| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2017 - 2019 Cambridge Greys Limited |
| * Copyright (C) 2011 - 2014 Cisco Systems Inc |
| * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) |
| * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and |
| * James Leu (jleu@mindspring.net). |
| * Copyright (C) 2001 by various other people who didn't put their name here. |
| */ |
| |
| #include <linux/version.h> |
| #include <linux/memblock.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/inetdevice.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/netdevice.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/skbuff.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/firmware.h> |
| #include <linux/fs.h> |
| #include <uapi/linux/filter.h> |
| #include <init.h> |
| #include <irq_kern.h> |
| #include <irq_user.h> |
| #include <net_kern.h> |
| #include <os.h> |
| #include "mconsole_kern.h" |
| #include "vector_user.h" |
| #include "vector_kern.h" |
| |
| /* |
| * Adapted from network devices with the following major changes: |
| * All transports are static - simplifies the code significantly |
| * Multiple FDs/IRQs per device |
| * Vector IO optionally used for read/write, falling back to legacy |
| * based on configuration and/or availability |
| * Configuration is no longer positional - L2TPv3 and GRE require up to |
| * 10 parameters, passing this as positional is not fit for purpose. |
| * Only socket transports are supported |
| */ |
| |
| |
| #define DRIVER_NAME "uml-vector" |
| struct vector_cmd_line_arg { |
| struct list_head list; |
| int unit; |
| char *arguments; |
| }; |
| |
| struct vector_device { |
| struct list_head list; |
| struct net_device *dev; |
| struct platform_device pdev; |
| int unit; |
| int opened; |
| }; |
| |
| static LIST_HEAD(vec_cmd_line); |
| |
| static DEFINE_SPINLOCK(vector_devices_lock); |
| static LIST_HEAD(vector_devices); |
| |
| static int driver_registered; |
| |
| static void vector_eth_configure(int n, struct arglist *def); |
| |
| /* Argument accessors to set variables (and/or set default values) |
| * mtu, buffer sizing, default headroom, etc |
| */ |
| |
| #define DEFAULT_HEADROOM 2 |
| #define SAFETY_MARGIN 32 |
| #define DEFAULT_VECTOR_SIZE 64 |
| #define TX_SMALL_PACKET 128 |
| #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) |
| #define MAX_ITERATIONS 64 |
| |
| static const struct { |
| const char string[ETH_GSTRING_LEN]; |
| } ethtool_stats_keys[] = { |
| { "rx_queue_max" }, |
| { "rx_queue_running_average" }, |
| { "tx_queue_max" }, |
| { "tx_queue_running_average" }, |
| { "rx_encaps_errors" }, |
| { "tx_timeout_count" }, |
| { "tx_restart_queue" }, |
| { "tx_kicks" }, |
| { "tx_flow_control_xon" }, |
| { "tx_flow_control_xoff" }, |
| { "rx_csum_offload_good" }, |
| { "rx_csum_offload_errors"}, |
| { "sg_ok"}, |
| { "sg_linearized"}, |
| }; |
| |
| #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) |
| |
| static void vector_reset_stats(struct vector_private *vp) |
| { |
| vp->estats.rx_queue_max = 0; |
| vp->estats.rx_queue_running_average = 0; |
| vp->estats.tx_queue_max = 0; |
| vp->estats.tx_queue_running_average = 0; |
| vp->estats.rx_encaps_errors = 0; |
| vp->estats.tx_timeout_count = 0; |
| vp->estats.tx_restart_queue = 0; |
| vp->estats.tx_kicks = 0; |
| vp->estats.tx_flow_control_xon = 0; |
| vp->estats.tx_flow_control_xoff = 0; |
| vp->estats.sg_ok = 0; |
| vp->estats.sg_linearized = 0; |
| } |
| |
| static int get_mtu(struct arglist *def) |
| { |
| char *mtu = uml_vector_fetch_arg(def, "mtu"); |
| long result; |
| |
| if (mtu != NULL) { |
| if (kstrtoul(mtu, 10, &result) == 0) |
| if ((result < (1 << 16) - 1) && (result >= 576)) |
| return result; |
| } |
| return ETH_MAX_PACKET; |
| } |
| |
| static char *get_bpf_file(struct arglist *def) |
| { |
| return uml_vector_fetch_arg(def, "bpffile"); |
| } |
| |
| static bool get_bpf_flash(struct arglist *def) |
| { |
| char *allow = uml_vector_fetch_arg(def, "bpfflash"); |
| long result; |
| |
| if (allow != NULL) { |
| if (kstrtoul(allow, 10, &result) == 0) |
| return (allow > 0); |
| } |
| return false; |
| } |
| |
| static int get_depth(struct arglist *def) |
| { |
| char *mtu = uml_vector_fetch_arg(def, "depth"); |
| long result; |
| |
| if (mtu != NULL) { |
| if (kstrtoul(mtu, 10, &result) == 0) |
| return result; |
| } |
| return DEFAULT_VECTOR_SIZE; |
| } |
| |
| static int get_headroom(struct arglist *def) |
| { |
| char *mtu = uml_vector_fetch_arg(def, "headroom"); |
| long result; |
| |
| if (mtu != NULL) { |
| if (kstrtoul(mtu, 10, &result) == 0) |
| return result; |
| } |
| return DEFAULT_HEADROOM; |
| } |
| |
| static int get_req_size(struct arglist *def) |
| { |
| char *gro = uml_vector_fetch_arg(def, "gro"); |
| long result; |
| |
| if (gro != NULL) { |
| if (kstrtoul(gro, 10, &result) == 0) { |
| if (result > 0) |
| return 65536; |
| } |
| } |
| return get_mtu(def) + ETH_HEADER_OTHER + |
| get_headroom(def) + SAFETY_MARGIN; |
| } |
| |
| |
| static int get_transport_options(struct arglist *def) |
| { |
| char *transport = uml_vector_fetch_arg(def, "transport"); |
| char *vector = uml_vector_fetch_arg(def, "vec"); |
| |
| int vec_rx = VECTOR_RX; |
| int vec_tx = VECTOR_TX; |
| long parsed; |
| int result = 0; |
| |
| if (transport == NULL) |
| return -EINVAL; |
| |
| if (vector != NULL) { |
| if (kstrtoul(vector, 10, &parsed) == 0) { |
| if (parsed == 0) { |
| vec_rx = 0; |
| vec_tx = 0; |
| } |
| } |
| } |
| |
| if (get_bpf_flash(def)) |
| result = VECTOR_BPF_FLASH; |
| |
| if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) |
| return result; |
| if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0) |
| return (result | vec_rx | VECTOR_BPF); |
| if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) |
