blob: 364bce34f0346bc429b3595f5f1d2f7e6312817a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <linux/fsverity.h>
#include <linux/iomap.h>
#include "ctree.h"
#include "delalloc-space.h"
#include "direct-io.h"
#include "extent-tree.h"
#include "file.h"
#include "fs.h"
#include "transaction.h"
#include "volumes.h"
struct btrfs_dio_data {
ssize_t submitted;
struct extent_changeset *data_reserved;
struct btrfs_ordered_extent *ordered;
bool data_space_reserved;
bool nocow_done;
};
struct btrfs_dio_private {
/* Range of I/O */
u64 file_offset;
u32 bytes;
/* This must be last */
struct btrfs_bio bbio;
};
static struct bio_set btrfs_dio_bioset;
static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
struct extent_state **cached_state,
unsigned int iomap_flags)
{
const bool writing = (iomap_flags & IOMAP_WRITE);
const bool nowait = (iomap_flags & IOMAP_NOWAIT);
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct btrfs_ordered_extent *ordered;
int ret = 0;
while (1) {
if (nowait) {
if (!try_lock_extent(io_tree, lockstart, lockend,
cached_state))
return -EAGAIN;
} else {
lock_extent(io_tree, lockstart, lockend, cached_state);
}
/*
* We're concerned with the entire range that we're going to be
* doing DIO to, so we need to make sure there's no ordered
* extents in this range.
*/
ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
lockend - lockstart + 1);
/*
* We need to make sure there are no buffered pages in this
* range either, we could have raced between the invalidate in
* generic_file_direct_write and locking the extent. The
* invalidate needs to happen so that reads after a write do not
* get stale data.
*/
if (!ordered &&
(!writing || !filemap_range_has_page(inode->i_mapping,
lockstart, lockend)))
break;
unlock_extent(io_tree, lockstart, lockend, cached_state);
if (ordered) {
if (nowait) {
btrfs_put_ordered_extent(ordered);
ret = -EAGAIN;
break;
}
/*
* If we are doing a DIO read and the ordered extent we
* found is for a buffered write, we can not wait for it
* to complete and retry, because if we do so we can
* deadlock with concurrent buffered writes on page
* locks. This happens only if our DIO read covers more
* than one extent map, if at this point has already
* created an ordered extent for a previous extent map
* and locked its range in the inode's io tree, and a
* concurrent write against that previous extent map's
* range and this range started (we unlock the ranges
* in the io tree only when the bios complete and
* buffered writes always lock pages before attempting
* to lock range in the io tree).
*/
if (writing ||
test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
btrfs_start_ordered_extent(ordered);
else
ret = nowait ? -EAGAIN : -ENOTBLK;
btrfs_put_ordered_extent(ordered);
} else {
/*
* We could trigger writeback for this range (and wait
* for it to complete) and then invalidate the pages for
* this range (through invalidate_inode_pages2_range()),
* but that can lead us to a deadlock with a concurrent
* call to readahead (a buffered read or a defrag call
* triggered a readahead) on a page lock due to an
* ordered dio extent we created before but did not have
* yet a corresponding bio submitted (whence it can not
* complete), which makes readahead wait for that
* ordered extent to complete while holding a lock on
* that page.
