rtrs_clt_sess *sess) |
| { |
| size_t q_size = 0; |
| int err, cid; |
| |
| for (cid = 0; cid < sess->s.con_num; cid++) { |
| if (cid == 0) |
| q_size = SERVICE_CON_QUEUE_DEPTH; |
| else |
| q_size = sess->queue_depth; |
| |
| /* |
| * x2 for RDMA read responses + FR key invalidations, |
| * RDMA writes do not require any FR registrations. |
| */ |
| q_size *= 2; |
| |
| err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size); |
| if (unlikely(err)) { |
| rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| struct path_it { |
| int i; |
| struct list_head skip_list; |
| struct rtrs_clt *clt; |
| struct rtrs_clt_sess *(*next_path)(struct path_it *it); |
| }; |
| |
| /** |
| * list_next_or_null_rr_rcu - get next list element in round-robin fashion. |
| * @head: the head for the list. |
| * @ptr: the list head to take the next element from. |
| * @type: the type of the struct this is embedded in. |
| * @memb: the name of the list_head within the struct. |
| * |
| * Next element returned in round-robin fashion, i.e. head will be skipped, |
| * but if list is observed as empty, NULL will be returned. |
| * |
| * This primitive may safely run concurrently with the _rcu list-mutation |
| * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). |
| */ |
| #define list_next_or_null_rr_rcu(head, ptr, type, memb) \ |
| ({ \ |
| list_next_or_null_rcu(head, ptr, type, memb) ?: \ |
| list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \ |
| type, memb); \ |
| }) |
| |
| /** |
| * get_next_path_rr() - Returns path in round-robin fashion. |
| * @it: the path pointer |
| * |
| * Related to @MP_POLICY_RR |
| * |
| * Locks: |
| * rcu_read_lock() must be hold. |
| */ |
| static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it) |
| { |
| struct rtrs_clt_sess __rcu **ppcpu_path; |
| struct rtrs_clt_sess *path; |
| struct rtrs_clt *clt; |
| |
| clt = it->clt; |
| |
| /* |
| * Here we use two RCU objects: @paths_list and @pcpu_path |
| * pointer. See rtrs_clt_remove_path_from_arr() for details |
| * how that is handled. |
| */ |
| |
| ppcpu_path = this_cpu_ptr(clt->pcpu_path); |
| path = rcu_dereference(*ppcpu_path); |
| if (unlikely(!path)) |
| path = list_first_or_null_rcu(&clt->paths_list, |
| typeof(*path), s.entry); |
| else |
| path = list_next_or_null_rr_rcu(&clt->paths_list, |
| &path->s.entry, |
| typeof(*path), |
| s.entry); |
| rcu_assign_pointer(*ppcpu_path, path); |
| |
| return path; |
| } |
| |
| /** |
| * get_next_path_min_inflight() - Returns path with minimal inflight count. |
| * @it: the path pointer |
| * |
| * Related to @MP_POLICY_MIN_INFLIGHT |
| * |
| * Locks: |
| * rcu_read_lock() must be hold. |
| */ |
| static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it) |
| { |
| struct rtrs_clt_sess *min_path = NULL; |
| struct rtrs_clt *clt = it->clt; |
| struct rtrs_clt_sess *sess; |
| int min_inflight = INT_MAX; |
| int inflight; |
| |
| list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) { |
| if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry)))) |
| continue; |
| |
| inflight = atomic_read(&sess->stats->inflight); |
| |
| if (inflight < min_inflight) { |
| min_inflight = inflight; |
| min_path = sess; |
| } |
| } |
| |
| /* |
| * add the path to the skip list, so that next time we can get |
| * a different one |
| */ |
| if (min_path) |
| list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list); |
| |
| return min_path; |
| } |
| |
| static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt) |
| { |
| INIT_LIST_HEAD(&it->skip_list); |
| it->clt = clt; |
| it->i = 0; |
| |
| if (clt->mp_policy == MP_POLICY_RR) |
| it->next_path = get_next_path_rr; |
| else |
| it->next_path = get_next_path_min_inflight; |
| } |
| |
| static inline void path_it_deinit(struct path_it *it) |
| { |
| struct list_head *skip, *tmp; |
| /* |
| * The skip_list is used only for the MIN_INFLIGHT policy. |
| * We need to remove paths from it, so that next IO can insert |
| * paths (->mp_skip_entry) into a skip_list again. |
| */ |
| list_for_each_safe(skip, tmp, &it->skip_list) |
| list_del_init(skip); |
| } |
| |
| /** |
| * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information |
| * about an inflight IO. |
| * The user buffer holding user control message (not data) is copied into |
| * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will |
| * also hold the control message of rtrs. |
| * @req: an io request holding information about IO. |
| * @sess: client session |
| * @conf: conformation callback function to notify upper layer. |
| * @permit: permit for allocation of RDMA remote buffer |
| * @priv: private pointer |
| * @vec: kernel vector containing control message |
| * @usr_len: length of the user message |
| * @sg: scater list for IO data |
| * @sg_cnt: number of scater list entries |
| * @data_len: length of the IO data |
| * @dir: direction of the IO. |
| */ |
| static void rtrs_clt_init_req(struct rtrs_clt_io_req *req, |
| struct rtrs_clt_sess *sess, |
| void (*conf)(void *priv, int errno), |
| struct rtrs_permit *permit, void *priv, |
| const struct kvec *vec, size_t usr_len, |
| struct scatterlist *sg, size_t sg_cnt, |
| size_t data_len, int dir) |
| { |
| struct iov_iter iter; |
| size_t len; |
| |
| req->permit = permit; |
| req->in_use = true; |
| req->usr_len = usr_len; |
| req->data_len = data_len; |
| req->sglist = sg; |
| req->sg_cnt = sg_cnt; |
| req->priv = priv; |
| req->dir = dir; |
| req->con = rtrs_permit_to_clt_con(sess, permit); |
| req->conf = conf; |
| req->need_inv = false; |
| req->need_inv_comp = false; |
| req->inv_errno = 0; |
| |
| iov_iter_kvec(&iter, READ, vec, 1, usr_len); |
| len = _copy_from_iter(req->iu->buf, usr_len, &iter); |
| WARN_ON(len != usr_len); |
| |
| reinit_completion(&req->inv_comp); |
| } |
| |
| static struct rtrs_clt_io_req * |
| rtrs_clt_get_req(struct rtrs_clt_sess *sess, |
| void (*conf)(void *priv, int errno), |
| struct rtrs_permit *permit, void *priv, |
| const struct kvec *vec, size_t usr_len, |
| struct scatterlist *sg, size_t sg_cnt, |
| size_t data_len, int dir) |
| { |
| struct rtrs_clt_io_req *req; |
| |
| req = &sess->reqs[permit->mem_id]; |
| rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len, |
| sg, sg_cnt, data_len, dir); |
| return req; |
| } |
| |
| static struct rtrs_clt_io_req * |
| rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess, |
| struct rtrs_clt_io_req *fail_req) |
| { |
| struct rtrs_clt_io_req *req; |
| struct kvec vec = { |
| .iov_base = fail_req->iu->buf, |
| .iov_len = fail_req->usr_len |
| }; |
| |
| req = &alive_sess->reqs[fail_req->permit->mem_id]; |
| rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit, |
| fail_req->priv, &vec, fail_req->usr_len, |
| fail_req->sglist, fail_req->sg_cnt, |
| fail_req->data_len, fail_req->dir); |
| return req; |
| } |
| |
| static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con, |
| struct rtrs_clt_io_req *req, |
| struct rtrs_rbuf *rbuf, |
| u32 size, u32 imm) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| struct ib_sge *sge = req->sge; |
| enum ib_send_flags flags; |
| struct scatterlist *sg; |
| size_t num_sge; |
| int i; |
| |
| for_each_sg(req->sglist, sg, req->sg_cnt, i) { |
| sge[i].addr = sg_dma_address(sg); |
| sge[i].length = sg_dma_len(sg); |
| sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey; |
| } |
| sge[i].addr = req->iu->dma_addr; |
| sge[i].length = size; |
| sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey; |
| |
| num_sge = 1 + req->sg_cnt; |
| |
| /* |
| * From time to time we have to post signalled sends, |
| * or send queue will fill up and only QP reset can help. |
| */ |
| flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ? |
| 0 : IB_SEND_SIGNALED; |
| |
| ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr, |
| size, DMA_TO_DEVICE); |
| |
| return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge, |
| rbuf->rkey, rbuf->addr, imm, |
| flags, NULL); |
| } |
| |
| static int rtrs_clt_write_req(struct rtrs_clt_io_req *req) |
| { |
| struct rtrs_clt_con *con = req->con; |
| struct rtrs_sess *s = con->c.sess; |