| return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS); |
| return (result | vec_rx | vec_tx); |
| } |
| |
| |
| /* A mini-buffer for packet drop read |
| * All of our supported transports are datagram oriented and we always |
| * read using recvmsg or recvmmsg. If we pass a buffer which is smaller |
| * than the packet size it still counts as full packet read and will |
| * clean the incoming stream to keep sigio/epoll happy |
| */ |
| |
| #define DROP_BUFFER_SIZE 32 |
| |
| static char *drop_buffer; |
| |
| /* Array backed queues optimized for bulk enqueue/dequeue and |
| * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. |
| * For more details and full design rationale see |
| * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt |
| */ |
| |
| |
| /* |
| * Advance the mmsg queue head by n = advance. Resets the queue to |
| * maximum enqueue/dequeue-at-once capacity if possible. Called by |
| * dequeuers. Caller must hold the head_lock! |
| */ |
| |
| static int vector_advancehead(struct vector_queue *qi, int advance) |
| { |
| int queue_depth; |
| |
| qi->head = |
| (qi->head + advance) |
| % qi->max_depth; |
| |
| |
| spin_lock(&qi->tail_lock); |
| qi->queue_depth -= advance; |
| |
| /* we are at 0, use this to |
| * reset head and tail so we can use max size vectors |
| */ |
| |
| if (qi->queue_depth == 0) { |
| qi->head = 0; |
| qi->tail = 0; |
| } |
| queue_depth = qi->queue_depth; |
| spin_unlock(&qi->tail_lock); |
| return queue_depth; |
| } |
| |
| /* Advance the queue tail by n = advance. |
| * This is called by enqueuers which should hold the |
| * head lock already |
| */ |
| |
| static int vector_advancetail(struct vector_queue *qi, int advance) |
| { |
| int queue_depth; |
| |
| qi->tail = |
| (qi->tail + advance) |
| % qi->max_depth; |
| spin_lock(&qi->head_lock); |
| qi->queue_depth += advance; |
| queue_depth = qi->queue_depth; |
| spin_unlock(&qi->head_lock); |
| return queue_depth; |
| } |
| |
| static int prep_msg(struct vector_private *vp, |
| struct sk_buff *skb, |
| struct iovec *iov) |
| { |
| int iov_index = 0; |
| int nr_frags, frag; |
| skb_frag_t *skb_frag; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| if (nr_frags > MAX_IOV_SIZE) { |
| if (skb_linearize(skb) != 0) |
| goto drop; |
| } |
| if (vp->header_size > 0) { |
| iov[iov_index].iov_len = vp->header_size; |
| vp->form_header(iov[iov_index].iov_base, skb, vp); |
| iov_index++; |
| } |
| iov[iov_index].iov_base = skb->data; |
| if (nr_frags > 0) { |
| iov[iov_index].iov_len = skb->len - skb->data_len; |
| vp->estats.sg_ok++; |
| } else |
| iov[iov_index].iov_len = skb->len; |
| iov_index++; |
| for (frag = 0; frag < nr_frags; frag++) { |
| skb_frag = &skb_shinfo(skb)->frags[frag]; |
| iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); |
| iov[iov_index].iov_len = skb_frag_size(skb_frag); |
| iov_index++; |
| } |
| return iov_index; |
| drop: |
| return -1; |
| } |
| /* |
| * Generic vector enqueue with support for forming headers using transport |
| * specific callback. Allows GRE, L2TPv3, RAW and other transports |
| * to use a common enqueue procedure in vector mode |
| */ |
| |
| static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) |
| { |
| struct vector_private *vp = netdev_priv(qi->dev); |
| int queue_depth; |
| int packet_len; |
| struct mmsghdr *mmsg_vector = qi->mmsg_vector; |
| int iov_count; |
| |
| spin_lock(&qi->tail_lock); |
| spin_lock(&qi->head_lock); |
| queue_depth = qi->queue_depth; |
| spin_unlock(&qi->head_lock); |
| |
| if (skb) |
| packet_len = skb->len; |
| |
| if (queue_depth < qi->max_depth) { |
| |
| *(qi->skbuff_vector + qi->tail) = skb; |
| mmsg_vector += qi->tail; |
| iov_count = prep_msg( |
| vp, |
| skb, |
| mmsg_vector->msg_hdr.msg_iov |
| ); |
| if (iov_count < 1) |
| goto drop; |
| mmsg_vector->msg_hdr.msg_iovlen = iov_count; |
| mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; |
| mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; |
| queue_depth = vector_advancetail(qi, 1); |
| } else |
| goto drop; |
| spin_unlock(&qi->tail_lock); |
| return queue_depth; |
| drop: |
| qi->dev->stats.tx_dropped++; |
| if (skb != NULL) { |
| packet_len = skb->len; |
| dev_consume_skb_any(skb); |
| netdev_completed_queue(qi->dev, 1, packet_len); |
| } |
| spin_unlock(&qi->tail_lock); |
| return queue_depth; |
| } |
| |
| static int consume_vector_skbs(struct vector_queue *qi, int count) |
| { |
| struct sk_buff *skb; |
| int skb_index; |
| int bytes_compl = 0; |
| |
| for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { |
| skb = *(qi->skbuff_vector + skb_index); |
| /* mark as empty to ensure correct destruction if |
| * needed |
| */ |
| bytes_compl += skb->len; |
| *(qi->skbuff_vector + skb_index) = NULL; |
| dev_consume_skb_any(skb); |
| } |
| qi->dev->stats.tx_bytes += bytes_compl; |
| qi->dev->stats.tx_packets += count; |
| netdev_completed_queue(qi->dev, count, bytes_compl); |
| return vector_advancehead(qi, count); |
| } |
| |
| /* |
| * Generic vector deque via sendmmsg with support for forming headers |
| * using transport specific callback. Allows GRE, L2TPv3, RAW and |
| * other transports to use a common dequeue procedure in vector mode |
| */ |
| |
| |
| static int vector_send(struct vector_queue *qi) |
| { |
| struct vector_private *vp = netdev_priv(qi->dev); |
| struct mmsghdr *send_from; |
| int result = 0, send_len, queue_depth = qi->max_depth; |
| |
| if (spin_trylock(&qi->head_lock)) { |
| if (spin_trylock(&qi->tail_lock)) { |
| /* update queue_depth to current value */ |
| queue_depth = qi->queue_depth; |
| spin_unlock(&qi->tail_lock); |
| while (queue_depth > 0) { |
| /* Calculate the start of the vector */ |
| send_len = queue_depth; |
| send_from = qi->mmsg_vector; |
| send_from += qi->head; |
