blob: d650beb8ed22f6ac99592ea9fa5d2fc1fa20984d [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2015-2021 Intel Corporation
*/
#include <linux/kthread.h>
#include <linux/string_helpers.h>
#include <trace/events/dma_fence.h>
#include <uapi/linux/sched/types.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_breadcrumbs.h"
#include "intel_context.h"
#include "intel_engine_pm.h"
#include "intel_gt_pm.h"
#include "intel_gt_requests.h"
static bool irq_enable(struct intel_breadcrumbs *b)
{
return intel_engine_irq_enable(b->irq_engine);
}
static void irq_disable(struct intel_breadcrumbs *b)
{
intel_engine_irq_disable(b->irq_engine);
}
static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
{
intel_wakeref_t wakeref;
/*
* Since we are waiting on a request, the GPU should be busy
* and should have its own rpm reference.
*/
wakeref = intel_gt_pm_get_if_awake(b->irq_engine->gt);
if (GEM_WARN_ON(!wakeref))
return;
/*
* The breadcrumb irq will be disarmed on the interrupt after the
* waiters are signaled. This gives us a single interrupt window in
* which we can add a new waiter and avoid the cost of re-enabling
* the irq.
*/
WRITE_ONCE(b->irq_armed, wakeref);
/* Requests may have completed before we could enable the interrupt. */
if (!b->irq_enabled++ && b->irq_enable(b))
irq_work_queue(&b->irq_work);
}
static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
{
if (!b->irq_engine)
return;
spin_lock(&b->irq_lock);
if (!b->irq_armed)
__intel_breadcrumbs_arm_irq(b);
spin_unlock(&b->irq_lock);
}
static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
{
intel_wakeref_t wakeref = b->irq_armed;
GEM_BUG_ON(!b->irq_enabled);
if (!--b->irq_enabled)
b->irq_disable(b);
WRITE_ONCE(b->irq_armed, 0);
intel_gt_pm_put_async(b->irq_engine->gt, wakeref);
}
static void intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
{
spin_lock(&b->irq_lock);
if (b->irq_armed)
__intel_breadcrumbs_disarm_irq(b);
spin_unlock(&b->irq_lock);
}
static void add_signaling_context(struct intel_breadcrumbs *b,
struct intel_context *ce)
{
lockdep_assert_held(&ce->signal_lock);
spin_lock(&b->signalers_lock);
list_add_rcu(&ce->signal_link, &b->signalers);
spin_unlock(&b->signalers_lock);
}
static bool remove_signaling_context(struct intel_breadcrumbs *b,
struct intel_context *ce)
{
lockdep_assert_held(&ce->signal_lock);
if (!list_empty(&ce->signals))
return false;
spin_lock(&b->signalers_lock);
list_del_rcu(&ce->signal_link);
spin_unlock(&b->signalers_lock);
return true;
}
__maybe_unused static bool
check_signal_order(struct intel_context *ce, struct i915_request *rq)
{
if (rq->context != ce)
return false;
if (!list_is_last(&rq->signal_link, &ce->signals) &&
i915_seqno_passed(rq->fence.seqno,
list_next_entry(rq, signal_link)->fence.seqno))
return false;
if (!list_is_first(&rq->signal_link, &ce->signals) &&
i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno,
rq->fence.seqno))
return false;
return true;
}
static bool
__dma_fence_signal(struct dma_fence *fence)
{
return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags);
}
static void
__dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp)
{
fence->timestamp = timestamp;
set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
trace_dma_fence_signaled(fence);
}
static void
__dma_fence_signal__notify(struct dma_fence *fence,
const struct list_head *list)
{
struct dma_fence_cb *cur, *tmp;
lockdep_assert_held(fence->lock);
list_for_each_entry_safe(cur, tmp, list, node) {
INIT_LIST_HEAD(&cur->node);
cur->func(fence, cur);
}
}
static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl)
{
if (b->irq_engine)
intel_engine_add_retire(b->irq_engine, tl);
}
static struct llist_node *
slist_add(struct llist_node *node, struct llist_node *head)
{
node->next = head;
return node;
}
static void signal_irq_work(struct irq_work *work)
{
struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work);
const ktime_t timestamp = ktime_get();
struct llist_node *signal, *sn;
struct intel_context *ce;
signal = NULL;
if (unlikely(!llist_empty(&b->signaled_requests)))
signal = llist_del_all(&b->signaled_requests);
/*
* Keep the irq armed until the interrupt after all listeners are gone.