| struct rtrs_clt_sess *sess = to_clt_sess(s); |
| struct rtrs_msg_rdma_write *msg; |
| |
| struct rtrs_rbuf *rbuf; |
| int ret, count = 0; |
| u32 imm, buf_id; |
| |
| const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; |
| |
| if (unlikely(tsize > sess->chunk_size)) { |
| rtrs_wrn(s, "Write request failed, size too big %zu > %d\n", |
| tsize, sess->chunk_size); |
| return -EMSGSIZE; |
| } |
| if (req->sg_cnt) { |
| count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist, |
| req->sg_cnt, req->dir); |
| if (unlikely(!count)) { |
| rtrs_wrn(s, "Write request failed, map failed\n"); |
| return -EINVAL; |
| } |
| } |
| /* put rtrs msg after sg and user message */ |
| msg = req->iu->buf + req->usr_len; |
| msg->type = cpu_to_le16(RTRS_MSG_WRITE); |
| msg->usr_len = cpu_to_le16(req->usr_len); |
| |
| /* rtrs message on server side will be after user data and message */ |
| imm = req->permit->mem_off + req->data_len + req->usr_len; |
| imm = rtrs_to_io_req_imm(imm); |
| buf_id = req->permit->mem_id; |
| req->sg_size = tsize; |
| rbuf = &sess->rbufs[buf_id]; |
| |
| /* |
| * Update stats now, after request is successfully sent it is not |
| * safe anymore to touch it. |
| */ |
| rtrs_clt_update_all_stats(req, WRITE); |
| |
| ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, |
| req->usr_len + sizeof(*msg), |
| imm); |
| if (unlikely(ret)) { |
| rtrs_err(s, "Write request failed: %d\n", ret); |
| if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT) |
| atomic_dec(&sess->stats->inflight); |
| if (req->sg_cnt) |
| ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist, |
| req->sg_cnt, req->dir); |
| } |
| |
| return ret; |
| } |
| |
| static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count) |
| { |
| int nr; |
| |
| /* Align the MR to a 4K page size to match the block virt boundary */ |
| nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K); |
| if (nr < 0) |
| return nr; |
| if (unlikely(nr < req->sg_cnt)) |
| return -EINVAL; |
| ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); |
| |
| return nr; |
| } |
| |
| static int rtrs_clt_read_req(struct rtrs_clt_io_req *req) |
| { |
| struct rtrs_clt_con *con = req->con; |
| struct rtrs_sess *s = con->c.sess; |
| struct rtrs_clt_sess *sess = to_clt_sess(s); |
| struct rtrs_msg_rdma_read *msg; |
| struct rtrs_ib_dev *dev; |
| |
| struct ib_reg_wr rwr; |
| struct ib_send_wr *wr = NULL; |
| |
| int ret, count = 0; |
| u32 imm, buf_id; |
| |
| const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; |
| |
| s = &sess->s; |
| dev = sess->s.dev; |
| |
| if (unlikely(tsize > sess->chunk_size)) { |
| rtrs_wrn(s, |
| "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n", |
| tsize, sess->chunk_size); |
| return -EMSGSIZE; |
| } |
| |
| if (req->sg_cnt) { |
| count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt, |
| req->dir); |
| if (unlikely(!count)) { |
| rtrs_wrn(s, |
| "Read request failed, dma map failed\n"); |
| return -EINVAL; |
| } |
| } |
| /* put our message into req->buf after user message*/ |
| msg = req->iu->buf + req->usr_len; |
| msg->type = cpu_to_le16(RTRS_MSG_READ); |
| msg->usr_len = cpu_to_le16(req->usr_len); |
| |
| if (count) { |
| ret = rtrs_map_sg_fr(req, count); |
| if (ret < 0) { |
| rtrs_err_rl(s, |
| "Read request failed, failed to map fast reg. data, err: %d\n", |
| ret); |
| ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt, |
| req->dir); |
| return ret; |
| } |
| rwr = (struct ib_reg_wr) { |
| .wr.opcode = IB_WR_REG_MR, |
| .wr.wr_cqe = &fast_reg_cqe, |
| .mr = req->mr, |
| .key = req->mr->rkey, |
| .access = (IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_REMOTE_WRITE), |
| }; |
| wr = &rwr.wr; |
| |
| msg->sg_cnt = cpu_to_le16(1); |
| msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F); |
| |
| msg->desc[0].addr = cpu_to_le64(req->mr->iova); |
| msg->desc[0].key = cpu_to_le32(req->mr->rkey); |
| msg->desc[0].len = cpu_to_le32(req->mr->length); |
| |
| /* Further invalidation is required */ |
| req->need_inv = !!RTRS_MSG_NEED_INVAL_F; |
| |
| } else { |
| msg->sg_cnt = 0; |
| msg->flags = 0; |
| } |
| /* |
| * rtrs message will be after the space reserved for disk data and |
| * user message |
| */ |
| imm = req->permit->mem_off + req->data_len + req->usr_len; |
| imm = rtrs_to_io_req_imm(imm); |
| buf_id = req->permit->mem_id; |
| |
| req->sg_size = sizeof(*msg); |
| req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc); |
| req->sg_size += req->usr_len; |
| |
| /* |
| * Update stats now, after request is successfully sent it is not |
| * safe anymore to touch it. |
| */ |
| rtrs_clt_update_all_stats(req, READ); |
| |
| ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id], |
| req->data_len, imm, wr); |
| if (unlikely(ret)) { |
| rtrs_err(s, "Read request failed: %d\n", ret); |
| if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT) |
| atomic_dec(&sess->stats->inflight); |
| req->need_inv = false; |
| if (req->sg_cnt) |
| ib_dma_unmap_sg(dev->ib_dev, req->sglist, |
| req->sg_cnt, req->dir); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * rtrs_clt_failover_req() Try to find an active path for a failed request |
| * @clt: clt context |
| * @fail_req: a failed io request. |
| */ |
| static int rtrs_clt_failover_req(struct rtrs_clt *clt, |
| struct rtrs_clt_io_req *fail_req) |
| { |
| struct rtrs_clt_sess *alive_sess; |
| struct rtrs_clt_io_req *req; |
| int err = -ECONNABORTED; |
| struct path_it it; |
| |
| rcu_read_lock(); |
| for (path_it_init(&it, clt); |
| (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num; |
| it.i++) { |
| if (unlikely(READ_ONCE(alive_sess->state) != |
| RTRS_CLT_CONNECTED)) |
| continue; |
| req = rtrs_clt_get_copy_req(alive_sess, fail_req); |
| if (req->dir == DMA_TO_DEVICE) |
| err = rtrs_clt_write_req(req); |
| else |
| err = rtrs_clt_read_req(req); |
| if (unlikely(err)) { |
| req->in_use = false; |
| continue; |
| } |
| /* Success path */ |
| rtrs_clt_inc_failover_cnt(alive_sess->stats); |
| break; |
| } |
| path_it_deinit(&it); |
| rcu_read_unlock(); |
| |
| return err; |
| } |
| |
| static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt *clt = sess->clt; |
| struct rtrs_clt_io_req *req; |
| int i, err; |
| |
| if (!sess->reqs) |
| return; |
| for (i = 0; i < sess->queue_depth; ++i) { |
| req = &sess->reqs[i]; |
| if (!req->in_use) |
| continue; |
| |
| /* |
| * Safely (without notification) complete failed request. |
| * After completion this request is still useble and can |
| * be failovered to another path. |
| */ |
| complete_rdma_req(req, -ECONNABORTED, false, true); |
| |
| err = rtrs_clt_failover_req(clt, req); |
| if (unlikely(err)) |
| /* Failover failed, notify anyway */ |
| req->conf(req->priv, err); |
| } |
| } |
| |
| static void free_sess_reqs(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt_io_req *req; |
| int i; |
| |
| if (!sess->reqs) |
| return; |
| for (i = 0; i < sess->queue_depth; ++i) { |
| req = &sess->reqs[i]; |
| if (req->mr) |
| ib_dereg_mr(req->mr); |
| kfree(req->sge); |
| rtrs_iu_free(req->iu, DMA_TO_DEVICE, |
| sess->s.dev->ib_dev, 1); |
| } |
| kfree(sess->reqs); |
| sess->reqs = NULL; |
| } |
| |
| static int alloc_sess_reqs(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt_io_req *req; |
| struct rtrs_clt *clt = sess->clt; |
| int i, err = -ENOMEM; |
| |
| sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs), |
| GFP_KERNEL); |
| if (!sess->reqs) |
| return -ENOMEM; |
| |
| for (i = 0; i < sess->queue_depth; ++i) { |
| req = &sess->reqs[i]; |
| req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL, |
| sess->s.dev->ib_dev, |
| DMA_TO_DEVICE, |
| rtrs_clt_rdma_done); |
| if (!req->iu) |
| goto out; |
| |
| req->sge = kmalloc_array(clt->max_segments + 1, |
| sizeof(*req->sge), GFP_KERNEL); |
| if (!req->sge) |
| goto out; |
| |
| req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG, |
| sess->max_pages_per_mr); |
| if (IS_ERR(req->mr)) { |
| err = PTR_ERR(req->mr); |
| req->mr = NULL; |
| pr_err("Failed to alloc sess->max_pages_per_mr %d\n", |
| sess->max_pages_per_mr); |
| goto out; |
| } |
| |
| init_completion(&req->inv_comp); |
