blob: c0b2022239406dac637acff5c0da899fb6c341ee [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include <drm/drm_device.h>
#include <linux/sysfs.h>
#include <linux/printk.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "i915_sysfs.h"
#include "intel_gt.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
#include "intel_gt_sysfs.h"
#include "intel_gt_sysfs_pm.h"
#include "intel_pcode.h"
#include "intel_rc6.h"
#include "intel_rps.h"
enum intel_gt_sysfs_op {
INTEL_GT_SYSFS_MIN = 0,
INTEL_GT_SYSFS_MAX,
};
static int
sysfs_gt_attribute_w_func(struct kobject *kobj, struct attribute *attr,
int (func)(struct intel_gt *gt, u32 val), u32 val)
{
struct intel_gt *gt;
int ret;
if (!is_object_gt(kobj)) {
int i;
struct device *dev = kobj_to_dev(kobj);
struct drm_i915_private *i915 = kdev_minor_to_i915(dev);
for_each_gt(gt, i915, i) {
ret = func(gt, val);
if (ret)
break;
}
} else {
gt = intel_gt_sysfs_get_drvdata(kobj, attr->name);
ret = func(gt, val);
}
return ret;
}
static u32
sysfs_gt_attribute_r_func(struct kobject *kobj, struct attribute *attr,
u32 (func)(struct intel_gt *gt),
enum intel_gt_sysfs_op op)
{
struct intel_gt *gt;
u32 ret;
ret = (op == INTEL_GT_SYSFS_MAX) ? 0 : (u32) -1;
if (!is_object_gt(kobj)) {
int i;
struct device *dev = kobj_to_dev(kobj);
struct drm_i915_private *i915 = kdev_minor_to_i915(dev);
for_each_gt(gt, i915, i) {
u32 val = func(gt);
switch (op) {
case INTEL_GT_SYSFS_MIN:
if (val < ret)
ret = val;
break;
case INTEL_GT_SYSFS_MAX:
if (val > ret)
ret = val;
break;
}
}
} else {
gt = intel_gt_sysfs_get_drvdata(kobj, attr->name);
ret = func(gt);
}
return ret;
}
/* RC6 interfaces will show the minimum RC6 residency value */
#define sysfs_gt_attribute_r_min_func(d, a, f) \
sysfs_gt_attribute_r_func(d, a, f, INTEL_GT_SYSFS_MIN)
/* Frequency interfaces will show the maximum frequency value */
#define sysfs_gt_attribute_r_max_func(d, a, f) \
sysfs_gt_attribute_r_func(d, a, f, INTEL_GT_SYSFS_MAX)
#define INTEL_GT_SYSFS_SHOW(_name, _attr_type) \
static ssize_t _name##_show_common(struct kobject *kobj, \
struct attribute *attr, char *buff) \
{ \
u32 val = sysfs_gt_attribute_r_##_attr_type##_func(kobj, attr, \
__##_name##_show); \
\
return sysfs_emit(buff, "%u\n", val); \
} \
static ssize_t _name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buff) \
{ \
return _name ##_show_common(kobj, &attr->attr, buff); \
} \
static ssize_t _name##_dev_show(struct device *dev, \
struct device_attribute *attr, char *buff) \
{ \
return _name##_show_common(&dev->kobj, &attr->attr, buff); \
}
#define INTEL_GT_SYSFS_STORE(_name, _func) \
static ssize_t _name##_store_common(struct kobject *kobj, \
struct attribute *attr, \
const char *buff, size_t count) \
{ \
int ret; \
u32 val; \
\
ret = kstrtou32(buff, 0, &val); \
if (ret) \
return ret; \
\
ret = sysfs_gt_attribute_w_func(kobj, attr, _func, val); \
\
return ret ?: count; \
} \
static ssize_t _name##_store(struct kobject *kobj, \
struct kobj_attribute *attr, const char *buff, \
size_t count) \
{ \
return _name##_store_common(kobj, &attr->attr, buff, count); \
} \
static ssize_t _name##_dev_store(struct device *dev, \
struct device_attribute *attr, \
const char *buff, size_t count) \
{ \
return _name##_store_common(&dev->kobj, &attr->attr, buff, count); \
}