| /* Adjust vector size if wraparound */ |
| if (send_len + qi->head > qi->max_depth) |
| send_len = qi->max_depth - qi->head; |
| /* Try to TX as many packets as possible */ |
| if (send_len > 0) { |
| result = uml_vector_sendmmsg( |
| vp->fds->tx_fd, |
| send_from, |
| send_len, |
| 0 |
| ); |
| vp->in_write_poll = |
| (result != send_len); |
| } |
| /* For some of the sendmmsg error scenarios |
| * we may end being unsure in the TX success |
| * for all packets. It is safer to declare |
| * them all TX-ed and blame the network. |
| */ |
| if (result < 0) { |
| if (net_ratelimit()) |
| netdev_err(vp->dev, "sendmmsg err=%i\n", |
| result); |
| vp->in_error = true; |
| result = send_len; |
| } |
| if (result > 0) { |
| queue_depth = |
| consume_vector_skbs(qi, result); |
| /* This is equivalent to an TX IRQ. |
| * Restart the upper layers to feed us |
| * more packets. |
| */ |
| if (result > vp->estats.tx_queue_max) |
| vp->estats.tx_queue_max = result; |
| vp->estats.tx_queue_running_average = |
| (vp->estats.tx_queue_running_average + result) >> 1; |
| } |
| netif_trans_update(qi->dev); |
| netif_wake_queue(qi->dev); |
| /* if TX is busy, break out of the send loop, |
| * poll write IRQ will reschedule xmit for us |
| */ |
| if (result != send_len) { |
| vp->estats.tx_restart_queue++; |
| break; |
| } |
| } |
| } |
| spin_unlock(&qi->head_lock); |
| } else { |
| tasklet_schedule(&vp->tx_poll); |
| } |
| return queue_depth; |
| } |
| |
| /* Queue destructor. Deliberately stateless so we can use |
| * it in queue cleanup if initialization fails. |
| */ |
| |
| static void destroy_queue(struct vector_queue *qi) |
| { |
| int i; |
| struct iovec *iov; |
| struct vector_private *vp = netdev_priv(qi->dev); |
| struct mmsghdr *mmsg_vector; |
| |
| if (qi == NULL) |
| return; |
| /* deallocate any skbuffs - we rely on any unused to be |
| * set to NULL. |
| */ |
| if (qi->skbuff_vector != NULL) { |
| for (i = 0; i < qi->max_depth; i++) { |
| if (*(qi->skbuff_vector + i) != NULL) |
| dev_kfree_skb_any(*(qi->skbuff_vector + i)); |
| } |
| kfree(qi->skbuff_vector); |
| } |
| /* deallocate matching IOV structures including header buffs */ |
| if (qi->mmsg_vector != NULL) { |
| mmsg_vector = qi->mmsg_vector; |
| for (i = 0; i < qi->max_depth; i++) { |
| iov = mmsg_vector->msg_hdr.msg_iov; |
| if (iov != NULL) { |
| if ((vp->header_size > 0) && |
| (iov->iov_base != NULL)) |
| kfree(iov->iov_base); |
| kfree(iov); |
| } |
| mmsg_vector++; |
| } |
| kfree(qi->mmsg_vector); |
| } |
| kfree(qi); |
| } |
| |
| /* |
| * Queue constructor. Create a queue with a given side. |
| */ |
| static struct vector_queue *create_queue( |
| struct vector_private *vp, |
| int max_size, |
| int header_size, |
| int num_extra_frags) |
| { |
| struct vector_queue *result; |
| int i; |
| struct iovec *iov; |
| struct mmsghdr *mmsg_vector; |
| |
| result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); |
| if (result == NULL) |
| return NULL; |
| result->max_depth = max_size; |
| result->dev = vp->dev; |
| result->mmsg_vector = kmalloc( |
| (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); |
| if (result->mmsg_vector == NULL) |
| goto out_mmsg_fail; |
| result->skbuff_vector = kmalloc( |
| (sizeof(void *) * max_size), GFP_KERNEL); |
| if (result->skbuff_vector == NULL) |
| goto out_skb_fail; |
| |
| /* further failures can be handled safely by destroy_queue*/ |
| |
| mmsg_vector = result->mmsg_vector; |
| for (i = 0; i < max_size; i++) { |
| /* Clear all pointers - we use non-NULL as marking on |
| * what to free on destruction |
| */ |
| *(result->skbuff_vector + i) = NULL; |
| mmsg_vector->msg_hdr.msg_iov = NULL; |
| mmsg_vector++; |
| } |
| mmsg_vector = result->mmsg_vector; |
| result->max_iov_frags = num_extra_frags; |
| for (i = 0; i < max_size; i++) { |
| if (vp->header_size > 0) |
| iov = kmalloc_array(3 + num_extra_frags, |
| sizeof(struct iovec), |
| GFP_KERNEL |
| ); |
| else |
| iov = kmalloc_array(2 + num_extra_frags, |
| sizeof(struct iovec), |
| GFP_KERNEL |
| ); |
| if (iov == NULL) |
| goto out_fail; |
| mmsg_vector->msg_hdr.msg_iov = iov; |
| mmsg_vector->msg_hdr.msg_iovlen = 1; |
| mmsg_vector->msg_hdr.msg_control = NULL; |
| mmsg_vector->msg_hdr.msg_controllen = 0; |
| mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; |
| mmsg_vector->msg_hdr.msg_name = NULL; |
| mmsg_vector->msg_hdr.msg_namelen = 0; |
| if (vp->header_size > 0) { |
| iov->iov_base = kmalloc(header_size, GFP_KERNEL); |
| if (iov->iov_base == NULL) |
| goto out_fail; |
| iov->iov_len = header_size; |
| mmsg_vector->msg_hdr.msg_iovlen = 2; |
| iov++; |
| } |
| iov->iov_base = NULL; |
| iov->iov_len = 0; |
| mmsg_vector++; |
| } |
| spin_lock_init(&result->head_lock); |
| spin_lock_init(&result->tail_lock); |
| result->queue_depth = 0; |
| result->head = 0; |
| result->tail = 0; |
| return result; |
| out_skb_fail: |
| kfree(result->mmsg_vector); |
| out_mmsg_fail: |
| kfree(result); |
| return NULL; |
| out_fail: |
| destroy_queue(result); |
| return NULL; |
| } |
| |
| /* |
| * We do not use the RX queue as a proper wraparound queue for now |
| * This is not necessary because the consumption via netif_rx() |
| * happens in-line. While we can try using the return code of |
| * netif_rx() for flow control there are no drivers doing this today. |
| * For this RX specific use we ignore the tail/head locks and |
| * just read into a prepared queue filled with skbuffs. |
| */ |
| |
| static struct sk_buff *prep_skb( |
| struct vector_private *vp, |
| struct user_msghdr *msg) |
| { |
| int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; |
| struct sk_buff *result; |
| int iov_index = 0, len; |
| struct iovec *iov = msg->msg_iov; |
| int err, nr_frags, frag; |
| skb_frag_t *skb_frag; |
| |
| if (vp->req_size <= linear) |
