| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2018 Chelsio Communications, Inc. |
| * |
| * Written by: Atul Gupta (atul.gupta@chelsio.com) |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/list.h> |
| #include <linux/workqueue.h> |
| #include <linux/skbuff.h> |
| #include <linux/timer.h> |
| #include <linux/notifier.h> |
| #include <linux/inetdevice.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/tls.h> |
| #include <net/tls.h> |
| |
| #include "chtls.h" |
| #include "chtls_cm.h" |
| |
| static void __set_tcb_field_direct(struct chtls_sock *csk, |
| struct cpl_set_tcb_field *req, u16 word, |
| u64 mask, u64 val, u8 cookie, int no_reply) |
| { |
| struct ulptx_idata *sc; |
| |
| INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid); |
| req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid)); |
| req->reply_ctrl = htons(NO_REPLY_V(no_reply) | |
| QUEUENO_V(csk->rss_qid)); |
| req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie)); |
| req->mask = cpu_to_be64(mask); |
| req->val = cpu_to_be64(val); |
| sc = (struct ulptx_idata *)(req + 1); |
| sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP)); |
| sc->len = htonl(0); |
| } |
| |
| static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word, |
| u64 mask, u64 val, u8 cookie, int no_reply) |
| { |
| struct cpl_set_tcb_field *req; |
| struct chtls_sock *csk; |
| struct ulptx_idata *sc; |
| unsigned int wrlen; |
| |
| wrlen = roundup(sizeof(*req) + sizeof(*sc), 16); |
| csk = rcu_dereference_sk_user_data(sk); |
| |
| req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen); |
| __set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply); |
| set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id); |
| } |
| |
| /* |
| * Send control message to HW, message go as immediate data and packet |
| * is freed immediately. |
| */ |
| static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val) |
| { |
| struct cpl_set_tcb_field *req; |
| unsigned int credits_needed; |
| struct chtls_sock *csk; |
| struct ulptx_idata *sc; |
| struct sk_buff *skb; |
| unsigned int wrlen; |
| int ret; |
| |
| wrlen = roundup(sizeof(*req) + sizeof(*sc), 16); |
| |
| skb = alloc_skb(wrlen, GFP_ATOMIC); |
| if (!skb) |
| return -ENOMEM; |
| |
| credits_needed = DIV_ROUND_UP(wrlen, 16); |
| csk = rcu_dereference_sk_user_data(sk); |
| |
| __set_tcb_field(sk, skb, word, mask, val, 0, 1); |
| skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA); |
| csk->wr_credits -= credits_needed; |
| csk->wr_unacked += credits_needed; |
| enqueue_wr(csk, skb); |
| ret = cxgb4_ofld_send(csk->egress_dev, skb); |
| if (ret < 0) |
| kfree_skb(skb); |
| return ret < 0 ? ret : 0; |
| } |
| |
| /* |
| * Set one of the t_flags bits in the TCB. |
| */ |
| int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val) |
| { |
| return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos, |
| (u64)val << bit_pos); |
| } |
| |
| static int chtls_set_tcb_keyid(struct sock *sk, int keyid) |
| { |
| return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid); |
| } |
| |
| static int chtls_set_tcb_seqno(struct sock *sk) |
| { |
| return chtls_set_tcb_field(sk, 28, ~0ULL, 0); |
| } |
| |
| static int chtls_set_tcb_quiesce(struct sock *sk, int val) |
| { |
| return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S), |
| TF_RX_QUIESCE_V(val)); |
| } |
| |
| /* TLS Key bitmap processing */ |
| int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi) |
| { |
| unsigned int num_key_ctx, bsize; |
| int ksize; |
| |
| num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ); |
| bsize = BITS_TO_LONGS(num_key_ctx); |
| |
| cdev->kmap.size = num_key_ctx; |
| cdev->kmap.available = bsize; |
| ksize = sizeof(*cdev->kmap.addr) * bsize; |
| cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL); |
| if (!cdev->kmap.addr) |
| return -ENOMEM; |
| |
| cdev->kmap.start = lldi->vr->key.start; |
| spin_lock_init(&cdev->kmap.lock); |
| return 0; |
| } |
| |
| static int get_new_keyid(struct chtls_sock *csk, u32 optname) |