*/
ret = nowait ? -EAGAIN : -ENOTBLK;
}
if (ret)
break;
cond_resched();
}
return ret;
}
static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
struct btrfs_dio_data *dio_data,
const u64 start,
const struct btrfs_file_extent *file_extent,
const int type)
{
struct extent_map *em = NULL;
struct btrfs_ordered_extent *ordered;
if (type != BTRFS_ORDERED_NOCOW) {
em = btrfs_create_io_em(inode, start, file_extent, type);
if (IS_ERR(em))
goto out;
}
ordered = btrfs_alloc_ordered_extent(inode, start, file_extent,
(1 << type) |
(1 << BTRFS_ORDERED_DIRECT));
if (IS_ERR(ordered)) {
if (em) {
free_extent_map(em);
btrfs_drop_extent_map_range(inode, start,
start + file_extent->num_bytes - 1, false);
}
em = ERR_CAST(ordered);
} else {
ASSERT(!dio_data->ordered);
dio_data->ordered = ordered;
}
out:
return em;
}
static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
struct btrfs_dio_data *dio_data,
u64 start, u64 len)
{
struct btrfs_root *root = inode->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_file_extent file_extent;
struct extent_map *em;
struct btrfs_key ins;
u64 alloc_hint;
int ret;
alloc_hint = btrfs_get_extent_allocation_hint(inode, start, len);
again:
ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
0, alloc_hint, &ins, 1, 1);
if (ret == -EAGAIN) {
ASSERT(btrfs_is_zoned(fs_info));
wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
TASK_UNINTERRUPTIBLE);
goto again;
}
if (ret)
return ERR_PTR(ret);
file_extent.disk_bytenr = ins.objectid;
file_extent.disk_num_bytes = ins.offset;
file_extent.num_bytes = ins.offset;
file_extent.ram_bytes = ins.offset;
file_extent.offset = 0;
file_extent.compression = BTRFS_COMPRESS_NONE;
em = btrfs_create_dio_extent(inode, dio_data, start, &file_extent,
BTRFS_ORDERED_REGULAR);
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
if (IS_ERR(em))
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
1);
return em;
}
static int btrfs_get_blocks_direct_write(struct extent_map **map,
struct inode *inode,
struct btrfs_dio_data *dio_data,
u64 start, u64 *lenp,
unsigned int iomap_flags)
{
const bool nowait = (iomap_flags & IOMAP_NOWAIT);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_file_extent file_extent;
struct extent_map *em = *map;
int type;
u64 block_start;
struct btrfs_block_group *bg;
bool can_nocow = false;
bool space_reserved = false;
u64 len = *lenp;
u64 prev_len;
int ret = 0;
/*
* We don't allocate a new extent in the following cases
*
* 1) The inode is marked as NODATACOW. In this case we'll just use the
* existing extent.
* 2) The extent is marked as PREALLOC. We're good to go here and can
* just use the extent.
*
*/
if ((em->flags & EXTENT_FLAG_PREALLOC) ||
((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
em->disk_bytenr != EXTENT_MAP_HOLE)) {
if (em->flags & EXTENT_FLAG_PREALLOC)
type = BTRFS_ORDERED_PREALLOC;
else
type = BTRFS_ORDERED_NOCOW;
len = min(len, em->len - (start - em->start));
block_start = extent_map_block_start(em) + (start - em->start);
if (can_nocow_extent(inode, start, &len,
&file_extent, false, false) == 1) {
bg = btrfs_inc_nocow_writers(fs_info, block_start);
if (bg)
can_nocow = true;
}
}
prev_len = len;
if (can_nocow) {
struct extent_map *em2;
/* We can NOCOW, so only need to reserve metadata space. */
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
nowait);
if (ret < 0) {
/* Our caller expects us to free the input extent map. */
free_extent_map(em);
*map = NULL;
btrfs_dec_nocow_writers(bg);
if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
ret = -EAGAIN;
goto out;
}
space_reserved = true;
em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start,
&file_extent, type);
btrfs_dec_nocow_writers(bg);
if (type == BTRFS_ORDERED_PREALLOC) {
free_extent_map(em);
*map = em2;
em = em2;
}
if (IS_ERR(em2)) {
ret = PTR_ERR(em2);
goto out;
}
dio_data->nocow_done = true;
} else {
/* Our caller expects us to free the input extent map. */
free_extent_map(em);
*map = NULL;
if (nowait) {
ret = -EAGAIN;
goto out;
}
/*
* If we could not allocate data space before locking the file
* range and we can't do a NOCOW write, then we have to fail.
*/
if (!dio_data->data_space_reserved) {
ret = -ENOSPC;
goto out;
}
/*
* We have to COW and we have already reserved data space before,
* so now we reserve only metadata.
*/
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
false);
if (ret < 0)
goto out;
space_reserved = true;
em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto out;
}
*map = em;
len = min(len, em->len - (start - em->start));
if (len < prev_len)
btrfs_delalloc_release_metadata(BTRFS_I(inode),
prev_len - len, true);
}
/*
* We have created our ordered extent, so we can now release our reservation
* for an outstanding extent.
