blob: 5dea569d63ed84568b7b7a3f302fdc678dff92fc [file] [log] [blame]
/* Copyright (c) 2014 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/bcma/bcma.h>
#include <linux/sched.h>
#include <asm/unaligned.h>
#include <soc.h>
#include <chipcommon.h>
#include <brcmu_utils.h>
#include <brcmu_wifi.h>
#include <brcm_hw_ids.h>
#include "debug.h"
#include "bus.h"
#include "commonring.h"
#include "msgbuf.h"
#include "pcie.h"
#include "firmware.h"
#include "chip.h"
#include "core.h"
#include "common.h"
enum brcmf_pcie_state {
BRCMFMAC_PCIE_STATE_DOWN,
BRCMFMAC_PCIE_STATE_UP
};
BRCMF_FW_DEF(43602, "brcmfmac43602-pcie");
BRCMF_FW_DEF(4350, "brcmfmac4350-pcie");
BRCMF_FW_DEF(4350C, "brcmfmac4350c2-pcie");
BRCMF_FW_DEF(4356, "brcmfmac4356-pcie");
BRCMF_FW_DEF(43570, "brcmfmac43570-pcie");
BRCMF_FW_DEF(4358, "brcmfmac4358-pcie");
BRCMF_FW_DEF(4359, "brcmfmac4359-pcie");
BRCMF_FW_DEF(4365B, "brcmfmac4365b-pcie");
BRCMF_FW_DEF(4365C, "brcmfmac4365c-pcie");
BRCMF_FW_DEF(4366B, "brcmfmac4366b-pcie");
BRCMF_FW_DEF(4366C, "brcmfmac4366c-pcie");
BRCMF_FW_DEF(4371, "brcmfmac4371-pcie");
static const struct brcmf_firmware_mapping brcmf_pcie_fwnames[] = {
BRCMF_FW_ENTRY(BRCM_CC_43602_CHIP_ID, 0xFFFFFFFF, 43602),
BRCMF_FW_ENTRY(BRCM_CC_43465_CHIP_ID, 0xFFFFFFF0, 4366C),
BRCMF_FW_ENTRY(BRCM_CC_4350_CHIP_ID, 0x000000FF, 4350C),
BRCMF_FW_ENTRY(BRCM_CC_4350_CHIP_ID, 0xFFFFFF00, 4350),
BRCMF_FW_ENTRY(BRCM_CC_43525_CHIP_ID, 0xFFFFFFF0, 4365C),
BRCMF_FW_ENTRY(BRCM_CC_4356_CHIP_ID, 0xFFFFFFFF, 4356),
BRCMF_FW_ENTRY(BRCM_CC_43567_CHIP_ID, 0xFFFFFFFF, 43570),
BRCMF_FW_ENTRY(BRCM_CC_43569_CHIP_ID, 0xFFFFFFFF, 43570),
BRCMF_FW_ENTRY(BRCM_CC_43570_CHIP_ID, 0xFFFFFFFF, 43570),
BRCMF_FW_ENTRY(BRCM_CC_4358_CHIP_ID, 0xFFFFFFFF, 4358),
BRCMF_FW_ENTRY(BRCM_CC_4359_CHIP_ID, 0xFFFFFFFF, 4359),
BRCMF_FW_ENTRY(BRCM_CC_4365_CHIP_ID, 0x0000000F, 4365B),
BRCMF_FW_ENTRY(BRCM_CC_4365_CHIP_ID, 0xFFFFFFF0, 4365C),
BRCMF_FW_ENTRY(BRCM_CC_4366_CHIP_ID, 0x0000000F, 4366B),
BRCMF_FW_ENTRY(BRCM_CC_4366_CHIP_ID, 0xFFFFFFF0, 4366C),
BRCMF_FW_ENTRY(BRCM_CC_43664_CHIP_ID, 0xFFFFFFF0, 4366C),
BRCMF_FW_ENTRY(BRCM_CC_4371_CHIP_ID, 0xFFFFFFFF, 4371),
};
#define BRCMF_PCIE_FW_UP_TIMEOUT 2000 /* msec */
#define BRCMF_PCIE_REG_MAP_SIZE (32 * 1024)
/* backplane addres space accessed by BAR0 */
#define BRCMF_PCIE_BAR0_WINDOW 0x80
#define BRCMF_PCIE_BAR0_REG_SIZE 0x1000
#define BRCMF_PCIE_BAR0_WRAPPERBASE 0x70
#define BRCMF_PCIE_BAR0_WRAPBASE_DMP_OFFSET 0x1000
#define BRCMF_PCIE_BARO_PCIE_ENUM_OFFSET 0x2000
#define BRCMF_PCIE_ARMCR4REG_BANKIDX 0x40
#define BRCMF_PCIE_ARMCR4REG_BANKPDA 0x4C
#define BRCMF_PCIE_REG_INTSTATUS 0x90
#define BRCMF_PCIE_REG_INTMASK 0x94
#define BRCMF_PCIE_REG_SBMBX 0x98
#define BRCMF_PCIE_REG_LINK_STATUS_CTRL 0xBC
#define BRCMF_PCIE_PCIE2REG_INTMASK 0x24
#define BRCMF_PCIE_PCIE2REG_MAILBOXINT 0x48
#define BRCMF_PCIE_PCIE2REG_MAILBOXMASK 0x4C
#define BRCMF_PCIE_PCIE2REG_CONFIGADDR 0x120
#define BRCMF_PCIE_PCIE2REG_CONFIGDATA 0x124
#define BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_0 0x140
#define BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_1 0x144
#define BRCMF_PCIE2_INTA 0x01
#define BRCMF_PCIE2_INTB 0x02
#define BRCMF_PCIE_INT_0 0x01
#define BRCMF_PCIE_INT_1 0x02
#define BRCMF_PCIE_INT_DEF (BRCMF_PCIE_INT_0 | \
BRCMF_PCIE_INT_1)
#define BRCMF_PCIE_MB_INT_FN0_0 0x0100
#define BRCMF_PCIE_MB_INT_FN0_1 0x0200
#define BRCMF_PCIE_MB_INT_D2H0_DB0 0x10000
#define BRCMF_PCIE_MB_INT_D2H0_DB1 0x20000
#define BRCMF_PCIE_MB_INT_D2H1_DB0 0x40000
#define BRCMF_PCIE_MB_INT_D2H1_DB1 0x80000
#define BRCMF_PCIE_MB_INT_D2H2_DB0 0x100000
#define BRCMF_PCIE_MB_INT_D2H2_DB1 0x200000
#define BRCMF_PCIE_MB_INT_D2H3_DB0 0x400000
#define BRCMF_PCIE_MB_INT_D2H3_DB1 0x800000
#define BRCMF_PCIE_MB_INT_D2H_DB (BRCMF_PCIE_MB_INT_D2H0_DB0 | \
BRCMF_PCIE_MB_INT_D2H0_DB1 | \
BRCMF_PCIE_MB_INT_D2H1_DB0 | \
BRCMF_PCIE_MB_INT_D2H1_DB1 | \
BRCMF_PCIE_MB_INT_D2H2_DB0 | \
BRCMF_PCIE_MB_INT_D2H2_DB1 | \
BRCMF_PCIE_MB_INT_D2H3_DB0 | \
BRCMF_PCIE_MB_INT_D2H3_DB1)
#define BRCMF_PCIE_SHARED_VERSION_7 7
#define BRCMF_PCIE_MIN_SHARED_VERSION 5
#define BRCMF_PCIE_MAX_SHARED_VERSION BRCMF_PCIE_SHARED_VERSION_7
#define BRCMF_PCIE_SHARED_VERSION_MASK 0x00FF
#define BRCMF_PCIE_SHARED_DMA_INDEX 0x10000
#define BRCMF_PCIE_SHARED_DMA_2B_IDX 0x100000
#define BRCMF_PCIE_SHARED_HOSTRDY_DB1 0x10000000
#define BRCMF_PCIE_FLAGS_HTOD_SPLIT 0x4000
#define BRCMF_PCIE_FLAGS_DTOH_SPLIT 0x8000
#define BRCMF_SHARED_MAX_RXBUFPOST_OFFSET 34
#define BRCMF_SHARED_RING_BASE_OFFSET 52
#define BRCMF_SHARED_RX_DATAOFFSET_OFFSET 36
#define BRCMF_SHARED_CONSOLE_ADDR_OFFSET 20
#define BRCMF_SHARED_HTOD_MB_DATA_ADDR_OFFSET 40
#define BRCMF_SHARED_DTOH_MB_DATA_ADDR_OFFSET 44
#define BRCMF_SHARED_RING_INFO_ADDR_OFFSET 48
#define BRCMF_SHARED_DMA_SCRATCH_LEN_OFFSET 52
#define BRCMF_SHARED_DMA_SCRATCH_ADDR_OFFSET 56
#define BRCMF_SHARED_DMA_RINGUPD_LEN_OFFSET 64
#define BRCMF_SHARED_DMA_RINGUPD_ADDR_OFFSET 68
#define BRCMF_RING_H2D_RING_COUNT_OFFSET 0
#define BRCMF_RING_D2H_RING_COUNT_OFFSET 1
#define BRCMF_RING_H2D_RING_MEM_OFFSET 4
#define BRCMF_RING_H2D_RING_STATE_OFFSET 8
#define BRCMF_RING_MEM_BASE_ADDR_OFFSET 8
#define BRCMF_RING_MAX_ITEM_OFFSET 4
#define BRCMF_RING_LEN_ITEMS_OFFSET 6
#define BRCMF_RING_MEM_SZ 16
#define BRCMF_RING_STATE_SZ 8
#define BRCMF_DEF_MAX_RXBUFPOST 255
#define BRCMF_CONSOLE_BUFADDR_OFFSET 8
#define BRCMF_CONSOLE_BUFSIZE_OFFSET 12
#define BRCMF_CONSOLE_WRITEIDX_OFFSET 16
#define BRCMF_DMA_D2H_SCRATCH_BUF_LEN 8
#define BRCMF_DMA_D2H_RINGUPD_BUF_LEN 1024
#define BRCMF_D2H_DEV_D3_ACK 0x00000001
#define BRCMF_D2H_DEV_DS_ENTER_REQ 0x00000002
#define BRCMF_D2H_DEV_DS_EXIT_NOTE 0x00000004
#define BRCMF_D2H_DEV_FWHALT 0x10000000
#define BRCMF_H2D_HOST_D3_INFORM 0x00000001
#define BRCMF_H2D_HOST_DS_ACK 0x00000002
#define BRCMF_H2D_HOST_D0_INFORM_IN_USE 0x00000008
#define BRCMF_H2D_HOST_D0_INFORM 0x00000010
#define BRCMF_PCIE_MBDATA_TIMEOUT msecs_to_jiffies(2000)
#define BRCMF_PCIE_CFGREG_STATUS_CMD 0x4
#define BRCMF_PCIE_CFGREG_PM_CSR 0x4C
#define BRCMF_PCIE_CFGREG_MSI_CAP 0x58
#define BRCMF_PCIE_CFGREG_MSI_ADDR_L 0x5C
#define BRCMF_PCIE_CFGREG_MSI_ADDR_H 0x60
#define BRCMF_PCIE_CFGREG_MSI_DATA 0x64
#define BRCMF_PCIE_CFGREG_LINK_STATUS_CTRL 0xBC
#define BRCMF_PCIE_CFGREG_LINK_STATUS_CTRL2 0xDC
#define BRCMF_PCIE_CFGREG_RBAR_CTRL 0x228
#define BRCMF_PCIE_CFGREG_PML1_SUB_CTRL1 0x248