| } |
| |
| return 0; |
| |
| out: |
| free_sess_reqs(sess); |
| |
| return err; |
| } |
| |
| static int alloc_permits(struct rtrs_clt *clt) |
| { |
| unsigned int chunk_bits; |
| int err, i; |
| |
| clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth), |
| sizeof(long), GFP_KERNEL); |
| if (!clt->permits_map) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL); |
| if (!clt->permits) { |
| err = -ENOMEM; |
| goto err_map; |
| } |
| chunk_bits = ilog2(clt->queue_depth - 1) + 1; |
| for (i = 0; i < clt->queue_depth; i++) { |
| struct rtrs_permit *permit; |
| |
| permit = get_permit(clt, i); |
| permit->mem_id = i; |
| permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits); |
| } |
| |
| return 0; |
| |
| err_map: |
| kfree(clt->permits_map); |
| clt->permits_map = NULL; |
| out_err: |
| return err; |
| } |
| |
| static void free_permits(struct rtrs_clt *clt) |
| { |
| kfree(clt->permits_map); |
| clt->permits_map = NULL; |
| kfree(clt->permits); |
| clt->permits = NULL; |
| } |
| |
| static void query_fast_reg_mode(struct rtrs_clt_sess *sess) |
| { |
| struct ib_device *ib_dev; |
| u64 max_pages_per_mr; |
| int mr_page_shift; |
| |
| ib_dev = sess->s.dev->ib_dev; |
| |
| /* |
| * Use the smallest page size supported by the HCA, down to a |
| * minimum of 4096 bytes. We're unlikely to build large sglists |
| * out of smaller entries. |
| */ |
| mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1); |
| max_pages_per_mr = ib_dev->attrs.max_mr_size; |
| do_div(max_pages_per_mr, (1ull << mr_page_shift)); |
| sess->max_pages_per_mr = |
| min3(sess->max_pages_per_mr, (u32)max_pages_per_mr, |
| ib_dev->attrs.max_fast_reg_page_list_len); |
| sess->max_send_sge = ib_dev->attrs.max_send_sge; |
| } |
| |
| static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess, |
| enum rtrs_clt_state new_state, |
| enum rtrs_clt_state *old_state) |
| { |
| bool changed; |
| |
| spin_lock_irq(&sess->state_wq.lock); |
| *old_state = sess->state; |
| changed = __rtrs_clt_change_state(sess, new_state); |
| spin_unlock_irq(&sess->state_wq.lock); |
| |
| return changed; |
| } |
| |
| static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess, |
| enum rtrs_clt_state new_state) |
| { |
| enum rtrs_clt_state old_state; |
| |
| return rtrs_clt_change_state_get_old(sess, new_state, &old_state); |
| } |
| |
| static void rtrs_clt_hb_err_handler(struct rtrs_con *c) |
| { |
| struct rtrs_clt_con *con = container_of(c, typeof(*con), c); |
| |
| rtrs_rdma_error_recovery(con); |
| } |
| |
| static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess) |
| { |
| rtrs_init_hb(&sess->s, &io_comp_cqe, |
| RTRS_HB_INTERVAL_MS, |
| RTRS_HB_MISSED_MAX, |
| rtrs_clt_hb_err_handler, |
| rtrs_wq); |
| } |
| |
| static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess) |
| { |
| rtrs_start_hb(&sess->s); |
| } |
| |
| static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess) |
| { |
| rtrs_stop_hb(&sess->s); |
| } |
| |
| static void rtrs_clt_reconnect_work(struct work_struct *work); |
| static void rtrs_clt_close_work(struct work_struct *work); |
| |
| static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt, |
| const struct rtrs_addr *path, |
| size_t con_num, u16 max_segments, |
| size_t max_segment_size) |
| { |
| struct rtrs_clt_sess *sess; |
| int err = -ENOMEM; |
| int cpu; |
| |
| sess = kzalloc(sizeof(*sess), GFP_KERNEL); |
| if (!sess) |
| goto err; |
| |
| /* Extra connection for user messages */ |
| con_num += 1; |
| |
| sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL); |
| if (!sess->s.con) |
| goto err_free_sess; |
| |
| sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL); |
| if (!sess->stats) |
| goto err_free_con; |
| |
| mutex_init(&sess->init_mutex); |
| uuid_gen(&sess->s.uuid); |
| memcpy(&sess->s.dst_addr, path->dst, |
| rdma_addr_size((struct sockaddr *)path->dst)); |
| |
| /* |
| * rdma_resolve_addr() passes src_addr to cma_bind_addr, which |
| * checks the sa_family to be non-zero. If user passed src_addr=NULL |
| * the sess->src_addr will contain only zeros, which is then fine. |
| */ |
| if (path->src) |
| memcpy(&sess->s.src_addr, path->src, |
| rdma_addr_size((struct sockaddr *)path->src)); |
| strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname)); |
| sess->s.con_num = con_num; |
| sess->clt = clt; |
| sess->max_pages_per_mr = max_segments * max_segment_size >> 12; |
| init_waitqueue_head(&sess->state_wq); |
| sess->state = RTRS_CLT_CONNECTING; |
| atomic_set(&sess->connected_cnt, 0); |
| INIT_WORK(&sess->close_work, rtrs_clt_close_work); |
| INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work); |
| rtrs_clt_init_hb(sess); |
| |
| sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry)); |
| if (!sess->mp_skip_entry) |
| goto err_free_stats; |
| |
| for_each_possible_cpu(cpu) |
| INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu)); |
| |
| err = rtrs_clt_init_stats(sess->stats); |
| if (err) |
| goto err_free_percpu; |
| |
| return sess; |
| |
| err_free_percpu: |
| free_percpu(sess->mp_skip_entry); |
| err_free_stats: |
| kfree(sess->stats); |
| err_free_con: |
| kfree(sess->s.con); |
| err_free_sess: |
| kfree(sess); |
| err: |
| return ERR_PTR(err); |
| } |
| |
| void free_sess(struct rtrs_clt_sess *sess) |
| { |
| free_percpu(sess->mp_skip_entry); |
| mutex_destroy(&sess->init_mutex); |
| kfree(sess->s.con); |
| kfree(sess->rbufs); |
| kfree(sess); |
| } |
| |
| static int create_con(struct rtrs_clt_sess *sess, unsigned int cid) |
| { |
| struct rtrs_clt_con *con; |
| |
| con = kzalloc(sizeof(*con), GFP_KERNEL); |
| if (!con) |
| return -ENOMEM; |
| |
| /* Map first two connections to the first CPU */ |
| con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids; |
| con->c.cid = cid; |
| con->c.sess = &sess->s; |
| atomic_set(&con->io_cnt, 0); |
| |
| sess->s.con[cid] = &con->c; |
| |
| return 0; |
| } |
| |
| static void destroy_con(struct rtrs_clt_con *con) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| |
| sess->s.con[con->c.cid] = NULL; |
| kfree(con); |
| } |
| |
| static int create_con_cq_qp(struct rtrs_clt_con *con) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| u16 wr_queue_size; |
| int err, cq_vector; |
| struct rtrs_msg_rkey_rsp *rsp; |
| |
| /* |
| * This function can fail, but still destroy_con_cq_qp() should |
| * be called, this is because create_con_cq_qp() is called on cm |
| * event path, thus caller/waiter never knows: have we failed before |
| * create_con_cq_qp() or after. To solve this dilemma without |
| * creating any additional flags just allow destroy_con_cq_qp() be |
| * called many times. |
| */ |
| |
| if (con->c.cid == 0) { |
| /* |
| * One completion for each receive and two for each send |
| * (send request + registration) |
| * + 2 for drain and heartbeat |
| * in case qp gets into error state |
| */ |
| wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2; |
| /* We must be the first here */ |
| if (WARN_ON(sess->s.dev)) |
| return -EINVAL; |
| |
| /* |
| * The whole session uses device from user connection. |
| * Be careful not to close user connection before ib dev |
| * is gracefully put. |
| */ |
| sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device, |
| &dev_pd); |
| if (!sess->s.dev) { |
| rtrs_wrn(sess->clt, |
| "rtrs_ib_dev_find_get_or_add(): no memory\n"); |
| return -ENOMEM; |
| } |
| sess->s.dev_ref = 1; |
| query_fast_reg_mode(sess); |
| } else { |
| /* |
| * Here we assume that session members are correctly set. |
| * This is always true if user connection (cid == 0) is |
| * established first. |
| */ |
| if (WARN_ON(!sess->s.dev)) |
| return -EINVAL; |
| if (WARN_ON(!sess->queue_depth)) |
| return -EINVAL; |
| |
| /* Shared between connections */ |
| sess->s.dev_ref++; |
| wr_queue_size = |
| min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr, |
| /* QD * (REQ + RSP + FR REGS or INVS) + drain */ |
| sess->queue_depth * 3 + 1); |
| } |
| /* alloc iu to recv new rkey reply when server reports flags set */ |
| if (sess->flags == RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) { |
