|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/acpi_pmtmr.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/static_key.h> | 
|  |  | 
|  | #include <asm/hpet.h> | 
|  | #include <asm/timer.h> | 
|  | #include <asm/vgtod.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/delay.h> | 
|  | #include <asm/hypervisor.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/x86_init.h> | 
|  | #include <asm/geode.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/intel-family.h> | 
|  | #include <asm/i8259.h> | 
|  | #include <asm/uv/uv.h> | 
|  |  | 
|  | unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */ | 
|  | EXPORT_SYMBOL(cpu_khz); | 
|  |  | 
|  | unsigned int __read_mostly tsc_khz; | 
|  | EXPORT_SYMBOL(tsc_khz); | 
|  |  | 
|  | #define KHZ	1000 | 
|  |  | 
|  | /* | 
|  | * TSC can be unstable due to cpufreq or due to unsynced TSCs | 
|  | */ | 
|  | static int __read_mostly tsc_unstable; | 
|  | static unsigned int __initdata tsc_early_khz; | 
|  |  | 
|  | static DEFINE_STATIC_KEY_FALSE(__use_tsc); | 
|  |  | 
|  | int tsc_clocksource_reliable; | 
|  |  | 
|  | static u32 art_to_tsc_numerator; | 
|  | static u32 art_to_tsc_denominator; | 
|  | static u64 art_to_tsc_offset; | 
|  | struct clocksource *art_related_clocksource; | 
|  |  | 
|  | struct cyc2ns { | 
|  | struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */ | 
|  | seqcount_latch_t   seq;		/* 32 + 4    = 36 */ | 
|  |  | 
|  | }; /* fits one cacheline */ | 
|  |  | 
|  | static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); | 
|  |  | 
|  | static int __init tsc_early_khz_setup(char *buf) | 
|  | { | 
|  | return kstrtouint(buf, 0, &tsc_early_khz); | 
|  | } | 
|  | early_param("tsc_early_khz", tsc_early_khz_setup); | 
|  |  | 
|  | __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) | 
|  | { | 
|  | int seq, idx; | 
|  |  | 
|  | preempt_disable_notrace(); | 
|  |  | 
|  | do { | 
|  | seq = this_cpu_read(cyc2ns.seq.seqcount.sequence); | 
|  | idx = seq & 1; | 
|  |  | 
|  | data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); | 
|  | data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); | 
|  | data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); | 
|  |  | 
|  | } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence))); | 
|  | } | 
|  |  | 
|  | __always_inline void cyc2ns_read_end(void) | 
|  | { | 
|  | preempt_enable_notrace(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accelerators for sched_clock() | 
|  | * convert from cycles(64bits) => nanoseconds (64bits) | 
|  | *  basic equation: | 
|  | *              ns = cycles / (freq / ns_per_sec) | 
|  | *              ns = cycles * (ns_per_sec / freq) | 
|  | *              ns = cycles * (10^9 / (cpu_khz * 10^3)) | 
|  | *              ns = cycles * (10^6 / cpu_khz) | 
|  | * | 
|  | *      Then we use scaling math (suggested by george@mvista.com) to get: | 
|  | *              ns = cycles * (10^6 * SC / cpu_khz) / SC | 
|  | *              ns = cycles * cyc2ns_scale / SC | 
|  | * | 
|  | *      And since SC is a constant power of two, we can convert the div | 
|  | *  into a shift. The larger SC is, the more accurate the conversion, but | 
|  | *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication | 
|  | *  (64-bit result) can be used. | 
|  | * | 
|  | *  We can use khz divisor instead of mhz to keep a better precision. | 
|  | *  (mathieu.desnoyers@polymtl.ca) | 
|  | * | 
|  | *                      -johnstul@us.ibm.com "math is hard, lets go shopping!" | 
|  | */ | 
|  |  | 
|  | static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) | 
|  | { | 
|  | struct cyc2ns_data data; | 
|  | unsigned long long ns; | 
|  |  | 
|  | cyc2ns_read_begin(&data); | 
|  |  | 
|  | ns = data.cyc2ns_offset; | 
|  | ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); | 
|  |  | 
|  | cyc2ns_read_end(); | 
|  |  | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) | 
|  | { | 
|  | unsigned long long ns_now; | 
|  | struct cyc2ns_data data; | 
|  | struct cyc2ns *c2n; | 
|  |  | 
|  | ns_now = cycles_2_ns(tsc_now); | 
|  |  | 
|  | /* | 
|  | * Compute a new multiplier as per the above comment and ensure our | 
|  | * time function is continuous; see the comment near struct | 
|  | * cyc2ns_data. | 
|  | */ | 
|  | clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, | 
|  | NSEC_PER_MSEC, 0); | 
|  |  | 
|  | /* | 
|  | * cyc2ns_shift is exported via arch_perf_update_userpage() where it is | 
|  | * not expected to be greater than 31 due to the original published | 
|  | * conversion algorithm shifting a 32-bit value (now specifies a 64-bit | 
|  | * value) - refer perf_event_mmap_page documentation in perf_event.h. | 
|  | */ | 
|  | if (data.cyc2ns_shift == 32) { | 
|  | data.cyc2ns_shift = 31; | 
|  | data.cyc2ns_mul >>= 1; | 
|  | } | 
|  |  | 
|  | data.cyc2ns_offset = ns_now - | 
|  | mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); | 
|  |  | 
|  | c2n = per_cpu_ptr(&cyc2ns, cpu); | 
|  |  | 
|  | raw_write_seqcount_latch(&c2n->seq); | 
|  | c2n->data[0] = data; | 
|  | raw_write_seqcount_latch(&c2n->seq); | 
|  | c2n->data[1] = data; | 
|  | } | 
|  |  | 
|  | static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | sched_clock_idle_sleep_event(); | 
|  |  | 
|  | if (khz) | 
|  | __set_cyc2ns_scale(khz, cpu, tsc_now); | 
|  |  | 
|  | sched_clock_idle_wakeup_event(); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize cyc2ns for boot cpu | 
|  | */ | 
|  | static void __init cyc2ns_init_boot_cpu(void) | 
|  | { | 
|  | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); | 
|  |  | 
|  | seqcount_latch_init(&c2n->seq); | 
|  | __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Secondary CPUs do not run through tsc_init(), so set up | 
|  | * all the scale factors for all CPUs, assuming the same | 
|  | * speed as the bootup CPU. | 
|  | */ | 
|  | static void __init cyc2ns_init_secondary_cpus(void) | 
|  | { | 
|  | unsigned int cpu, this_cpu = smp_processor_id(); | 
|  | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); | 
|  | struct cyc2ns_data *data = c2n->data; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (cpu != this_cpu) { | 