#define BRCMF_PCIE_CFGREG_REG_BAR2_CONFIG 0x4E0
#define BRCMF_PCIE_CFGREG_REG_BAR3_CONFIG 0x4F4
#define BRCMF_PCIE_LINK_STATUS_CTRL_ASPM_ENAB 3
/* Magic number at a magic location to find RAM size */
#define BRCMF_RAMSIZE_MAGIC 0x534d4152 /* SMAR */
#define BRCMF_RAMSIZE_OFFSET 0x6c
struct brcmf_pcie_console {
u32 base_addr;
u32 buf_addr;
u32 bufsize;
u32 read_idx;
u8 log_str[256];
u8 log_idx;
};
struct brcmf_pcie_shared_info {
u32 tcm_base_address;
u32 flags;
struct brcmf_pcie_ringbuf *commonrings[BRCMF_NROF_COMMON_MSGRINGS];
struct brcmf_pcie_ringbuf *flowrings;
u16 max_rxbufpost;
u16 max_flowrings;
u16 max_submissionrings;
u16 max_completionrings;
u32 rx_dataoffset;
u32 htod_mb_data_addr;
u32 dtoh_mb_data_addr;
u32 ring_info_addr;
struct brcmf_pcie_console console;
void *scratch;
dma_addr_t scratch_dmahandle;
void *ringupd;
dma_addr_t ringupd_dmahandle;
u8 version;
};
struct brcmf_pcie_core_info {
u32 base;
u32 wrapbase;
};
struct brcmf_pciedev_info {
enum brcmf_pcie_state state;
bool in_irq;
struct pci_dev *pdev;
char fw_name[BRCMF_FW_NAME_LEN];
char nvram_name[BRCMF_FW_NAME_LEN];
void __iomem *regs;
void __iomem *tcm;
u32 ram_base;
u32 ram_size;
struct brcmf_chip *ci;
u32 coreid;
struct brcmf_pcie_shared_info shared;
wait_queue_head_t mbdata_resp_wait;
bool mbdata_completed;
bool irq_allocated;
bool wowl_enabled;
u8 dma_idx_sz;
void *idxbuf;
u32 idxbuf_sz;
dma_addr_t idxbuf_dmahandle;
u16 (*read_ptr)(struct brcmf_pciedev_info *devinfo, u32 mem_offset);
void (*write_ptr)(struct brcmf_pciedev_info *devinfo, u32 mem_offset,
u16 value);
struct brcmf_mp_device *settings;
};
struct brcmf_pcie_ringbuf {
struct brcmf_commonring commonring;
dma_addr_t dma_handle;
u32 w_idx_addr;
u32 r_idx_addr;
struct brcmf_pciedev_info *devinfo;
u8 id;
};
/**
* struct brcmf_pcie_dhi_ringinfo - dongle/host interface shared ring info
*
* @ringmem: dongle memory pointer to ring memory location
* @h2d_w_idx_ptr: h2d ring write indices dongle memory pointers
* @h2d_r_idx_ptr: h2d ring read indices dongle memory pointers
* @d2h_w_idx_ptr: d2h ring write indices dongle memory pointers
* @d2h_r_idx_ptr: d2h ring read indices dongle memory pointers
* @h2d_w_idx_hostaddr: h2d ring write indices host memory pointers
* @h2d_r_idx_hostaddr: h2d ring read indices host memory pointers
* @d2h_w_idx_hostaddr: d2h ring write indices host memory pointers
* @d2h_r_idx_hostaddr: d2h ring reaD indices host memory pointers
* @max_flowrings: maximum number of tx flow rings supported.
* @max_submissionrings: maximum number of submission rings(h2d) supported.
* @max_completionrings: maximum number of completion rings(d2h) supported.
*/
struct brcmf_pcie_dhi_ringinfo {
__le32 ringmem;
__le32 h2d_w_idx_ptr;
__le32 h2d_r_idx_ptr;
__le32 d2h_w_idx_ptr;
__le32 d2h_r_idx_ptr;
struct msgbuf_buf_addr h2d_w_idx_hostaddr;
struct msgbuf_buf_addr h2d_r_idx_hostaddr;
struct msgbuf_buf_addr d2h_w_idx_hostaddr;
struct msgbuf_buf_addr d2h_r_idx_hostaddr;
__le16 max_flowrings;
__le16 max_submissionrings;
__le16 max_completionrings;
};
static const u32 brcmf_ring_max_item[BRCMF_NROF_COMMON_MSGRINGS] = {
BRCMF_H2D_MSGRING_CONTROL_SUBMIT_MAX_ITEM,
BRCMF_H2D_MSGRING_RXPOST_SUBMIT_MAX_ITEM,
BRCMF_D2H_MSGRING_CONTROL_COMPLETE_MAX_ITEM,
BRCMF_D2H_MSGRING_TX_COMPLETE_MAX_ITEM,
BRCMF_D2H_MSGRING_RX_COMPLETE_MAX_ITEM
};
static const u32 brcmf_ring_itemsize_pre_v7[BRCMF_NROF_COMMON_MSGRINGS] = {
BRCMF_H2D_MSGRING_CONTROL_SUBMIT_ITEMSIZE,
BRCMF_H2D_MSGRING_RXPOST_SUBMIT_ITEMSIZE,
BRCMF_D2H_MSGRING_CONTROL_COMPLETE_ITEMSIZE,
BRCMF_D2H_MSGRING_TX_COMPLETE_ITEMSIZE_PRE_V7,
BRCMF_D2H_MSGRING_RX_COMPLETE_ITEMSIZE_PRE_V7
};
static const u32 brcmf_ring_itemsize[BRCMF_NROF_COMMON_MSGRINGS] = {
BRCMF_H2D_MSGRING_CONTROL_SUBMIT_ITEMSIZE,
BRCMF_H2D_MSGRING_RXPOST_SUBMIT_ITEMSIZE,
BRCMF_D2H_MSGRING_CONTROL_COMPLETE_ITEMSIZE,
BRCMF_D2H_MSGRING_TX_COMPLETE_ITEMSIZE,
BRCMF_D2H_MSGRING_RX_COMPLETE_ITEMSIZE
};
static u32
brcmf_pcie_read_reg32(struct brcmf_pciedev_info *devinfo, u32 reg_offset)
{
void __iomem *address = devinfo->regs + reg_offset;
return (ioread32(address));
}
static void
brcmf_pcie_write_reg32(struct brcmf_pciedev_info *devinfo, u32 reg_offset,
u32 value)
{
void __iomem *address = devinfo->regs + reg_offset;
iowrite32(value, address);
}
static u8
brcmf_pcie_read_tcm8(struct brcmf_pciedev_info *devinfo, u32 mem_offset)
{
void __iomem *address = devinfo->tcm + mem_offset;
return (ioread8(address));
}
static u16
brcmf_pcie_read_tcm16(struct brcmf_pciedev_info *devinfo, u32 mem_offset)
{
void __iomem *address = devinfo->tcm + mem_offset;
return (ioread16(address));
}
static void
brcmf_pcie_write_tcm16(struct brcmf_pciedev_info *devinfo, u32 mem_offset,
u16 value)
{
void __iomem *address = devinfo->tcm + mem_offset;
iowrite16(value, address);
}
static u16
brcmf_pcie_read_idx(struct brcmf_pciedev_info *devinfo, u32 mem_offset)
{
u16 *address = devinfo->idxbuf + mem_offset;
return (*(address));
}
static void
brcmf_pcie_write_idx(struct brcmf_pciedev_info *devinfo, u32 mem_offset,
u16 value)
{
u16 *address = devinfo->idxbuf + mem_offset;
*(address) = value;
}
static u32
brcmf_pcie_read_tcm32(struct brcmf_pciedev_info *devinfo, u32 mem_offset)
{
void __iomem *address = devinfo->tcm + mem_offset;
return (ioread32(address));
}
static void
brcmf_pcie_write_tcm32(struct brcmf_pciedev_info *devinfo, u32 mem_offset,
u32 value)
{
void __iomem *address = devinfo->tcm + mem_offset;
iowrite32(value, address);
}
static u32
brcmf_pcie_read_ram32(struct brcmf_pciedev_info *devinfo, u32 mem_offset)
{
void __iomem *addr = devinfo->tcm + devinfo->ci->rambase + mem_offset;
return (ioread32(addr));
}
static void
brcmf_pcie_write_ram32(struct brcmf_pciedev_info *devinfo, u32 mem_offset,
u32 value)
{
void __iomem *addr = devinfo->tcm + devinfo->ci->rambase + mem_offset;
iowrite32(value, addr);
}
static void
brcmf_pcie_copy_mem_todev(struct brcmf_pciedev_info *devinfo, u32 mem_offset,
void *srcaddr, u32 len)
{
void __iomem *address = devinfo->tcm + mem_offset;
__le32 *src32;
__le16 *src16;
u8 *src8;
if (((ulong)address & 4) || ((ulong)srcaddr & 4) || (len & 4)) {
if (((ulong)address & 2) || ((ulong)srcaddr & 2) || (len & 2)) {
src8 = (u8 *)srcaddr;
while (len) {
iowrite8(*src8, address);
address++;
src8++;
len--;
}
} else {
len = len / 2;
src16 = (__le16 *)srcaddr;
while (len) {