*
* Enabling/disabling the interrupt is rather costly, roughly a couple
* of hundred microseconds. If we are proactive and enable/disable
* the interrupt around every request that wants a breadcrumb, we
* quickly drown in the extra orders of magnitude of latency imposed
* on request submission.
*
* So we try to be lazy, and keep the interrupts enabled until no
* more listeners appear within a breadcrumb interrupt interval (that
* is until a request completes that no one cares about). The
* observation is that listeners come in batches, and will often
* listen to a bunch of requests in succession. Though note on icl+,
* interrupts are always enabled due to concerns with rc6 being
* dysfunctional with per-engine interrupt masking.
*
* We also try to avoid raising too many interrupts, as they may
* be generated by userspace batches and it is unfortunately rather
* too easy to drown the CPU under a flood of GPU interrupts. Thus
* whenever no one appears to be listening, we turn off the interrupts.
* Fewer interrupts should conserve power -- at the very least, fewer
* interrupt draw less ire from other users of the system and tools
* like powertop.
*/
if (!signal && READ_ONCE(b->irq_armed) && list_empty(&b->signalers))
intel_breadcrumbs_disarm_irq(b);
rcu_read_lock();
atomic_inc(&b->signaler_active);
list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
struct i915_request *rq;
list_for_each_entry_rcu(rq, &ce->signals, signal_link) {
bool release;
if (!__i915_request_is_complete(rq))
break;
if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
&rq->fence.flags))
break;
/*
* Queue for execution after dropping the signaling
* spinlock as the callback chain may end up adding
* more signalers to the same context or engine.
*/
spin_lock(&ce->signal_lock);
list_del_rcu(&rq->signal_link);
release = remove_signaling_context(b, ce);
spin_unlock(&ce->signal_lock);
if (release) {
if (intel_timeline_is_last(ce->timeline, rq))
add_retire(b, ce->timeline);
intel_context_put(ce);
}
if (__dma_fence_signal(&rq->fence))
/* We own signal_node now, xfer to local list */
signal = slist_add(&rq->signal_node, signal);
else
i915_request_put(rq);
}
}
atomic_dec(&b->signaler_active);
rcu_read_unlock();
llist_for_each_safe(signal, sn, signal) {
struct i915_request *rq =
llist_entry(signal, typeof(*rq), signal_node);
struct list_head cb_list;
if (rq->engine->sched_engine->retire_inflight_request_prio)
rq->engine->sched_engine->retire_inflight_request_prio(rq);
spin_lock(&rq->lock);
list_replace(&rq->fence.cb_list, &cb_list);
__dma_fence_signal__timestamp(&rq->fence, timestamp);
__dma_fence_signal__notify(&rq->fence, &cb_list);
spin_unlock(&rq->lock);
i915_request_put(rq);
}
if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers))
intel_breadcrumbs_arm_irq(b);
}
struct intel_breadcrumbs *
intel_breadcrumbs_create(struct intel_engine_cs *irq_engine)
{
struct intel_breadcrumbs *b;
b = kzalloc(sizeof(*b), GFP_KERNEL);
if (!b)
return NULL;
kref_init(&b->ref);
spin_lock_init(&b->signalers_lock);
INIT_LIST_HEAD(&b->signalers);
init_llist_head(&b->signaled_requests);
spin_lock_init(&b->irq_lock);
init_irq_work(&b->irq_work, signal_irq_work);
b->irq_engine = irq_engine;
b->irq_enable = irq_enable;
b->irq_disable = irq_disable;
return b;
}
void intel_breadcrumbs_reset(struct intel_breadcrumbs *b)
{
unsigned long flags;
if (!b->irq_engine)
return;
spin_lock_irqsave(&b->irq_lock, flags);
if (b->irq_enabled)
b->irq_enable(b);
else
b->irq_disable(b);
spin_unlock_irqrestore(&b->irq_lock, flags);
}
void __intel_breadcrumbs_park(struct intel_breadcrumbs *b)
{
if (!READ_ONCE(b->irq_armed))
return;
/* Kick the work once more to drain the signalers, and disarm the irq */
irq_work_sync(&b->irq_work);
while (READ_ONCE(b->irq_armed) && !atomic_read(&b->active)) {
local_irq_disable();
signal_irq_work(&b->irq_work);
local_irq_enable();
cond_resched();
}
}
void intel_breadcrumbs_free(struct kref *kref)
{
struct intel_breadcrumbs *b = container_of(kref, typeof(*b), ref);
irq_work_sync(&b->irq_work);
GEM_BUG_ON(!list_empty(&b->signalers));
GEM_BUG_ON(b->irq_armed);
kfree(b);
}
static void irq_signal_request(struct i915_request *rq,
struct intel_breadcrumbs *b)
{
if (!__dma_fence_signal(&rq->fence))
return;
i915_request_get(rq);
if (llist_add(&rq->signal_node, &b->signaled_requests))
irq_work_queue(&b->irq_work);
}
static void insert_breadcrumb(struct i915_request *rq)
{
struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
struct intel_context *ce = rq->context;
struct list_head *pos;
if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags))
return;
/*
* If the request is already completed, we can transfer it
* straight onto a signaled list, and queue the irq worker for
* its signal completion.