| con->rsp_ius = rtrs_iu_alloc(wr_queue_size, sizeof(*rsp), |
| GFP_KERNEL, sess->s.dev->ib_dev, |
| DMA_FROM_DEVICE, |
| rtrs_clt_rdma_done); |
| if (!con->rsp_ius) |
| return -ENOMEM; |
| con->queue_size = wr_queue_size; |
| } |
| cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors; |
| err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge, |
| cq_vector, wr_queue_size, wr_queue_size, |
| IB_POLL_SOFTIRQ); |
| /* |
| * In case of error we do not bother to clean previous allocations, |
| * since destroy_con_cq_qp() must be called. |
| */ |
| return err; |
| } |
| |
| static void destroy_con_cq_qp(struct rtrs_clt_con *con) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| |
| /* |
| * Be careful here: destroy_con_cq_qp() can be called even |
| * create_con_cq_qp() failed, see comments there. |
| */ |
| |
| rtrs_cq_qp_destroy(&con->c); |
| if (con->rsp_ius) { |
| rtrs_iu_free(con->rsp_ius, DMA_FROM_DEVICE, |
| sess->s.dev->ib_dev, con->queue_size); |
| con->rsp_ius = NULL; |
| con->queue_size = 0; |
| } |
| if (sess->s.dev_ref && !--sess->s.dev_ref) { |
| rtrs_ib_dev_put(sess->s.dev); |
| sess->s.dev = NULL; |
| } |
| } |
| |
| static void stop_cm(struct rtrs_clt_con *con) |
| { |
| rdma_disconnect(con->c.cm_id); |
| if (con->c.qp) |
| ib_drain_qp(con->c.qp); |
| } |
| |
| static void destroy_cm(struct rtrs_clt_con *con) |
| { |
| rdma_destroy_id(con->c.cm_id); |
| con->c.cm_id = NULL; |
| } |
| |
| static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con) |
| { |
| struct rtrs_sess *s = con->c.sess; |
| int err; |
| |
| err = create_con_cq_qp(con); |
| if (err) { |
| rtrs_err(s, "create_con_cq_qp(), err: %d\n", err); |
| return err; |
| } |
| err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS); |
| if (err) { |
| rtrs_err(s, "Resolving route failed, err: %d\n", err); |
| destroy_con_cq_qp(con); |
| } |
| |
| return err; |
| } |
| |
| static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| struct rtrs_clt *clt = sess->clt; |
| struct rtrs_msg_conn_req msg; |
| struct rdma_conn_param param; |
| |
| int err; |
| |
| param = (struct rdma_conn_param) { |
| .retry_count = 7, |
| .rnr_retry_count = 7, |
| .private_data = &msg, |
| .private_data_len = sizeof(msg), |
| }; |
| |
| msg = (struct rtrs_msg_conn_req) { |
| .magic = cpu_to_le16(RTRS_MAGIC), |
| .version = cpu_to_le16(RTRS_PROTO_VER), |
| .cid = cpu_to_le16(con->c.cid), |
| .cid_num = cpu_to_le16(sess->s.con_num), |
| .recon_cnt = cpu_to_le16(sess->s.recon_cnt), |
| }; |
| uuid_copy(&msg.sess_uuid, &sess->s.uuid); |
| uuid_copy(&msg.paths_uuid, &clt->paths_uuid); |
| |
| err = rdma_connect(con->c.cm_id, ¶m); |
| if (err) |
| rtrs_err(clt, "rdma_connect(): %d\n", err); |
| |
| return err; |
| } |
| |
| static int rtrs_rdma_conn_established(struct rtrs_clt_con *con, |
| struct rdma_cm_event *ev) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| struct rtrs_clt *clt = sess->clt; |
| const struct rtrs_msg_conn_rsp *msg; |
| u16 version, queue_depth; |
| int errno; |
| u8 len; |
| |
| msg = ev->param.conn.private_data; |
| len = ev->param.conn.private_data_len; |
| if (len < sizeof(*msg)) { |
| rtrs_err(clt, "Invalid RTRS connection response\n"); |
| return -ECONNRESET; |
| } |
| if (le16_to_cpu(msg->magic) != RTRS_MAGIC) { |
| rtrs_err(clt, "Invalid RTRS magic\n"); |
| return -ECONNRESET; |
| } |
| version = le16_to_cpu(msg->version); |
| if (version >> 8 != RTRS_PROTO_VER_MAJOR) { |
| rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n", |
| version >> 8, RTRS_PROTO_VER_MAJOR); |
| return -ECONNRESET; |
| } |
| errno = le16_to_cpu(msg->errno); |
| if (errno) { |
| rtrs_err(clt, "Invalid RTRS message: errno %d\n", |
| errno); |
| return -ECONNRESET; |
| } |
| if (con->c.cid == 0) { |
| queue_depth = le16_to_cpu(msg->queue_depth); |
| |
| if (queue_depth > MAX_SESS_QUEUE_DEPTH) { |
| rtrs_err(clt, "Invalid RTRS message: queue=%d\n", |
| queue_depth); |
| return -ECONNRESET; |
| } |
| if (!sess->rbufs || sess->queue_depth < queue_depth) { |
| kfree(sess->rbufs); |
| sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs), |
| GFP_KERNEL); |
| if (!sess->rbufs) |
| return -ENOMEM; |
| } |
| sess->queue_depth = queue_depth; |
| sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size); |
| sess->max_io_size = le32_to_cpu(msg->max_io_size); |
| sess->flags = le32_to_cpu(msg->flags); |
| sess->chunk_size = sess->max_io_size + sess->max_hdr_size; |
| |
| /* |
| * Global queue depth and IO size is always a minimum. |
| * If while a reconnection server sends us a value a bit |
| * higher - client does not care and uses cached minimum. |
| * |
| * Since we can have several sessions (paths) restablishing |
| * connections in parallel, use lock. |
| */ |
| mutex_lock(&clt->paths_mutex); |
| clt->queue_depth = min_not_zero(sess->queue_depth, |
| clt->queue_depth); |
| clt->max_io_size = min_not_zero(sess->max_io_size, |
| clt->max_io_size); |
| mutex_unlock(&clt->paths_mutex); |
| |
| /* |
| * Cache the hca_port and hca_name for sysfs |
| */ |
| sess->hca_port = con->c.cm_id->port_num; |
| scnprintf(sess->hca_name, sizeof(sess->hca_name), |
| sess->s.dev->ib_dev->name); |
| sess->s.src_addr = con->c.cm_id->route.addr.src_addr; |
| } |
| |
| return 0; |
| } |
| |
| static inline void flag_success_on_conn(struct rtrs_clt_con *con) |
| { |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| |
| atomic_inc(&sess->connected_cnt); |
| con->cm_err = 1; |
| } |
| |
| static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con, |
| struct rdma_cm_event *ev) |
| { |
| struct rtrs_sess *s = con->c.sess; |
| const struct rtrs_msg_conn_rsp *msg; |
| const char *rej_msg; |
| int status, errno; |
| u8 data_len; |
| |
| status = ev->status; |
| rej_msg = rdma_reject_msg(con->c.cm_id, status); |
| msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len); |
| |
| if (msg && data_len >= sizeof(*msg)) { |
| errno = (int16_t)le16_to_cpu(msg->errno); |
| if (errno == -EBUSY) |
| rtrs_err(s, |
| "Previous session is still exists on the server, please reconnect later\n"); |
| else |
| rtrs_err(s, |
| "Connect rejected: status %d (%s), rtrs errno %d\n", |
| status, rej_msg, errno); |
| } else { |
| rtrs_err(s, |
| "Connect rejected but with malformed message: status %d (%s)\n", |
| status, rej_msg); |
| } |
| |
| return -ECONNRESET; |
| } |
| |
| static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait) |
| { |
| if (rtrs_clt_change_state(sess, RTRS_CLT_CLOSING)) |
| queue_work(rtrs_wq, &sess->close_work); |
| if (wait) |
| flush_work(&sess->close_work); |
| } |
| |
| static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err) |
| { |
| if (con->cm_err == 1) { |
| struct rtrs_clt_sess *sess; |
| |
| sess = to_clt_sess(con->c.sess); |
| if (atomic_dec_and_test(&sess->connected_cnt)) |
| |
| wake_up(&sess->state_wq); |
| } |
| con->cm_err = cm_err; |
| } |
| |
| static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id, |
| struct rdma_cm_event *ev) |
| { |
| struct rtrs_clt_con *con = cm_id->context; |
| struct rtrs_sess *s = con->c.sess; |
| struct rtrs_clt_sess *sess = to_clt_sess(s); |
| int cm_err = 0; |
| |
| switch (ev->event) { |
| case RDMA_CM_EVENT_ADDR_RESOLVED: |
| cm_err = rtrs_rdma_addr_resolved(con); |
| break; |
| case RDMA_CM_EVENT_ROUTE_RESOLVED: |
| cm_err = rtrs_rdma_route_resolved(con); |
| break; |
| case RDMA_CM_EVENT_ESTABLISHED: |
| con->cm_err = rtrs_rdma_conn_established(con, ev); |
| if (likely(!con->cm_err)) { |
| /* |
| * Report success and wake up. Here we abuse state_wq, |
| * i.e. wake up without state change, but we set cm_err. |
| */ |
| flag_success_on_conn(con); |
| wake_up(&sess->state_wq); |
| return 0; |
| } |
| break; |
| case RDMA_CM_EVENT_REJECTED: |
| cm_err = rtrs_rdma_conn_rejected(con, ev); |
| break; |
| case RDMA_CM_EVENT_CONNECT_ERROR: |
| case RDMA_CM_EVENT_UNREACHABLE: |
| rtrs_wrn(s, "CM error event %d\n", ev->event); |
| cm_err = -ECONNRESET; |
| break; |
| case RDMA_CM_EVENT_ADDR_ERROR: |
| case RDMA_CM_EVENT_ROUTE_ERROR: |
| cm_err = -EHOSTUNREACH; |
| break; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| case RDMA_CM_EVENT_ADDR_CHANGE: |
| case RDMA_CM_EVENT_TIMEWAIT_EXIT: |