iowrite16(le16_to_cpu(*src16), address);
address += 2;
src16++;
len--;
}
}
} else {
len = len / 4;
src32 = (__le32 *)srcaddr;
while (len) {
iowrite32(le32_to_cpu(*src32), address);
address += 4;
src32++;
len--;
}
}
}
static void
brcmf_pcie_copy_dev_tomem(struct brcmf_pciedev_info *devinfo, u32 mem_offset,
void *dstaddr, u32 len)
{
void __iomem *address = devinfo->tcm + mem_offset;
__le32 *dst32;
__le16 *dst16;
u8 *dst8;
if (((ulong)address & 4) || ((ulong)dstaddr & 4) || (len & 4)) {
if (((ulong)address & 2) || ((ulong)dstaddr & 2) || (len & 2)) {
dst8 = (u8 *)dstaddr;
while (len) {
*dst8 = ioread8(address);
address++;
dst8++;
len--;
}
} else {
len = len / 2;
dst16 = (__le16 *)dstaddr;
while (len) {
*dst16 = cpu_to_le16(ioread16(address));
address += 2;
dst16++;
len--;
}
}
} else {
len = len / 4;
dst32 = (__le32 *)dstaddr;
while (len) {
*dst32 = cpu_to_le32(ioread32(address));
address += 4;
dst32++;
len--;
}
}
}
#define WRITECC32(devinfo, reg, value) brcmf_pcie_write_reg32(devinfo, \
CHIPCREGOFFS(reg), value)
static void
brcmf_pcie_select_core(struct brcmf_pciedev_info *devinfo, u16 coreid)
{
const struct pci_dev *pdev = devinfo->pdev;
struct brcmf_core *core;
u32 bar0_win;
core = brcmf_chip_get_core(devinfo->ci, coreid);
if (core) {
bar0_win = core->base;
pci_write_config_dword(pdev, BRCMF_PCIE_BAR0_WINDOW, bar0_win);
if (pci_read_config_dword(pdev, BRCMF_PCIE_BAR0_WINDOW,
&bar0_win) == 0) {
if (bar0_win != core->base) {
bar0_win = core->base;
pci_write_config_dword(pdev,
BRCMF_PCIE_BAR0_WINDOW,
bar0_win);
}
}
} else {
brcmf_err("Unsupported core selected %x\n", coreid);
}
}
static void brcmf_pcie_reset_device(struct brcmf_pciedev_info *devinfo)
{
struct brcmf_core *core;
u16 cfg_offset[] = { BRCMF_PCIE_CFGREG_STATUS_CMD,
BRCMF_PCIE_CFGREG_PM_CSR,
BRCMF_PCIE_CFGREG_MSI_CAP,
BRCMF_PCIE_CFGREG_MSI_ADDR_L,
BRCMF_PCIE_CFGREG_MSI_ADDR_H,
BRCMF_PCIE_CFGREG_MSI_DATA,
BRCMF_PCIE_CFGREG_LINK_STATUS_CTRL2,
BRCMF_PCIE_CFGREG_RBAR_CTRL,
BRCMF_PCIE_CFGREG_PML1_SUB_CTRL1,
BRCMF_PCIE_CFGREG_REG_BAR2_CONFIG,
BRCMF_PCIE_CFGREG_REG_BAR3_CONFIG };
u32 i;
u32 val;
u32 lsc;
if (!devinfo->ci)
return;
/* Disable ASPM */
brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2);
pci_read_config_dword(devinfo->pdev, BRCMF_PCIE_REG_LINK_STATUS_CTRL,
&lsc);
val = lsc & (~BRCMF_PCIE_LINK_STATUS_CTRL_ASPM_ENAB);
pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_LINK_STATUS_CTRL,
val);
/* Watchdog reset */
brcmf_pcie_select_core(devinfo, BCMA_CORE_CHIPCOMMON);
WRITECC32(devinfo, watchdog, 4);
msleep(100);
/* Restore ASPM */
brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2);
pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_LINK_STATUS_CTRL,
lsc);
core = brcmf_chip_get_core(devinfo->ci, BCMA_CORE_PCIE2);
if (core->rev <= 13) {
for (i = 0; i < ARRAY_SIZE(cfg_offset); i++) {
brcmf_pcie_write_reg32(devinfo,
BRCMF_PCIE_PCIE2REG_CONFIGADDR,
cfg_offset[i]);
val = brcmf_pcie_read_reg32(devinfo,
BRCMF_PCIE_PCIE2REG_CONFIGDATA);
brcmf_dbg(PCIE, "config offset 0x%04x, value 0x%04x\n",
cfg_offset[i], val);
brcmf_pcie_write_reg32(devinfo,
BRCMF_PCIE_PCIE2REG_CONFIGDATA,
val);
}
}
}
static void brcmf_pcie_attach(struct brcmf_pciedev_info *devinfo)
{
u32 config;
/* BAR1 window may not be sized properly */
brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2);
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGADDR, 0x4e0);
config = brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGDATA);
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_CONFIGDATA, config);
device_wakeup_enable(&devinfo->pdev->dev);
}
static int brcmf_pcie_enter_download_state(struct brcmf_pciedev_info *devinfo)
{
if (devinfo->ci->chip == BRCM_CC_43602_CHIP_ID) {
brcmf_pcie_select_core(devinfo, BCMA_CORE_ARM_CR4);
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKIDX,
5);
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKPDA,
0);
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKIDX,
7);
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_ARMCR4REG_BANKPDA,
0);
}
return 0;
}
static int brcmf_pcie_exit_download_state(struct brcmf_pciedev_info *devinfo,
u32 resetintr)
{
struct brcmf_core *core;
if (devinfo->ci->chip == BRCM_CC_43602_CHIP_ID) {
core = brcmf_chip_get_core(devinfo->ci, BCMA_CORE_INTERNAL_MEM);
brcmf_chip_resetcore(core, 0, 0, 0);
}
if (!brcmf_chip_set_active(devinfo->ci, resetintr))
return -EINVAL;
return 0;
}
static int
brcmf_pcie_send_mb_data(struct brcmf_pciedev_info *devinfo, u32 htod_mb_data)
{
struct brcmf_pcie_shared_info *shared;
u32 addr;
u32 cur_htod_mb_data;
u32 i;
shared = &devinfo->shared;
addr = shared->htod_mb_data_addr;
cur_htod_mb_data = brcmf_pcie_read_tcm32(devinfo, addr);
if (cur_htod_mb_data != 0)
brcmf_dbg(PCIE, "MB transaction is already pending 0x%04x\n",
cur_htod_mb_data);
i = 0;
while (cur_htod_mb_data != 0) {
msleep(10);
i++;
if (i > 100)
return -EIO;
cur_htod_mb_data = brcmf_pcie_read_tcm32(devinfo, addr);
}
brcmf_pcie_write_tcm32(devinfo, addr, htod_mb_data);
pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_SBMBX, 1);
pci_write_config_dword(devinfo->pdev, BRCMF_PCIE_REG_SBMBX, 1);
return 0;
}
static void brcmf_pcie_handle_mb_data(struct brcmf_pciedev_info *devinfo)
{
struct brcmf_pcie_shared_info *shared;
u32 addr;
u32 dtoh_mb_data;
shared = &devinfo->shared;
addr = shared->dtoh_mb_data_addr;
dtoh_mb_data = brcmf_pcie_read_tcm32(devinfo, addr);
if (!dtoh_mb_data)
return;
brcmf_pcie_write_tcm32(devinfo, addr, 0);
brcmf_dbg(PCIE, "D2H_MB_DATA: 0x%04x\n", dtoh_mb_data);
if (dtoh_mb_data & BRCMF_D2H_DEV_DS_ENTER_REQ) {
brcmf_dbg(PCIE, "D2H_MB_DATA: DEEP SLEEP REQ\n");
brcmf_pcie_send_mb_data(devinfo, BRCMF_H2D_HOST_DS_ACK);
brcmf_dbg(PCIE, "D2H_MB_DATA: sent DEEP SLEEP ACK\n");
}
if (dtoh_mb_data & BRCMF_D2H_DEV_DS_EXIT_NOTE)
brcmf_dbg(PCIE, "D2H_MB_DATA: DEEP SLEEP EXIT\n");
if (dtoh_mb_data & BRCMF_D2H_DEV_D3_ACK) {
brcmf_dbg(PCIE, "D2H_MB_DATA: D3 ACK\n");
devinfo->mbdata_completed = true;
wake_up(&devinfo->mbdata_resp_wait);
}
if (dtoh_mb_data & BRCMF_D2H_DEV_FWHALT) {
brcmf_dbg(PCIE, "D2H_MB_DATA: FW HALT\n");
brcmf_dev_coredump(&devinfo->pdev->dev);
}
}
static void brcmf_pcie_bus_console_init(struct brcmf_pciedev_info *devinfo)
{
struct brcmf_pcie_shared_info *shared;
struct brcmf_pcie_console *console;
u32 addr;
shared = &devinfo->shared;
console = &shared->console;