*/
btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
/*
* Need to update the i_size under the extent lock so buffered
* readers will get the updated i_size when we unlock.
*/
if (start + len > i_size_read(inode))
i_size_write(inode, start + len);
out:
if (ret && space_reserved) {
btrfs_delalloc_release_extents(BTRFS_I(inode), len);
btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
}
*lenp = len;
return ret;
}
static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
loff_t length, unsigned int flags, struct iomap *iomap,
struct iomap *srcmap)
{
struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct extent_map *em;
struct extent_state *cached_state = NULL;
struct btrfs_dio_data *dio_data = iter->private;
u64 lockstart, lockend;
const bool write = !!(flags & IOMAP_WRITE);
int ret = 0;
u64 len = length;
const u64 data_alloc_len = length;
bool unlock_extents = false;
/*
* We could potentially fault if we have a buffer > PAGE_SIZE, and if
* we're NOWAIT we may submit a bio for a partial range and return
* EIOCBQUEUED, which would result in an errant short read.
*
* The best way to handle this would be to allow for partial completions
* of iocb's, so we could submit the partial bio, return and fault in
* the rest of the pages, and then submit the io for the rest of the
* range. However we don't have that currently, so simply return
* -EAGAIN at this point so that the normal path is used.
*/
if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
return -EAGAIN;
/*
* Cap the size of reads to that usually seen in buffered I/O as we need
* to allocate a contiguous array for the checksums.
*/
if (!write)
len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
lockstart = start;
lockend = start + len - 1;
/*
* iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
* enough if we've written compressed pages to this area, so we need to
* flush the dirty pages again to make absolutely sure that any
* outstanding dirty pages are on disk - the first flush only starts
* compression on the data, while keeping the pages locked, so by the
* time the second flush returns we know bios for the compressed pages
* were submitted and finished, and the pages no longer under writeback.
*
* If we have a NOWAIT request and we have any pages in the range that
* are locked, likely due to compression still in progress, we don't want
* to block on page locks. We also don't want to block on pages marked as
* dirty or under writeback (same as for the non-compression case).
* iomap_dio_rw() did the same check, but after that and before we got
* here, mmap'ed writes may have happened or buffered reads started
* (readpage() and readahead(), which lock pages), as we haven't locked
* the file range yet.
*/
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
&BTRFS_I(inode)->runtime_flags)) {
if (flags & IOMAP_NOWAIT) {
if (filemap_range_needs_writeback(inode->i_mapping,
lockstart, lockend))
return -EAGAIN;
} else {
ret = filemap_fdatawrite_range(inode->i_mapping, start,
start + length - 1);
if (ret)
return ret;
}
}
memset(dio_data, 0, sizeof(*dio_data));
/*
* We always try to allocate data space and must do it before locking
* the file range, to avoid deadlocks with concurrent writes to the same
* range if the range has several extents and the writes don't expand the
* current i_size (the inode lock is taken in shared mode). If we fail to
* allocate data space here we continue and later, after locking the
* file range, we fail with ENOSPC only if we figure out we can not do a
* NOCOW write.
*/
if (write && !(flags & IOMAP_NOWAIT)) {
ret = btrfs_check_data_free_space(BTRFS_I(inode),
&dio_data->data_reserved,
start, data_alloc_len, false);
if (!ret)
dio_data->data_space_reserved = true;
else if (ret && !(BTRFS_I(inode)->flags &
(BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
goto err;
}
/*
* If this errors out it's because we couldn't invalidate pagecache for
* this range and we need to fallback to buffered IO, or we are doing a
* NOWAIT read/write and we need to block.
*/
ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
if (ret < 0)
goto err;
em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto unlock_err;
}
/*
* Ok for INLINE and COMPRESSED extents we need to fallback on buffered
* io. INLINE is special, and we could probably kludge it in here, but
* it's still buffered so for safety lets just fall back to the generic
* buffered path.
*
* For COMPRESSED we _have_ to read the entire extent in so we can
* decompress it, so there will be buffering required no matter what we
* do, so go ahead and fallback to buffered.