| len = linear; |
| else |
| len = vp->req_size; |
| result = alloc_skb_with_frags( |
| linear, |
| len - vp->max_packet, |
| 3, |
| &err, |
| GFP_ATOMIC |
| ); |
| if (vp->header_size > 0) |
| iov_index++; |
| if (result == NULL) { |
| iov[iov_index].iov_base = NULL; |
| iov[iov_index].iov_len = 0; |
| goto done; |
| } |
| skb_reserve(result, vp->headroom); |
| result->dev = vp->dev; |
| skb_put(result, vp->max_packet); |
| result->data_len = len - vp->max_packet; |
| result->len += len - vp->max_packet; |
| skb_reset_mac_header(result); |
| result->ip_summed = CHECKSUM_NONE; |
| iov[iov_index].iov_base = result->data; |
| iov[iov_index].iov_len = vp->max_packet; |
| iov_index++; |
| |
| nr_frags = skb_shinfo(result)->nr_frags; |
| for (frag = 0; frag < nr_frags; frag++) { |
| skb_frag = &skb_shinfo(result)->frags[frag]; |
| iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); |
| if (iov[iov_index].iov_base != NULL) |
| iov[iov_index].iov_len = skb_frag_size(skb_frag); |
| else |
| iov[iov_index].iov_len = 0; |
| iov_index++; |
| } |
| done: |
| msg->msg_iovlen = iov_index; |
| return result; |
| } |
| |
| |
| /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ |
| |
| static void prep_queue_for_rx(struct vector_queue *qi) |
| { |
| struct vector_private *vp = netdev_priv(qi->dev); |
| struct mmsghdr *mmsg_vector = qi->mmsg_vector; |
| void **skbuff_vector = qi->skbuff_vector; |
| int i; |
| |
| if (qi->queue_depth == 0) |
| return; |
| for (i = 0; i < qi->queue_depth; i++) { |
| /* it is OK if allocation fails - recvmmsg with NULL data in |
| * iov argument still performs an RX, just drops the packet |
| * This allows us stop faffing around with a "drop buffer" |
| */ |
| |
| *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); |
| skbuff_vector++; |
| mmsg_vector++; |
| } |
| qi->queue_depth = 0; |
| } |
| |
| static struct vector_device *find_device(int n) |
| { |
| struct vector_device *device; |
| struct list_head *ele; |
| |
| spin_lock(&vector_devices_lock); |
| list_for_each(ele, &vector_devices) { |
| device = list_entry(ele, struct vector_device, list); |
| if (device->unit == n) |
| goto out; |
| } |
| device = NULL; |
| out: |
| spin_unlock(&vector_devices_lock); |
| return device; |
| } |
| |
| static int vector_parse(char *str, int *index_out, char **str_out, |
| char **error_out) |
| { |
| int n, len, err; |
| char *start = str; |
| |
| len = strlen(str); |
| |
| while ((*str != ':') && (strlen(str) > 1)) |
| str++; |
| if (*str != ':') { |
| *error_out = "Expected ':' after device number"; |
| return -EINVAL; |
| } |
| *str = '\0'; |
| |
| err = kstrtouint(start, 0, &n); |
| if (err < 0) { |
| *error_out = "Bad device number"; |
| return err; |
| } |
| |
| str++; |
| if (find_device(n)) { |
| *error_out = "Device already configured"; |
| return -EINVAL; |
| } |
| |
| *index_out = n; |
| *str_out = str; |
| return 0; |
| } |
| |
| static int vector_config(char *str, char **error_out) |
| { |
| int err, n; |
| char *params; |
| struct arglist *parsed; |
| |
| err = vector_parse(str, &n, ¶ms, error_out); |
| if (err != 0) |
| return err; |
| |
| /* This string is broken up and the pieces used by the underlying |
| * driver. We should copy it to make sure things do not go wrong |
| * later. |
| */ |
| |
| params = kstrdup(params, GFP_KERNEL); |
| if (params == NULL) { |
| *error_out = "vector_config failed to strdup string"; |
| return -ENOMEM; |
| } |
| |
| parsed = uml_parse_vector_ifspec(params); |
| |
| if (parsed == NULL) { |
| *error_out = "vector_config failed to parse parameters"; |
| return -EINVAL; |
| } |
| |
| vector_eth_configure(n, parsed); |
| return 0; |
| } |
| |
| static int vector_id(char **str, int *start_out, int *end_out) |
| { |
| char *end; |
| int n; |
| |
| n = simple_strtoul(*str, &end, 0); |
| if ((*end != '\0') || (end == *str)) |
| return -1; |
| |
| *start_out = n; |
| *end_out = n; |
| *str = end; |
| return n; |
| } |
| |
| static int vector_remove(int n, char **error_out) |
| { |
| struct vector_device *vec_d; |
| struct net_device *dev; |
| struct vector_private *vp; |
| |
| vec_d = find_device(n); |
| if (vec_d == NULL) |
| return -ENODEV; |
| dev = vec_d->dev; |
| vp = netdev_priv(dev); |
| if (vp->fds != NULL) |
| return -EBUSY; |
| unregister_netdev(dev); |
| platform_device_unregister(&vec_d->pdev); |
| return 0; |
| } |
| |
| /* |
| * There is no shared per-transport initialization code, so |
| * we will just initialize each interface one by one and |
| * add them to a list |
| */ |
| |
| static struct platform_driver uml_net_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| }, |
| }; |
| |
| |
| static void vector_device_release(struct device *dev) |
| { |
| struct vector_device *device = dev_get_drvdata(dev); |
| struct net_device *netdev = device->dev; |
| |
| list_del(&device->list); |
| kfree(device); |
| free_netdev(netdev); |
| } |
| |
| /* Bog standard recv using recvmsg - not used normally unless the user |
| * explicitly specifies not to use recvmmsg vector RX. |
| */ |
| |
| static int vector_legacy_rx(struct vector_private *vp) |
| { |
| int pkt_len; |
| struct user_msghdr hdr; |
| struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ |
| int iovpos = 0; |
| struct sk_buff *skb; |
| int header_check; |
| |
| hdr.msg_name = NULL; |
| hdr.msg_namelen = 0; |
| hdr.msg_iov = (struct iovec *) &iov; |
| hdr.msg_control = NULL; |
| hdr.msg_controllen = 0; |
| hdr.msg_flags = 0; |
| |
| if (vp->header_size > 0) { |
| iov[0].iov_base = vp->header_rxbuffer; |
| iov[0].iov_len = vp->header_size; |
| } |
| |
| skb = prep_skb(vp, &hdr); |
| |
| if (skb == NULL) { |
| /* Read a packet into drop_buffer and don't do |
| * anything with it. |
| */ |
| iov[iovpos].iov_base = drop_buffer; |
| iov[iovpos].iov_len = DROP_BUFFER_SIZE; |