|  | seqcount_latch_init(&c2n->seq); | 
|  | c2n = per_cpu_ptr(&cyc2ns, cpu); | 
|  | c2n->data[0] = data[0]; | 
|  | c2n->data[1] = data[1]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scheduler clock - returns current time in nanosec units. | 
|  | */ | 
|  | u64 native_sched_clock(void) | 
|  | { | 
|  | if (static_branch_likely(&__use_tsc)) { | 
|  | u64 tsc_now = rdtsc(); | 
|  |  | 
|  | /* return the value in ns */ | 
|  | return cycles_2_ns(tsc_now); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fall back to jiffies if there's no TSC available: | 
|  | * ( But note that we still use it if the TSC is marked | 
|  | *   unstable. We do this because unlike Time Of Day, | 
|  | *   the scheduler clock tolerates small errors and it's | 
|  | *   very important for it to be as fast as the platform | 
|  | *   can achieve it. ) | 
|  | */ | 
|  |  | 
|  | /* No locking but a rare wrong value is not a big deal: */ | 
|  | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a sched_clock if you already have a TSC value. | 
|  | */ | 
|  | u64 native_sched_clock_from_tsc(u64 tsc) | 
|  | { | 
|  | return cycles_2_ns(tsc); | 
|  | } | 
|  |  | 
|  | /* We need to define a real function for sched_clock, to override the | 
|  | weak default version */ | 
|  | #ifdef CONFIG_PARAVIRT | 
|  | unsigned long long sched_clock(void) | 
|  | { | 
|  | return paravirt_sched_clock(); | 
|  | } | 
|  |  | 
|  | bool using_native_sched_clock(void) | 
|  | { | 
|  | return pv_ops.time.sched_clock == native_sched_clock; | 
|  | } | 
|  | #else | 
|  | unsigned long long | 
|  | sched_clock(void) __attribute__((alias("native_sched_clock"))); | 
|  |  | 
|  | bool using_native_sched_clock(void) { return true; } | 
|  | #endif | 
|  |  | 
|  | int check_tsc_unstable(void) | 
|  | { | 
|  | return tsc_unstable; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(check_tsc_unstable); | 
|  |  | 
|  | #ifdef CONFIG_X86_TSC | 
|  | int __init notsc_setup(char *str) | 
|  | { | 
|  | mark_tsc_unstable("boot parameter notsc"); | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * disable flag for tsc. Takes effect by clearing the TSC cpu flag | 
|  | * in cpu/common.c | 
|  | */ | 
|  | int __init notsc_setup(char *str) | 
|  | { | 
|  | setup_clear_cpu_cap(X86_FEATURE_TSC); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | __setup("notsc", notsc_setup); | 
|  |  | 
|  | static int no_sched_irq_time; | 
|  | static int no_tsc_watchdog; | 
|  |  | 
|  | static int __init tsc_setup(char *str) | 
|  | { | 
|  | if (!strcmp(str, "reliable")) | 
|  | tsc_clocksource_reliable = 1; | 
|  | if (!strncmp(str, "noirqtime", 9)) | 
|  | no_sched_irq_time = 1; | 
|  | if (!strcmp(str, "unstable")) | 
|  | mark_tsc_unstable("boot parameter"); | 
|  | if (!strcmp(str, "nowatchdog")) | 
|  | no_tsc_watchdog = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("tsc=", tsc_setup); | 
|  |  | 
|  | #define MAX_RETRIES		5 | 
|  | #define TSC_DEFAULT_THRESHOLD	0x20000 | 
|  |  | 
|  | /* | 
|  | * Read TSC and the reference counters. Take care of any disturbances | 
|  | */ | 
|  | static u64 tsc_read_refs(u64 *p, int hpet) | 
|  | { | 
|  | u64 t1, t2; | 
|  | u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_RETRIES; i++) { | 
|  | t1 = get_cycles(); | 
|  | if (hpet) | 
|  | *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; | 
|  | else | 
|  | *p = acpi_pm_read_early(); | 
|  | t2 = get_cycles(); | 
|  | if ((t2 - t1) < thresh) | 
|  | return t2; | 
|  | } | 
|  | return ULLONG_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the TSC frequency from HPET reference | 
|  | */ | 
|  | static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) | 
|  | { | 
|  | u64 tmp; | 
|  |  | 
|  | if (hpet2 < hpet1) | 
|  | hpet2 += 0x100000000ULL; | 
|  | hpet2 -= hpet1; | 
|  | tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); | 
|  | do_div(tmp, 1000000); | 
|  | deltatsc = div64_u64(deltatsc, tmp); | 
|  |  | 
|  | return (unsigned long) deltatsc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the TSC frequency from PMTimer reference | 
|  | */ | 
|  | static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) | 
|  | { | 
|  | u64 tmp; | 
|  |  | 
|  | if (!pm1 && !pm2) | 
|  | return ULONG_MAX; | 
|  |  | 
|  | if (pm2 < pm1) | 
|  | pm2 += (u64)ACPI_PM_OVRRUN; | 
|  | pm2 -= pm1; | 
|  | tmp = pm2 * 1000000000LL; | 
|  | do_div(tmp, PMTMR_TICKS_PER_SEC); | 
|  | do_div(deltatsc, tmp); | 
|  |  | 
|  | return (unsigned long) deltatsc; | 
|  | } | 
|  |  | 
|  | #define CAL_MS		10 | 
|  | #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS)) | 
|  | #define CAL_PIT_LOOPS	1000 | 
|  |  | 
|  | #define CAL2_MS		50 | 
|  | #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS)) | 
|  | #define CAL2_PIT_LOOPS	5000 | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Try to calibrate the TSC against the Programmable | 
|  | * Interrupt Timer and return the frequency of the TSC | 
|  | * in kHz. | 
|  | * | 
|  | * Return ULONG_MAX on failure to calibrate. | 
|  | */ | 
|  | static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) | 
|  | { | 
|  | u64 tsc, t1, t2, delta; | 
|  | unsigned long tscmin, tscmax; | 
|  | int pitcnt; | 
|  |  | 
|  | if (!has_legacy_pic()) { | 
|  | /* | 
|  | * Relies on tsc_early_delay_calibrate() to have given us semi | 
|  | * usable udelay(), wait for the same 50ms we would have with | 
|  | * the PIT loop below. | 
|  | */ | 
|  | udelay(10 * USEC_PER_MSEC); | 
|  | udelay(10 * USEC_PER_MSEC); | 
|  | udelay(10 * USEC_PER_MSEC); | 
|  | udelay(10 * USEC_PER_MSEC); | 
|  | udelay(10 * USEC_PER_MSEC); | 
|  | return ULONG_MAX; | 
|  | } | 
|  |  | 
|  | /* Set the Gate high, disable speaker */ | 
|  | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
|  |  | 
|  | /* | 
|  | * Setup CTC channel 2* for mode 0, (interrupt on terminal | 
|  | * count mode), binary count. Set the latch register to 50ms | 
|  | * (LSB then MSB) to begin countdown. | 
|  | */ | 
|  | outb(0xb0, 0x43); | 
|  | outb(latch & 0xff, 0x42); | 
|  | outb(latch >> 8, 0x42); | 
|  |  | 
|  | tsc = t1 = t2 = get_cycles(); | 
|  |  | 
|  | pitcnt = 0; | 