| cm_err = -ECONNRESET; |
| break; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| /* |
| * Device removal is a special case. Queue close and return 0. |
| */ |
| rtrs_clt_close_conns(sess, false); |
| return 0; |
| default: |
| rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event); |
| cm_err = -ECONNRESET; |
| break; |
| } |
| |
| if (cm_err) { |
| /* |
| * cm error makes sense only on connection establishing, |
| * in other cases we rely on normal procedure of reconnecting. |
| */ |
| flag_error_on_conn(con, cm_err); |
| rtrs_rdma_error_recovery(con); |
| } |
| |
| return 0; |
| } |
| |
| static int create_cm(struct rtrs_clt_con *con) |
| { |
| struct rtrs_sess *s = con->c.sess; |
| struct rtrs_clt_sess *sess = to_clt_sess(s); |
| struct rdma_cm_id *cm_id; |
| int err; |
| |
| cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con, |
| sess->s.dst_addr.ss_family == AF_IB ? |
| RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC); |
| if (IS_ERR(cm_id)) { |
| err = PTR_ERR(cm_id); |
| rtrs_err(s, "Failed to create CM ID, err: %d\n", err); |
| |
| return err; |
| } |
| con->c.cm_id = cm_id; |
| con->cm_err = 0; |
| /* allow the port to be reused */ |
| err = rdma_set_reuseaddr(cm_id, 1); |
| if (err != 0) { |
| rtrs_err(s, "Set address reuse failed, err: %d\n", err); |
| goto destroy_cm; |
| } |
| err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr, |
| (struct sockaddr *)&sess->s.dst_addr, |
| RTRS_CONNECT_TIMEOUT_MS); |
| if (err) { |
| rtrs_err(s, "Failed to resolve address, err: %d\n", err); |
| goto destroy_cm; |
| } |
| /* |
| * Combine connection status and session events. This is needed |
| * for waiting two possible cases: cm_err has something meaningful |
| * or session state was really changed to error by device removal. |
| */ |
| err = wait_event_interruptible_timeout( |
| sess->state_wq, |
| con->cm_err || sess->state != RTRS_CLT_CONNECTING, |
| msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); |
| if (err == 0 || err == -ERESTARTSYS) { |
| if (err == 0) |
| err = -ETIMEDOUT; |
| /* Timedout or interrupted */ |
| goto errr; |
| } |
| if (con->cm_err < 0) { |
| err = con->cm_err; |
| goto errr; |
| } |
| if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) { |
| /* Device removal */ |
| err = -ECONNABORTED; |
| goto errr; |
| } |
| |
| return 0; |
| |
| errr: |
| stop_cm(con); |
| /* Is safe to call destroy if cq_qp is not inited */ |
| destroy_con_cq_qp(con); |
| destroy_cm: |
| destroy_cm(con); |
| |
| return err; |
| } |
| |
| static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt *clt = sess->clt; |
| int up; |
| |
| /* |
| * We can fire RECONNECTED event only when all paths were |
| * connected on rtrs_clt_open(), then each was disconnected |
| * and the first one connected again. That's why this nasty |
| * game with counter value. |
| */ |
| |
| mutex_lock(&clt->paths_ev_mutex); |
| up = ++clt->paths_up; |
| /* |
| * Here it is safe to access paths num directly since up counter |
| * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is |
| * in progress, thus paths removals are impossible. |
| */ |
| if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num) |
| clt->paths_up = clt->paths_num; |
| else if (up == 1) |
| clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED); |
| mutex_unlock(&clt->paths_ev_mutex); |
| |
| /* Mark session as established */ |
| sess->established = true; |
| sess->reconnect_attempts = 0; |
| sess->stats->reconnects.successful_cnt++; |
| } |
| |
| static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt *clt = sess->clt; |
| |
| if (!sess->established) |
| return; |
| |
| sess->established = false; |
| mutex_lock(&clt->paths_ev_mutex); |
| WARN_ON(!clt->paths_up); |
| if (--clt->paths_up == 0) |
| clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED); |
| mutex_unlock(&clt->paths_ev_mutex); |
| } |
| |
| static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt_con *con; |
| unsigned int cid; |
| |
| WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED); |
| |
| /* |
| * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes |
| * exactly in between. Start destroying after it finishes. |
| */ |
| mutex_lock(&sess->init_mutex); |
| mutex_unlock(&sess->init_mutex); |
| |
| /* |
| * All IO paths must observe !CONNECTED state before we |
| * free everything. |
| */ |
| synchronize_rcu(); |
| |
| rtrs_clt_stop_hb(sess); |
| |
| /* |
| * The order it utterly crucial: firstly disconnect and complete all |
| * rdma requests with error (thus set in_use=false for requests), |
| * then fail outstanding requests checking in_use for each, and |
| * eventually notify upper layer about session disconnection. |
| */ |
| |
| for (cid = 0; cid < sess->s.con_num; cid++) { |
| if (!sess->s.con[cid]) |
| break; |
| con = to_clt_con(sess->s.con[cid]); |
| stop_cm(con); |
| } |
| fail_all_outstanding_reqs(sess); |
| free_sess_reqs(sess); |
| rtrs_clt_sess_down(sess); |
| |
| /* |
| * Wait for graceful shutdown, namely when peer side invokes |
| * rdma_disconnect(). 'connected_cnt' is decremented only on |
| * CM events, thus if other side had crashed and hb has detected |
| * something is wrong, here we will stuck for exactly timeout ms, |
| * since CM does not fire anything. That is fine, we are not in |
| * hurry. |
| */ |
| wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt), |
| msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); |
| |
| for (cid = 0; cid < sess->s.con_num; cid++) { |
| if (!sess->s.con[cid]) |
| break; |
| con = to_clt_con(sess->s.con[cid]); |
| destroy_con_cq_qp(con); |
| destroy_cm(con); |
| destroy_con(con); |
| } |
| } |
| |
| static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path, |
| struct rtrs_clt_sess *sess, |
| struct rtrs_clt_sess *next) |
| { |
| struct rtrs_clt_sess **ppcpu_path; |
| |
| /* Call cmpxchg() without sparse warnings */ |
| ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path; |
| return sess == cmpxchg(ppcpu_path, sess, next); |
| } |
| |
| static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt *clt = sess->clt; |
| struct rtrs_clt_sess *next; |
| bool wait_for_grace = false; |
| int cpu; |
| |
| mutex_lock(&clt->paths_mutex); |
| list_del_rcu(&sess->s.entry); |
| |
| /* Make sure everybody observes path removal. */ |
| synchronize_rcu(); |
| |
| /* |
| * At this point nobody sees @sess in the list, but still we have |
| * dangling pointer @pcpu_path which _can_ point to @sess. Since |
| * nobody can observe @sess in the list, we guarantee that IO path |
| * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal |
| * to @sess, but can never again become @sess. |
| */ |
| |
| /* |
| * Decrement paths number only after grace period, because |
| * caller of do_each_path() must firstly observe list without |
| * path and only then decremented paths number. |
| * |
| * Otherwise there can be the following situation: |
| * o Two paths exist and IO is coming. |
| * o One path is removed: |
| * CPU#0 CPU#1 |
| * do_each_path(): rtrs_clt_remove_path_from_arr(): |
| * path = get_next_path() |
| * ^^^ list_del_rcu(path) |
| * [!CONNECTED path] clt->paths_num-- |
| * ^^^^^^^^^ |
| * load clt->paths_num from 2 to 1 |
| * ^^^^^^^^^ |
| * sees 1 |
| * |
| * path is observed as !CONNECTED, but do_each_path() loop |
| * ends, because expression i < clt->paths_num is false. |
| */ |
| clt->paths_num--; |
| |
| /* |
| * Get @next connection from current @sess which is going to be |
| * removed. If @sess is the last element, then @next is NULL. |
| */ |
| rcu_read_lock(); |
| next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry, |
| typeof(*next), s.entry); |
| rcu_read_unlock(); |
| |
| /* |
| * @pcpu paths can still point to the path which is going to be |
| * removed, so change the pointer manually. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct rtrs_clt_sess __rcu **ppcpu_path; |
| |
| ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu); |
| if (rcu_dereference_protected(*ppcpu_path, |
| lockdep_is_held(&clt->paths_mutex)) != sess) |
| /* |
| * synchronize_rcu() was called just after deleting |