| hdr.msg_iovlen = 1; |
| vp->dev->stats.rx_dropped++; |
| } |
| |
| pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); |
| if (pkt_len < 0) { |
| vp->in_error = true; |
| return pkt_len; |
| } |
| |
| if (skb != NULL) { |
| if (pkt_len > vp->header_size) { |
| if (vp->header_size > 0) { |
| header_check = vp->verify_header( |
| vp->header_rxbuffer, skb, vp); |
| if (header_check < 0) { |
| dev_kfree_skb_irq(skb); |
| vp->dev->stats.rx_dropped++; |
| vp->estats.rx_encaps_errors++; |
| return 0; |
| } |
| if (header_check > 0) { |
| vp->estats.rx_csum_offload_good++; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| } |
| pskb_trim(skb, pkt_len - vp->rx_header_size); |
| skb->protocol = eth_type_trans(skb, skb->dev); |
| vp->dev->stats.rx_bytes += skb->len; |
| vp->dev->stats.rx_packets++; |
| netif_rx(skb); |
| } else { |
| dev_kfree_skb_irq(skb); |
| } |
| } |
| return pkt_len; |
| } |
| |
| /* |
| * Packet at a time TX which falls back to vector TX if the |
| * underlying transport is busy. |
| */ |
| |
| |
| |
| static int writev_tx(struct vector_private *vp, struct sk_buff *skb) |
| { |
| struct iovec iov[3 + MAX_IOV_SIZE]; |
| int iov_count, pkt_len = 0; |
| |
| iov[0].iov_base = vp->header_txbuffer; |
| iov_count = prep_msg(vp, skb, (struct iovec *) &iov); |
| |
| if (iov_count < 1) |
| goto drop; |
| |
| pkt_len = uml_vector_writev( |
| vp->fds->tx_fd, |
| (struct iovec *) &iov, |
| iov_count |
| ); |
| |
| if (pkt_len < 0) |
| goto drop; |
| |
| netif_trans_update(vp->dev); |
| netif_wake_queue(vp->dev); |
| |
| if (pkt_len > 0) { |
| vp->dev->stats.tx_bytes += skb->len; |
| vp->dev->stats.tx_packets++; |
| } else { |
| vp->dev->stats.tx_dropped++; |
| } |
| consume_skb(skb); |
| return pkt_len; |
| drop: |
| vp->dev->stats.tx_dropped++; |
| consume_skb(skb); |
| if (pkt_len < 0) |
| vp->in_error = true; |
| return pkt_len; |
| } |
| |
| /* |
| * Receive as many messages as we can in one call using the special |
| * mmsg vector matched to an skb vector which we prepared earlier. |
| */ |
| |
| static int vector_mmsg_rx(struct vector_private *vp) |
| { |
| int packet_count, i; |
| struct vector_queue *qi = vp->rx_queue; |
| struct sk_buff *skb; |
| struct mmsghdr *mmsg_vector = qi->mmsg_vector; |
| void **skbuff_vector = qi->skbuff_vector; |
| int header_check; |
| |
| /* Refresh the vector and make sure it is with new skbs and the |
| * iovs are updated to point to them. |
| */ |
| |
| prep_queue_for_rx(qi); |
| |
| /* Fire the Lazy Gun - get as many packets as we can in one go. */ |
| |
| packet_count = uml_vector_recvmmsg( |
| vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); |
| |
| if (packet_count < 0) |
| vp->in_error = true; |
| |
| if (packet_count <= 0) |
| return packet_count; |
| |
| /* We treat packet processing as enqueue, buffer refresh as dequeue |
| * The queue_depth tells us how many buffers have been used and how |
| * many do we need to prep the next time prep_queue_for_rx() is called. |
| */ |
| |
| qi->queue_depth = packet_count; |
| |
| for (i = 0; i < packet_count; i++) { |
| skb = (*skbuff_vector); |
| if (mmsg_vector->msg_len > vp->header_size) { |
| if (vp->header_size > 0) { |
| header_check = vp->verify_header( |
| mmsg_vector->msg_hdr.msg_iov->iov_base, |
| skb, |
| vp |
| ); |
| if (header_check < 0) { |
| /* Overlay header failed to verify - discard. |
| * We can actually keep this skb and reuse it, |
| * but that will make the prep logic too |
| * complex. |
| */ |
| dev_kfree_skb_irq(skb); |
| vp->estats.rx_encaps_errors++; |
| continue; |
| } |
| if (header_check > 0) { |
| vp->estats.rx_csum_offload_good++; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| } |
| pskb_trim(skb, |
| mmsg_vector->msg_len - vp->rx_header_size); |
| skb->protocol = eth_type_trans(skb, skb->dev); |
| /* |
| * We do not need to lock on updating stats here |
| * The interrupt loop is non-reentrant. |
| */ |
| vp->dev->stats.rx_bytes += skb->len; |
| vp->dev->stats.rx_packets++; |
| netif_rx(skb); |
| } else { |
| /* Overlay header too short to do anything - discard. |
| * We can actually keep this skb and reuse it, |
| * but that will make the prep logic too complex. |
| */ |
| if (skb != NULL) |
| dev_kfree_skb_irq(skb); |
| } |
| (*skbuff_vector) = NULL; |
| /* Move to the next buffer element */ |
| mmsg_vector++; |
| skbuff_vector++; |
| } |
| if (packet_count > 0) { |
| if (vp->estats.rx_queue_max < packet_count) |
| vp->estats.rx_queue_max = packet_count; |
| vp->estats.rx_queue_running_average = |
| (vp->estats.rx_queue_running_average + packet_count) >> 1; |
| } |
| return packet_count; |
| } |
| |
| static void vector_rx(struct vector_private *vp) |
| { |
| int err; |
| int iter = 0; |
| |
| if ((vp->options & VECTOR_RX) > 0) |
| while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) |
| iter++; |
| else |
| while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) |
| iter++; |
| if ((err != 0) && net_ratelimit()) |
| netdev_err(vp->dev, "vector_rx: error(%d)\n", err); |
| if (iter == MAX_ITERATIONS) |
| netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n"); |
| } |
| |
| static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct vector_private *vp = netdev_priv(dev); |
| int queue_depth = 0; |
| |
| if (vp->in_error) { |
| deactivate_fd(vp->fds->rx_fd, vp->rx_irq); |
| if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0)) |
| deactivate_fd(vp->fds->tx_fd, vp->tx_irq); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if ((vp->options & VECTOR_TX) == 0) { |
| writev_tx(vp, skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* We do BQL only in the vector path, no point doing it in |
| * packet at a time mode as there is no device queue |
| */ |
| |
| netdev_sent_queue(vp->dev, skb->len); |