|  | tscmax = 0; | 
|  | tscmin = ULONG_MAX; | 
|  | while ((inb(0x61) & 0x20) == 0) { | 
|  | t2 = get_cycles(); | 
|  | delta = t2 - tsc; | 
|  | tsc = t2; | 
|  | if ((unsigned long) delta < tscmin) | 
|  | tscmin = (unsigned int) delta; | 
|  | if ((unsigned long) delta > tscmax) | 
|  | tscmax = (unsigned int) delta; | 
|  | pitcnt++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanity checks: | 
|  | * | 
|  | * If we were not able to read the PIT more than loopmin | 
|  | * times, then we have been hit by a massive SMI | 
|  | * | 
|  | * If the maximum is 10 times larger than the minimum, | 
|  | * then we got hit by an SMI as well. | 
|  | */ | 
|  | if (pitcnt < loopmin || tscmax > 10 * tscmin) | 
|  | return ULONG_MAX; | 
|  |  | 
|  | /* Calculate the PIT value */ | 
|  | delta = t2 - t1; | 
|  | do_div(delta, ms); | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This reads the current MSB of the PIT counter, and | 
|  | * checks if we are running on sufficiently fast and | 
|  | * non-virtualized hardware. | 
|  | * | 
|  | * Our expectations are: | 
|  | * | 
|  | *  - the PIT is running at roughly 1.19MHz | 
|  | * | 
|  | *  - each IO is going to take about 1us on real hardware, | 
|  | *    but we allow it to be much faster (by a factor of 10) or | 
|  | *    _slightly_ slower (ie we allow up to a 2us read+counter | 
|  | *    update - anything else implies a unacceptably slow CPU | 
|  | *    or PIT for the fast calibration to work. | 
|  | * | 
|  | *  - with 256 PIT ticks to read the value, we have 214us to | 
|  | *    see the same MSB (and overhead like doing a single TSC | 
|  | *    read per MSB value etc). | 
|  | * | 
|  | *  - We're doing 2 reads per loop (LSB, MSB), and we expect | 
|  | *    them each to take about a microsecond on real hardware. | 
|  | *    So we expect a count value of around 100. But we'll be | 
|  | *    generous, and accept anything over 50. | 
|  | * | 
|  | *  - if the PIT is stuck, and we see *many* more reads, we | 
|  | *    return early (and the next caller of pit_expect_msb() | 
|  | *    then consider it a failure when they don't see the | 
|  | *    next expected value). | 
|  | * | 
|  | * These expectations mean that we know that we have seen the | 
|  | * transition from one expected value to another with a fairly | 
|  | * high accuracy, and we didn't miss any events. We can thus | 
|  | * use the TSC value at the transitions to calculate a pretty | 
|  | * good value for the TSC frequency. | 
|  | */ | 
|  | static inline int pit_verify_msb(unsigned char val) | 
|  | { | 
|  | /* Ignore LSB */ | 
|  | inb(0x42); | 
|  | return inb(0x42) == val; | 
|  | } | 
|  |  | 
|  | static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) | 
|  | { | 
|  | int count; | 
|  | u64 tsc = 0, prev_tsc = 0; | 
|  |  | 
|  | for (count = 0; count < 50000; count++) { | 
|  | if (!pit_verify_msb(val)) | 
|  | break; | 
|  | prev_tsc = tsc; | 
|  | tsc = get_cycles(); | 
|  | } | 
|  | *deltap = get_cycles() - prev_tsc; | 
|  | *tscp = tsc; | 
|  |  | 
|  | /* | 
|  | * We require _some_ success, but the quality control | 
|  | * will be based on the error terms on the TSC values. | 
|  | */ | 
|  | return count > 5; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How many MSB values do we want to see? We aim for | 
|  | * a maximum error rate of 500ppm (in practice the | 
|  | * real error is much smaller), but refuse to spend | 
|  | * more than 50ms on it. | 
|  | */ | 
|  | #define MAX_QUICK_PIT_MS 50 | 
|  | #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) | 
|  |  | 
|  | static unsigned long quick_pit_calibrate(void) | 
|  | { | 
|  | int i; | 
|  | u64 tsc, delta; | 
|  | unsigned long d1, d2; | 
|  |  | 
|  | if (!has_legacy_pic()) | 
|  | return 0; | 
|  |  | 
|  | /* Set the Gate high, disable speaker */ | 
|  | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
|  |  | 
|  | /* | 
|  | * Counter 2, mode 0 (one-shot), binary count | 
|  | * | 
|  | * NOTE! Mode 2 decrements by two (and then the | 
|  | * output is flipped each time, giving the same | 
|  | * final output frequency as a decrement-by-one), | 
|  | * so mode 0 is much better when looking at the | 
|  | * individual counts. | 
|  | */ | 
|  | outb(0xb0, 0x43); | 
|  |  | 
|  | /* Start at 0xffff */ | 
|  | outb(0xff, 0x42); | 
|  | outb(0xff, 0x42); | 
|  |  | 
|  | /* | 
|  | * The PIT starts counting at the next edge, so we | 
|  | * need to delay for a microsecond. The easiest way | 
|  | * to do that is to just read back the 16-bit counter | 
|  | * once from the PIT. | 
|  | */ | 
|  | pit_verify_msb(0); | 
|  |  | 
|  | if (pit_expect_msb(0xff, &tsc, &d1)) { | 
|  | for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { | 
|  | if (!pit_expect_msb(0xff-i, &delta, &d2)) | 
|  | break; | 
|  |  | 
|  | delta -= tsc; | 
|  |  | 
|  | /* | 
|  | * Extrapolate the error and fail fast if the error will | 
|  | * never be below 500 ppm. | 
|  | */ | 
|  | if (i == 1 && | 
|  | d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Iterate until the error is less than 500 ppm | 
|  | */ | 
|  | if (d1+d2 >= delta >> 11) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Check the PIT one more time to verify that | 
|  | * all TSC reads were stable wrt the PIT. | 
|  | * | 
|  | * This also guarantees serialization of the | 
|  | * last cycle read ('d2') in pit_expect_msb. | 
|  | */ | 
|  | if (!pit_verify_msb(0xfe - i)) | 
|  | break; | 
|  | goto success; | 
|  | } | 
|  | } | 
|  | pr_info("Fast TSC calibration failed\n"); | 
|  | return 0; | 
|  |  | 
|  | success: | 
|  | /* | 
|  | * Ok, if we get here, then we've seen the | 
|  | * MSB of the PIT decrement 'i' times, and the | 
|  | * error has shrunk to less than 500 ppm. | 
|  | * | 
|  | * As a result, we can depend on there not being | 
|  | * any odd delays anywhere, and the TSC reads are | 
|  | * reliable (within the error). | 
|  | * | 
|  | * kHz = ticks / time-in-seconds / 1000; | 
|  | * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 | 
|  | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) | 
|  | */ | 
|  | delta *= PIT_TICK_RATE; | 