*
* We return -ENOTBLK because that's what makes DIO go ahead and go back
* to buffered IO. Don't blame me, this is the price we pay for using
* the generic code.
*/
if (extent_map_is_compressed(em) || em->disk_bytenr == EXTENT_MAP_INLINE) {
free_extent_map(em);
/*
* If we are in a NOWAIT context, return -EAGAIN in order to
* fallback to buffered IO. This is not only because we can
* block with buffered IO (no support for NOWAIT semantics at
* the moment) but also to avoid returning short reads to user
* space - this happens if we were able to read some data from
* previous non-compressed extents and then when we fallback to
* buffered IO, at btrfs_file_read_iter() by calling
* filemap_read(), we fail to fault in pages for the read buffer,
* in which case filemap_read() returns a short read (the number
* of bytes previously read is > 0, so it does not return -EFAULT).
*/
ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
goto unlock_err;
}
len = min(len, em->len - (start - em->start));
/*
* If we have a NOWAIT request and the range contains multiple extents
* (or a mix of extents and holes), then we return -EAGAIN to make the
* caller fallback to a context where it can do a blocking (without
* NOWAIT) request. This way we avoid doing partial IO and returning
* success to the caller, which is not optimal for writes and for reads
* it can result in unexpected behaviour for an application.
*
* When doing a read, because we use IOMAP_DIO_PARTIAL when calling
* iomap_dio_rw(), we can end up returning less data then what the caller
* asked for, resulting in an unexpected, and incorrect, short read.
* That is, the caller asked to read N bytes and we return less than that,
* which is wrong unless we are crossing EOF. This happens if we get a
* page fault error when trying to fault in pages for the buffer that is
* associated to the struct iov_iter passed to iomap_dio_rw(), and we
* have previously submitted bios for other extents in the range, in
* which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
* those bios have completed by the time we get the page fault error,
* which we return back to our caller - we should only return EIOCBQUEUED
* after we have submitted bios for all the extents in the range.
*/
if ((flags & IOMAP_NOWAIT) && len < length) {
free_extent_map(em);
ret = -EAGAIN;
goto unlock_err;
}
if (write) {
ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
start, &len, flags);
if (ret < 0)
goto unlock_err;
unlock_extents = true;
/* Recalc len in case the new em is smaller than requested */
len = min(len, em->len - (start - em->start));
if (dio_data->data_space_reserved) {
u64 release_offset;
u64 release_len = 0;
if (dio_data->nocow_done) {
release_offset = start;
release_len = data_alloc_len;
} else if (len < data_alloc_len) {
release_offset = start + len;
release_len = data_alloc_len - len;
}
if (release_len > 0)
btrfs_free_reserved_data_space(BTRFS_I(inode),
dio_data->data_reserved,
release_offset,
release_len);
}
} else {
/*
* We need to unlock only the end area that we aren't using.
* The rest is going to be unlocked by the endio routine.
*/
lockstart = start + len;
if (lockstart < lockend)
unlock_extents = true;
}
if (unlock_extents)
unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
&cached_state);
else
free_extent_state(cached_state);
/*
* Translate extent map information to iomap.
* We trim the extents (and move the addr) even though iomap code does
* that, since we have locked only the parts we are performing I/O in.