| { |
| struct net_device *dev = csk->egress_dev; |
| struct chtls_dev *cdev = csk->cdev; |
| struct chtls_hws *hws; |
| struct adapter *adap; |
| int keyid; |
| |
| adap = netdev2adap(dev); |
| hws = &csk->tlshws; |
| |
| spin_lock_bh(&cdev->kmap.lock); |
| keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size); |
| if (keyid < cdev->kmap.size) { |
| __set_bit(keyid, cdev->kmap.addr); |
| if (optname == TLS_RX) |
| hws->rxkey = keyid; |
| else |
| hws->txkey = keyid; |
| atomic_inc(&adap->chcr_stats.tls_key); |
| } else { |
| keyid = -1; |
| } |
| spin_unlock_bh(&cdev->kmap.lock); |
| return keyid; |
| } |
| |
| void free_tls_keyid(struct sock *sk) |
| { |
| struct chtls_sock *csk = rcu_dereference_sk_user_data(sk); |
| struct net_device *dev = csk->egress_dev; |
| struct chtls_dev *cdev = csk->cdev; |
| struct chtls_hws *hws; |
| struct adapter *adap; |
| |
| if (!cdev->kmap.addr) |
| return; |
| |
| adap = netdev2adap(dev); |
| hws = &csk->tlshws; |
| |
| spin_lock_bh(&cdev->kmap.lock); |
| if (hws->rxkey >= 0) { |
| __clear_bit(hws->rxkey, cdev->kmap.addr); |
| atomic_dec(&adap->chcr_stats.tls_key); |
| hws->rxkey = -1; |
| } |
| if (hws->txkey >= 0) { |
| __clear_bit(hws->txkey, cdev->kmap.addr); |
| atomic_dec(&adap->chcr_stats.tls_key); |
| hws->txkey = -1; |
| } |
| spin_unlock_bh(&cdev->kmap.lock); |
| } |
| |
| unsigned int keyid_to_addr(int start_addr, int keyid) |
| { |
| return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5; |
| } |
| |
| static void chtls_rxkey_ivauth(struct _key_ctx *kctx) |
| { |
| kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) | |
| KEYCTX_TX_WR_AAD_V(1ULL) | |
| KEYCTX_TX_WR_AADST_V(5ULL) | |
| KEYCTX_TX_WR_CIPHER_V(14ULL) | |
| KEYCTX_TX_WR_CIPHERST_V(0ULL) | |
| KEYCTX_TX_WR_AUTH_V(14ULL) | |
| KEYCTX_TX_WR_AUTHST_V(16ULL) | |
| KEYCTX_TX_WR_AUTHIN_V(16ULL)); |
| } |
| |
| static int chtls_key_info(struct chtls_sock *csk, |
| struct _key_ctx *kctx, |
| u32 keylen, u32 optname, |
| int cipher_type) |
| { |
| unsigned char key[AES_MAX_KEY_SIZE]; |
| unsigned char *key_p, *salt; |
| unsigned char ghash_h[AEAD_H_SIZE]; |
| int ck_size, key_ctx_size, kctx_mackey_size, salt_size; |
| struct crypto_aes_ctx aes; |
| int ret; |
| |
| key_ctx_size = sizeof(struct _key_ctx) + |
| roundup(keylen, 16) + AEAD_H_SIZE; |
| |
| /* GCM mode of AES supports 128 and 256 bit encryption, so |
| * prepare key context base on GCM cipher type |
| */ |
| switch (cipher_type) { |
| case TLS_CIPHER_AES_GCM_128: { |
| struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 = |
| (struct tls12_crypto_info_aes_gcm_128 *) |
| &csk->tlshws.crypto_info; |
| memcpy(key, gcm_ctx_128->key, keylen); |
| |
| key_p = gcm_ctx_128->key; |
| salt = gcm_ctx_128->salt; |
| ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; |
| salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; |
| kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; |
| break; |
| } |
| case TLS_CIPHER_AES_GCM_256: { |
| struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 = |
| (struct tls12_crypto_info_aes_gcm_256 *) |
| &csk->tlshws.crypto_info; |
| memcpy(key, gcm_ctx_256->key, keylen); |
| |
| key_p = gcm_ctx_256->key; |
| salt = gcm_ctx_256->salt; |
| ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; |
| salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; |
| kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; |
| break; |
| } |
| default: |
| pr_err("GCM: Invalid key length %d\n", keylen); |
| return -EINVAL; |
| } |
| |
| /* Calculate the H = CIPH(K, 0 repeated 16 times). |
| * It will go in key context |
| */ |
| ret = aes_expandkey(&aes, key, keylen); |
| if (ret) |
| return ret; |
| |
| memset(ghash_h, 0, AEAD_H_SIZE); |
| aes_encrypt(&aes, ghash_h, ghash_h); |
| memzero_explicit(&aes, sizeof(aes)); |
| csk->tlshws.keylen = key_ctx_size; |
| |
| /* Copy the Key context */ |
| if (optname == TLS_RX) { |
| int key_ctx; |
| |
| key_ctx = ((key_ctx_size >> 4) << 3); |
| kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size, |