|  | do_div(delta, i*256*1000); | 
|  | pr_info("Fast TSC calibration using PIT\n"); | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * native_calibrate_tsc | 
|  | * Determine TSC frequency via CPUID, else return 0. | 
|  | */ | 
|  | unsigned long native_calibrate_tsc(void) | 
|  | { | 
|  | unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; | 
|  | unsigned int crystal_khz; | 
|  |  | 
|  | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) | 
|  | return 0; | 
|  |  | 
|  | if (boot_cpu_data.cpuid_level < 0x15) | 
|  | return 0; | 
|  |  | 
|  | eax_denominator = ebx_numerator = ecx_hz = edx = 0; | 
|  |  | 
|  | /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ | 
|  | cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); | 
|  |  | 
|  | if (ebx_numerator == 0 || eax_denominator == 0) | 
|  | return 0; | 
|  |  | 
|  | crystal_khz = ecx_hz / 1000; | 
|  |  | 
|  | /* | 
|  | * Denverton SoCs don't report crystal clock, and also don't support | 
|  | * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal | 
|  | * clock. | 
|  | */ | 
|  | if (crystal_khz == 0 && | 
|  | boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D) | 
|  | crystal_khz = 25000; | 
|  |  | 
|  | /* | 
|  | * TSC frequency reported directly by CPUID is a "hardware reported" | 
|  | * frequency and is the most accurate one so far we have. This | 
|  | * is considered a known frequency. | 
|  | */ | 
|  | if (crystal_khz != 0) | 
|  | setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); | 
|  |  | 
|  | /* | 
|  | * Some Intel SoCs like Skylake and Kabylake don't report the crystal | 
|  | * clock, but we can easily calculate it to a high degree of accuracy | 
|  | * by considering the crystal ratio and the CPU speed. | 
|  | */ | 
|  | if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) { | 
|  | unsigned int eax_base_mhz, ebx, ecx, edx; | 
|  |  | 
|  | cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx); | 
|  | crystal_khz = eax_base_mhz * 1000 * | 
|  | eax_denominator / ebx_numerator; | 
|  | } | 
|  |  | 
|  | if (crystal_khz == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For Atom SoCs TSC is the only reliable clocksource. | 
|  | * Mark TSC reliable so no watchdog on it. | 
|  | */ | 
|  | if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) | 
|  | setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | /* | 
|  | * The local APIC appears to be fed by the core crystal clock | 
|  | * (which sounds entirely sensible). We can set the global | 
|  | * lapic_timer_period here to avoid having to calibrate the APIC | 
|  | * timer later. | 
|  | */ | 
|  | lapic_timer_period = crystal_khz * 1000 / HZ; | 
|  | #endif | 
|  |  | 
|  | return crystal_khz * ebx_numerator / eax_denominator; | 
|  | } | 
|  |  | 
|  | static unsigned long cpu_khz_from_cpuid(void) | 
|  | { | 
|  | unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; | 
|  |  | 
|  | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) | 
|  | return 0; | 
|  |  | 
|  | if (boot_cpu_data.cpuid_level < 0x16) | 
|  | return 0; | 
|  |  | 
|  | eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; | 
|  |  | 
|  | cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); | 
|  |  | 
|  | return eax_base_mhz * 1000; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calibrate cpu using pit, hpet, and ptimer methods. They are available | 
|  | * later in boot after acpi is initialized. | 
|  | */ | 
|  | static unsigned long pit_hpet_ptimer_calibrate_cpu(void) | 
|  | { | 
|  | u64 tsc1, tsc2, delta, ref1, ref2; | 
|  | unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; | 
|  | unsigned long flags, latch, ms; | 
|  | int hpet = is_hpet_enabled(), i, loopmin; | 
|  |  | 
|  | /* | 
|  | * Run 5 calibration loops to get the lowest frequency value | 
|  | * (the best estimate). We use two different calibration modes | 
|  | * here: | 
|  | * | 
|  | * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and | 
|  | * load a timeout of 50ms. We read the time right after we | 
|  | * started the timer and wait until the PIT count down reaches | 
|  | * zero. In each wait loop iteration we read the TSC and check | 
|  | * the delta to the previous read. We keep track of the min | 
|  | * and max values of that delta. The delta is mostly defined | 
|  | * by the IO time of the PIT access, so we can detect when | 
|  | * any disturbance happened between the two reads. If the | 
|  | * maximum time is significantly larger than the minimum time, | 
|  | * then we discard the result and have another try. | 
|  | * | 
|  | * 2) Reference counter. If available we use the HPET or the | 
|  | * PMTIMER as a reference to check the sanity of that value. | 
|  | * We use separate TSC readouts and check inside of the | 
|  | * reference read for any possible disturbance. We discard | 
|  | * disturbed values here as well. We do that around the PIT | 
|  | * calibration delay loop as we have to wait for a certain | 
|  | * amount of time anyway. | 
|  | */ | 
|  |  | 
|  | /* Preset PIT loop values */ | 
|  | latch = CAL_LATCH; | 
|  | ms = CAL_MS; | 
|  | loopmin = CAL_PIT_LOOPS; | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | unsigned long tsc_pit_khz; | 
|  |  | 
|  | /* | 
|  | * Read the start value and the reference count of | 
|  | * hpet/pmtimer when available. Then do the PIT | 
|  | * calibration, which will take at least 50ms, and | 
|  | * read the end value. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | tsc1 = tsc_read_refs(&ref1, hpet); | 
|  | tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); | 
|  | tsc2 = tsc_read_refs(&ref2, hpet); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* Pick the lowest PIT TSC calibration so far */ | 
|  | tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); | 
|  |  | 
|  | /* hpet or pmtimer available ? */ | 
|  | if (ref1 == ref2) | 
|  | continue; | 
|  |  | 
|  | /* Check, whether the sampling was disturbed */ | 
|  | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) | 
|  | continue; | 
|  |  | 
|  | tsc2 = (tsc2 - tsc1) * 1000000LL; | 
|  | if (hpet) | 
|  | tsc2 = calc_hpet_ref(tsc2, ref1, ref2); | 
|  | else | 