#define INTEL_GT_SYSFS_SHOW_MAX(_name) INTEL_GT_SYSFS_SHOW(_name, max)
#define INTEL_GT_SYSFS_SHOW_MIN(_name) INTEL_GT_SYSFS_SHOW(_name, min)
#define INTEL_GT_ATTR_RW(_name) \
static struct kobj_attribute attr_##_name = __ATTR_RW(_name)
#define INTEL_GT_ATTR_RO(_name) \
static struct kobj_attribute attr_##_name = __ATTR_RO(_name)
#define INTEL_GT_DUAL_ATTR_RW(_name) \
static struct device_attribute dev_attr_##_name = __ATTR(_name, 0644, \
_name##_dev_show, \
_name##_dev_store); \
INTEL_GT_ATTR_RW(_name)
#define INTEL_GT_DUAL_ATTR_RO(_name) \
static struct device_attribute dev_attr_##_name = __ATTR(_name, 0444, \
_name##_dev_show, \
NULL); \
INTEL_GT_ATTR_RO(_name)
static u32 get_residency(struct intel_gt *gt, enum intel_rc6_res_type id)
{
intel_wakeref_t wakeref;
u64 res = 0;
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
res = intel_rc6_residency_us(&gt->rc6, id);
return DIV_ROUND_CLOSEST_ULL(res, 1000);
}
static ssize_t rc6_enable_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
return sysfs_emit(buff, "%x\n", gt->rc6.enabled);
}
static ssize_t rc6_enable_dev_show(struct device *dev,
struct device_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(&dev->kobj, attr->attr.name);
return sysfs_emit(buff, "%x\n", gt->rc6.enabled);
}
static u32 __rc6_residency_ms_show(struct intel_gt *gt)
{
return get_residency(gt, INTEL_RC6_RES_RC6);
}
static u32 __rc6p_residency_ms_show(struct intel_gt *gt)
{
return get_residency(gt, INTEL_RC6_RES_RC6p);
}
static u32 __rc6pp_residency_ms_show(struct intel_gt *gt)
{
return get_residency(gt, INTEL_RC6_RES_RC6pp);
}
static u32 __media_rc6_residency_ms_show(struct intel_gt *gt)
{
return get_residency(gt, INTEL_RC6_RES_VLV_MEDIA);
}
INTEL_GT_SYSFS_SHOW_MIN(rc6_residency_ms);
INTEL_GT_SYSFS_SHOW_MIN(rc6p_residency_ms);
INTEL_GT_SYSFS_SHOW_MIN(rc6pp_residency_ms);
INTEL_GT_SYSFS_SHOW_MIN(media_rc6_residency_ms);
INTEL_GT_DUAL_ATTR_RO(rc6_enable);
INTEL_GT_DUAL_ATTR_RO(rc6_residency_ms);
INTEL_GT_DUAL_ATTR_RO(rc6p_residency_ms);
INTEL_GT_DUAL_ATTR_RO(rc6pp_residency_ms);
INTEL_GT_DUAL_ATTR_RO(media_rc6_residency_ms);
static struct attribute *rc6_attrs[] = {
&attr_rc6_enable.attr,
&attr_rc6_residency_ms.attr,
NULL
};
static struct attribute *rc6p_attrs[] = {
&attr_rc6p_residency_ms.attr,
&attr_rc6pp_residency_ms.attr,
NULL
};
static struct attribute *media_rc6_attrs[] = {
&attr_media_rc6_residency_ms.attr,
NULL
};
static struct attribute *rc6_dev_attrs[] = {
&dev_attr_rc6_enable.attr,
&dev_attr_rc6_residency_ms.attr,
NULL
};
static struct attribute *rc6p_dev_attrs[] = {
&dev_attr_rc6p_residency_ms.attr,
&dev_attr_rc6pp_residency_ms.attr,
NULL
};
static struct attribute *media_rc6_dev_attrs[] = {
&dev_attr_media_rc6_residency_ms.attr,
NULL
};
static const struct attribute_group rc6_attr_group[] = {
{ .attrs = rc6_attrs, },
{ .name = power_group_name, .attrs = rc6_dev_attrs, },
};
static const struct attribute_group rc6p_attr_group[] = {
{ .attrs = rc6p_attrs, },
{ .name = power_group_name, .attrs = rc6p_dev_attrs, },
};
static const struct attribute_group media_rc6_attr_group[] = {
{ .attrs = media_rc6_attrs, },
{ .name = power_group_name, .attrs = media_rc6_dev_attrs, },
};
static int __intel_gt_sysfs_create_group(struct kobject *kobj,
const struct attribute_group *grp)
{
return is_object_gt(kobj) ?
