blob: 52332bb143395e80b362a0ba91386b8eef5f7d41 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014-2019 Intel Corporation
*
* Authors:
* Vinit Azad <vinit.azad@intel.com>
* Ben Widawsky <ben@bwidawsk.net>
* Dave Gordon <david.s.gordon@intel.com>
* Alex Dai <yu.dai@intel.com>
*/
#include "gt/intel_gt.h"
#include "gt/intel_gt_mcr.h"
#include "gt/intel_gt_regs.h"
#include "gt/intel_rps.h"
#include "intel_guc_fw.h"
#include "intel_guc_print.h"
#include "i915_drv.h"
static void guc_prepare_xfer(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
GUC_ENABLE_MIA_CLOCK_GATING;
if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 50))
shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
GUC_ENABLE_MIA_CACHING;
/* Must program this register before loading the ucode with DMA */
intel_uncore_write(uncore, GUC_SHIM_CONTROL, shim_flags);
if (IS_GEN9_LP(uncore->i915))
intel_uncore_write(uncore, GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE);
else
intel_uncore_write(uncore, GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE);
if (GRAPHICS_VER(uncore->i915) == 9) {
/* DOP Clock Gating Enable for GuC clocks */
intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 0,
GEN8_DOP_CLOCK_GATE_GUC_ENABLE);
/* allows for 5us (in 10ns units) before GT can go to RC6 */
intel_uncore_write(uncore, GUC_ARAT_C6DIS, 0x1FF);
}
}
static int guc_xfer_rsa_mmio(struct intel_uc_fw *guc_fw,
struct intel_uncore *uncore)
{
u32 rsa[UOS_RSA_SCRATCH_COUNT];
size_t copied;
int i;
copied = intel_uc_fw_copy_rsa(guc_fw, rsa, sizeof(rsa));
if (copied < sizeof(rsa))
return -ENOMEM;
for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
intel_uncore_write(uncore, UOS_RSA_SCRATCH(i), rsa[i]);
return 0;
}
static int guc_xfer_rsa_vma(struct intel_uc_fw *guc_fw,
struct intel_uncore *uncore)
{
struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw);
intel_uncore_write(uncore, UOS_RSA_SCRATCH(0),
intel_guc_ggtt_offset(guc, guc_fw->rsa_data));
return 0;
}
/* Copy RSA signature from the fw image to HW for verification */
static int guc_xfer_rsa(struct intel_uc_fw *guc_fw,
struct intel_uncore *uncore)
{
if (guc_fw->rsa_data)
return guc_xfer_rsa_vma(guc_fw, uncore);
else
return guc_xfer_rsa_mmio(guc_fw, uncore);
}
/*
* Read the GuC status register (GUC_STATUS) and store it in the
* specified location; then return a boolean indicating whether
* the value matches either completion or a known failure code.
*
* This is used for polling the GuC status in a wait_for()
* loop below.
*/
static inline bool guc_load_done(struct intel_uncore *uncore, u32 *status, bool *success)
{
u32 val = intel_uncore_read(uncore, GUC_STATUS);
u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, val);
u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, val);
*status = val;
switch (uk_val) {
case INTEL_GUC_LOAD_STATUS_READY:
*success = true;
return true;
case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
case INTEL_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
case INTEL_GUC_LOAD_STATUS_HWCONFIG_ERROR:
case INTEL_GUC_LOAD_STATUS_DPC_ERROR:
case INTEL_GUC_LOAD_STATUS_EXCEPTION:
case INTEL_GUC_LOAD_STATUS_INIT_DATA_INVALID:
case INTEL_GUC_LOAD_STATUS_MPU_DATA_INVALID:
case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
*success = false;
return true;
}
switch (br_val) {
case INTEL_BOOTROM_STATUS_NO_KEY_FOUND:
case INTEL_BOOTROM_STATUS_RSA_FAILED:
case INTEL_BOOTROM_STATUS_PAVPC_FAILED:
case INTEL_BOOTROM_STATUS_WOPCM_FAILED:
case INTEL_BOOTROM_STATUS_LOADLOC_FAILED:
case INTEL_BOOTROM_STATUS_JUMP_FAILED:
case INTEL_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
case INTEL_BOOTROM_STATUS_MPUMAP_INCORRECT:
case INTEL_BOOTROM_STATUS_EXCEPTION:
case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
*success = false;
return true;
}
return false;
}
/*
* Use a longer timeout for debug builds so that problems can be detected
* and analysed. But a shorter timeout for releases so that user's don't
* wait forever to find out there is a problem. Note that the only reason
* an end user should hit the timeout is in case of extreme thermal throttling.
* And a system that is that hot during boot is probably dead anyway!
*/
#if defined(CONFIG_DRM_I915_DEBUG_GEM)
#define GUC_LOAD_RETRY_LIMIT 20
#else
#define GUC_LOAD_RETRY_LIMIT 3
#endif
static int guc_wait_ucode(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_uncore *uncore = gt->uncore;
ktime_t before, after, delta;
bool success;
u32 status;
int ret, count;
u64 delta_ms;
u32 before_freq;
/*
* Wait for the GuC to start up.