|  | tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); | 
|  |  | 
|  | tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); | 
|  |  | 
|  | /* Check the reference deviation */ | 
|  | delta = ((u64) tsc_pit_min) * 100; | 
|  | do_div(delta, tsc_ref_min); | 
|  |  | 
|  | /* | 
|  | * If both calibration results are inside a 10% window | 
|  | * then we can be sure, that the calibration | 
|  | * succeeded. We break out of the loop right away. We | 
|  | * use the reference value, as it is more precise. | 
|  | */ | 
|  | if (delta >= 90 && delta <= 110) { | 
|  | pr_info("PIT calibration matches %s. %d loops\n", | 
|  | hpet ? "HPET" : "PMTIMER", i + 1); | 
|  | return tsc_ref_min; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether PIT failed more than once. This | 
|  | * happens in virtualized environments. We need to | 
|  | * give the virtual PC a slightly longer timeframe for | 
|  | * the HPET/PMTIMER to make the result precise. | 
|  | */ | 
|  | if (i == 1 && tsc_pit_min == ULONG_MAX) { | 
|  | latch = CAL2_LATCH; | 
|  | ms = CAL2_MS; | 
|  | loopmin = CAL2_PIT_LOOPS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now check the results. | 
|  | */ | 
|  | if (tsc_pit_min == ULONG_MAX) { | 
|  | /* PIT gave no useful value */ | 
|  | pr_warn("Unable to calibrate against PIT\n"); | 
|  |  | 
|  | /* We don't have an alternative source, disable TSC */ | 
|  | if (!hpet && !ref1 && !ref2) { | 
|  | pr_notice("No reference (HPET/PMTIMER) available\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The alternative source failed as well, disable TSC */ | 
|  | if (tsc_ref_min == ULONG_MAX) { | 
|  | pr_warn("HPET/PMTIMER calibration failed\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Use the alternative source */ | 
|  | pr_info("using %s reference calibration\n", | 
|  | hpet ? "HPET" : "PMTIMER"); | 
|  |  | 
|  | return tsc_ref_min; | 
|  | } | 
|  |  | 
|  | /* We don't have an alternative source, use the PIT calibration value */ | 
|  | if (!hpet && !ref1 && !ref2) { | 
|  | pr_info("Using PIT calibration value\n"); | 
|  | return tsc_pit_min; | 
|  | } | 
|  |  | 
|  | /* The alternative source failed, use the PIT calibration value */ | 
|  | if (tsc_ref_min == ULONG_MAX) { | 
|  | pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); | 
|  | return tsc_pit_min; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The calibration values differ too much. In doubt, we use | 
|  | * the PIT value as we know that there are PMTIMERs around | 
|  | * running at double speed. At least we let the user know: | 
|  | */ | 
|  | pr_warn("PIT calibration deviates from %s: %lu %lu\n", | 
|  | hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); | 
|  | pr_info("Using PIT calibration value\n"); | 
|  | return tsc_pit_min; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * native_calibrate_cpu_early - can calibrate the cpu early in boot | 
|  | */ | 
|  | unsigned long native_calibrate_cpu_early(void) | 
|  | { | 
|  | unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); | 
|  |  | 
|  | if (!fast_calibrate) | 
|  | fast_calibrate = cpu_khz_from_msr(); | 
|  | if (!fast_calibrate) { | 
|  | local_irq_save(flags); | 
|  | fast_calibrate = quick_pit_calibrate(); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | return fast_calibrate; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * native_calibrate_cpu - calibrate the cpu | 
|  | */ | 
|  | static unsigned long native_calibrate_cpu(void) | 
|  | { | 
|  | unsigned long tsc_freq = native_calibrate_cpu_early(); | 
|  |  | 
|  | if (!tsc_freq) | 
|  | tsc_freq = pit_hpet_ptimer_calibrate_cpu(); | 
|  |  | 
|  | return tsc_freq; | 
|  | } | 
|  |  | 
|  | void recalibrate_cpu_khz(void) | 
|  | { | 
|  | #ifndef CONFIG_SMP | 
|  | unsigned long cpu_khz_old = cpu_khz; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_TSC)) | 
|  | return; | 
|  |  | 
|  | cpu_khz = x86_platform.calibrate_cpu(); | 
|  | tsc_khz = x86_platform.calibrate_tsc(); | 
|  | if (tsc_khz == 0) | 
|  | tsc_khz = cpu_khz; | 
|  | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) | 
|  | cpu_khz = tsc_khz; | 
|  | cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, | 
|  | cpu_khz_old, cpu_khz); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(recalibrate_cpu_khz); | 
|  |  | 
|  |  | 
|  | static unsigned long long cyc2ns_suspend; | 
|  |  | 
|  | void tsc_save_sched_clock_state(void) | 
|  | { | 
|  | if (!sched_clock_stable()) | 
|  | return; | 
|  |  | 
|  | cyc2ns_suspend = sched_clock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even on processors with invariant TSC, TSC gets reset in some the | 
|  | * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to | 
|  | * arbitrary value (still sync'd across cpu's) during resume from such sleep | 
|  | * states. To cope up with this, recompute the cyc2ns_offset for each cpu so | 
|  | * that sched_clock() continues from the point where it was left off during | 
|  | * suspend. | 
|  | */ | 
|  | void tsc_restore_sched_clock_state(void) | 
|  | { | 
|  | unsigned long long offset; | 
|  | unsigned long flags; | 
|  | int cpu; | 
|  |  | 
|  | if (!sched_clock_stable()) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* | 
|  | * We're coming out of suspend, there's no concurrency yet; don't | 
|  | * bother being nice about the RCU stuff, just write to both | 
|  | * data fields. | 
|  | */ | 
|  |  | 
|  | this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); | 
|  | this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); | 
|  |  | 
|  | offset = cyc2ns_suspend - sched_clock(); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; | 
|  | per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | /* | 
|  | * Frequency scaling support. Adjust the TSC based timer when the CPU frequency | 
|  | * changes. | 
|  | * | 
|  | * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC | 
|  | * as unstable and give up in those cases. | 
|  | * | 
|  | * Should fix up last_tsc too. Currently gettimeofday in the | 
|  | * first tick after the change will be slightly wrong. | 
|  | */ | 
|  |  | 
|  | static unsigned int  ref_freq; | 