| kctx_mackey_size, |
| 0, 0, key_ctx); |
| chtls_rxkey_ivauth(kctx); |
| } else { |
| kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size, |
| kctx_mackey_size, |
| 0, 0, key_ctx_size >> 4); |
| } |
| |
| memcpy(kctx->salt, salt, salt_size); |
| memcpy(kctx->key, key_p, keylen); |
| memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE); |
| /* erase key info from driver */ |
| memset(key_p, 0, keylen); |
| |
| return 0; |
| } |
| |
| static void chtls_set_scmd(struct chtls_sock *csk) |
| { |
| struct chtls_hws *hws = &csk->tlshws; |
| |
| hws->scmd.seqno_numivs = |
| SCMD_SEQ_NO_CTRL_V(3) | |
| SCMD_PROTO_VERSION_V(0) | |
| SCMD_ENC_DEC_CTRL_V(0) | |
| SCMD_CIPH_AUTH_SEQ_CTRL_V(1) | |
| SCMD_CIPH_MODE_V(2) | |
| SCMD_AUTH_MODE_V(4) | |
| SCMD_HMAC_CTRL_V(0) | |
| SCMD_IV_SIZE_V(4) | |
| SCMD_NUM_IVS_V(1); |
| |
| hws->scmd.ivgen_hdrlen = |
| SCMD_IV_GEN_CTRL_V(1) | |
| SCMD_KEY_CTX_INLINE_V(0) | |
| SCMD_TLS_FRAG_ENABLE_V(1); |
| } |
| |
| int chtls_setkey(struct chtls_sock *csk, u32 keylen, |
| u32 optname, int cipher_type) |
| { |
| struct tls_key_req *kwr; |
| struct chtls_dev *cdev; |
| struct _key_ctx *kctx; |
| int wrlen, klen, len; |
| struct sk_buff *skb; |
| struct sock *sk; |
| int keyid; |
| int kaddr; |
| int ret; |
| |
| cdev = csk->cdev; |
| sk = csk->sk; |
| |
| klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32); |
| wrlen = roundup(sizeof(*kwr), 16); |
| len = klen + wrlen; |
| |
| /* Flush out-standing data before new key takes effect */ |
| if (optname == TLS_TX) { |
| lock_sock(sk); |
| if (skb_queue_len(&csk->txq)) |
| chtls_push_frames(csk, 0); |
| release_sock(sk); |
| } |
| |
| skb = alloc_skb(len, GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| keyid = get_new_keyid(csk, optname); |
| if (keyid < 0) { |
| ret = -ENOSPC; |
| goto out_nokey; |
| } |
| |
| kaddr = keyid_to_addr(cdev->kmap.start, keyid); |
| kwr = (struct tls_key_req *)__skb_put_zero(skb, len); |
| kwr->wr.op_to_compl = |
| cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F | |
| FW_WR_ATOMIC_V(1U)); |
| kwr->wr.flowid_len16 = |
| cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) | |
| FW_WR_FLOWID_V(csk->tid))); |
| kwr->wr.protocol = 0; |
| kwr->wr.mfs = htons(TLS_MFS); |
| kwr->wr.reneg_to_write_rx = optname; |
| |
| /* ulptx command */ |
| kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) | |
| T5_ULP_MEMIO_ORDER_V(1) | |
| T5_ULP_MEMIO_IMM_V(1)); |
| kwr->req.len16 = cpu_to_be32((csk->tid << 8) | |
| DIV_ROUND_UP(len - sizeof(kwr->wr), 16)); |
| kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5)); |
| kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr)); |
| |
| /* sub command */ |
| kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM)); |
| kwr->sc_imm.len = cpu_to_be32(klen); |
| |
| lock_sock(sk); |
| /* key info */ |
| kctx = (struct _key_ctx *)(kwr + 1); |
| ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type); |
| if (ret) |
| goto out_notcb; |
| |
| set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid); |
| csk->wr_credits -= DIV_ROUND_UP(len, 16); |
| csk->wr_unacked += DIV_ROUND_UP(len, 16); |
| enqueue_wr(csk, skb); |
| cxgb4_ofld_send(csk->egress_dev, skb); |
| |
| chtls_set_scmd(csk); |
| /* Clear quiesce for Rx key */ |
| if (optname == TLS_RX) { |
| ret = chtls_set_tcb_keyid(sk, keyid); |
| if (ret) |
| goto out_notcb; |
| ret = chtls_set_tcb_field(sk, 0, |
| TCB_ULP_RAW_V(TCB_ULP_RAW_M), |
| TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) | |
| TF_TLS_CONTROL_V(1) | |
| TF_TLS_ACTIVE_V(1) | |
| TF_TLS_ENABLE_V(1)))); |
| if (ret) |
| goto out_notcb; |
| ret = chtls_set_tcb_seqno(sk); |
| if (ret) |
| goto out_notcb; |
| ret = chtls_set_tcb_quiesce(sk, 0); |
| if (ret) |
| goto out_notcb; |
| csk->tlshws.rxkey = keyid; |
| } else { |
| csk->tlshws.tx_seq_no = 0; |
| csk->tlshws.txkey = keyid; |
| } |
| |
| release_sock(sk); |
| return ret; |
| out_notcb: |
| release_sock(sk); |
| free_tls_keyid(sk); |
| out_nokey: |
| kfree_skb(skb); |
| return ret; |
| } |