sysfs_create_group(kobj, &grp[0]) :
sysfs_merge_group(kobj, &grp[1]);
}
static void intel_sysfs_rc6_init(struct intel_gt *gt, struct kobject *kobj)
{
int ret;
if (!IS_ENABLED(CONFIG_PM) || !HAS_RC6(gt->i915))
return;
ret = __intel_gt_sysfs_create_group(kobj, rc6_attr_group);
if (ret)
gt_warn(gt, "failed to create RC6 sysfs files (%pe)\n", ERR_PTR(ret));
/*
* cannot use the is_visible() attribute because
* the upper object inherits from the parent group.
*/
if (HAS_RC6p(gt->i915)) {
ret = __intel_gt_sysfs_create_group(kobj, rc6p_attr_group);
if (ret)
gt_warn(gt, "failed to create RC6p sysfs files (%pe)\n", ERR_PTR(ret));
}
if (IS_VALLEYVIEW(gt->i915) || IS_CHERRYVIEW(gt->i915)) {
ret = __intel_gt_sysfs_create_group(kobj, media_rc6_attr_group);
if (ret)
gt_warn(gt, "failed to create media RC6 sysfs files (%pe)\n", ERR_PTR(ret));
}
}
static u32 __act_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_read_actual_frequency(&gt->rps);
}
static u32 __cur_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_get_requested_frequency(&gt->rps);
}
static u32 __boost_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_get_boost_frequency(&gt->rps);
}
static int __boost_freq_mhz_store(struct intel_gt *gt, u32 val)
{
return intel_rps_set_boost_frequency(&gt->rps, val);
}
static u32 __RP0_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_get_rp0_frequency(&gt->rps);
}
static u32 __RPn_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_get_rpn_frequency(&gt->rps);
}
static u32 __RP1_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_get_rp1_frequency(&gt->rps);
}
static u32 __max_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_get_max_frequency(&gt->rps);
}
static int __set_max_freq(struct intel_gt *gt, u32 val)
{
return intel_rps_set_max_frequency(&gt->rps, val);
}
static u32 __min_freq_mhz_show(struct intel_gt *gt)
{
return intel_rps_get_min_frequency(&gt->rps);
}
static int __set_min_freq(struct intel_gt *gt, u32 val)
{
return intel_rps_set_min_frequency(&gt->rps, val);
}
static u32 __vlv_rpe_freq_mhz_show(struct intel_gt *gt)
{
struct intel_rps *rps = &gt->rps;
return intel_gpu_freq(rps, rps->efficient_freq);
}
INTEL_GT_SYSFS_SHOW_MAX(act_freq_mhz);
INTEL_GT_SYSFS_SHOW_MAX(boost_freq_mhz);
INTEL_GT_SYSFS_SHOW_MAX(cur_freq_mhz);
INTEL_GT_SYSFS_SHOW_MAX(RP0_freq_mhz);
INTEL_GT_SYSFS_SHOW_MAX(RP1_freq_mhz);
INTEL_GT_SYSFS_SHOW_MAX(RPn_freq_mhz);
INTEL_GT_SYSFS_SHOW_MAX(max_freq_mhz);
INTEL_GT_SYSFS_SHOW_MIN(min_freq_mhz);
INTEL_GT_SYSFS_SHOW_MAX(vlv_rpe_freq_mhz);
INTEL_GT_SYSFS_STORE(boost_freq_mhz, __boost_freq_mhz_store);
INTEL_GT_SYSFS_STORE(max_freq_mhz, __set_max_freq);
INTEL_GT_SYSFS_STORE(min_freq_mhz, __set_min_freq);
#define INTEL_GT_RPS_SYSFS_ATTR(_name, _mode, _show, _store, _show_dev, _store_dev) \
static struct device_attribute dev_attr_gt_##_name = __ATTR(gt_##_name, _mode, \
_show_dev, _store_dev); \
static struct kobj_attribute attr_rps_##_name = __ATTR(rps_##_name, _mode, \
_show, _store)
#define INTEL_GT_RPS_SYSFS_ATTR_RO(_name) \
INTEL_GT_RPS_SYSFS_ATTR(_name, 0444, _name##_show, NULL, \
_name##_dev_show, NULL)
#define INTEL_GT_RPS_SYSFS_ATTR_RW(_name) \
INTEL_GT_RPS_SYSFS_ATTR(_name, 0644, _name##_show, _name##_store, \
_name##_dev_show, _name##_dev_store)
/* The below macros generate static structures */