*/
if ((em->disk_bytenr == EXTENT_MAP_HOLE) ||
((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
iomap->addr = IOMAP_NULL_ADDR;
iomap->type = IOMAP_HOLE;
} else {
iomap->addr = extent_map_block_start(em) + (start - em->start);
iomap->type = IOMAP_MAPPED;
}
iomap->offset = start;
iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
iomap->length = len;
free_extent_map(em);
return 0;
unlock_err:
unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
&cached_state);
err:
if (dio_data->data_space_reserved) {
btrfs_free_reserved_data_space(BTRFS_I(inode),
dio_data->data_reserved,
start, data_alloc_len);
extent_changeset_free(dio_data->data_reserved);
}
return ret;
}
static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
ssize_t written, unsigned int flags, struct iomap *iomap)
{
struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
struct btrfs_dio_data *dio_data = iter->private;
size_t submitted = dio_data->submitted;
const bool write = !!(flags & IOMAP_WRITE);
int ret = 0;
if (!write && (iomap->type == IOMAP_HOLE)) {
/* If reading from a hole, unlock and return */
unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
NULL);
return 0;
}
if (submitted < length) {
pos += submitted;
length -= submitted;
if (write)
btrfs_finish_ordered_extent(dio_data->ordered, NULL,
pos, length, false);
else
unlock_extent(&BTRFS_I(inode)->io_tree, pos,
pos + length - 1, NULL);
ret = -ENOTBLK;
}
if (write) {
btrfs_put_ordered_extent(dio_data->ordered);
dio_data->ordered = NULL;
}
if (write)
extent_changeset_free(dio_data->data_reserved);
return ret;
}
static void btrfs_dio_end_io(struct btrfs_bio *bbio)
{
struct btrfs_dio_private *dip =
container_of(bbio, struct btrfs_dio_private, bbio);
struct btrfs_inode *inode = bbio->inode;
struct bio *bio = &bbio->bio;
if (bio->bi_status) {
btrfs_warn(inode->root->fs_info,
"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
btrfs_ino(inode), bio->bi_opf,
dip->file_offset, dip->bytes, bio->bi_status);
}
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
btrfs_finish_ordered_extent(bbio->ordered, NULL,
dip->file_offset, dip->bytes,
!bio->bi_status);
} else {
unlock_extent(&inode->io_tree, dip->file_offset,
dip->file_offset + dip->bytes - 1, NULL);
}
bbio->bio.bi_private = bbio->private;
iomap_dio_bio_end_io(bio);
}
static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
struct btrfs_ordered_extent *ordered)
{
u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
u64 len = bbio->bio.bi_iter.bi_size;
struct btrfs_ordered_extent *new;
int ret;
/* Must always be called for the beginning of an ordered extent. */
if (WARN_ON_ONCE(start != ordered->disk_bytenr))
return -EINVAL;
/* No need to split if the ordered extent covers the entire bio. */
if (ordered->disk_num_bytes == len) {
refcount_inc(&ordered->refs);
bbio->ordered = ordered;
return 0;
}
/*
* Don't split the extent_map for NOCOW extents, as we're writing into
* a pre-existing one.
*/
if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
ret = split_extent_map(bbio->inode, bbio->file_offset,
ordered->num_bytes, len,
ordered->disk_bytenr);
if (ret)
return ret;
}
new = btrfs_split_ordered_extent(ordered, len);
if (IS_ERR(new))
return PTR_ERR(new);
bbio->ordered = new;
return 0;
}
static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
loff_t file_offset)
{
struct btrfs_bio *bbio = btrfs_bio(bio);
struct btrfs_dio_private *dip =
container_of(bbio, struct btrfs_dio_private, bbio);
struct btrfs_dio_data *dio_data = iter->private;
btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
btrfs_dio_end_io, bio->bi_private);
bbio->inode = BTRFS_I(iter->inode);
bbio->file_offset = file_offset;
dip->file_offset = file_offset;
dip->bytes = bio->bi_iter.bi_size;
dio_data->submitted += bio->bi_iter.bi_size;
/*
* Check if we are doing a partial write. If we are, we need to split
* the ordered extent to match the submitted bio. Hang on to the
* remaining unfinishable ordered_extent in dio_data so that it can be
* cancelled in iomap_end to avoid a deadlock wherein faulting the
* remaining pages is blocked on the outstanding ordered extent.