addr = shared->tcm_base_address + BRCMF_SHARED_CONSOLE_ADDR_OFFSET;
console->base_addr = brcmf_pcie_read_tcm32(devinfo, addr);
addr = console->base_addr + BRCMF_CONSOLE_BUFADDR_OFFSET;
console->buf_addr = brcmf_pcie_read_tcm32(devinfo, addr);
addr = console->base_addr + BRCMF_CONSOLE_BUFSIZE_OFFSET;
console->bufsize = brcmf_pcie_read_tcm32(devinfo, addr);
brcmf_dbg(FWCON, "Console: base %x, buf %x, size %d\n",
console->base_addr, console->buf_addr, console->bufsize);
}
static void brcmf_pcie_bus_console_read(struct brcmf_pciedev_info *devinfo)
{
struct brcmf_pcie_console *console;
u32 addr;
u8 ch;
u32 newidx;
if (!BRCMF_FWCON_ON())
return;
console = &devinfo->shared.console;
addr = console->base_addr + BRCMF_CONSOLE_WRITEIDX_OFFSET;
newidx = brcmf_pcie_read_tcm32(devinfo, addr);
while (newidx != console->read_idx) {
addr = console->buf_addr + console->read_idx;
ch = brcmf_pcie_read_tcm8(devinfo, addr);
console->read_idx++;
if (console->read_idx == console->bufsize)
console->read_idx = 0;
if (ch == '\r')
continue;
console->log_str[console->log_idx] = ch;
console->log_idx++;
if ((ch != '\n') &&
(console->log_idx == (sizeof(console->log_str) - 2))) {
ch = '\n';
console->log_str[console->log_idx] = ch;
console->log_idx++;
}
if (ch == '\n') {
console->log_str[console->log_idx] = 0;
pr_debug("CONSOLE: %s", console->log_str);
console->log_idx = 0;
}
}
}
static void brcmf_pcie_intr_disable(struct brcmf_pciedev_info *devinfo)
{
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXMASK, 0);
}
static void brcmf_pcie_intr_enable(struct brcmf_pciedev_info *devinfo)
{
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXMASK,
BRCMF_PCIE_MB_INT_D2H_DB |
BRCMF_PCIE_MB_INT_FN0_0 |
BRCMF_PCIE_MB_INT_FN0_1);
}
static void brcmf_pcie_hostready(struct brcmf_pciedev_info *devinfo)
{
if (devinfo->shared.flags & BRCMF_PCIE_SHARED_HOSTRDY_DB1)
brcmf_pcie_write_reg32(devinfo,
BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_1, 1);
}
static irqreturn_t brcmf_pcie_quick_check_isr(int irq, void *arg)
{
struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)arg;
if (brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXINT)) {
brcmf_pcie_intr_disable(devinfo);
brcmf_dbg(PCIE, "Enter\n");
return IRQ_WAKE_THREAD;
}
return IRQ_NONE;
}
static irqreturn_t brcmf_pcie_isr_thread(int irq, void *arg)
{
struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)arg;
u32 status;
devinfo->in_irq = true;
status = brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXINT);
brcmf_dbg(PCIE, "Enter %x\n", status);
if (status) {
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXINT,
status);
if (status & (BRCMF_PCIE_MB_INT_FN0_0 |
BRCMF_PCIE_MB_INT_FN0_1))
brcmf_pcie_handle_mb_data(devinfo);
if (status & BRCMF_PCIE_MB_INT_D2H_DB) {
if (devinfo->state == BRCMFMAC_PCIE_STATE_UP)
brcmf_proto_msgbuf_rx_trigger(
&devinfo->pdev->dev);
}
}
brcmf_pcie_bus_console_read(devinfo);
if (devinfo->state == BRCMFMAC_PCIE_STATE_UP)
brcmf_pcie_intr_enable(devinfo);
devinfo->in_irq = false;
return IRQ_HANDLED;
}
static int brcmf_pcie_request_irq(struct brcmf_pciedev_info *devinfo)
{
struct pci_dev *pdev;
pdev = devinfo->pdev;
brcmf_pcie_intr_disable(devinfo);
brcmf_dbg(PCIE, "Enter\n");
pci_enable_msi(pdev);
if (request_threaded_irq(pdev->irq, brcmf_pcie_quick_check_isr,
brcmf_pcie_isr_thread, IRQF_SHARED,
"brcmf_pcie_intr", devinfo)) {
pci_disable_msi(pdev);
brcmf_err("Failed to request IRQ %d\n", pdev->irq);
return -EIO;
}
devinfo->irq_allocated = true;
return 0;
}
static void brcmf_pcie_release_irq(struct brcmf_pciedev_info *devinfo)
{
struct pci_dev *pdev;
u32 status;
u32 count;
if (!devinfo->irq_allocated)
return;
pdev = devinfo->pdev;
brcmf_pcie_intr_disable(devinfo);
free_irq(pdev->irq, devinfo);
pci_disable_msi(pdev);
msleep(50);
count = 0;
while ((devinfo->in_irq) && (count < 20)) {
msleep(50);
count++;
}
if (devinfo->in_irq)
brcmf_err("Still in IRQ (processing) !!!\n");
status = brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXINT);
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXINT, status);
devinfo->irq_allocated = false;
}
static int brcmf_pcie_ring_mb_write_rptr(void *ctx)
{
struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx;
struct brcmf_pciedev_info *devinfo = ring->devinfo;
struct brcmf_commonring *commonring = &ring->commonring;
if (devinfo->state != BRCMFMAC_PCIE_STATE_UP)
return -EIO;
brcmf_dbg(PCIE, "W r_ptr %d (%d), ring %d\n", commonring->r_ptr,
commonring->w_ptr, ring->id);
devinfo->write_ptr(devinfo, ring->r_idx_addr, commonring->r_ptr);
return 0;
}
static int brcmf_pcie_ring_mb_write_wptr(void *ctx)
{
struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx;
struct brcmf_pciedev_info *devinfo = ring->devinfo;
struct brcmf_commonring *commonring = &ring->commonring;
if (devinfo->state != BRCMFMAC_PCIE_STATE_UP)
return -EIO;
brcmf_dbg(PCIE, "W w_ptr %d (%d), ring %d\n", commonring->w_ptr,
commonring->r_ptr, ring->id);
devinfo->write_ptr(devinfo, ring->w_idx_addr, commonring->w_ptr);
return 0;
}
static int brcmf_pcie_ring_mb_ring_bell(void *ctx)
{
struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx;
struct brcmf_pciedev_info *devinfo = ring->devinfo;
if (devinfo->state != BRCMFMAC_PCIE_STATE_UP)
return -EIO;
brcmf_dbg(PCIE, "RING !\n");
/* Any arbitrary value will do, lets use 1 */
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_H2D_MAILBOX_0, 1);
return 0;
}
static int brcmf_pcie_ring_mb_update_rptr(void *ctx)
{
struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx;
struct brcmf_pciedev_info *devinfo = ring->devinfo;
struct brcmf_commonring *commonring = &ring->commonring;
if (devinfo->state != BRCMFMAC_PCIE_STATE_UP)
return -EIO;
commonring->r_ptr = devinfo->read_ptr(devinfo, ring->r_idx_addr);
brcmf_dbg(PCIE, "R r_ptr %d (%d), ring %d\n", commonring->r_ptr,
commonring->w_ptr, ring->id);
return 0;
}
static int brcmf_pcie_ring_mb_update_wptr(void *ctx)
{
struct brcmf_pcie_ringbuf *ring = (struct brcmf_pcie_ringbuf *)ctx;
struct brcmf_pciedev_info *devinfo = ring->devinfo;
struct brcmf_commonring *commonring = &ring->commonring;
if (devinfo->state != BRCMFMAC_PCIE_STATE_UP)
return -EIO;
commonring->w_ptr = devinfo->read_ptr(devinfo, ring->w_idx_addr);
brcmf_dbg(PCIE, "R w_ptr %d (%d), ring %d\n", commonring->w_ptr,
commonring->r_ptr, ring->id);
return 0;
}
static void *