INTEL_GT_RPS_SYSFS_ATTR_RO(act_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RO(cur_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RW(boost_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RO(RP0_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RO(RP1_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RO(RPn_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RW(max_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RW(min_freq_mhz);
INTEL_GT_RPS_SYSFS_ATTR_RO(vlv_rpe_freq_mhz);
#define GEN6_ATTR(p, s) { \
&p##attr_##s##_act_freq_mhz.attr, \
&p##attr_##s##_cur_freq_mhz.attr, \
&p##attr_##s##_boost_freq_mhz.attr, \
&p##attr_##s##_max_freq_mhz.attr, \
&p##attr_##s##_min_freq_mhz.attr, \
&p##attr_##s##_RP0_freq_mhz.attr, \
&p##attr_##s##_RP1_freq_mhz.attr, \
&p##attr_##s##_RPn_freq_mhz.attr, \
NULL, \
}
#define GEN6_RPS_ATTR GEN6_ATTR(, rps)
#define GEN6_GT_ATTR GEN6_ATTR(dev_, gt)
static const struct attribute * const gen6_rps_attrs[] = GEN6_RPS_ATTR;
static const struct attribute * const gen6_gt_attrs[] = GEN6_GT_ATTR;
static ssize_t punit_req_freq_mhz_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
u32 preq = intel_rps_read_punit_req_frequency(&gt->rps);
return sysfs_emit(buff, "%u\n", preq);
}
static ssize_t slpc_ignore_eff_freq_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_guc_slpc *slpc = &gt->uc.guc.slpc;
return sysfs_emit(buff, "%u\n", slpc->ignore_eff_freq);
}
static ssize_t slpc_ignore_eff_freq_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buff, size_t count)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_guc_slpc *slpc = &gt->uc.guc.slpc;
int err;
u32 val;
err = kstrtou32(buff, 0, &val);
if (err)
return err;
err = intel_guc_slpc_set_ignore_eff_freq(slpc, val);
return err ?: count;
}
struct intel_gt_bool_throttle_attr {
struct attribute attr;
ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr,
char *buf);
i915_reg_t (*reg32)(struct intel_gt *gt);
u32 mask;
};
static ssize_t throttle_reason_bool_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_gt_bool_throttle_attr *t_attr =
(struct intel_gt_bool_throttle_attr *) attr;
bool val = rps_read_mask_mmio(&gt->rps, t_attr->reg32(gt), t_attr->mask);
return sysfs_emit(buff, "%u\n", val);
}
#define INTEL_GT_RPS_BOOL_ATTR_RO(sysfs_func__, mask__) \
struct intel_gt_bool_throttle_attr attr_##sysfs_func__ = { \
.attr = { .name = __stringify(sysfs_func__), .mode = 0444 }, \
.show = throttle_reason_bool_show, \
.reg32 = intel_gt_perf_limit_reasons_reg, \
.mask = mask__, \
}
INTEL_GT_ATTR_RO(punit_req_freq_mhz);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_status, GT0_PERF_LIMIT_REASONS_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl1, POWER_LIMIT_1_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl2, POWER_LIMIT_2_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl4, POWER_LIMIT_4_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_thermal, THERMAL_LIMIT_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_prochot, PROCHOT_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_ratl, RATL_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_vr_thermalert, VR_THERMALERT_MASK);
static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_vr_tdc, VR_TDC_MASK);
static const struct attribute *throttle_reason_attrs[] = {
&attr_throttle_reason_status.attr,
&attr_throttle_reason_pl1.attr,
&attr_throttle_reason_pl2.attr,
&attr_throttle_reason_pl4.attr,
&attr_throttle_reason_thermal.attr,
&attr_throttle_reason_prochot.attr,
&attr_throttle_reason_ratl.attr,
&attr_throttle_reason_vr_thermalert.attr,
&attr_throttle_reason_vr_tdc.attr,
NULL
};
/*
* Scaling for multipliers (aka frequency factors).