|  | static unsigned long loops_per_jiffy_ref; | 
|  | static unsigned long tsc_khz_ref; | 
|  |  | 
|  | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct cpufreq_freqs *freq = data; | 
|  |  | 
|  | if (num_online_cpus() > 1) { | 
|  | mark_tsc_unstable("cpufreq changes on SMP"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ref_freq) { | 
|  | ref_freq = freq->old; | 
|  | loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; | 
|  | tsc_khz_ref = tsc_khz; | 
|  | } | 
|  |  | 
|  | if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) || | 
|  | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { | 
|  | boot_cpu_data.loops_per_jiffy = | 
|  | cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); | 
|  |  | 
|  | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); | 
|  | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | 
|  | mark_tsc_unstable("cpufreq changes"); | 
|  |  | 
|  | set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block time_cpufreq_notifier_block = { | 
|  | .notifier_call  = time_cpufreq_notifier | 
|  | }; | 
|  |  | 
|  | static int __init cpufreq_register_tsc_scaling(void) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_TSC)) | 
|  | return 0; | 
|  | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
|  | return 0; | 
|  | cpufreq_register_notifier(&time_cpufreq_notifier_block, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(cpufreq_register_tsc_scaling); | 
|  |  | 
|  | #endif /* CONFIG_CPU_FREQ */ | 
|  |  | 
|  | #define ART_CPUID_LEAF (0x15) | 
|  | #define ART_MIN_DENOMINATOR (1) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If ART is present detect the numerator:denominator to convert to TSC | 
|  | */ | 
|  | static void __init detect_art(void) | 
|  | { | 
|  | unsigned int unused[2]; | 
|  |  | 
|  | if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, | 
|  | * and the TSC counter resets must not occur asynchronously. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || | 
|  | !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || | 
|  | !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || | 
|  | tsc_async_resets) | 
|  | return; | 
|  |  | 
|  | cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, | 
|  | &art_to_tsc_numerator, unused, unused+1); | 
|  |  | 
|  | if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) | 
|  | return; | 
|  |  | 
|  | rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); | 
|  |  | 
|  | /* Make this sticky over multiple CPU init calls */ | 
|  | setup_force_cpu_cap(X86_FEATURE_ART); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* clocksource code */ | 
|  |  | 
|  | static void tsc_resume(struct clocksource *cs) | 
|  | { | 
|  | tsc_verify_tsc_adjust(true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We used to compare the TSC to the cycle_last value in the clocksource | 
|  | * structure to avoid a nasty time-warp. This can be observed in a | 
|  | * very small window right after one CPU updated cycle_last under | 
|  | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which | 
|  | * is smaller than the cycle_last reference value due to a TSC which | 
|  | * is slightly behind. This delta is nowhere else observable, but in | 
|  | * that case it results in a forward time jump in the range of hours | 
|  | * due to the unsigned delta calculation of the time keeping core | 
|  | * code, which is necessary to support wrapping clocksources like pm | 
|  | * timer. | 
|  | * | 
|  | * This sanity check is now done in the core timekeeping code. | 
|  | * checking the result of read_tsc() - cycle_last for being negative. | 
|  | * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. | 
|  | */ | 
|  | static u64 read_tsc(struct clocksource *cs) | 
|  | { | 
|  | return (u64)rdtsc_ordered(); | 
|  | } | 
|  |  | 
|  | static void tsc_cs_mark_unstable(struct clocksource *cs) | 
|  | { | 
|  | if (tsc_unstable) | 
|  | return; | 
|  |  | 
|  | tsc_unstable = 1; | 
|  | if (using_native_sched_clock()) | 
|  | clear_sched_clock_stable(); | 
|  | disable_sched_clock_irqtime(); | 
|  | pr_info("Marking TSC unstable due to clocksource watchdog\n"); | 
|  | } | 
|  |  | 
|  | static void tsc_cs_tick_stable(struct clocksource *cs) | 
|  | { | 
|  | if (tsc_unstable) | 
|  | return; | 
|  |  | 
|  | if (using_native_sched_clock()) | 
|  | sched_clock_tick_stable(); | 
|  | } | 
|  |  | 
|  | static int tsc_cs_enable(struct clocksource *cs) | 
|  | { | 
|  | vclocks_set_used(VDSO_CLOCKMODE_TSC); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() | 
|  | */ | 
|  | static struct clocksource clocksource_tsc_early = { | 
|  | .name			= "tsc-early", | 
|  | .rating			= 299, | 
|  | .read			= read_tsc, | 
|  | .mask			= CLOCKSOURCE_MASK(64), | 
|  | .flags			= CLOCK_SOURCE_IS_CONTINUOUS | | 
|  | CLOCK_SOURCE_MUST_VERIFY, | 
|  | .vdso_clock_mode	= VDSO_CLOCKMODE_TSC, | 
|  | .enable			= tsc_cs_enable, | 
|  | .resume			= tsc_resume, | 
|  | .mark_unstable		= tsc_cs_mark_unstable, | 
|  | .tick_stable		= tsc_cs_tick_stable, | 
|  | .list			= LIST_HEAD_INIT(clocksource_tsc_early.list), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Must mark VALID_FOR_HRES early such that when we unregister tsc_early | 
|  | * this one will immediately take over. We will only register if TSC has | 
|  | * been found good. | 
|  | */ | 
|  | static struct clocksource clocksource_tsc = { | 
|  | .name			= "tsc", | 
|  | .rating			= 300, | 
|  | .read			= read_tsc, | 
|  | .mask			= CLOCKSOURCE_MASK(64), | 
|  | .flags			= CLOCK_SOURCE_IS_CONTINUOUS | | 
|  | CLOCK_SOURCE_VALID_FOR_HRES | | 
|  | CLOCK_SOURCE_MUST_VERIFY, | 
|  | .vdso_clock_mode	= VDSO_CLOCKMODE_TSC, | 
|  | .enable			= tsc_cs_enable, | 
|  | .resume			= tsc_resume, | 
|  | .mark_unstable		= tsc_cs_mark_unstable, | 
|  | .tick_stable		= tsc_cs_tick_stable, | 
|  | .list			= LIST_HEAD_INIT(clocksource_tsc.list), | 
|  | }; | 
|  |  | 
|  | void mark_tsc_unstable(char *reason) | 
|  | { | 
|  | if (tsc_unstable) | 
|  | return; | 
|  |  | 
|  | tsc_unstable = 1; | 
|  | if (using_native_sched_clock()) | 
|  | clear_sched_clock_stable(); | 
|  | disable_sched_clock_irqtime(); | 