*/
if (iter->flags & IOMAP_WRITE) {
int ret;
ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
if (ret) {
btrfs_finish_ordered_extent(dio_data->ordered, NULL,
file_offset, dip->bytes,
!ret);
bio->bi_status = errno_to_blk_status(ret);
iomap_dio_bio_end_io(bio);
return;
}
}
btrfs_submit_bio(bbio, 0);
}
static const struct iomap_ops btrfs_dio_iomap_ops = {
.iomap_begin = btrfs_dio_iomap_begin,
.iomap_end = btrfs_dio_iomap_end,
};
static const struct iomap_dio_ops btrfs_dio_ops = {
.submit_io = btrfs_dio_submit_io,
.bio_set = &btrfs_dio_bioset,
};
static ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
size_t done_before)
{
struct btrfs_dio_data data = { 0 };
return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
IOMAP_DIO_PARTIAL, &data, done_before);
}
static struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
size_t done_before)
{
struct btrfs_dio_data data = { 0 };
return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
IOMAP_DIO_PARTIAL, &data, done_before);
}
static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
const struct iov_iter *iter, loff_t offset)
{
const u32 blocksize_mask = fs_info->sectorsize - 1;
if (offset & blocksize_mask)
return -EINVAL;
if (iov_iter_alignment(iter) & blocksize_mask)
return -EINVAL;
return 0;
}
ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
loff_t pos;
ssize_t written = 0;
ssize_t written_buffered;
size_t prev_left = 0;
loff_t endbyte;
ssize_t ret;
unsigned int ilock_flags = 0;
struct iomap_dio *dio;
if (iocb->ki_flags & IOCB_NOWAIT)
ilock_flags |= BTRFS_ILOCK_TRY;
/*
* If the write DIO is within EOF, use a shared lock and also only if
* security bits will likely not be dropped by file_remove_privs() called
* from btrfs_write_check(). Either will need to be rechecked after the
* lock was acquired.
*/
if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
ilock_flags |= BTRFS_ILOCK_SHARED;
relock:
ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
if (ret < 0)
return ret;
/* Shared lock cannot be used with security bits set. */
if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
ilock_flags &= ~BTRFS_ILOCK_SHARED;
goto relock;
}
ret = generic_write_checks(iocb, from);
if (ret <= 0) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
return ret;
}
ret = btrfs_write_check(iocb, from, ret);
if (ret < 0) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
goto out;
}
pos = iocb->ki_pos;
/*
* Re-check since file size may have changed just before taking the
* lock or pos may have changed because of O_APPEND in generic_write_check()
*/
if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
pos + iov_iter_count(from) > i_size_read(inode)) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
ilock_flags &= ~BTRFS_ILOCK_SHARED;
goto relock;
}
if (check_direct_IO(fs_info, from, pos)) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
goto buffered;
}
/*
* The iov_iter can be mapped to the same file range we are writing to.
* If that's the case, then we will deadlock in the iomap code, because
* it first calls our callback btrfs_dio_iomap_begin(), which will create
* an ordered extent, and after that it will fault in the pages that the
* iov_iter refers to. During the fault in we end up in the readahead
* pages code (starting at btrfs_readahead()), which will lock the range,
* find that ordered extent and then wait for it to complete (at
* btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
* obviously the ordered extent can never complete as we didn't submit
* yet the respective bio(s). This always happens when the buffer is
* memory mapped to the same file range, since the iomap DIO code always
* invalidates pages in the target file range (after starting and waiting
* for any writeback).
*
* So here we disable page faults in the iov_iter and then retry if we
* got -EFAULT, faulting in the pages before the retry.
*/
again:
from->nofault = true;
dio = btrfs_dio_write(iocb, from, written);
from->nofault = false;
if (IS_ERR_OR_NULL(dio)) {
ret = PTR_ERR_OR_ZERO(dio);
} else {
/*
* If we have a synchronous write, we must make sure the fsync
* triggered by the iomap_dio_complete() call below doesn't
* deadlock on the inode lock - we are already holding it and we
* can't call it after unlocking because we may need to complete
* partial writes due to the input buffer (or parts of it) not
* being already faulted in.
*/
ASSERT(current->journal_info == NULL);
current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB;
ret = iomap_dio_complete(dio);
current->journal_info = NULL;
}
/* No increment (+=) because iomap returns a cumulative value. */
if (ret > 0)
written = ret;
if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) {
const size_t left = iov_iter_count(from);
/*
* We have more data left to write. Try to fault in as many as
* possible of the remainder pages and retry. We do this without
* releasing and locking again the inode, to prevent races with
* truncate.