brcmf_pcie_init_dmabuffer_for_device(struct brcmf_pciedev_info *devinfo,
u32 size, u32 tcm_dma_phys_addr,
dma_addr_t *dma_handle)
{
void *ring;
u64 address;
ring = dma_alloc_coherent(&devinfo->pdev->dev, size, dma_handle,
GFP_KERNEL);
if (!ring)
return NULL;
address = (u64)*dma_handle;
brcmf_pcie_write_tcm32(devinfo, tcm_dma_phys_addr,
address & 0xffffffff);
brcmf_pcie_write_tcm32(devinfo, tcm_dma_phys_addr + 4, address >> 32);
memset(ring, 0, size);
return (ring);
}
static struct brcmf_pcie_ringbuf *
brcmf_pcie_alloc_dma_and_ring(struct brcmf_pciedev_info *devinfo, u32 ring_id,
u32 tcm_ring_phys_addr)
{
void *dma_buf;
dma_addr_t dma_handle;
struct brcmf_pcie_ringbuf *ring;
u32 size;
u32 addr;
const u32 *ring_itemsize_array;
if (devinfo->shared.version < BRCMF_PCIE_SHARED_VERSION_7)
ring_itemsize_array = brcmf_ring_itemsize_pre_v7;
else
ring_itemsize_array = brcmf_ring_itemsize;
size = brcmf_ring_max_item[ring_id] * ring_itemsize_array[ring_id];
dma_buf = brcmf_pcie_init_dmabuffer_for_device(devinfo, size,
tcm_ring_phys_addr + BRCMF_RING_MEM_BASE_ADDR_OFFSET,
&dma_handle);
if (!dma_buf)
return NULL;
addr = tcm_ring_phys_addr + BRCMF_RING_MAX_ITEM_OFFSET;
brcmf_pcie_write_tcm16(devinfo, addr, brcmf_ring_max_item[ring_id]);
addr = tcm_ring_phys_addr + BRCMF_RING_LEN_ITEMS_OFFSET;
brcmf_pcie_write_tcm16(devinfo, addr, ring_itemsize_array[ring_id]);
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring) {
dma_free_coherent(&devinfo->pdev->dev, size, dma_buf,
dma_handle);
return NULL;
}
brcmf_commonring_config(&ring->commonring, brcmf_ring_max_item[ring_id],
ring_itemsize_array[ring_id], dma_buf);
ring->dma_handle = dma_handle;
ring->devinfo = devinfo;
brcmf_commonring_register_cb(&ring->commonring,
brcmf_pcie_ring_mb_ring_bell,
brcmf_pcie_ring_mb_update_rptr,
brcmf_pcie_ring_mb_update_wptr,
brcmf_pcie_ring_mb_write_rptr,
brcmf_pcie_ring_mb_write_wptr, ring);
return (ring);
}
static void brcmf_pcie_release_ringbuffer(struct device *dev,
struct brcmf_pcie_ringbuf *ring)
{
void *dma_buf;
u32 size;
if (!ring)
return;
dma_buf = ring->commonring.buf_addr;
if (dma_buf) {
size = ring->commonring.depth * ring->commonring.item_len;
dma_free_coherent(dev, size, dma_buf, ring->dma_handle);
}
kfree(ring);
}
static void brcmf_pcie_release_ringbuffers(struct brcmf_pciedev_info *devinfo)
{
u32 i;
for (i = 0; i < BRCMF_NROF_COMMON_MSGRINGS; i++) {
brcmf_pcie_release_ringbuffer(&devinfo->pdev->dev,
devinfo->shared.commonrings[i]);
devinfo->shared.commonrings[i] = NULL;
}
kfree(devinfo->shared.flowrings);
devinfo->shared.flowrings = NULL;
if (devinfo->idxbuf) {
dma_free_coherent(&devinfo->pdev->dev,
devinfo->idxbuf_sz,
devinfo->idxbuf,
devinfo->idxbuf_dmahandle);
devinfo->idxbuf = NULL;
}
}
static int brcmf_pcie_init_ringbuffers(struct brcmf_pciedev_info *devinfo)
{
struct brcmf_pcie_ringbuf *ring;
struct brcmf_pcie_ringbuf *rings;
u32 d2h_w_idx_ptr;
u32 d2h_r_idx_ptr;
u32 h2d_w_idx_ptr;
u32 h2d_r_idx_ptr;
u32 ring_mem_ptr;
u32 i;
u64 address;
u32 bufsz;
u8 idx_offset;
struct brcmf_pcie_dhi_ringinfo ringinfo;
u16 max_flowrings;
u16 max_submissionrings;
u16 max_completionrings;
memcpy_fromio(&ringinfo, devinfo->tcm + devinfo->shared.ring_info_addr,
sizeof(ringinfo));
if (devinfo->shared.version >= 6) {
max_submissionrings = le16_to_cpu(ringinfo.max_submissionrings);
max_flowrings = le16_to_cpu(ringinfo.max_flowrings);
max_completionrings = le16_to_cpu(ringinfo.max_completionrings);
} else {
max_submissionrings = le16_to_cpu(ringinfo.max_flowrings);
max_flowrings = max_submissionrings -
BRCMF_NROF_H2D_COMMON_MSGRINGS;
max_completionrings = BRCMF_NROF_D2H_COMMON_MSGRINGS;
}
if (devinfo->dma_idx_sz != 0) {
bufsz = (max_submissionrings + max_completionrings) *
devinfo->dma_idx_sz * 2;
devinfo->idxbuf = dma_alloc_coherent(&devinfo->pdev->dev, bufsz,
&devinfo->idxbuf_dmahandle,
GFP_KERNEL);
if (!devinfo->idxbuf)
devinfo->dma_idx_sz = 0;
}
if (devinfo->dma_idx_sz == 0) {
d2h_w_idx_ptr = le32_to_cpu(ringinfo.d2h_w_idx_ptr);
d2h_r_idx_ptr = le32_to_cpu(ringinfo.d2h_r_idx_ptr);
h2d_w_idx_ptr = le32_to_cpu(ringinfo.h2d_w_idx_ptr);
h2d_r_idx_ptr = le32_to_cpu(ringinfo.h2d_r_idx_ptr);
idx_offset = sizeof(u32);
devinfo->write_ptr = brcmf_pcie_write_tcm16;
devinfo->read_ptr = brcmf_pcie_read_tcm16;
brcmf_dbg(PCIE, "Using TCM indices\n");
} else {
memset(devinfo->idxbuf, 0, bufsz);
devinfo->idxbuf_sz = bufsz;
idx_offset = devinfo->dma_idx_sz;
devinfo->write_ptr = brcmf_pcie_write_idx;
devinfo->read_ptr = brcmf_pcie_read_idx;
h2d_w_idx_ptr = 0;
address = (u64)devinfo->idxbuf_dmahandle;
ringinfo.h2d_w_idx_hostaddr.low_addr =
cpu_to_le32(address & 0xffffffff);
ringinfo.h2d_w_idx_hostaddr.high_addr =
cpu_to_le32(address >> 32);
h2d_r_idx_ptr = h2d_w_idx_ptr +
max_submissionrings * idx_offset;
address += max_submissionrings * idx_offset;
ringinfo.h2d_r_idx_hostaddr.low_addr =
cpu_to_le32(address & 0xffffffff);
ringinfo.h2d_r_idx_hostaddr.high_addr =
cpu_to_le32(address >> 32);
d2h_w_idx_ptr = h2d_r_idx_ptr +
max_submissionrings * idx_offset;
address += max_submissionrings * idx_offset;
ringinfo.d2h_w_idx_hostaddr.low_addr =
cpu_to_le32(address & 0xffffffff);
ringinfo.d2h_w_idx_hostaddr.high_addr =
cpu_to_le32(address >> 32);
d2h_r_idx_ptr = d2h_w_idx_ptr +
max_completionrings * idx_offset;
address += max_completionrings * idx_offset;
ringinfo.d2h_r_idx_hostaddr.low_addr =
cpu_to_le32(address & 0xffffffff);
ringinfo.d2h_r_idx_hostaddr.high_addr =
cpu_to_le32(address >> 32);
memcpy_toio(devinfo->tcm + devinfo->shared.ring_info_addr,
&ringinfo, sizeof(ringinfo));
brcmf_dbg(PCIE, "Using host memory indices\n");
}
ring_mem_ptr = le32_to_cpu(ringinfo.ringmem);
for (i = 0; i < BRCMF_NROF_H2D_COMMON_MSGRINGS; i++) {
ring = brcmf_pcie_alloc_dma_and_ring(devinfo, i, ring_mem_ptr);
if (!ring)
goto fail;
ring->w_idx_addr = h2d_w_idx_ptr;
ring->r_idx_addr = h2d_r_idx_ptr;
ring->id = i;
devinfo->shared.commonrings[i] = ring;
h2d_w_idx_ptr += idx_offset;
h2d_r_idx_ptr += idx_offset;
ring_mem_ptr += BRCMF_RING_MEM_SZ;
}
for (i = BRCMF_NROF_H2D_COMMON_MSGRINGS;
i < BRCMF_NROF_COMMON_MSGRINGS; i++) {
ring = brcmf_pcie_alloc_dma_and_ring(devinfo, i, ring_mem_ptr);
if (!ring)
goto fail;
ring->w_idx_addr = d2h_w_idx_ptr;
ring->r_idx_addr = d2h_r_idx_ptr;
ring->id = i;
devinfo->shared.commonrings[i] = ring;
d2h_w_idx_ptr += idx_offset;
d2h_r_idx_ptr += idx_offset;
