| /* |
| * Common signal handling code for both 32 and 64 bits |
| * |
| * Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation |
| * Extracted from signal_32.c and signal_64.c |
| * |
| * This file is subject to the terms and conditions of the GNU General |
| * Public License. See the file README.legal in the main directory of |
| * this archive for more details. |
| */ |
| |
| #include <linux/tracehook.h> |
| #include <linux/signal.h> |
| #include <linux/uprobes.h> |
| #include <linux/key.h> |
| #include <linux/context_tracking.h> |
| #include <linux/livepatch.h> |
| #include <linux/syscalls.h> |
| #include <asm/hw_breakpoint.h> |
| #include <linux/uaccess.h> |
| #include <asm/switch_to.h> |
| #include <asm/unistd.h> |
| #include <asm/debug.h> |
| #include <asm/tm.h> |
| |
| #include "signal.h" |
| |
| #ifdef CONFIG_VSX |
| unsigned long copy_fpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| buf[i] = task->thread.TS_FPR(i); |
| buf[i] = task->thread.fp_state.fpscr; |
| return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); |
| } |
| |
| unsigned long copy_fpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| task->thread.TS_FPR(i) = buf[i]; |
| task->thread.fp_state.fpscr = buf[i]; |
| |
| return 0; |
| } |
| |
| unsigned long copy_vsx_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < ELF_NVSRHALFREG; i++) |
| buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; |
| return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); |
| } |
| |
| unsigned long copy_vsx_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < ELF_NVSRHALFREG ; i++) |
| task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| unsigned long copy_ckfpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| buf[i] = task->thread.TS_CKFPR(i); |
| buf[i] = task->thread.ckfp_state.fpscr; |
| return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); |
| } |
| |
| unsigned long copy_ckfpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NFPREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < (ELF_NFPREG - 1) ; i++) |
| task->thread.TS_CKFPR(i) = buf[i]; |
| task->thread.ckfp_state.fpscr = buf[i]; |
| |
| return 0; |
| } |
| |
| unsigned long copy_ckvsx_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| /* save FPR copy to local buffer then write to the thread_struct */ |
| for (i = 0; i < ELF_NVSRHALFREG; i++) |
| buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET]; |
| return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); |
| } |
| |
| unsigned long copy_ckvsx_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| u64 buf[ELF_NVSRHALFREG]; |
| int i; |
| |
| if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) |
| return 1; |
| for (i = 0; i < ELF_NVSRHALFREG ; i++) |
| task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| return 0; |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| #else |
| inline unsigned long copy_fpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| return __copy_to_user(to, task->thread.fp_state.fpr, |
| ELF_NFPREG * sizeof(double)); |
| } |
| |
| inline unsigned long copy_fpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| return __copy_from_user(task->thread.fp_state.fpr, from, |
| ELF_NFPREG * sizeof(double)); |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| inline unsigned long copy_ckfpr_to_user(void __user *to, |
| struct task_struct *task) |
| { |
| return __copy_to_user(to, task->thread.ckfp_state.fpr, |
| ELF_NFPREG * sizeof(double)); |
| } |
| |
| inline unsigned long copy_ckfpr_from_user(struct task_struct *task, |
| void __user *from) |
| { |
| return __copy_from_user(task->thread.ckfp_state.fpr, from, |
| ELF_NFPREG * sizeof(double)); |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| #endif |
| |
| /* Log an error when sending an unhandled signal to a process. Controlled |
| * through debug.exception-trace sysctl. |
| */ |
| |
| int show_unhandled_signals = 1; |
| |
| /* |
| * Allocate space for the signal frame |
| */ |
| void __user *get_sigframe(struct ksignal *ksig, unsigned long sp, |
| size_t frame_size, int is_32) |
| { |
| unsigned long oldsp, newsp; |
| |
| /* Default to using normal stack */ |
| oldsp = get_clean_sp(sp, is_32); |
| oldsp = sigsp(oldsp, ksig); |
| newsp = (oldsp - frame_size) & ~0xFUL; |
| |
| /* Check access */ |
| if (!access_ok((void __user *)newsp, oldsp - newsp)) |
| return NULL; |
| |
| return (void __user *)newsp; |
| } |
| |
| static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka, |
| int has_handler) |
| { |
| unsigned long ret = regs->gpr[3]; |
| int restart = 1; |
| |
| /* syscall ? */ |
| if (!trap_is_syscall(regs)) |
| return; |
| |
| if (trap_norestart(regs)) |
| return; |
| |
| /* error signalled ? */ |
| if (trap_is_scv(regs)) { |
| /* 32-bit compat mode sign extend? */ |
| if (!IS_ERR_VALUE(ret)) |
| return; |
| ret = -ret; |
| } else if (!(regs->ccr & 0x10000000)) { |
| return; |
| } |
| |
| switch (ret) { |
| case ERESTART_RESTARTBLOCK: |
| case ERESTARTNOHAND: |
| /* ERESTARTNOHAND means that the syscall should only be |