|  | pr_info("Marking TSC unstable due to %s\n", reason); | 
|  |  | 
|  | clocksource_mark_unstable(&clocksource_tsc_early); | 
|  | clocksource_mark_unstable(&clocksource_tsc); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(mark_tsc_unstable); | 
|  |  | 
|  | static void __init check_system_tsc_reliable(void) | 
|  | { | 
|  | #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) | 
|  | if (is_geode_lx()) { | 
|  | /* RTSC counts during suspend */ | 
|  | #define RTSC_SUSP 0x100 | 
|  | unsigned long res_low, res_high; | 
|  |  | 
|  | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); | 
|  | /* Geode_LX - the OLPC CPU has a very reliable TSC */ | 
|  | if (res_low & RTSC_SUSP) | 
|  | tsc_clocksource_reliable = 1; | 
|  | } | 
|  | #endif | 
|  | if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) | 
|  | tsc_clocksource_reliable = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make an educated guess if the TSC is trustworthy and synchronized | 
|  | * over all CPUs. | 
|  | */ | 
|  | int unsynchronized_tsc(void) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) | 
|  | return 1; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (apic_is_clustered_box()) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
|  | return 0; | 
|  |  | 
|  | if (tsc_clocksource_reliable) | 
|  | return 0; | 
|  | /* | 
|  | * Intel systems are normally all synchronized. | 
|  | * Exceptions must mark TSC as unstable: | 
|  | */ | 
|  | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { | 
|  | /* assume multi socket systems are not synchronized: */ | 
|  | if (num_possible_cpus() > 1) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert ART to TSC given numerator/denominator found in detect_art() | 
|  | */ | 
|  | struct system_counterval_t convert_art_to_tsc(u64 art) | 
|  | { | 
|  | u64 tmp, res, rem; | 
|  |  | 
|  | rem = do_div(art, art_to_tsc_denominator); | 
|  |  | 
|  | res = art * art_to_tsc_numerator; | 
|  | tmp = rem * art_to_tsc_numerator; | 
|  |  | 
|  | do_div(tmp, art_to_tsc_denominator); | 
|  | res += tmp + art_to_tsc_offset; | 
|  |  | 
|  | return (struct system_counterval_t) {.cs = art_related_clocksource, | 
|  | .cycles = res}; | 
|  | } | 
|  | EXPORT_SYMBOL(convert_art_to_tsc); | 
|  |  | 
|  | /** | 
|  | * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. | 
|  | * @art_ns: ART (Always Running Timer) in unit of nanoseconds | 
|  | * | 
|  | * PTM requires all timestamps to be in units of nanoseconds. When user | 
|  | * software requests a cross-timestamp, this function converts system timestamp | 
|  | * to TSC. | 
|  | * | 
|  | * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set | 
|  | * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check | 
|  | * that this flag is set before conversion to TSC is attempted. | 
|  | * | 
|  | * Return: | 
|  | * struct system_counterval_t - system counter value with the pointer to the | 
|  | *	corresponding clocksource | 
|  | *	@cycles:	System counter value | 
|  | *	@cs:		Clocksource corresponding to system counter value. Used | 
|  | *			by timekeeping code to verify comparability of two cycle | 
|  | *			values. | 
|  | */ | 
|  |  | 
|  | struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) | 
|  | { | 
|  | u64 tmp, res, rem; | 
|  |  | 
|  | rem = do_div(art_ns, USEC_PER_SEC); | 
|  |  | 
|  | res = art_ns * tsc_khz; | 
|  | tmp = rem * tsc_khz; | 
|  |  | 
|  | do_div(tmp, USEC_PER_SEC); | 
|  | res += tmp; | 
|  |  | 
|  | return (struct system_counterval_t) { .cs = art_related_clocksource, | 
|  | .cycles = res}; | 
|  | } | 
|  | EXPORT_SYMBOL(convert_art_ns_to_tsc); | 
|  |  | 
|  |  | 
|  | static void tsc_refine_calibration_work(struct work_struct *work); | 
|  | static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); | 
|  | /** | 
|  | * tsc_refine_calibration_work - Further refine tsc freq calibration | 
|  | * @work - ignored. | 
|  | * | 
|  | * This functions uses delayed work over a period of a | 
|  | * second to further refine the TSC freq value. Since this is | 
|  | * timer based, instead of loop based, we don't block the boot | 
|  | * process while this longer calibration is done. | 
|  | * | 
|  | * If there are any calibration anomalies (too many SMIs, etc), | 
|  | * or the refined calibration is off by 1% of the fast early | 
|  | * calibration, we throw out the new calibration and use the | 
|  | * early calibration. | 
|  | */ | 
|  | static void tsc_refine_calibration_work(struct work_struct *work) | 
|  | { | 
|  | static u64 tsc_start = ULLONG_MAX, ref_start; | 
|  | static int hpet; | 
|  | u64 tsc_stop, ref_stop, delta; | 
|  | unsigned long freq; | 
|  | int cpu; | 
|  |  | 
|  | /* Don't bother refining TSC on unstable systems */ | 
|  | if (tsc_unstable) | 
|  | goto unreg; | 
|  |  | 
|  | /* | 
|  | * Since the work is started early in boot, we may be | 
|  | * delayed the first time we expire. So set the workqueue | 
|  | * again once we know timers are working. | 
|  | */ | 
|  | if (tsc_start == ULLONG_MAX) { | 
|  | restart: | 
|  | /* | 
|  | * Only set hpet once, to avoid mixing hardware | 
|  | * if the hpet becomes enabled later. | 
|  | */ | 
|  | hpet = is_hpet_enabled(); | 
|  | tsc_start = tsc_read_refs(&ref_start, hpet); | 
|  | schedule_delayed_work(&tsc_irqwork, HZ); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tsc_stop = tsc_read_refs(&ref_stop, hpet); | 
|  |  | 
|  | /* hpet or pmtimer available ? */ | 
|  | if (ref_start == ref_stop) | 
|  | goto out; | 
|  |  | 
|  | /* Check, whether the sampling was disturbed */ | 
|  | if (tsc_stop == ULLONG_MAX) | 
|  | goto restart; | 
|  |  | 
|  | delta = tsc_stop - tsc_start; | 
|  | delta *= 1000000LL; | 
|  | if (hpet) | 
|  | freq = calc_hpet_ref(delta, ref_start, ref_stop); | 
|  | else | 
|  | freq = calc_pmtimer_ref(delta, ref_start, ref_stop); | 
|  |  | 
|  | /* Make sure we're within 1% */ | 
|  | if (abs(tsc_khz - freq) > tsc_khz/100) | 
|  | goto out; | 
|  |  | 
|  | tsc_khz = freq; | 
|  | pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", | 
|  | (unsigned long)tsc_khz / 1000, | 
|  | (unsigned long)tsc_khz % 1000); | 