| queue_depth = vector_enqueue(vp->tx_queue, skb); |
| |
| /* if the device queue is full, stop the upper layers and |
| * flush it. |
| */ |
| |
| if (queue_depth >= vp->tx_queue->max_depth - 1) { |
| vp->estats.tx_kicks++; |
| netif_stop_queue(dev); |
| vector_send(vp->tx_queue); |
| return NETDEV_TX_OK; |
| } |
| if (netdev_xmit_more()) { |
| mod_timer(&vp->tl, vp->coalesce); |
| return NETDEV_TX_OK; |
| } |
| if (skb->len < TX_SMALL_PACKET) { |
| vp->estats.tx_kicks++; |
| vector_send(vp->tx_queue); |
| } else |
| tasklet_schedule(&vp->tx_poll); |
| return NETDEV_TX_OK; |
| } |
| |
| static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct vector_private *vp = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return IRQ_NONE; |
| vector_rx(vp); |
| return IRQ_HANDLED; |
| |
| } |
| |
| static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct vector_private *vp = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return IRQ_NONE; |
| /* We need to pay attention to it only if we got |
| * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise |
| * we ignore it. In the future, it may be worth |
| * it to improve the IRQ controller a bit to make |
| * tweaking the IRQ mask less costly |
| */ |
| |
| if (vp->in_write_poll) |
| tasklet_schedule(&vp->tx_poll); |
| return IRQ_HANDLED; |
| |
| } |
| |
| static int irq_rr; |
| |
| static int vector_net_close(struct net_device *dev) |
| { |
| struct vector_private *vp = netdev_priv(dev); |
| unsigned long flags; |
| |
| netif_stop_queue(dev); |
| del_timer(&vp->tl); |
| |
| if (vp->fds == NULL) |
| return 0; |
| |
| /* Disable and free all IRQS */ |
| if (vp->rx_irq > 0) { |
| um_free_irq(vp->rx_irq, dev); |
| vp->rx_irq = 0; |
| } |
| if (vp->tx_irq > 0) { |
| um_free_irq(vp->tx_irq, dev); |
| vp->tx_irq = 0; |
| } |
| tasklet_kill(&vp->tx_poll); |
| if (vp->fds->rx_fd > 0) { |
| if (vp->bpf) |
| uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); |
| os_close_file(vp->fds->rx_fd); |
| vp->fds->rx_fd = -1; |
| } |
| if (vp->fds->tx_fd > 0) { |
| os_close_file(vp->fds->tx_fd); |
| vp->fds->tx_fd = -1; |
| } |
| if (vp->bpf != NULL) |
| kfree(vp->bpf->filter); |
| kfree(vp->bpf); |
| vp->bpf = NULL; |
| kfree(vp->fds->remote_addr); |
| kfree(vp->transport_data); |
| kfree(vp->header_rxbuffer); |
| kfree(vp->header_txbuffer); |
| if (vp->rx_queue != NULL) |
| destroy_queue(vp->rx_queue); |
| if (vp->tx_queue != NULL) |
| destroy_queue(vp->tx_queue); |
| kfree(vp->fds); |
| vp->fds = NULL; |
| spin_lock_irqsave(&vp->lock, flags); |
| vp->opened = false; |
| vp->in_error = false; |
| spin_unlock_irqrestore(&vp->lock, flags); |
| return 0; |
| } |
| |
| /* TX tasklet */ |
| |
| static void vector_tx_poll(unsigned long data) |
| { |
| struct vector_private *vp = (struct vector_private *)data; |
| |
| vp->estats.tx_kicks++; |
| vector_send(vp->tx_queue); |
| } |
| static void vector_reset_tx(struct work_struct *work) |
| { |
| struct vector_private *vp = |
| container_of(work, struct vector_private, reset_tx); |
| netdev_reset_queue(vp->dev); |
| netif_start_queue(vp->dev); |
| netif_wake_queue(vp->dev); |
| } |
| |
| static int vector_net_open(struct net_device *dev) |
| { |
| struct vector_private *vp = netdev_priv(dev); |
| unsigned long flags; |
| int err = -EINVAL; |
| struct vector_device *vdevice; |
| |
| spin_lock_irqsave(&vp->lock, flags); |
| if (vp->opened) { |
| spin_unlock_irqrestore(&vp->lock, flags); |
| return -ENXIO; |
| } |
| vp->opened = true; |
| spin_unlock_irqrestore(&vp->lock, flags); |
| |
| vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed)); |
| |
| vp->fds = uml_vector_user_open(vp->unit, vp->parsed); |
| |
| if (vp->fds == NULL) |
| goto out_close; |
| |
| if (build_transport_data(vp) < 0) |
| goto out_close; |
| |
| if ((vp->options & VECTOR_RX) > 0) { |
| vp->rx_queue = create_queue( |
| vp, |
| get_depth(vp->parsed), |
| vp->rx_header_size, |
| MAX_IOV_SIZE |
| ); |
| vp->rx_queue->queue_depth = get_depth(vp->parsed); |
| } else { |
| vp->header_rxbuffer = kmalloc( |
| vp->rx_header_size, |
| GFP_KERNEL |
| ); |
| if (vp->header_rxbuffer == NULL) |
| goto out_close; |
| } |
| if ((vp->options & VECTOR_TX) > 0) { |
| vp->tx_queue = create_queue( |
| vp, |
| get_depth(vp->parsed), |
| vp->header_size, |
| MAX_IOV_SIZE |
| ); |
| } else { |
| vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); |
| if (vp->header_txbuffer == NULL) |
| goto out_close; |
| } |
| |
| /* READ IRQ */ |
| err = um_request_irq( |
| irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, |
| IRQ_READ, vector_rx_interrupt, |
| IRQF_SHARED, dev->name, dev); |
| if (err != 0) { |
| netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); |
| err = -ENETUNREACH; |
| goto out_close; |
| } |
| vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; |
| dev->irq = irq_rr + VECTOR_BASE_IRQ; |
| irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; |
| |
| /* WRITE IRQ - we need it only if we have vector TX */ |
| if ((vp->options & VECTOR_TX) > 0) { |
| err = um_request_irq( |
| irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, |
| IRQ_WRITE, vector_tx_interrupt, |
| IRQF_SHARED, dev->name, dev); |
| if (err != 0) { |
| netdev_err(dev, |
| "vector_open: failed to get tx irq(%d)\n", err); |
| err = -ENETUNREACH; |
| goto out_close; |
| } |
| vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; |
| irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; |
| } |
| |
| if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { |
| if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) |
| vp->options |= VECTOR_BPF; |
| } |
| if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL)) |
| vp->bpf = uml_vector_default_bpf(dev->dev_addr); |
| |
| if (vp->bpf != NULL) |
| uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); |