| * restarted if there was no handler for the signal, and since |
| * we only get here if there is a handler, we dont restart. |
| */ |
| restart = !has_handler; |
| break; |
| case ERESTARTSYS: |
| /* ERESTARTSYS means to restart the syscall if there is no |
| * handler or the handler was registered with SA_RESTART |
| */ |
| restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0; |
| break; |
| case ERESTARTNOINTR: |
| /* ERESTARTNOINTR means that the syscall should be |
| * called again after the signal handler returns. |
| */ |
| break; |
| default: |
| return; |
| } |
| if (restart) { |
| if (ret == ERESTART_RESTARTBLOCK) |
| regs->gpr[0] = __NR_restart_syscall; |
| else |
| regs->gpr[3] = regs->orig_gpr3; |
| regs->nip -= 4; |
| regs->result = 0; |
| } else { |
| if (trap_is_scv(regs)) { |
| regs->result = -EINTR; |
| regs->gpr[3] = -EINTR; |
| } else { |
| regs->result = -EINTR; |
| regs->gpr[3] = EINTR; |
| regs->ccr |= 0x10000000; |
| } |
| } |
| } |
| |
| static void do_signal(struct task_struct *tsk) |
| { |
| sigset_t *oldset = sigmask_to_save(); |
| struct ksignal ksig = { .sig = 0 }; |
| int ret; |
| |
| BUG_ON(tsk != current); |
| |
| get_signal(&ksig); |
| |
| /* Is there any syscall restart business here ? */ |
| check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0); |
| |
| if (ksig.sig <= 0) { |
| /* No signal to deliver -- put the saved sigmask back */ |
| restore_saved_sigmask(); |
| set_trap_norestart(tsk->thread.regs); |
| return; /* no signals delivered */ |
| } |
| |
| /* |
| * Reenable the DABR before delivering the signal to |
| * user space. The DABR will have been cleared if it |
| * triggered inside the kernel. |
| */ |
| if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) { |
| int i; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type) |
| __set_breakpoint(i, &tsk->thread.hw_brk[i]); |
| } |
| } |
| |
| /* Re-enable the breakpoints for the signal stack */ |
| thread_change_pc(tsk, tsk->thread.regs); |
| |
| rseq_signal_deliver(&ksig, tsk->thread.regs); |
| |
| if (is_32bit_task()) { |
| if (ksig.ka.sa.sa_flags & SA_SIGINFO) |
| ret = handle_rt_signal32(&ksig, oldset, tsk); |
| else |
| ret = handle_signal32(&ksig, oldset, tsk); |
| } else { |
| ret = handle_rt_signal64(&ksig, oldset, tsk); |
| } |
| |
| set_trap_norestart(tsk->thread.regs); |
| signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP)); |
| } |
| |
| void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags) |
| { |
| user_exit(); |
| |
| /* Check valid addr_limit, TIF check is done there */ |
| addr_limit_user_check(); |
| |
| if (thread_info_flags & _TIF_UPROBE) |
| uprobe_notify_resume(regs); |
| |
| if (thread_info_flags & _TIF_PATCH_PENDING) |
| klp_update_patch_state(current); |
| |
| if (thread_info_flags & _TIF_SIGPENDING) { |
| BUG_ON(regs != current->thread.regs); |
| do_signal(current); |
| } |
| |
| if (thread_info_flags & _TIF_NOTIFY_RESUME) { |
| clear_thread_flag(TIF_NOTIFY_RESUME); |
| tracehook_notify_resume(regs); |
| rseq_handle_notify_resume(NULL, regs); |
| } |
| |
| user_enter(); |
| } |
| |
| unsigned long get_tm_stackpointer(struct task_struct *tsk) |
| { |
| /* When in an active transaction that takes a signal, we need to be |
| * careful with the stack. It's possible that the stack has moved back |
| * up after the tbegin. The obvious case here is when the tbegin is |
| * called inside a function that returns before a tend. In this case, |
| * the stack is part of the checkpointed transactional memory state. |
| * If we write over this non transactionally or in suspend, we are in |
| * trouble because if we get a tm abort, the program counter and stack |
| * pointer will be back at the tbegin but our in memory stack won't be |
| * valid anymore. |
| * |
| * To avoid this, when taking a signal in an active transaction, we |
| * need to use the stack pointer from the checkpointed state, rather |
| * than the speculated state. This ensures that the signal context |
| * (written tm suspended) will be written below the stack required for |
| * the rollback. The transaction is aborted because of the treclaim, |
| * so any memory written between the tbegin and the signal will be |
| * rolled back anyway. |
| * |
| * For signals taken in non-TM or suspended mode, we use the |
| * normal/non-checkpointed stack pointer. |
| */ |
| |
| unsigned long ret = tsk->thread.regs->gpr[1]; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| BUG_ON(tsk != current); |
| |
| if (MSR_TM_ACTIVE(tsk->thread.regs->msr)) { |
| preempt_disable(); |
| tm_reclaim_current(TM_CAUSE_SIGNAL); |
| if (MSR_TM_TRANSACTIONAL(tsk->thread.regs->msr)) |
| ret = tsk->thread.ckpt_regs.gpr[1]; |
| |
| /* |
| * If we treclaim, we must clear the current thread's TM bits |
| * before re-enabling preemption. Otherwise we might be |
| * preempted and have the live MSR[TS] changed behind our back |
| * (tm_recheckpoint_new_task() would recheckpoint). Besides, we |
| * enter the signal handler in non-transactional state. |
| */ |
| tsk->thread.regs->msr &= ~MSR_TS_MASK; |
| preempt_enable(); |
| } |
| #endif |
| return ret; |
| } |