| * entry from the list, thus IO code path cannot |
| * change pointer back to the pointer which is going |
| * to be removed, we are safe here. |
| */ |
| continue; |
| |
| /* |
| * We race with IO code path, which also changes pointer, |
| * thus we have to be careful not to overwrite it. |
| */ |
| if (xchg_sessions(ppcpu_path, sess, next)) |
| /* |
| * @ppcpu_path was successfully replaced with @next, |
| * that means that someone could also pick up the |
| * @sess and dereferencing it right now, so wait for |
| * a grace period is required. |
| */ |
| wait_for_grace = true; |
| } |
| if (wait_for_grace) |
| synchronize_rcu(); |
| |
| mutex_unlock(&clt->paths_mutex); |
| } |
| |
| static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess, |
| struct rtrs_addr *addr) |
| { |
| struct rtrs_clt *clt = sess->clt; |
| |
| mutex_lock(&clt->paths_mutex); |
| clt->paths_num++; |
| |
| list_add_tail_rcu(&sess->s.entry, &clt->paths_list); |
| mutex_unlock(&clt->paths_mutex); |
| } |
| |
| static void rtrs_clt_close_work(struct work_struct *work) |
| { |
| struct rtrs_clt_sess *sess; |
| |
| sess = container_of(work, struct rtrs_clt_sess, close_work); |
| |
| cancel_delayed_work_sync(&sess->reconnect_dwork); |
| rtrs_clt_stop_and_destroy_conns(sess); |
| rtrs_clt_change_state(sess, RTRS_CLT_CLOSED); |
| } |
| |
| static int init_conns(struct rtrs_clt_sess *sess) |
| { |
| unsigned int cid; |
| int err; |
| |
| /* |
| * On every new session connections increase reconnect counter |
| * to avoid clashes with previous sessions not yet closed |
| * sessions on a server side. |
| */ |
| sess->s.recon_cnt++; |
| |
| /* Establish all RDMA connections */ |
| for (cid = 0; cid < sess->s.con_num; cid++) { |
| err = create_con(sess, cid); |
| if (err) |
| goto destroy; |
| |
| err = create_cm(to_clt_con(sess->s.con[cid])); |
| if (err) { |
| destroy_con(to_clt_con(sess->s.con[cid])); |
| goto destroy; |
| } |
| } |
| err = alloc_sess_reqs(sess); |
| if (err) |
| goto destroy; |
| |
| rtrs_clt_start_hb(sess); |
| |
| return 0; |
| |
| destroy: |
| while (cid--) { |
| struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]); |
| |
| stop_cm(con); |
| destroy_con_cq_qp(con); |
| destroy_cm(con); |
| destroy_con(con); |
| } |
| /* |
| * If we've never taken async path and got an error, say, |
| * doing rdma_resolve_addr(), switch to CONNECTION_ERR state |
| * manually to keep reconnecting. |
| */ |
| rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR); |
| |
| return err; |
| } |
| |
| static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct rtrs_clt_con *con = cq->cq_context; |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| struct rtrs_iu *iu; |
| |
| iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); |
| rtrs_iu_free(iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1); |
| |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| rtrs_err(sess->clt, "Sess info request send failed: %s\n", |
| ib_wc_status_msg(wc->status)); |
| rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR); |
| return; |
| } |
| |
| rtrs_clt_update_wc_stats(con); |
| } |
| |
| static int process_info_rsp(struct rtrs_clt_sess *sess, |
| const struct rtrs_msg_info_rsp *msg) |
| { |
| unsigned int sg_cnt, total_len; |
| int i, sgi; |
| |
| sg_cnt = le16_to_cpu(msg->sg_cnt); |
| if (unlikely(!sg_cnt)) |
| return -EINVAL; |
| /* |
| * Check if IB immediate data size is enough to hold the mem_id and |
| * the offset inside the memory chunk. |
| */ |
| if (unlikely((ilog2(sg_cnt - 1) + 1) + |
| (ilog2(sess->chunk_size - 1) + 1) > |
| MAX_IMM_PAYL_BITS)) { |
| rtrs_err(sess->clt, |
| "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n", |
| MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size); |
| return -EINVAL; |
| } |
| if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) { |
| rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n", |
| sg_cnt); |
| return -EINVAL; |
| } |
| total_len = 0; |
| for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) { |
| const struct rtrs_sg_desc *desc = &msg->desc[sgi]; |
| u32 len, rkey; |
| u64 addr; |
| |
| addr = le64_to_cpu(desc->addr); |
| rkey = le32_to_cpu(desc->key); |
| len = le32_to_cpu(desc->len); |
| |
| total_len += len; |
| |
| if (unlikely(!len || (len % sess->chunk_size))) { |
| rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi, |
| len); |
| return -EINVAL; |
| } |
| for ( ; len && i < sess->queue_depth; i++) { |
| sess->rbufs[i].addr = addr; |
| sess->rbufs[i].rkey = rkey; |
| |
| len -= sess->chunk_size; |
| addr += sess->chunk_size; |
| } |
| } |
| /* Sanity check */ |
| if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) { |
| rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n"); |
| return -EINVAL; |
| } |
| if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) { |
| rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct rtrs_clt_con *con = cq->cq_context; |
| struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); |
| struct rtrs_msg_info_rsp *msg; |
| enum rtrs_clt_state state; |
| struct rtrs_iu *iu; |
| size_t rx_sz; |
| int err; |
| |
| state = RTRS_CLT_CONNECTING_ERR; |
| |
| WARN_ON(con->c.cid); |
| iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); |
| if (unlikely(wc->status != IB_WC_SUCCESS)) { |
| rtrs_err(sess->clt, "Sess info response recv failed: %s\n", |
| ib_wc_status_msg(wc->status)); |
| goto out; |
| } |
| WARN_ON(wc->opcode != IB_WC_RECV); |
| |
| if (unlikely(wc->byte_len < sizeof(*msg))) { |
| rtrs_err(sess->clt, "Sess info response is malformed: size %d\n", |
| wc->byte_len); |
| goto out; |
| } |
| ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr, |
| iu->size, DMA_FROM_DEVICE); |
| msg = iu->buf; |
| if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) { |
| rtrs_err(sess->clt, "Sess info response is malformed: type %d\n", |
| le16_to_cpu(msg->type)); |
| goto out; |
| } |
| rx_sz = sizeof(*msg); |
| rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt); |
| if (unlikely(wc->byte_len < rx_sz)) { |
| rtrs_err(sess->clt, "Sess info response is malformed: size %d\n", |
| wc->byte_len); |
| goto out; |
| } |
| err = process_info_rsp(sess, msg); |
| if (unlikely(err)) |
| goto out; |
| |
| err = post_recv_sess(sess); |
| if (unlikely(err)) |
| goto out; |
| |
| state = RTRS_CLT_CONNECTED; |
| |
| out: |
| rtrs_clt_update_wc_stats(con); |
| rtrs_iu_free(iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1); |
| rtrs_clt_change_state(sess, state); |
| } |
| |
| static int rtrs_send_sess_info(struct rtrs_clt_sess *sess) |
| { |
| struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]); |
| struct rtrs_msg_info_req *msg; |
| struct rtrs_iu *tx_iu, *rx_iu; |
| size_t rx_sz; |
| int err; |
| |
| rx_sz = sizeof(struct rtrs_msg_info_rsp); |
| rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH; |
| |
| tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL, |
| sess->s.dev->ib_dev, DMA_TO_DEVICE, |
| rtrs_clt_info_req_done); |
| rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev, |
| DMA_FROM_DEVICE, rtrs_clt_info_rsp_done); |
| if (unlikely(!tx_iu || !rx_iu)) { |
| err = -ENOMEM; |
| goto out; |
| } |
| /* Prepare for getting info response */ |
| err = rtrs_iu_post_recv(&usr_con->c, rx_iu); |
| if (unlikely(err)) { |
| rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err); |
| goto out; |
| } |
| rx_iu = NULL; |
| |
| msg = tx_iu->buf; |
| msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ); |
| memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname)); |
| |
| ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr, |
| tx_iu->size, DMA_TO_DEVICE); |
| |
| /* Send info request */ |
| err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL); |
| if (unlikely(err)) { |
| rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err); |
| goto out; |
| } |
| tx_iu = NULL; |
| |
| /* Wait for state change */ |
| wait_event_interruptible_timeout(sess->state_wq, |
| sess->state != RTRS_CLT_CONNECTING, |
| msecs_to_jiffies( |
| RTRS_CONNECT_TIMEOUT_MS)); |
| if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) { |