ring_mem_ptr += BRCMF_RING_MEM_SZ;
}
devinfo->shared.max_flowrings = max_flowrings;
devinfo->shared.max_submissionrings = max_submissionrings;
devinfo->shared.max_completionrings = max_completionrings;
rings = kcalloc(max_flowrings, sizeof(*ring), GFP_KERNEL);
if (!rings)
goto fail;
brcmf_dbg(PCIE, "Nr of flowrings is %d\n", max_flowrings);
for (i = 0; i < max_flowrings; i++) {
ring = &rings[i];
ring->devinfo = devinfo;
ring->id = i + BRCMF_H2D_MSGRING_FLOWRING_IDSTART;
brcmf_commonring_register_cb(&ring->commonring,
brcmf_pcie_ring_mb_ring_bell,
brcmf_pcie_ring_mb_update_rptr,
brcmf_pcie_ring_mb_update_wptr,
brcmf_pcie_ring_mb_write_rptr,
brcmf_pcie_ring_mb_write_wptr,
ring);
ring->w_idx_addr = h2d_w_idx_ptr;
ring->r_idx_addr = h2d_r_idx_ptr;
h2d_w_idx_ptr += idx_offset;
h2d_r_idx_ptr += idx_offset;
}
devinfo->shared.flowrings = rings;
return 0;
fail:
brcmf_err("Allocating ring buffers failed\n");
brcmf_pcie_release_ringbuffers(devinfo);
return -ENOMEM;
}
static void
brcmf_pcie_release_scratchbuffers(struct brcmf_pciedev_info *devinfo)
{
if (devinfo->shared.scratch)
dma_free_coherent(&devinfo->pdev->dev,
BRCMF_DMA_D2H_SCRATCH_BUF_LEN,
devinfo->shared.scratch,
devinfo->shared.scratch_dmahandle);
if (devinfo->shared.ringupd)
dma_free_coherent(&devinfo->pdev->dev,
BRCMF_DMA_D2H_RINGUPD_BUF_LEN,
devinfo->shared.ringupd,
devinfo->shared.ringupd_dmahandle);
}
static int brcmf_pcie_init_scratchbuffers(struct brcmf_pciedev_info *devinfo)
{
u64 address;
u32 addr;
devinfo->shared.scratch =
dma_zalloc_coherent(&devinfo->pdev->dev,
BRCMF_DMA_D2H_SCRATCH_BUF_LEN,
&devinfo->shared.scratch_dmahandle,
GFP_KERNEL);
if (!devinfo->shared.scratch)
goto fail;
addr = devinfo->shared.tcm_base_address +
BRCMF_SHARED_DMA_SCRATCH_ADDR_OFFSET;
address = (u64)devinfo->shared.scratch_dmahandle;
brcmf_pcie_write_tcm32(devinfo, addr, address & 0xffffffff);
brcmf_pcie_write_tcm32(devinfo, addr + 4, address >> 32);
addr = devinfo->shared.tcm_base_address +
BRCMF_SHARED_DMA_SCRATCH_LEN_OFFSET;
brcmf_pcie_write_tcm32(devinfo, addr, BRCMF_DMA_D2H_SCRATCH_BUF_LEN);
devinfo->shared.ringupd =
dma_zalloc_coherent(&devinfo->pdev->dev,
BRCMF_DMA_D2H_RINGUPD_BUF_LEN,
&devinfo->shared.ringupd_dmahandle,
GFP_KERNEL);
if (!devinfo->shared.ringupd)
goto fail;
addr = devinfo->shared.tcm_base_address +
BRCMF_SHARED_DMA_RINGUPD_ADDR_OFFSET;
address = (u64)devinfo->shared.ringupd_dmahandle;
brcmf_pcie_write_tcm32(devinfo, addr, address & 0xffffffff);
brcmf_pcie_write_tcm32(devinfo, addr + 4, address >> 32);
addr = devinfo->shared.tcm_base_address +
BRCMF_SHARED_DMA_RINGUPD_LEN_OFFSET;
brcmf_pcie_write_tcm32(devinfo, addr, BRCMF_DMA_D2H_RINGUPD_BUF_LEN);
return 0;
fail:
brcmf_err("Allocating scratch buffers failed\n");
brcmf_pcie_release_scratchbuffers(devinfo);
return -ENOMEM;
}
static void brcmf_pcie_down(struct device *dev)
{
}
static int brcmf_pcie_tx(struct device *dev, struct sk_buff *skb)
{
return 0;
}
static int brcmf_pcie_tx_ctlpkt(struct device *dev, unsigned char *msg,
uint len)
{
return 0;
}
static int brcmf_pcie_rx_ctlpkt(struct device *dev, unsigned char *msg,
uint len)
{
return 0;
}
static void brcmf_pcie_wowl_config(struct device *dev, bool enabled)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie;
struct brcmf_pciedev_info *devinfo = buspub->devinfo;
brcmf_dbg(PCIE, "Configuring WOWL, enabled=%d\n", enabled);
devinfo->wowl_enabled = enabled;
}
static size_t brcmf_pcie_get_ramsize(struct device *dev)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie;
struct brcmf_pciedev_info *devinfo = buspub->devinfo;
return devinfo->ci->ramsize - devinfo->ci->srsize;
}
static int brcmf_pcie_get_memdump(struct device *dev, void *data, size_t len)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_pciedev *buspub = bus_if->bus_priv.pcie;
struct brcmf_pciedev_info *devinfo = buspub->devinfo;
brcmf_dbg(PCIE, "dump at 0x%08X: len=%zu\n", devinfo->ci->rambase, len);
brcmf_pcie_copy_dev_tomem(devinfo, devinfo->ci->rambase, data, len);
return 0;
}
static
int brcmf_pcie_get_fwname(struct device *dev, const char *ext, u8 *fw_name)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_fw_request *fwreq;
struct brcmf_fw_name fwnames[] = {
{ ext, fw_name },
};
fwreq = brcmf_fw_alloc_request(bus_if->chip, bus_if->chiprev,
brcmf_pcie_fwnames,
ARRAY_SIZE(brcmf_pcie_fwnames),
fwnames, ARRAY_SIZE(fwnames));
if (!fwreq)
return -ENOMEM;
kfree(fwreq);
return 0;
}
static const struct brcmf_bus_ops brcmf_pcie_bus_ops = {
.txdata = brcmf_pcie_tx,
.stop = brcmf_pcie_down,
.txctl = brcmf_pcie_tx_ctlpkt,
.rxctl = brcmf_pcie_rx_ctlpkt,
.wowl_config = brcmf_pcie_wowl_config,
.get_ramsize = brcmf_pcie_get_ramsize,
.get_memdump = brcmf_pcie_get_memdump,
.get_fwname = brcmf_pcie_get_fwname,
};
static void
brcmf_pcie_adjust_ramsize(struct brcmf_pciedev_info *devinfo, u8 *data,
u32 data_len)
{
__le32 *field;
u32 newsize;
if (data_len < BRCMF_RAMSIZE_OFFSET + 8)
return;
field = (__le32 *)&data[BRCMF_RAMSIZE_OFFSET];
if (le32_to_cpup(field) != BRCMF_RAMSIZE_MAGIC)
return;
field++;
newsize = le32_to_cpup(field);
brcmf_dbg(PCIE, "Found ramsize info in FW, adjusting to 0x%x\n",
newsize);
devinfo->ci->ramsize = newsize;
}
static int
brcmf_pcie_init_share_ram_info(struct brcmf_pciedev_info *devinfo,
u32 sharedram_addr)
{
struct brcmf_pcie_shared_info *shared;
u32 addr;
shared = &devinfo->shared;
shared->tcm_base_address = sharedram_addr;
shared->flags = brcmf_pcie_read_tcm32(devinfo, sharedram_addr);
shared->version = (u8)(shared->flags & BRCMF_PCIE_SHARED_VERSION_MASK);
brcmf_dbg(PCIE, "PCIe protocol version %d\n", shared->version);
if ((shared->version > BRCMF_PCIE_MAX_SHARED_VERSION) ||
(shared->version < BRCMF_PCIE_MIN_SHARED_VERSION)) {
brcmf_err("Unsupported PCIE version %d\n", shared->version);
return -EINVAL;
}
/* check firmware support dma indicies */
if (shared->flags & BRCMF_PCIE_SHARED_DMA_INDEX) {
if (shared->flags & BRCMF_PCIE_SHARED_DMA_2B_IDX)
devinfo->dma_idx_sz = sizeof(u16);
else
devinfo->dma_idx_sz = sizeof(u32);
}
addr = sharedram_addr + BRCMF_SHARED_MAX_RXBUFPOST_OFFSET;
shared->max_rxbufpost = brcmf_pcie_read_tcm16(devinfo, addr);
if (shared->max_rxbufpost == 0)
shared->max_rxbufpost = BRCMF_DEF_MAX_RXBUFPOST;
addr = sharedram_addr + BRCMF_SHARED_RX_DATAOFFSET_OFFSET;
shared->rx_dataoffset = brcmf_pcie_read_tcm32(devinfo, addr);