*
* Also, in case the iov refers to pages in the file range of the
* file we want to write to (due to a mmap), we could enter an
* infinite loop if we retry after faulting the pages in, since
* iomap will invalidate any pages in the range early on, before
* it tries to fault in the pages of the iov. So we keep track of
* how much was left of iov in the previous EFAULT and fallback
* to buffered IO in case we haven't made any progress.
*/
if (left == prev_left) {
ret = -ENOTBLK;
} else {
fault_in_iov_iter_readable(from, left);
prev_left = left;
goto again;
}
}
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
/*
* If 'ret' is -ENOTBLK or we have not written all data, then it means
* we must fallback to buffered IO.
*/
if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from))
goto out;
buffered:
/*
* If we are in a NOWAIT context, then return -EAGAIN to signal the caller
* it must retry the operation in a context where blocking is acceptable,
* because even if we end up not blocking during the buffered IO attempt
* below, we will block when flushing and waiting for the IO.
*/
if (iocb->ki_flags & IOCB_NOWAIT) {
ret = -EAGAIN;
goto out;
}
pos = iocb->ki_pos;
written_buffered = btrfs_buffered_write(iocb, from);
if (written_buffered < 0) {
ret = written_buffered;
goto out;
}
/*
* Ensure all data is persisted. We want the next direct IO read to be
* able to read what was just written.
*/
endbyte = pos + written_buffered - 1;
ret = btrfs_fdatawrite_range(BTRFS_I(inode), pos, endbyte);
if (ret)
goto out;
ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
if (ret)
goto out;
written += written_buffered;
iocb->ki_pos = pos + written_buffered;
invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
endbyte >> PAGE_SHIFT);
out:
return ret < 0 ? ret : written;
}
static int check_direct_read(struct btrfs_fs_info *fs_info,
const struct iov_iter *iter, loff_t offset)
{
int ret;
int i, seg;
ret = check_direct_IO(fs_info, iter, offset);
if (ret < 0)
return ret;
if (!iter_is_iovec(iter))
return 0;
for (seg = 0; seg < iter->nr_segs; seg++) {
for (i = seg + 1; i < iter->nr_segs; i++) {
const struct iovec *iov1 = iter_iov(iter) + seg;
const struct iovec *iov2 = iter_iov(iter) + i;
if (iov1->iov_base == iov2->iov_base)
return -EINVAL;
}
}
return 0;
}
ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
size_t prev_left = 0;
ssize_t read = 0;
ssize_t ret;
if (fsverity_active(inode))
return 0;
if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos))
return 0;
btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
again:
/*
* This is similar to what we do for direct IO writes, see the comment
* at btrfs_direct_write(), but we also disable page faults in addition
* to disabling them only at the iov_iter level. This is because when
* reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
* which can still trigger page fault ins despite having set ->nofault
* to true of our 'to' iov_iter.
*
* The difference to direct IO writes is that we deadlock when trying
* to lock the extent range in the inode's tree during he page reads
* triggered by the fault in (while for writes it is due to waiting for
* our own ordered extent). This is because for direct IO reads,
* btrfs_dio_iomap_begin() returns with the extent range locked, which
* is only unlocked in the endio callback (end_bio_extent_readpage()).
*/
pagefault_disable();
to->nofault = true;
ret = btrfs_dio_read(iocb, to, read);
to->nofault = false;
pagefault_enable();
/* No increment (+=) because iomap returns a cumulative value. */
if (ret > 0)
read = ret;
if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
const size_t left = iov_iter_count(to);
if (left == prev_left) {
/*
* We didn't make any progress since the last attempt,
* fallback to a buffered read for the remainder of the
* range. This is just to avoid any possibility of looping
* for too long.
*/
ret = read;
} else {
/*
* We made some progress since the last retry or this is
* the first time we are retrying. Fault in as many pages
* as possible and retry.
*/
fault_in_iov_iter_writeable(to, left);
prev_left = left;
goto again;
}
}
btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
return ret < 0 ? ret : read;
}
int __init btrfs_init_dio(void)
{
if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_dio_private, bbio.bio),
BIOSET_NEED_BVECS))
return -ENOMEM;
return 0;
}
void __cold btrfs_destroy_dio(void)
{
bioset_exit(&btrfs_dio_bioset);
}