* The format of the value in the register is u8.8.
*
* The presentation to userspace is inspired by the perf event framework.
* See:
* Documentation/ABI/testing/sysfs-bus-event_source-devices-events
* for description of:
* /sys/bus/event_source/devices/<pmu>/events/<event>.scale
*
* Summary: Expose two sysfs files for each multiplier.
*
* 1. File <attr> contains a raw hardware value.
* 2. File <attr>.scale contains the multiplicative scale factor to be
* used by userspace to compute the actual value.
*
* So userspace knows that to get the frequency_factor it multiplies the
* provided value by the specified scale factor and vice-versa.
*
* That way there is no precision loss in the kernel interface and API
* is future proof should one day the hardware register change to u16.u16,
* on some platform. (Or any other fixed point representation.)
*
* Example:
* File <attr> contains the value 2.5, represented as u8.8 0x0280, which
* is comprised of:
* - an integer part of 2
* - a fractional part of 0x80 (representing 0x80 / 2^8 == 0x80 / 256).
* File <attr>.scale contains a string representation of floating point
* value 0.00390625 (which is (1 / 256)).
* Userspace computes the actual value:
* 0x0280 * 0.00390625 -> 2.5
* or converts an actual value to the value to be written into <attr>:
* 2.5 / 0.00390625 -> 0x0280
*/
#define U8_8_VAL_MASK 0xffff
#define U8_8_SCALE_TO_VALUE "0.00390625"
static ssize_t freq_factor_scale_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
return sysfs_emit(buff, "%s\n", U8_8_SCALE_TO_VALUE);
}
static u32 media_ratio_mode_to_factor(u32 mode)
{
/* 0 -> 0, 1 -> 256, 2 -> 128 */
return !mode ? mode : 256 / mode;
}
static ssize_t media_freq_factor_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_guc_slpc *slpc = &gt->uc.guc.slpc;
intel_wakeref_t wakeref;
u32 mode;
/*
* Retrieve media_ratio_mode from GEN6_RPNSWREQ bit 13 set by
* GuC. GEN6_RPNSWREQ:13 value 0 represents 1:2 and 1 represents 1:1
*/
if (IS_XEHPSDV(gt->i915) &&
slpc->media_ratio_mode == SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL) {
/*
* For XEHPSDV dynamic mode GEN6_RPNSWREQ:13 does not contain
* the media_ratio_mode, just return the cached media ratio
*/
mode = slpc->media_ratio_mode;
} else {
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
mode = intel_uncore_read(gt->uncore, GEN6_RPNSWREQ);
mode = REG_FIELD_GET(GEN12_MEDIA_FREQ_RATIO, mode) ?
SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_ONE :
SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO;
}
return sysfs_emit(buff, "%u\n", media_ratio_mode_to_factor(mode));
}
static ssize_t media_freq_factor_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buff, size_t count)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_guc_slpc *slpc = &gt->uc.guc.slpc;
u32 factor, mode;
int err;
err = kstrtou32(buff, 0, &factor);
if (err)
return err;
for (mode = SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL;
mode <= SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO; mode++)
if (factor == media_ratio_mode_to_factor(mode))
break;
if (mode > SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO)
return -EINVAL;
err = intel_guc_slpc_set_media_ratio_mode(slpc, mode);
if (!err) {
slpc->media_ratio_mode = mode;
DRM_DEBUG("Set slpc->media_ratio_mode to %d", mode);
}
return err ?: count;
}
static ssize_t media_RP0_freq_mhz_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
u32 val;
int err;
err = snb_pcode_read_p(gt->uncore, XEHP_PCODE_FREQUENCY_CONFIG,
PCODE_MBOX_FC_SC_READ_FUSED_P0,
PCODE_MBOX_DOMAIN_MEDIAFF, &val);
if (err)
return err;
/* Fused media RP0 read from pcode is in units of 50 MHz */
val *= GT_FREQUENCY_MULTIPLIER;
return sysfs_emit(buff, "%u\n", val);
}
static ssize_t media_RPn_freq_mhz_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buff)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
u32 val;
int err;
err = snb_pcode_read_p(gt->uncore, XEHP_PCODE_FREQUENCY_CONFIG,
PCODE_MBOX_FC_SC_READ_FUSED_PN,
PCODE_MBOX_DOMAIN_MEDIAFF, &val);
if (err)
return err;
/* Fused media RPn read from pcode is in units of 50 MHz */
val *= GT_FREQUENCY_MULTIPLIER;
return sysfs_emit(buff, "%u\n", val);
}
INTEL_GT_ATTR_RW(media_freq_factor);
static struct kobj_attribute attr_media_freq_factor_scale =
__ATTR(media_freq_factor.scale, 0444, freq_factor_scale_show, NULL);
INTEL_GT_ATTR_RO(media_RP0_freq_mhz);
INTEL_GT_ATTR_RO(media_RPn_freq_mhz);
INTEL_GT_ATTR_RW(slpc_ignore_eff_freq);
static const struct attribute *media_perf_power_attrs[] = {
&attr_media_freq_factor.attr,
&attr_media_freq_factor_scale.attr,
&attr_media_RP0_freq_mhz.attr,
&attr_media_RPn_freq_mhz.attr,
NULL
};
static ssize_t
rps_up_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_rps *rps = &gt->rps;
return sysfs_emit(buf, "%u\n", intel_rps_get_up_threshold(rps));
}
static ssize_t
rps_up_threshold_pct_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_rps *rps = &gt->rps;
int ret;
u8 val;
ret = kstrtou8(buf, 10, &val);
if (ret)
return ret;
ret = intel_rps_set_up_threshold(rps, val);
return ret == 0 ? count : ret;
}
static struct kobj_attribute rps_up_threshold_pct =
__ATTR(rps_up_threshold_pct,
0664,
rps_up_threshold_pct_show,
rps_up_threshold_pct_store);
static ssize_t
rps_down_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_rps *rps = &gt->rps;
return sysfs_emit(buf, "%u\n", intel_rps_get_down_threshold(rps));
}
static ssize_t
rps_down_threshold_pct_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name);
struct intel_rps *rps = &gt->rps;
int ret;
u8 val;
ret = kstrtou8(buf, 10, &val);
if (ret)
return ret;
ret = intel_rps_set_down_threshold(rps, val);
return ret == 0 ? count : ret;
}
static struct kobj_attribute rps_down_threshold_pct =
__ATTR(rps_down_threshold_pct,
0664,
rps_down_threshold_pct_show,
rps_down_threshold_pct_store);
static const struct attribute * const gen6_gt_rps_attrs[] = {