| if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR) |
| err = -ECONNRESET; |
| else |
| err = -ETIMEDOUT; |
| goto out; |
| } |
| |
| out: |
| if (tx_iu) |
| rtrs_iu_free(tx_iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1); |
| if (rx_iu) |
| rtrs_iu_free(rx_iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1); |
| if (unlikely(err)) |
| /* If we've never taken async path because of malloc problems */ |
| rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR); |
| |
| return err; |
| } |
| |
| /** |
| * init_sess() - establishes all session connections and does handshake |
| * @sess: client session. |
| * In case of error full close or reconnect procedure should be taken, |
| * because reconnect or close async works can be started. |
| */ |
| static int init_sess(struct rtrs_clt_sess *sess) |
| { |
| int err; |
| |
| mutex_lock(&sess->init_mutex); |
| err = init_conns(sess); |
| if (err) { |
| rtrs_err(sess->clt, "init_conns(), err: %d\n", err); |
| goto out; |
| } |
| err = rtrs_send_sess_info(sess); |
| if (err) { |
| rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err); |
| goto out; |
| } |
| rtrs_clt_sess_up(sess); |
| out: |
| mutex_unlock(&sess->init_mutex); |
| |
| return err; |
| } |
| |
| static void rtrs_clt_reconnect_work(struct work_struct *work) |
| { |
| struct rtrs_clt_sess *sess; |
| struct rtrs_clt *clt; |
| unsigned int delay_ms; |
| int err; |
| |
| sess = container_of(to_delayed_work(work), struct rtrs_clt_sess, |
| reconnect_dwork); |
| clt = sess->clt; |
| |
| if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING) |
| return; |
| |
| if (sess->reconnect_attempts >= clt->max_reconnect_attempts) { |
| /* Close a session completely if max attempts is reached */ |
| rtrs_clt_close_conns(sess, false); |
| return; |
| } |
| sess->reconnect_attempts++; |
| |
| /* Stop everything */ |
| rtrs_clt_stop_and_destroy_conns(sess); |
| msleep(RTRS_RECONNECT_BACKOFF); |
| if (rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING)) { |
| err = init_sess(sess); |
| if (err) |
| goto reconnect_again; |
| } |
| |
| return; |
| |
| reconnect_again: |
| if (rtrs_clt_change_state(sess, RTRS_CLT_RECONNECTING)) { |
| sess->stats->reconnects.fail_cnt++; |
| delay_ms = clt->reconnect_delay_sec * 1000; |
| queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, |
| msecs_to_jiffies(delay_ms + |
| prandom_u32() % |
| RTRS_RECONNECT_SEED)); |
| } |
| } |
| |
| static void rtrs_clt_dev_release(struct device *dev) |
| { |
| struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev); |
| |
| kfree(clt); |
| } |
| |
| static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num, |
| u16 port, size_t pdu_sz, void *priv, |
| void (*link_ev)(void *priv, |
| enum rtrs_clt_link_ev ev), |
| unsigned int max_segments, |
| size_t max_segment_size, |
| unsigned int reconnect_delay_sec, |
| unsigned int max_reconnect_attempts) |
| { |
| struct rtrs_clt *clt; |
| int err; |
| |
| if (!paths_num || paths_num > MAX_PATHS_NUM) |
| return ERR_PTR(-EINVAL); |
| |
| if (strlen(sessname) >= sizeof(clt->sessname)) |
| return ERR_PTR(-EINVAL); |
| |
| clt = kzalloc(sizeof(*clt), GFP_KERNEL); |
| if (!clt) |
| return ERR_PTR(-ENOMEM); |
| |
| clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path)); |
| if (!clt->pcpu_path) { |
| kfree(clt); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| uuid_gen(&clt->paths_uuid); |
| INIT_LIST_HEAD_RCU(&clt->paths_list); |
| clt->paths_num = paths_num; |
| clt->paths_up = MAX_PATHS_NUM; |
| clt->port = port; |
| clt->pdu_sz = pdu_sz; |
| clt->max_segments = max_segments; |
| clt->max_segment_size = max_segment_size; |
| clt->reconnect_delay_sec = reconnect_delay_sec; |
| clt->max_reconnect_attempts = max_reconnect_attempts; |
| clt->priv = priv; |
| clt->link_ev = link_ev; |
| clt->mp_policy = MP_POLICY_MIN_INFLIGHT; |
| strlcpy(clt->sessname, sessname, sizeof(clt->sessname)); |
| init_waitqueue_head(&clt->permits_wait); |
| mutex_init(&clt->paths_ev_mutex); |
| mutex_init(&clt->paths_mutex); |
| |
| clt->dev.class = rtrs_clt_dev_class; |
| clt->dev.release = rtrs_clt_dev_release; |
| err = dev_set_name(&clt->dev, "%s", sessname); |
| if (err) { |
| free_percpu(clt->pcpu_path); |
| kfree(clt); |
| return ERR_PTR(err); |
| } |
| /* |
| * Suppress user space notification until |
| * sysfs files are created |
| */ |
| dev_set_uevent_suppress(&clt->dev, true); |
| err = device_register(&clt->dev); |
| if (err) { |
| free_percpu(clt->pcpu_path); |
| put_device(&clt->dev); |
| return ERR_PTR(err); |
| } |
| |
| clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj); |
| if (!clt->kobj_paths) { |
| free_percpu(clt->pcpu_path); |
| device_unregister(&clt->dev); |
| return NULL; |
| } |
| err = rtrs_clt_create_sysfs_root_files(clt); |
| if (err) { |
| free_percpu(clt->pcpu_path); |
| kobject_del(clt->kobj_paths); |
| kobject_put(clt->kobj_paths); |
| device_unregister(&clt->dev); |
| return ERR_PTR(err); |
| } |
| dev_set_uevent_suppress(&clt->dev, false); |
| kobject_uevent(&clt->dev.kobj, KOBJ_ADD); |
| |
| return clt; |
| } |
| |
| static void wait_for_inflight_permits(struct rtrs_clt *clt) |
| { |
| if (clt->permits_map) { |
| size_t sz = clt->queue_depth; |
| |
| wait_event(clt->permits_wait, |
| find_first_bit(clt->permits_map, sz) >= sz); |
| } |
| } |
| |
| static void free_clt(struct rtrs_clt *clt) |
| { |
| wait_for_inflight_permits(clt); |
| free_permits(clt); |
| free_percpu(clt->pcpu_path); |
| mutex_destroy(&clt->paths_ev_mutex); |
| mutex_destroy(&clt->paths_mutex); |
| /* release callback will free clt in last put */ |
| device_unregister(&clt->dev); |
| } |
| |
| /** |
| * rtrs_clt_open() - Open a session to an RTRS server |
| * @ops: holds the link event callback and the private pointer. |
| * @sessname: name of the session |
| * @paths: Paths to be established defined by their src and dst addresses |
| * @paths_num: Number of elements in the @paths array |
| * @port: port to be used by the RTRS session |
| * @pdu_sz: Size of extra payload which can be accessed after permit allocation. |
| * @reconnect_delay_sec: time between reconnect tries |
| * @max_segments: Max. number of segments per IO request |
| * @max_segment_size: Max. size of one segment |
| * @max_reconnect_attempts: Number of times to reconnect on error before giving |
| * up, 0 for * disabled, -1 for forever |
| * |
| * Starts session establishment with the rtrs_server. The function can block |
| * up to ~2000ms before it returns. |
| * |
| * Return a valid pointer on success otherwise PTR_ERR. |
| */ |
| struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops, |
| const char *sessname, |
| const struct rtrs_addr *paths, |
| size_t paths_num, u16 port, |
| size_t pdu_sz, u8 reconnect_delay_sec, |
| u16 max_segments, |
| size_t max_segment_size, |
| s16 max_reconnect_attempts) |
| { |
| struct rtrs_clt_sess *sess, *tmp; |
| struct rtrs_clt *clt; |
| int err, i; |
| |
| clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv, |
| ops->link_ev, |
| max_segments, max_segment_size, reconnect_delay_sec, |
| max_reconnect_attempts); |
| if (IS_ERR(clt)) { |
| err = PTR_ERR(clt); |
| goto out; |
| } |
| for (i = 0; i < paths_num; i++) { |
| struct rtrs_clt_sess *sess; |
| |
| sess = alloc_sess(clt, &paths[i], nr_cpu_ids, |
| max_segments, max_segment_size); |
| if (IS_ERR(sess)) { |
| err = PTR_ERR(sess); |
| goto close_all_sess; |
| } |
| list_add_tail_rcu(&sess->s.entry, &clt->paths_list); |
| |
| err = init_sess(sess); |
| if (err) { |
| list_del_rcu(&sess->s.entry); |
| rtrs_clt_close_conns(sess, true); |
| free_sess(sess); |
| goto close_all_sess; |
| } |
| |
| err = rtrs_clt_create_sess_files(sess); |
| if (err) { |
| list_del_rcu(&sess->s.entry); |
| rtrs_clt_close_conns(sess, true); |
| free_sess(sess); |
| goto close_all_sess; |
| } |
| } |
| err = alloc_permits(clt); |
| if (err) |
| goto close_all_sess; |
| |
| return clt; |
| |
| close_all_sess: |
| list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) { |
| rtrs_clt_destroy_sess_files(sess, NULL); |
| rtrs_clt_close_conns(sess, true); |
| kobject_put(&sess->kobj); |