addr = sharedram_addr + BRCMF_SHARED_HTOD_MB_DATA_ADDR_OFFSET;
shared->htod_mb_data_addr = brcmf_pcie_read_tcm32(devinfo, addr);
addr = sharedram_addr + BRCMF_SHARED_DTOH_MB_DATA_ADDR_OFFSET;
shared->dtoh_mb_data_addr = brcmf_pcie_read_tcm32(devinfo, addr);
addr = sharedram_addr + BRCMF_SHARED_RING_INFO_ADDR_OFFSET;
shared->ring_info_addr = brcmf_pcie_read_tcm32(devinfo, addr);
brcmf_dbg(PCIE, "max rx buf post %d, rx dataoffset %d\n",
shared->max_rxbufpost, shared->rx_dataoffset);
brcmf_pcie_bus_console_init(devinfo);
return 0;
}
static int brcmf_pcie_download_fw_nvram(struct brcmf_pciedev_info *devinfo,
const struct firmware *fw, void *nvram,
u32 nvram_len)
{
u32 sharedram_addr;
u32 sharedram_addr_written;
u32 loop_counter;
int err;
u32 address;
u32 resetintr;
brcmf_dbg(PCIE, "Halt ARM.\n");
err = brcmf_pcie_enter_download_state(devinfo);
if (err)
return err;
brcmf_dbg(PCIE, "Download FW %s\n", devinfo->fw_name);
brcmf_pcie_copy_mem_todev(devinfo, devinfo->ci->rambase,
(void *)fw->data, fw->size);
resetintr = get_unaligned_le32(fw->data);
release_firmware(fw);
/* reset last 4 bytes of RAM address. to be used for shared
* area. This identifies when FW is running
*/
brcmf_pcie_write_ram32(devinfo, devinfo->ci->ramsize - 4, 0);
if (nvram) {
brcmf_dbg(PCIE, "Download NVRAM %s\n", devinfo->nvram_name);
address = devinfo->ci->rambase + devinfo->ci->ramsize -
nvram_len;
brcmf_pcie_copy_mem_todev(devinfo, address, nvram, nvram_len);
brcmf_fw_nvram_free(nvram);
} else {
brcmf_dbg(PCIE, "No matching NVRAM file found %s\n",
devinfo->nvram_name);
}
sharedram_addr_written = brcmf_pcie_read_ram32(devinfo,
devinfo->ci->ramsize -
4);
brcmf_dbg(PCIE, "Bring ARM in running state\n");
err = brcmf_pcie_exit_download_state(devinfo, resetintr);
if (err)
return err;
brcmf_dbg(PCIE, "Wait for FW init\n");
sharedram_addr = sharedram_addr_written;
loop_counter = BRCMF_PCIE_FW_UP_TIMEOUT / 50;
while ((sharedram_addr == sharedram_addr_written) && (loop_counter)) {
msleep(50);
sharedram_addr = brcmf_pcie_read_ram32(devinfo,
devinfo->ci->ramsize -
4);
loop_counter--;
}
if (sharedram_addr == sharedram_addr_written) {
brcmf_err("FW failed to initialize\n");
return -ENODEV;
}
brcmf_dbg(PCIE, "Shared RAM addr: 0x%08x\n", sharedram_addr);
return (brcmf_pcie_init_share_ram_info(devinfo, sharedram_addr));
}
static int brcmf_pcie_get_resource(struct brcmf_pciedev_info *devinfo)
{
struct pci_dev *pdev;
int err;
phys_addr_t bar0_addr, bar1_addr;
ulong bar1_size;
pdev = devinfo->pdev;
err = pci_enable_device(pdev);
if (err) {
brcmf_err("pci_enable_device failed err=%d\n", err);
return err;
}
pci_set_master(pdev);
/* Bar-0 mapped address */
bar0_addr = pci_resource_start(pdev, 0);
/* Bar-1 mapped address */
bar1_addr = pci_resource_start(pdev, 2);
/* read Bar-1 mapped memory range */
bar1_size = pci_resource_len(pdev, 2);
if ((bar1_size == 0) || (bar1_addr == 0)) {
brcmf_err("BAR1 Not enabled, device size=%ld, addr=%#016llx\n",
bar1_size, (unsigned long long)bar1_addr);
return -EINVAL;
}
devinfo->regs = ioremap_nocache(bar0_addr, BRCMF_PCIE_REG_MAP_SIZE);
devinfo->tcm = ioremap_nocache(bar1_addr, bar1_size);
if (!devinfo->regs || !devinfo->tcm) {
brcmf_err("ioremap() failed (%p,%p)\n", devinfo->regs,
devinfo->tcm);
return -EINVAL;
}
brcmf_dbg(PCIE, "Phys addr : reg space = %p base addr %#016llx\n",
devinfo->regs, (unsigned long long)bar0_addr);
brcmf_dbg(PCIE, "Phys addr : mem space = %p base addr %#016llx size 0x%x\n",
devinfo->tcm, (unsigned long long)bar1_addr,
(unsigned int)bar1_size);
return 0;
}
static void brcmf_pcie_release_resource(struct brcmf_pciedev_info *devinfo)
{
if (devinfo->tcm)
iounmap(devinfo->tcm);
if (devinfo->regs)
iounmap(devinfo->regs);
pci_disable_device(devinfo->pdev);
}
static u32 brcmf_pcie_buscore_prep_addr(const struct pci_dev *pdev, u32 addr)
{
u32 ret_addr;
ret_addr = addr & (BRCMF_PCIE_BAR0_REG_SIZE - 1);
addr &= ~(BRCMF_PCIE_BAR0_REG_SIZE - 1);
pci_write_config_dword(pdev, BRCMF_PCIE_BAR0_WINDOW, addr);
return ret_addr;
}
static u32 brcmf_pcie_buscore_read32(void *ctx, u32 addr)
{
struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx;
addr = brcmf_pcie_buscore_prep_addr(devinfo->pdev, addr);
return brcmf_pcie_read_reg32(devinfo, addr);
}
static void brcmf_pcie_buscore_write32(void *ctx, u32 addr, u32 value)
{
struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx;
addr = brcmf_pcie_buscore_prep_addr(devinfo->pdev, addr);
brcmf_pcie_write_reg32(devinfo, addr, value);
}
static int brcmf_pcie_buscoreprep(void *ctx)
{
return brcmf_pcie_get_resource(ctx);
}
static int brcmf_pcie_buscore_reset(void *ctx, struct brcmf_chip *chip)
{
struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx;
u32 val;
devinfo->ci = chip;
brcmf_pcie_reset_device(devinfo);
val = brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXINT);
if (val != 0xffffffff)
brcmf_pcie_write_reg32(devinfo, BRCMF_PCIE_PCIE2REG_MAILBOXINT,
val);
return 0;
}
static void brcmf_pcie_buscore_activate(void *ctx, struct brcmf_chip *chip,
u32 rstvec)
{
struct brcmf_pciedev_info *devinfo = (struct brcmf_pciedev_info *)ctx;
brcmf_pcie_write_tcm32(devinfo, 0, rstvec);
}
static const struct brcmf_buscore_ops brcmf_pcie_buscore_ops = {
.prepare = brcmf_pcie_buscoreprep,
.reset = brcmf_pcie_buscore_reset,
.activate = brcmf_pcie_buscore_activate,
.read32 = brcmf_pcie_buscore_read32,
.write32 = brcmf_pcie_buscore_write32,
};
#define BRCMF_PCIE_FW_CODE 0
#define BRCMF_PCIE_FW_NVRAM 1
static void brcmf_pcie_setup(struct device *dev, int ret,
struct brcmf_fw_request *fwreq)
{
const struct firmware *fw;
void *nvram;
struct brcmf_bus *bus;
struct brcmf_pciedev *pcie_bus_dev;
struct brcmf_pciedev_info *devinfo;
struct brcmf_commonring **flowrings;
u32 i, nvram_len;
/* check firmware loading result */
if (ret)
goto fail;
bus = dev_get_drvdata(dev);
pcie_bus_dev = bus->bus_priv.pcie;
devinfo = pcie_bus_dev->devinfo;
brcmf_pcie_attach(devinfo);
fw = fwreq->items[BRCMF_PCIE_FW_CODE].binary;
nvram = fwreq->items[BRCMF_PCIE_FW_NVRAM].nv_data.data;
nvram_len = fwreq->items[BRCMF_PCIE_FW_NVRAM].nv_data.len;
kfree(fwreq);
/* Some of the firmwares have the size of the memory of the device
* defined inside the firmware. This is because part of the memory in
* the device is shared and the devision is determined by FW. Parse
* the firmware and adjust the chip memory size now.