*/
if (__i915_request_is_complete(rq)) {
irq_signal_request(rq, b);
return;
}
if (list_empty(&ce->signals)) {
intel_context_get(ce);
add_signaling_context(b, ce);
pos = &ce->signals;
} else {
/*
* We keep the seqno in retirement order, so we can break
* inside intel_engine_signal_breadcrumbs as soon as we've
* passed the last completed request (or seen a request that
* hasn't event started). We could walk the timeline->requests,
* but keeping a separate signalers_list has the advantage of
* hopefully being much smaller than the full list and so
* provides faster iteration and detection when there are no
* more interrupts required for this context.
*
* We typically expect to add new signalers in order, so we
* start looking for our insertion point from the tail of
* the list.
*/
list_for_each_prev(pos, &ce->signals) {
struct i915_request *it =
list_entry(pos, typeof(*it), signal_link);
if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno))
break;
}
}
i915_request_get(rq);
list_add_rcu(&rq->signal_link, pos);
GEM_BUG_ON(!check_signal_order(ce, rq));
GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags);
/*
* Defer enabling the interrupt to after HW submission and recheck
* the request as it may have completed and raised the interrupt as
* we were attaching it into the lists.
*/
if (!b->irq_armed || __i915_request_is_complete(rq))
irq_work_queue(&b->irq_work);
}
bool i915_request_enable_breadcrumb(struct i915_request *rq)
{
struct intel_context *ce = rq->context;
/* Serialises with i915_request_retire() using rq->lock */
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
return true;
/*
* Peek at i915_request_submit()/i915_request_unsubmit() status.
*
* If the request is not yet active (and not signaled), we will
* attach the breadcrumb later.
*/
if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
return true;
spin_lock(&ce->signal_lock);
if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
insert_breadcrumb(rq);
spin_unlock(&ce->signal_lock);
return true;
}
void i915_request_cancel_breadcrumb(struct i915_request *rq)
{
struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
struct intel_context *ce = rq->context;
bool release;
spin_lock(&ce->signal_lock);
if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) {
spin_unlock(&ce->signal_lock);
return;
}
list_del_rcu(&rq->signal_link);
release = remove_signaling_context(b, ce);
spin_unlock(&ce->signal_lock);
if (release)
intel_context_put(ce);
if (__i915_request_is_complete(rq))
irq_signal_request(rq, b);
i915_request_put(rq);
}
void intel_context_remove_breadcrumbs(struct intel_context *ce,
struct intel_breadcrumbs *b)
{
struct i915_request *rq, *rn;
bool release = false;
unsigned long flags;
spin_lock_irqsave(&ce->signal_lock, flags);
if (list_empty(&ce->signals))
goto unlock;
list_for_each_entry_safe(rq, rn, &ce->signals, signal_link) {
GEM_BUG_ON(!__i915_request_is_complete(rq));
if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
&rq->fence.flags))
continue;
list_del_rcu(&rq->signal_link);
irq_signal_request(rq, b);
i915_request_put(rq);
}
release = remove_signaling_context(b, ce);
unlock:
spin_unlock_irqrestore(&ce->signal_lock, flags);
if (release)
intel_context_put(ce);
while (atomic_read(&b->signaler_active))
cpu_relax();
}
static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p)
{
struct intel_context *ce;
struct i915_request *rq;
drm_printf(p, "Signals:\n");
rcu_read_lock();
list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
list_for_each_entry_rcu(rq, &ce->signals, signal_link)
drm_printf(p, "\t[%llx:%llx%s] @ %dms\n",
rq->fence.context, rq->fence.seqno,
__i915_request_is_complete(rq) ? "!" :
__i915_request_has_started(rq) ? "*" :
"",
jiffies_to_msecs(jiffies - rq->emitted_jiffies));
}
rcu_read_unlock();
}
void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
struct drm_printer *p)
{
struct intel_breadcrumbs *b;
b = engine->breadcrumbs;
if (!b)
return;
drm_printf(p, "IRQ: %s\n", str_enabled_disabled(b->irq_armed));
if (!list_empty(&b->signalers))
print_signals(b, p);
}