| |
| netif_start_queue(dev); |
| |
| /* clear buffer - it can happen that the host side of the interface |
| * is full when we get here. In this case, new data is never queued, |
| * SIGIOs never arrive, and the net never works. |
| */ |
| |
| vector_rx(vp); |
| |
| vector_reset_stats(vp); |
| vdevice = find_device(vp->unit); |
| vdevice->opened = 1; |
| |
| if ((vp->options & VECTOR_TX) != 0) |
| add_timer(&vp->tl); |
| return 0; |
| out_close: |
| vector_net_close(dev); |
| return err; |
| } |
| |
| |
| static void vector_net_set_multicast_list(struct net_device *dev) |
| { |
| /* TODO: - we can do some BPF games here */ |
| return; |
| } |
| |
| static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct vector_private *vp = netdev_priv(dev); |
| |
| vp->estats.tx_timeout_count++; |
| netif_trans_update(dev); |
| schedule_work(&vp->reset_tx); |
| } |
| |
| static netdev_features_t vector_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); |
| return features; |
| } |
| |
| static int vector_set_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct vector_private *vp = netdev_priv(dev); |
| /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is |
| * no way to negotiate it on raw sockets, so we can change |
| * only our side. |
| */ |
| if (features & NETIF_F_GRO) |
| /* All new frame buffers will be GRO-sized */ |
| vp->req_size = 65536; |
| else |
| /* All new frame buffers will be normal sized */ |
| vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void vector_net_poll_controller(struct net_device *dev) |
| { |
| disable_irq(dev->irq); |
| vector_rx_interrupt(dev->irq, dev); |
| enable_irq(dev->irq); |
| } |
| #endif |
| |
| static void vector_net_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); |
| } |
| |
| static int vector_net_load_bpf_flash(struct net_device *dev, |
| struct ethtool_flash *efl) |
| { |
| struct vector_private *vp = netdev_priv(dev); |
| struct vector_device *vdevice; |
| const struct firmware *fw; |
| int result = 0; |
| |
| if (!(vp->options & VECTOR_BPF_FLASH)) { |
| netdev_err(dev, "loading firmware not permitted: %s\n", efl->data); |
| return -1; |
| } |
| |
| spin_lock(&vp->lock); |
| |
| if (vp->bpf != NULL) { |
| if (vp->opened) |
| uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); |
| kfree(vp->bpf->filter); |
| vp->bpf->filter = NULL; |
| } else { |
| vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_KERNEL); |
| if (vp->bpf == NULL) { |
| netdev_err(dev, "failed to allocate memory for firmware\n"); |
| goto flash_fail; |
| } |
| } |
| |
| vdevice = find_device(vp->unit); |
| |
| if (request_firmware(&fw, efl->data, &vdevice->pdev.dev)) |
| goto flash_fail; |
| |
| vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_KERNEL); |
| if (!vp->bpf->filter) |
| goto free_buffer; |
| |
| vp->bpf->len = fw->size / sizeof(struct sock_filter); |
| release_firmware(fw); |
| |
| if (vp->opened) |
| result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); |
| |
| spin_unlock(&vp->lock); |
| |
| return result; |
| |
| free_buffer: |
| release_firmware(fw); |
| |
| flash_fail: |
| spin_unlock(&vp->lock); |
| if (vp->bpf != NULL) |
| kfree(vp->bpf->filter); |
| kfree(vp->bpf); |
| vp->bpf = NULL; |
| return -1; |
| } |
| |
| static void vector_get_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct vector_private *vp = netdev_priv(netdev); |
| |
| ring->rx_max_pending = vp->rx_queue->max_depth; |
| ring->tx_max_pending = vp->tx_queue->max_depth; |
| ring->rx_pending = vp->rx_queue->max_depth; |
| ring->tx_pending = vp->tx_queue->max_depth; |
| } |
| |
| static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) |
| { |
| switch (stringset) { |
| case ETH_SS_TEST: |
| *buf = '\0'; |
| break; |
| case ETH_SS_STATS: |
| memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); |
| break; |
| default: |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| static int vector_get_sset_count(struct net_device *dev, int sset) |
| { |
| switch (sset) { |
| case ETH_SS_TEST: |
| return 0; |
| case ETH_SS_STATS: |
| return VECTOR_NUM_STATS; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void vector_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *estats, |
| u64 *tmp_stats) |
| { |
| struct vector_private *vp = netdev_priv(dev); |
| |
| memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); |
| } |
| |
| static int vector_get_coalesce(struct net_device *netdev, |
| struct ethtool_coalesce *ec) |
| { |
| struct vector_private *vp = netdev_priv(netdev); |
| |
| ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; |
| return 0; |
| } |
| |
| static int vector_set_coalesce(struct net_device *netdev, |
| struct ethtool_coalesce *ec) |
| { |
| struct vector_private *vp = netdev_priv(netdev); |
| |
| vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; |
| if (vp->coalesce == 0) |
| vp->coalesce = 1; |
| return 0; |
| } |
| |
| static const struct ethtool_ops vector_net_ethtool_ops = { |
| .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS, |
| .get_drvinfo = vector_net_get_drvinfo, |
| .get_link = ethtool_op_get_link, |
| .get_ts_info = ethtool_op_get_ts_info, |
| .get_ringparam = vector_get_ringparam, |
| .get_strings = vector_get_strings, |
| .get_sset_count = vector_get_sset_count, |
| .get_ethtool_stats = vector_get_ethtool_stats, |
| .get_coalesce = vector_get_coalesce, |
| .set_coalesce = vector_set_coalesce, |
| .flash_device = vector_net_load_bpf_flash, |
| }; |
| |
| |
| static const struct net_device_ops vector_netdev_ops = { |
| .ndo_open = vector_net_open, |
| .ndo_stop = vector_net_close, |
| .ndo_start_xmit = vector_net_start_xmit, |
| .ndo_set_rx_mode = vector_net_set_multicast_list, |
| .ndo_tx_timeout = vector_net_tx_timeout, |
