| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2013 ARM Ltd. |
| * Copyright (C) 2013 Linaro. |
| * |
| * This code is based on glibc cortex strings work originally authored by Linaro |
| * be found @ |
| * |
| * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ |
| * files/head:/src/aarch64/ |
| */ |
| |
| #include <linux/linkage.h> |
| #include <asm/assembler.h> |
| |
| /* |
| * calculate the length of a string |
| * |
| * Parameters: |
| * x0 - const string pointer |
| * Returns: |
| * x0 - the return length of specific string |
| */ |
| |
| /* Arguments and results. */ |
| srcin .req x0 |
| len .req x0 |
| |
| /* Locals and temporaries. */ |
| src .req x1 |
| data1 .req x2 |
| data2 .req x3 |
| data2a .req x4 |
| has_nul1 .req x5 |
| has_nul2 .req x6 |
| tmp1 .req x7 |
| tmp2 .req x8 |
| tmp3 .req x9 |
| tmp4 .req x10 |
| zeroones .req x11 |
| pos .req x12 |
| |
| #define REP8_01 0x0101010101010101 |
| #define REP8_7f 0x7f7f7f7f7f7f7f7f |
| #define REP8_80 0x8080808080808080 |
| |
| SYM_FUNC_START_WEAK_PI(strlen) |
| mov zeroones, #REP8_01 |
| bic src, srcin, #15 |
| ands tmp1, srcin, #15 |
| b.ne .Lmisaligned |
| /* |
| * NUL detection works on the principle that (X - 1) & (~X) & 0x80 |
| * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and |
| * can be done in parallel across the entire word. |
| */ |
| /* |
| * The inner loop deals with two Dwords at a time. This has a |
| * slightly higher start-up cost, but we should win quite quickly, |
| * especially on cores with a high number of issue slots per |
| * cycle, as we get much better parallelism out of the operations. |
| */ |
| .Lloop: |
| ldp data1, data2, [src], #16 |
| .Lrealigned: |
| sub tmp1, data1, zeroones |
| orr tmp2, data1, #REP8_7f |
| sub tmp3, data2, zeroones |
| orr tmp4, data2, #REP8_7f |
| bic has_nul1, tmp1, tmp2 |
| bics has_nul2, tmp3, tmp4 |
| ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */ |
| b.eq .Lloop |
| |
| sub len, src, srcin |
| cbz has_nul1, .Lnul_in_data2 |
| CPU_BE( mov data2, data1 ) /*prepare data to re-calculate the syndrome*/ |
| sub len, len, #8 |
| mov has_nul2, has_nul1 |
| .Lnul_in_data2: |
| /* |
| * For big-endian, carry propagation (if the final byte in the |
| * string is 0x01) means we cannot use has_nul directly. The |
| * easiest way to get the correct byte is to byte-swap the data |
| * and calculate the syndrome a second time. |
| */ |
| CPU_BE( rev data2, data2 ) |
| CPU_BE( sub tmp1, data2, zeroones ) |
| CPU_BE( orr tmp2, data2, #REP8_7f ) |
| CPU_BE( bic has_nul2, tmp1, tmp2 ) |
| |
| sub len, len, #8 |
| rev has_nul2, has_nul2 |
| clz pos, has_nul2 |
| add len, len, pos, lsr #3 /* Bits to bytes. */ |
| ret |
| |
| .Lmisaligned: |
| cmp tmp1, #8 |
| neg tmp1, tmp1 |
| ldp data1, data2, [src], #16 |
| lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */ |
| mov tmp2, #~0 |
| /* Big-endian. Early bytes are at MSB. */ |
| CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ |
| /* Little-endian. Early bytes are at LSB. */ |
| CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ |
| |
| orr data1, data1, tmp2 |
| orr data2a, data2, tmp2 |
| csinv data1, data1, xzr, le |
| csel data2, data2, data2a, le |
| b .Lrealigned |
| SYM_FUNC_END_PI(strlen) |
| EXPORT_SYMBOL_NOKASAN(strlen) |