*/
brcmf_pcie_adjust_ramsize(devinfo, (u8 *)fw->data, fw->size);
ret = brcmf_pcie_download_fw_nvram(devinfo, fw, nvram, nvram_len);
if (ret)
goto fail;
devinfo->state = BRCMFMAC_PCIE_STATE_UP;
ret = brcmf_pcie_init_ringbuffers(devinfo);
if (ret)
goto fail;
ret = brcmf_pcie_init_scratchbuffers(devinfo);
if (ret)
goto fail;
brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2);
ret = brcmf_pcie_request_irq(devinfo);
if (ret)
goto fail;
/* hook the commonrings in the bus structure. */
for (i = 0; i < BRCMF_NROF_COMMON_MSGRINGS; i++)
bus->msgbuf->commonrings[i] =
&devinfo->shared.commonrings[i]->commonring;
flowrings = kcalloc(devinfo->shared.max_flowrings, sizeof(*flowrings),
GFP_KERNEL);
if (!flowrings)
goto fail;
for (i = 0; i < devinfo->shared.max_flowrings; i++)
flowrings[i] = &devinfo->shared.flowrings[i].commonring;
bus->msgbuf->flowrings = flowrings;
bus->msgbuf->rx_dataoffset = devinfo->shared.rx_dataoffset;
bus->msgbuf->max_rxbufpost = devinfo->shared.max_rxbufpost;
bus->msgbuf->max_flowrings = devinfo->shared.max_flowrings;
init_waitqueue_head(&devinfo->mbdata_resp_wait);
brcmf_pcie_intr_enable(devinfo);
brcmf_pcie_hostready(devinfo);
if (brcmf_attach(&devinfo->pdev->dev, devinfo->settings) == 0)
return;
brcmf_pcie_bus_console_read(devinfo);
fail:
device_release_driver(dev);
}
static struct brcmf_fw_request *
brcmf_pcie_prepare_fw_request(struct brcmf_pciedev_info *devinfo)
{
struct brcmf_fw_request *fwreq;
struct brcmf_fw_name fwnames[] = {
{ ".bin", devinfo->fw_name },
{ ".txt", devinfo->nvram_name },
};
fwreq = brcmf_fw_alloc_request(devinfo->ci->chip, devinfo->ci->chiprev,
brcmf_pcie_fwnames,
ARRAY_SIZE(brcmf_pcie_fwnames),
fwnames, ARRAY_SIZE(fwnames));
if (!fwreq)
return NULL;
fwreq->items[BRCMF_PCIE_FW_CODE].type = BRCMF_FW_TYPE_BINARY;
fwreq->items[BRCMF_PCIE_FW_NVRAM].type = BRCMF_FW_TYPE_NVRAM;
fwreq->items[BRCMF_PCIE_FW_NVRAM].flags = BRCMF_FW_REQF_OPTIONAL;
/* NVRAM reserves PCI domain 0 for Broadcom's SDK faked bus */
fwreq->domain_nr = pci_domain_nr(devinfo->pdev->bus) + 1;
fwreq->bus_nr = devinfo->pdev->bus->number;
return fwreq;
}
static int
brcmf_pcie_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int ret;
struct brcmf_fw_request *fwreq;
struct brcmf_pciedev_info *devinfo;
struct brcmf_pciedev *pcie_bus_dev;
struct brcmf_bus *bus;
brcmf_dbg(PCIE, "Enter %x:%x\n", pdev->vendor, pdev->device);
ret = -ENOMEM;
devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);
if (devinfo == NULL)
return ret;
devinfo->pdev = pdev;
pcie_bus_dev = NULL;
devinfo->ci = brcmf_chip_attach(devinfo, &brcmf_pcie_buscore_ops);
if (IS_ERR(devinfo->ci)) {
ret = PTR_ERR(devinfo->ci);
devinfo->ci = NULL;
goto fail;
}
pcie_bus_dev = kzalloc(sizeof(*pcie_bus_dev), GFP_KERNEL);
if (pcie_bus_dev == NULL) {
ret = -ENOMEM;
goto fail;
}
devinfo->settings = brcmf_get_module_param(&devinfo->pdev->dev,
BRCMF_BUSTYPE_PCIE,
devinfo->ci->chip,
devinfo->ci->chiprev);
if (!devinfo->settings) {
ret = -ENOMEM;
goto fail;
}
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (!bus) {
ret = -ENOMEM;
goto fail;
}
bus->msgbuf = kzalloc(sizeof(*bus->msgbuf), GFP_KERNEL);
if (!bus->msgbuf) {
ret = -ENOMEM;
kfree(bus);
goto fail;
}
/* hook it all together. */
pcie_bus_dev->devinfo = devinfo;
pcie_bus_dev->bus = bus;
bus->dev = &pdev->dev;
bus->bus_priv.pcie = pcie_bus_dev;
bus->ops = &brcmf_pcie_bus_ops;
bus->proto_type = BRCMF_PROTO_MSGBUF;
bus->chip = devinfo->coreid;
bus->wowl_supported = pci_pme_capable(pdev, PCI_D3hot);
dev_set_drvdata(&pdev->dev, bus);
fwreq = brcmf_pcie_prepare_fw_request(devinfo);
if (!fwreq) {
ret = -ENOMEM;
goto fail_bus;
}
ret = brcmf_fw_get_firmwares(bus->dev, fwreq, brcmf_pcie_setup);
if (ret < 0) {
kfree(fwreq);
goto fail_bus;
}
return 0;
fail_bus:
kfree(bus->msgbuf);
kfree(bus);
fail:
brcmf_err("failed %x:%x\n", pdev->vendor, pdev->device);
brcmf_pcie_release_resource(devinfo);
if (devinfo->ci)
brcmf_chip_detach(devinfo->ci);
if (devinfo->settings)
brcmf_release_module_param(devinfo->settings);
kfree(pcie_bus_dev);
kfree(devinfo);
return ret;
}
static void
brcmf_pcie_remove(struct pci_dev *pdev)
{
struct brcmf_pciedev_info *devinfo;
struct brcmf_bus *bus;
brcmf_dbg(PCIE, "Enter\n");
bus = dev_get_drvdata(&pdev->dev);
if (bus == NULL)
return;
devinfo = bus->bus_priv.pcie->devinfo;
devinfo->state = BRCMFMAC_PCIE_STATE_DOWN;
if (devinfo->ci)
brcmf_pcie_intr_disable(devinfo);
brcmf_detach(&pdev->dev);
kfree(bus->bus_priv.pcie);
kfree(bus->msgbuf->flowrings);
kfree(bus->msgbuf);
kfree(bus);
brcmf_pcie_release_irq(devinfo);
brcmf_pcie_release_scratchbuffers(devinfo);
brcmf_pcie_release_ringbuffers(devinfo);
brcmf_pcie_reset_device(devinfo);
brcmf_pcie_release_resource(devinfo);
if (devinfo->ci)
brcmf_chip_detach(devinfo->ci);
if (devinfo->settings)
brcmf_release_module_param(devinfo->settings);
kfree(devinfo);
dev_set_drvdata(&pdev->dev, NULL);
}
#ifdef CONFIG_PM
static int brcmf_pcie_pm_enter_D3(struct device *dev)
{
struct brcmf_pciedev_info *devinfo;
struct brcmf_bus *bus;
brcmf_dbg(PCIE, "Enter\n");
bus = dev_get_drvdata(dev);
devinfo = bus->bus_priv.pcie->devinfo;
brcmf_bus_change_state(bus, BRCMF_BUS_DOWN);
devinfo->mbdata_completed = false;
brcmf_pcie_send_mb_data(devinfo, BRCMF_H2D_HOST_D3_INFORM);
wait_event_timeout(devinfo->mbdata_resp_wait, devinfo->mbdata_completed,
BRCMF_PCIE_MBDATA_TIMEOUT);
if (!devinfo->mbdata_completed) {
brcmf_err("Timeout on response for entering D3 substate\n");
brcmf_bus_change_state(bus, BRCMF_BUS_UP);
return -EIO;
}
devinfo->state = BRCMFMAC_PCIE_STATE_DOWN;
return 0;
}
static int brcmf_pcie_pm_leave_D3(struct device *dev)
{
struct brcmf_pciedev_info *devinfo;
struct brcmf_bus *bus;
struct pci_dev *pdev;
int err;
brcmf_dbg(PCIE, "Enter\n");
bus = dev_get_drvdata(dev);
devinfo = bus->bus_priv.pcie->devinfo;
brcmf_dbg(PCIE, "Enter, dev=%p, bus=%p\n", dev, bus);
/* Check if device is still up and running, if so we are ready */
if (brcmf_pcie_read_reg32(devinfo, BRCMF_PCIE_PCIE2REG_INTMASK) != 0) {
brcmf_dbg(PCIE, "Try to wakeup device....\n");
if (brcmf_pcie_send_mb_data(devinfo, BRCMF_H2D_HOST_D0_INFORM))
goto cleanup;
brcmf_dbg(PCIE, "Hot resume, continue....\n");
devinfo->state = BRCMFMAC_PCIE_STATE_UP;
brcmf_pcie_select_core(devinfo, BCMA_CORE_PCIE2);
brcmf_bus_change_state(bus, BRCMF_BUS_UP);
brcmf_pcie_intr_enable(devinfo);
brcmf_pcie_hostready(devinfo);
return 0;
}
cleanup:
brcmf_chip_detach(devinfo->ci);
devinfo->ci = NULL;
pdev = devinfo->pdev;
brcmf_pcie_remove(pdev);
err = brcmf_pcie_probe(pdev, NULL);
if (err)
brcmf_err("probe after resume failed, err=%d\n", err);
return err;
}
static const struct dev_pm_ops brcmf_pciedrvr_pm = {
.suspend = brcmf_pcie_pm_enter_D3,
.resume = brcmf_pcie_pm_leave_D3,
.freeze = brcmf_pcie_pm_enter_D3,
.restore = brcmf_pcie_pm_leave_D3,
};
#endif /* CONFIG_PM */
#define BRCMF_PCIE_DEVICE(dev_id) { BRCM_PCIE_VENDOR_ID_BROADCOM, dev_id,\
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, 0 }
#define BRCMF_PCIE_DEVICE_SUB(dev_id, subvend, subdev) { \
BRCM_PCIE_VENDOR_ID_BROADCOM, dev_id,\
subvend, subdev, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, 0 }
static const struct pci_device_id brcmf_pcie_devid_table[] = {
BRCMF_PCIE_DEVICE(BRCM_PCIE_4350_DEVICE_ID),
BRCMF_PCIE_DEVICE_SUB(0x4355, BRCM_PCIE_VENDOR_ID_BROADCOM, 0x4355),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4356_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_43567_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_43570_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4358_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4359_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_2G_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_5G_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_43602_RAW_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4365_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4365_2G_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4365_5G_DEVICE_ID),
BRCMF_PCIE_DEVICE_SUB(0x4365, BRCM_PCIE_VENDOR_ID_BROADCOM, 0x4365),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4366_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4366_2G_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4366_5G_DEVICE_ID),
BRCMF_PCIE_DEVICE(BRCM_PCIE_4371_DEVICE_ID),
{ /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, brcmf_pcie_devid_table);
static struct pci_driver brcmf_pciedrvr = {
.node = {},
.name = KBUILD_MODNAME,
.id_table = brcmf_pcie_devid_table,
.probe = brcmf_pcie_probe,
.remove = brcmf_pcie_remove,
#ifdef CONFIG_PM
.driver.pm = &brcmf_pciedrvr_pm,
#endif
.driver.coredump = brcmf_dev_coredump,
};
void brcmf_pcie_register(void)
{
int err;
brcmf_dbg(PCIE, "Enter\n");
err = pci_register_driver(&brcmf_pciedrvr);
if (err)
brcmf_err("PCIE driver registration failed, err=%d\n", err);
}
void brcmf_pcie_exit(void)
{
brcmf_dbg(PCIE, "Enter\n");
pci_unregister_driver(&brcmf_pciedrvr);
}