| .ndo_set_mac_address = eth_mac_addr, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_fix_features = vector_fix_features, |
| .ndo_set_features = vector_set_features, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = vector_net_poll_controller, |
| #endif |
| }; |
| |
| |
| static void vector_timer_expire(struct timer_list *t) |
| { |
| struct vector_private *vp = from_timer(vp, t, tl); |
| |
| vp->estats.tx_kicks++; |
| vector_send(vp->tx_queue); |
| } |
| |
| static void vector_eth_configure( |
| int n, |
| struct arglist *def |
| ) |
| { |
| struct vector_device *device; |
| struct net_device *dev; |
| struct vector_private *vp; |
| int err; |
| |
| device = kzalloc(sizeof(*device), GFP_KERNEL); |
| if (device == NULL) { |
| printk(KERN_ERR "eth_configure failed to allocate struct " |
| "vector_device\n"); |
| return; |
| } |
| dev = alloc_etherdev(sizeof(struct vector_private)); |
| if (dev == NULL) { |
| printk(KERN_ERR "eth_configure: failed to allocate struct " |
| "net_device for vec%d\n", n); |
| goto out_free_device; |
| } |
| |
| dev->mtu = get_mtu(def); |
| |
| INIT_LIST_HEAD(&device->list); |
| device->unit = n; |
| |
| /* If this name ends up conflicting with an existing registered |
| * netdevice, that is OK, register_netdev{,ice}() will notice this |
| * and fail. |
| */ |
| snprintf(dev->name, sizeof(dev->name), "vec%d", n); |
| uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); |
| vp = netdev_priv(dev); |
| |
| /* sysfs register */ |
| if (!driver_registered) { |
| platform_driver_register(¨_net_driver); |
| driver_registered = 1; |
| } |
| device->pdev.id = n; |
| device->pdev.name = DRIVER_NAME; |
| device->pdev.dev.release = vector_device_release; |
| dev_set_drvdata(&device->pdev.dev, device); |
| if (platform_device_register(&device->pdev)) |
| goto out_free_netdev; |
| SET_NETDEV_DEV(dev, &device->pdev.dev); |
| |
| device->dev = dev; |
| |
| *vp = ((struct vector_private) |
| { |
| .list = LIST_HEAD_INIT(vp->list), |
| .dev = dev, |
| .unit = n, |
| .options = get_transport_options(def), |
| .rx_irq = 0, |
| .tx_irq = 0, |
| .parsed = def, |
| .max_packet = get_mtu(def) + ETH_HEADER_OTHER, |
| /* TODO - we need to calculate headroom so that ip header |
| * is 16 byte aligned all the time |
| */ |
| .headroom = get_headroom(def), |
| .form_header = NULL, |
| .verify_header = NULL, |
| .header_rxbuffer = NULL, |
| .header_txbuffer = NULL, |
| .header_size = 0, |
| .rx_header_size = 0, |
| .rexmit_scheduled = false, |
| .opened = false, |
| .transport_data = NULL, |
| .in_write_poll = false, |
| .coalesce = 2, |
| .req_size = get_req_size(def), |
| .in_error = false, |
| .bpf = NULL |
| }); |
| |
| dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); |
| tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp); |
| INIT_WORK(&vp->reset_tx, vector_reset_tx); |
| |
| timer_setup(&vp->tl, vector_timer_expire, 0); |
| spin_lock_init(&vp->lock); |
| |
| /* FIXME */ |
| dev->netdev_ops = &vector_netdev_ops; |
| dev->ethtool_ops = &vector_net_ethtool_ops; |
| dev->watchdog_timeo = (HZ >> 1); |
| /* primary IRQ - fixme */ |
| dev->irq = 0; /* we will adjust this once opened */ |
| |
| rtnl_lock(); |
| err = register_netdevice(dev); |
| rtnl_unlock(); |
| if (err) |
| goto out_undo_user_init; |
| |
| spin_lock(&vector_devices_lock); |
| list_add(&device->list, &vector_devices); |
| spin_unlock(&vector_devices_lock); |
| |
| return; |
| |
| out_undo_user_init: |
| return; |
| out_free_netdev: |
| free_netdev(dev); |
| out_free_device: |
| kfree(device); |
| } |
| |
| |
| |
| |
| /* |
| * Invoked late in the init |
| */ |
| |
| static int __init vector_init(void) |
| { |
| struct list_head *ele; |
| struct vector_cmd_line_arg *def; |
| struct arglist *parsed; |
| |
| list_for_each(ele, &vec_cmd_line) { |
| def = list_entry(ele, struct vector_cmd_line_arg, list); |
| parsed = uml_parse_vector_ifspec(def->arguments); |
| if (parsed != NULL) |
| vector_eth_configure(def->unit, parsed); |
| } |
| return 0; |
| } |
| |
| |
| /* Invoked at initial argument parsing, only stores |
| * arguments until a proper vector_init is called |
| * later |
| */ |
| |
| static int __init vector_setup(char *str) |
| { |
| char *error; |
| int n, err; |
| struct vector_cmd_line_arg *new; |
| |
| err = vector_parse(str, &n, &str, &error); |
| if (err) { |
| printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", |
| str, error); |
| return 1; |
| } |
| new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES); |
| if (!new) |
| panic("%s: Failed to allocate %zu bytes\n", __func__, |
| sizeof(*new)); |
| INIT_LIST_HEAD(&new->list); |
| new->unit = n; |
| new->arguments = str; |
| list_add_tail(&new->list, &vec_cmd_line); |
| return 1; |
| } |
| |
| __setup("vec", vector_setup); |
| __uml_help(vector_setup, |
| "vec[0-9]+:<option>=<value>,<option>=<value>\n" |
| " Configure a vector io network device.\n\n" |
| ); |
| |
| late_initcall(vector_init); |
| |
| static struct mc_device vector_mc = { |
| .list = LIST_HEAD_INIT(vector_mc.list), |
| .name = "vec", |
| .config = vector_config, |
| .get_config = NULL, |
| .id = vector_id, |
| .remove = vector_remove, |
| }; |
| |
| #ifdef CONFIG_INET |
| static int vector_inetaddr_event( |
| struct notifier_block *this, |
| unsigned long event, |
| void *ptr) |
| { |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block vector_inetaddr_notifier = { |
| .notifier_call = vector_inetaddr_event, |
| }; |
| |
| static void inet_register(void) |
| { |
| register_inetaddr_notifier(&vector_inetaddr_notifier); |
| } |
| #else |
| static inline void inet_register(void) |
| { |
| } |
| #endif |
| |
| static int vector_net_init(void) |
| { |
| mconsole_register_dev(&vector_mc); |
| inet_register(); |
| return 0; |
| } |
| |
| __initcall(vector_net_init); |
| |
| |
| |