|  |  | 
|  | /* Inform the TSC deadline clockevent devices about the recalibration */ | 
|  | lapic_update_tsc_freq(); | 
|  |  | 
|  | /* Update the sched_clock() rate to match the clocksource one */ | 
|  | for_each_possible_cpu(cpu) | 
|  | set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); | 
|  |  | 
|  | out: | 
|  | if (tsc_unstable) | 
|  | goto unreg; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_ART)) | 
|  | art_related_clocksource = &clocksource_tsc; | 
|  | clocksource_register_khz(&clocksource_tsc, tsc_khz); | 
|  | unreg: | 
|  | clocksource_unregister(&clocksource_tsc_early); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __init init_tsc_clocksource(void) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) | 
|  | return 0; | 
|  |  | 
|  | if (tsc_unstable) | 
|  | goto unreg; | 
|  |  | 
|  | if (tsc_clocksource_reliable || no_tsc_watchdog) | 
|  | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) | 
|  | clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; | 
|  |  | 
|  | /* | 
|  | * When TSC frequency is known (retrieved via MSR or CPUID), we skip | 
|  | * the refined calibration and directly register it as a clocksource. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { | 
|  | if (boot_cpu_has(X86_FEATURE_ART)) | 
|  | art_related_clocksource = &clocksource_tsc; | 
|  | clocksource_register_khz(&clocksource_tsc, tsc_khz); | 
|  | unreg: | 
|  | clocksource_unregister(&clocksource_tsc_early); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | schedule_delayed_work(&tsc_irqwork, 0); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * We use device_initcall here, to ensure we run after the hpet | 
|  | * is fully initialized, which may occur at fs_initcall time. | 
|  | */ | 
|  | device_initcall(init_tsc_clocksource); | 
|  |  | 
|  | static bool __init determine_cpu_tsc_frequencies(bool early) | 
|  | { | 
|  | /* Make sure that cpu and tsc are not already calibrated */ | 
|  | WARN_ON(cpu_khz || tsc_khz); | 
|  |  | 
|  | if (early) { | 
|  | cpu_khz = x86_platform.calibrate_cpu(); | 
|  | if (tsc_early_khz) | 
|  | tsc_khz = tsc_early_khz; | 
|  | else | 
|  | tsc_khz = x86_platform.calibrate_tsc(); | 
|  | } else { | 
|  | /* We should not be here with non-native cpu calibration */ | 
|  | WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); | 
|  | cpu_khz = pit_hpet_ptimer_calibrate_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trust non-zero tsc_khz as authoritative, | 
|  | * and use it to sanity check cpu_khz, | 
|  | * which will be off if system timer is off. | 
|  | */ | 
|  | if (tsc_khz == 0) | 
|  | tsc_khz = cpu_khz; | 
|  | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) | 
|  | cpu_khz = tsc_khz; | 
|  |  | 
|  | if (tsc_khz == 0) | 
|  | return false; | 
|  |  | 
|  | pr_info("Detected %lu.%03lu MHz processor\n", | 
|  | (unsigned long)cpu_khz / KHZ, | 
|  | (unsigned long)cpu_khz % KHZ); | 
|  |  | 
|  | if (cpu_khz != tsc_khz) { | 
|  | pr_info("Detected %lu.%03lu MHz TSC", | 
|  | (unsigned long)tsc_khz / KHZ, | 
|  | (unsigned long)tsc_khz % KHZ); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned long __init get_loops_per_jiffy(void) | 
|  | { | 
|  | u64 lpj = (u64)tsc_khz * KHZ; | 
|  |  | 
|  | do_div(lpj, HZ); | 
|  | return lpj; | 
|  | } | 
|  |  | 
|  | static void __init tsc_enable_sched_clock(void) | 
|  | { | 
|  | /* Sanitize TSC ADJUST before cyc2ns gets initialized */ | 
|  | tsc_store_and_check_tsc_adjust(true); | 
|  | cyc2ns_init_boot_cpu(); | 
|  | static_branch_enable(&__use_tsc); | 
|  | } | 
|  |  | 
|  | void __init tsc_early_init(void) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_TSC)) | 
|  | return; | 
|  | /* Don't change UV TSC multi-chassis synchronization */ | 
|  | if (is_early_uv_system()) | 
|  | return; | 
|  | if (!determine_cpu_tsc_frequencies(true)) | 
|  | return; | 
|  | loops_per_jiffy = get_loops_per_jiffy(); | 
|  |  | 
|  | tsc_enable_sched_clock(); | 
|  | } | 
|  |  | 
|  | void __init tsc_init(void) | 
|  | { | 
|  | /* | 
|  | * native_calibrate_cpu_early can only calibrate using methods that are | 
|  | * available early in boot. | 
|  | */ | 
|  | if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) | 
|  | x86_platform.calibrate_cpu = native_calibrate_cpu; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_TSC)) { | 
|  | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tsc_khz) { | 
|  | /* We failed to determine frequencies earlier, try again */ | 
|  | if (!determine_cpu_tsc_frequencies(false)) { | 
|  | mark_tsc_unstable("could not calculate TSC khz"); | 
|  | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); | 
|  | return; | 
|  | } | 
|  | tsc_enable_sched_clock(); | 
|  | } | 
|  |  | 
|  | cyc2ns_init_secondary_cpus(); | 
|  |  | 
|  | if (!no_sched_irq_time) | 
|  | enable_sched_clock_irqtime(); | 
|  |  | 
|  | lpj_fine = get_loops_per_jiffy(); | 
|  | use_tsc_delay(); | 
|  |  | 
|  | check_system_tsc_reliable(); | 
|  |  | 
|  | if (unsynchronized_tsc()) { | 
|  | mark_tsc_unstable("TSCs unsynchronized"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tsc_clocksource_reliable || no_tsc_watchdog) | 
|  | clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; | 
|  |  | 
|  | clocksource_register_khz(&clocksource_tsc_early, tsc_khz); | 
|  | detect_art(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * If we have a constant TSC and are using the TSC for the delay loop, | 
|  | * we can skip clock calibration if another cpu in the same socket has already | 
|  | * been calibrated. This assumes that CONSTANT_TSC applies to all | 
|  | * cpus in the socket - this should be a safe assumption. | 
|  | */ | 
|  | unsigned long calibrate_delay_is_known(void) | 
|  | { | 
|  | int sibling, cpu = smp_processor_id(); | 
|  | int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); | 
|  | const struct cpumask *mask = topology_core_cpumask(cpu); | 
|  |  | 
|  | if (!constant_tsc || !mask) | 
|  | return 0; | 
|  |  | 
|  | sibling = cpumask_any_but(mask, cpu); | 
|  | if (sibling < nr_cpu_ids) | 
|  | return cpu_data(sibling).loops_per_jiffy; | 
|  | return 0; | 
|  | } | 
|  | #endif |