*
* Measurements indicate this should take no more than 20ms
* (assuming the GT clock is at maximum frequency). So, a
* timeout here indicates that the GuC has failed and is unusable.
* (Higher levels of the driver may decide to reset the GuC and
* attempt the ucode load again if this happens.)
*
* FIXME: There is a known (but exceedingly unlikely) race condition
* where the asynchronous frequency management code could reduce
* the GT clock while a GuC reload is in progress (during a full
* GT reset). A fix is in progress but there are complex locking
* issues to be resolved. In the meantime bump the timeout to
* 200ms. Even at slowest clock, this should be sufficient. And
* in the working case, a larger timeout makes no difference.
*
* IFWI updates have also been seen to cause sporadic failures due to
* the requested frequency not being granted and thus the firmware
* load is attempted at minimum frequency. That can lead to load times
* in the seconds range. However, there is a limit on how long an
* individual wait_for() can wait. So wrap it in a loop.
*/
before_freq = intel_rps_read_actual_frequency(&gt->rps);
before = ktime_get();
for (count = 0; count < GUC_LOAD_RETRY_LIMIT; count++) {
ret = wait_for(guc_load_done(uncore, &status, &success), 1000);
if (!ret || !success)
break;
guc_dbg(guc, "load still in progress, count = %d, freq = %dMHz, status = 0x%08X [0x%02X/%02X]\n",
count, intel_rps_read_actual_frequency(&gt->rps), status,
REG_FIELD_GET(GS_BOOTROM_MASK, status),
REG_FIELD_GET(GS_UKERNEL_MASK, status));
}
after = ktime_get();
delta = ktime_sub(after, before);
delta_ms = ktime_to_ms(delta);
if (ret || !success) {
u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
guc_info(guc, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz, ret = %d\n",
status, delta_ms, intel_rps_read_actual_frequency(&gt->rps), ret);
guc_info(guc, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
REG_FIELD_GET(GS_MIA_IN_RESET, status),
bootrom, ukernel,
REG_FIELD_GET(GS_MIA_MASK, status),
REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
switch (bootrom) {
case INTEL_BOOTROM_STATUS_NO_KEY_FOUND:
guc_info(guc, "invalid key requested, header = 0x%08X\n",
intel_uncore_read(uncore, GUC_HEADER_INFO));
ret = -ENOEXEC;
break;
case INTEL_BOOTROM_STATUS_RSA_FAILED:
guc_info(guc, "firmware signature verification failed\n");
ret = -ENOEXEC;
break;
case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
guc_info(guc, "firmware production part check failure\n");
ret = -ENOEXEC;
break;
}
switch (ukernel) {
case INTEL_GUC_LOAD_STATUS_EXCEPTION:
guc_info(guc, "firmware exception. EIP: %#x\n",
intel_uncore_read(uncore, SOFT_SCRATCH(13)));
ret = -ENXIO;
break;
case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
guc_info(guc, "illegal register in save/restore workaround list\n");
ret = -EPERM;
break;
case INTEL_GUC_LOAD_STATUS_HWCONFIG_START:
guc_info(guc, "still extracting hwconfig table.\n");
ret = -ETIMEDOUT;
break;
}
/* Uncommon/unexpected error, see earlier status code print for details */
if (ret == 0)
ret = -ENXIO;
} else if (delta_ms > 200) {
guc_warn(guc, "excessive init time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n",
delta_ms, status, count, ret);
guc_warn(guc, "excessive init time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n",
intel_rps_read_actual_frequency(&gt->rps), before_freq,
intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt)));
} else {
guc_dbg(guc, "init took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
delta_ms, intel_rps_read_actual_frequency(&gt->rps),
before_freq, status, count, ret);
}
return ret;
}
/**
* intel_guc_fw_upload() - load GuC uCode to device
* @guc: intel_guc structure
*
* Called from intel_uc_init_hw() during driver load, resume from sleep and
* after a GPU reset.
*
* The firmware image should have already been fetched into memory, so only
* check that fetch succeeded, and then transfer the image to the h/w.
*
* Return: non-zero code on error
*/
int intel_guc_fw_upload(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_uncore *uncore = gt->uncore;
int ret;
guc_prepare_xfer(gt);
/*
* Note that GuC needs the CSS header plus uKernel code to be copied
* by the DMA engine in one operation, whereas the RSA signature is
* loaded separately, either by copying it to the UOS_RSA_SCRATCH
* register (if key size <= 256) or through a ggtt-pinned vma (if key
* size > 256). The RSA size and therefore the way we provide it to the
* HW is fixed for each platform and hard-coded in the bootrom.
*/
ret = guc_xfer_rsa(&guc->fw, uncore);
if (ret)
goto out;
/*
* Current uCode expects the code to be loaded at 8k; locations below
* this are used for the stack.
*/
ret = intel_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
if (ret)
goto out;
ret = guc_wait_ucode(guc);
if (ret)
goto out;
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_RUNNING);
return 0;
out:
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
return ret;
}