| } |
| rtrs_clt_destroy_sysfs_root_files(clt); |
| rtrs_clt_destroy_sysfs_root_folders(clt); |
| free_clt(clt); |
| |
| out: |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL(rtrs_clt_open); |
| |
| /** |
| * rtrs_clt_close() - Close a session |
| * @clt: Session handle. Session is freed upon return. |
| */ |
| void rtrs_clt_close(struct rtrs_clt *clt) |
| { |
| struct rtrs_clt_sess *sess, *tmp; |
| |
| /* Firstly forbid sysfs access */ |
| rtrs_clt_destroy_sysfs_root_files(clt); |
| rtrs_clt_destroy_sysfs_root_folders(clt); |
| |
| /* Now it is safe to iterate over all paths without locks */ |
| list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) { |
| rtrs_clt_destroy_sess_files(sess, NULL); |
| rtrs_clt_close_conns(sess, true); |
| kobject_put(&sess->kobj); |
| } |
| free_clt(clt); |
| } |
| EXPORT_SYMBOL(rtrs_clt_close); |
| |
| int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess) |
| { |
| enum rtrs_clt_state old_state; |
| int err = -EBUSY; |
| bool changed; |
| |
| changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, |
| &old_state); |
| if (changed) { |
| sess->reconnect_attempts = 0; |
| queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0); |
| } |
| if (changed || old_state == RTRS_CLT_RECONNECTING) { |
| /* |
| * flush_delayed_work() queues pending work for immediate |
| * execution, so do the flush if we have queued something |
| * right now or work is pending. |
| */ |
| flush_delayed_work(&sess->reconnect_dwork); |
| err = (READ_ONCE(sess->state) == |
| RTRS_CLT_CONNECTED ? 0 : -ENOTCONN); |
| } |
| |
| return err; |
| } |
| |
| int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess) |
| { |
| rtrs_clt_close_conns(sess, true); |
| |
| return 0; |
| } |
| |
| int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess, |
| const struct attribute *sysfs_self) |
| { |
| enum rtrs_clt_state old_state; |
| bool changed; |
| |
| /* |
| * Continue stopping path till state was changed to DEAD or |
| * state was observed as DEAD: |
| * 1. State was changed to DEAD - we were fast and nobody |
| * invoked rtrs_clt_reconnect(), which can again start |
| * reconnecting. |
| * 2. State was observed as DEAD - we have someone in parallel |
| * removing the path. |
| */ |
| do { |
| rtrs_clt_close_conns(sess, true); |
| changed = rtrs_clt_change_state_get_old(sess, |
| RTRS_CLT_DEAD, |
| &old_state); |
| } while (!changed && old_state != RTRS_CLT_DEAD); |
| |
| if (likely(changed)) { |
| rtrs_clt_destroy_sess_files(sess, sysfs_self); |
| rtrs_clt_remove_path_from_arr(sess); |
| kobject_put(&sess->kobj); |
| } |
| |
| return 0; |
| } |
| |
| void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value) |
| { |
| clt->max_reconnect_attempts = (unsigned int)value; |
| } |
| |
| int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt) |
| { |
| return (int)clt->max_reconnect_attempts; |
| } |
| |
| /** |
| * rtrs_clt_request() - Request data transfer to/from server via RDMA. |
| * |
| * @dir: READ/WRITE |
| * @ops: callback function to be called as confirmation, and the pointer. |
| * @clt: Session |
| * @permit: Preallocated permit |
| * @vec: Message that is sent to server together with the request. |
| * Sum of len of all @vec elements limited to <= IO_MSG_SIZE. |
| * Since the msg is copied internally it can be allocated on stack. |
| * @nr: Number of elements in @vec. |
| * @data_len: length of data sent to/from server |
| * @sg: Pages to be sent/received to/from server. |
| * @sg_cnt: Number of elements in the @sg |
| * |
| * Return: |
| * 0: Success |
| * <0: Error |
| * |
| * On dir=READ rtrs client will request a data transfer from Server to client. |
| * The data that the server will respond with will be stored in @sg when |
| * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event. |
| * On dir=WRITE rtrs client will rdma write data in sg to server side. |
| */ |
| int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops, |
| struct rtrs_clt *clt, struct rtrs_permit *permit, |
| const struct kvec *vec, size_t nr, size_t data_len, |
| struct scatterlist *sg, unsigned int sg_cnt) |
| { |
| struct rtrs_clt_io_req *req; |
| struct rtrs_clt_sess *sess; |
| |
| enum dma_data_direction dma_dir; |
| int err = -ECONNABORTED, i; |
| size_t usr_len, hdr_len; |
| struct path_it it; |
| |
| /* Get kvec length */ |
| for (i = 0, usr_len = 0; i < nr; i++) |
| usr_len += vec[i].iov_len; |
| |
| if (dir == READ) { |
| hdr_len = sizeof(struct rtrs_msg_rdma_read) + |
| sg_cnt * sizeof(struct rtrs_sg_desc); |
| dma_dir = DMA_FROM_DEVICE; |
| } else { |
| hdr_len = sizeof(struct rtrs_msg_rdma_write); |
| dma_dir = DMA_TO_DEVICE; |
| } |
| |
| rcu_read_lock(); |
| for (path_it_init(&it, clt); |
| (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) { |
| if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) |
| continue; |
| |
| if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) { |
| rtrs_wrn_rl(sess->clt, |
| "%s request failed, user message size is %zu and header length %zu, but max size is %u\n", |
| dir == READ ? "Read" : "Write", |
| usr_len, hdr_len, sess->max_hdr_size); |
| err = -EMSGSIZE; |
| break; |
| } |
| req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv, |
| vec, usr_len, sg, sg_cnt, data_len, |
| dma_dir); |
| if (dir == READ) |
| err = rtrs_clt_read_req(req); |
| else |
| err = rtrs_clt_write_req(req); |
| if (unlikely(err)) { |
| req->in_use = false; |
| continue; |
| } |
| /* Success path */ |
| break; |
| } |
| path_it_deinit(&it); |
| rcu_read_unlock(); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(rtrs_clt_request); |
| |
| /** |
| * rtrs_clt_query() - queries RTRS session attributes |
| *@clt: session pointer |
| *@attr: query results for session attributes. |
| * Returns: |
| * 0 on success |
| * -ECOMM no connection to the server |
| */ |
| int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr) |
| { |
| if (!rtrs_clt_is_connected(clt)) |
| return -ECOMM; |
| |
| attr->queue_depth = clt->queue_depth; |
| attr->max_io_size = clt->max_io_size; |
| attr->sess_kobj = &clt->dev.kobj; |
| strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname)); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rtrs_clt_query); |
| |
| int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt, |
| struct rtrs_addr *addr) |
| { |
| struct rtrs_clt_sess *sess; |
| int err; |
| |
| sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments, |
| clt->max_segment_size); |
| if (IS_ERR(sess)) |
| return PTR_ERR(sess); |
| |
| /* |
| * It is totally safe to add path in CONNECTING state: coming |
| * IO will never grab it. Also it is very important to add |
| * path before init, since init fires LINK_CONNECTED event. |
| */ |
| rtrs_clt_add_path_to_arr(sess, addr); |
| |
| err = init_sess(sess); |
| if (err) |
| goto close_sess; |
| |
| err = rtrs_clt_create_sess_files(sess); |
| if (err) |
| goto close_sess; |
| |
| return 0; |
| |
| close_sess: |
| rtrs_clt_remove_path_from_arr(sess); |
| rtrs_clt_close_conns(sess, true); |
| free_sess(sess); |
| |
| return err; |
| } |
| |
| static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev) |
| { |
| if (!(dev->ib_dev->attrs.device_cap_flags & |
| IB_DEVICE_MEM_MGT_EXTENSIONS)) { |
| pr_err("Memory registrations not supported.\n"); |
| return -ENOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = { |
| .init = rtrs_clt_ib_dev_init |
| }; |
| |
| static int __init rtrs_client_init(void) |
| { |
| rtrs_rdma_dev_pd_init(0, &dev_pd); |
| |
| rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client"); |
| if (IS_ERR(rtrs_clt_dev_class)) { |
| pr_err("Failed to create rtrs-client dev class\n"); |
| return PTR_ERR(rtrs_clt_dev_class); |
| } |
| rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0); |
| if (!rtrs_wq) { |
| class_destroy(rtrs_clt_dev_class); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void __exit rtrs_client_exit(void) |
| { |
| destroy_workqueue(rtrs_wq); |
| class_destroy(rtrs_clt_dev_class); |
| rtrs_rdma_dev_pd_deinit(&dev_pd); |
| } |
| |
| module_init(rtrs_client_init); |
| module_exit(rtrs_client_exit); |