&rps_up_threshold_pct.attr,
&rps_down_threshold_pct.attr,
NULL
};
static ssize_t
default_min_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_gt *gt = kobj_to_gt(kobj->parent);
return sysfs_emit(buf, "%u\n", gt->defaults.min_freq);
}
static struct kobj_attribute default_min_freq_mhz =
__ATTR(rps_min_freq_mhz, 0444, default_min_freq_mhz_show, NULL);
static ssize_t
default_max_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_gt *gt = kobj_to_gt(kobj->parent);
return sysfs_emit(buf, "%u\n", gt->defaults.max_freq);
}
static struct kobj_attribute default_max_freq_mhz =
__ATTR(rps_max_freq_mhz, 0444, default_max_freq_mhz_show, NULL);
static ssize_t
default_rps_up_threshold_pct_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct intel_gt *gt = kobj_to_gt(kobj->parent);
return sysfs_emit(buf, "%u\n", gt->defaults.rps_up_threshold);
}
static struct kobj_attribute default_rps_up_threshold_pct =
__ATTR(rps_up_threshold_pct, 0444, default_rps_up_threshold_pct_show, NULL);
static ssize_t
default_rps_down_threshold_pct_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct intel_gt *gt = kobj_to_gt(kobj->parent);
return sysfs_emit(buf, "%u\n", gt->defaults.rps_down_threshold);
}
static struct kobj_attribute default_rps_down_threshold_pct =
__ATTR(rps_down_threshold_pct, 0444, default_rps_down_threshold_pct_show, NULL);
static const struct attribute * const rps_defaults_attrs[] = {
&default_min_freq_mhz.attr,
&default_max_freq_mhz.attr,
&default_rps_up_threshold_pct.attr,
&default_rps_down_threshold_pct.attr,
NULL
};
static int intel_sysfs_rps_init(struct intel_gt *gt, struct kobject *kobj)
{
const struct attribute * const *attrs;
struct attribute *vlv_attr;
int ret;
if (GRAPHICS_VER(gt->i915) < 6)
return 0;
if (is_object_gt(kobj)) {
attrs = gen6_rps_attrs;
vlv_attr = &attr_rps_vlv_rpe_freq_mhz.attr;
} else {
attrs = gen6_gt_attrs;
vlv_attr = &dev_attr_gt_vlv_rpe_freq_mhz.attr;
}
ret = sysfs_create_files(kobj, attrs);
if (ret)
return ret;
if (IS_VALLEYVIEW(gt->i915) || IS_CHERRYVIEW(gt->i915))
ret = sysfs_create_file(kobj, vlv_attr);
if (is_object_gt(kobj) && !intel_uc_uses_guc_slpc(&gt->uc)) {
ret = sysfs_create_files(kobj, gen6_gt_rps_attrs);
if (ret)
return ret;
}
return ret;
}
void intel_gt_sysfs_pm_init(struct intel_gt *gt, struct kobject *kobj)
{
int ret;
intel_sysfs_rc6_init(gt, kobj);
ret = intel_sysfs_rps_init(gt, kobj);
if (ret)
gt_warn(gt, "failed to create RPS sysfs files (%pe)", ERR_PTR(ret));
/* end of the legacy interfaces */
if (!is_object_gt(kobj))
return;
ret = sysfs_create_file(kobj, &attr_punit_req_freq_mhz.attr);
if (ret)
gt_warn(gt, "failed to create punit_req_freq_mhz sysfs (%pe)", ERR_PTR(ret));
if (intel_uc_uses_guc_slpc(&gt->uc)) {
ret = sysfs_create_file(kobj, &attr_slpc_ignore_eff_freq.attr);
if (ret)
gt_warn(gt, "failed to create ignore_eff_freq sysfs (%pe)", ERR_PTR(ret));
}
if (i915_mmio_reg_valid(intel_gt_perf_limit_reasons_reg(gt))) {
ret = sysfs_create_files(kobj, throttle_reason_attrs);
if (ret)
gt_warn(gt, "failed to create throttle sysfs files (%pe)", ERR_PTR(ret));
}
if (HAS_MEDIA_RATIO_MODE(gt->i915) && intel_uc_uses_guc_slpc(&gt->uc)) {
ret = sysfs_create_files(kobj, media_perf_power_attrs);
if (ret)
gt_warn(gt, "failed to create media_perf_power_attrs sysfs (%pe)\n",
ERR_PTR(ret));
}
ret = sysfs_create_files(gt->sysfs_defaults, rps_defaults_attrs);
if (ret)
gt_warn(gt, "failed to add rps defaults (%pe)\n", ERR_PTR(ret));
}