blob: 924c17d46903c9ead94c6a2c33d926ef53469392 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2015-2018 Oracle. All rights reserved.
* Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
* Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Tom Tucker <tom@opengridcomputing.com>
*/
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/export.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <rdma/rw.h>
#include <linux/sunrpc/addr.h>
#include <linux/sunrpc/debug.h>
#include <linux/sunrpc/rpc_rdma.h>
#include <linux/sunrpc/svc_xprt.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
static struct svcxprt_rdma *svc_rdma_create_xprt(struct svc_serv *serv,
struct net *net);
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags);
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
static void svc_rdma_release_rqst(struct svc_rqst *);
static void svc_rdma_detach(struct svc_xprt *xprt);
static void svc_rdma_free(struct svc_xprt *xprt);
static int svc_rdma_has_wspace(struct svc_xprt *xprt);
static void svc_rdma_secure_port(struct svc_rqst *);
static void svc_rdma_kill_temp_xprt(struct svc_xprt *);
static const struct svc_xprt_ops svc_rdma_ops = {
.xpo_create = svc_rdma_create,
.xpo_recvfrom = svc_rdma_recvfrom,
.xpo_sendto = svc_rdma_sendto,
.xpo_release_rqst = svc_rdma_release_rqst,
.xpo_detach = svc_rdma_detach,
.xpo_free = svc_rdma_free,
.xpo_has_wspace = svc_rdma_has_wspace,
.xpo_accept = svc_rdma_accept,
.xpo_secure_port = svc_rdma_secure_port,
.xpo_kill_temp_xprt = svc_rdma_kill_temp_xprt,
};
struct svc_xprt_class svc_rdma_class = {
.xcl_name = "rdma",
.xcl_owner = THIS_MODULE,
.xcl_ops = &svc_rdma_ops,
.xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA,
.xcl_ident = XPRT_TRANSPORT_RDMA,
};
/* QP event handler */
static void qp_event_handler(struct ib_event *event, void *context)
{
struct svc_xprt *xprt = context;
trace_svcrdma_qp_error(event, (struct sockaddr *)&xprt->xpt_remote);
switch (event->event) {
/* These are considered benign events */
case IB_EVENT_PATH_MIG:
case IB_EVENT_COMM_EST:
case IB_EVENT_SQ_DRAINED:
case IB_EVENT_QP_LAST_WQE_REACHED:
break;
/* These are considered fatal events */
case IB_EVENT_PATH_MIG_ERR:
case IB_EVENT_QP_FATAL:
case IB_EVENT_QP_REQ_ERR:
case IB_EVENT_QP_ACCESS_ERR:
case IB_EVENT_DEVICE_FATAL:
default:
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
break;
}
}
static struct svcxprt_rdma *svc_rdma_create_xprt(struct svc_serv *serv,
struct net *net)
{
struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
if (!cma_xprt) {
dprintk("svcrdma: failed to create new transport\n");
return NULL;
}
svc_xprt_init(net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
INIT_LIST_HEAD(&cma_xprt->sc_send_ctxts);
INIT_LIST_HEAD(&cma_xprt->sc_recv_ctxts);
INIT_LIST_HEAD(&cma_xprt->sc_rw_ctxts);
init_waitqueue_head(&cma_xprt->sc_send_wait);
spin_lock_init(&cma_xprt->sc_lock);
spin_lock_init(&cma_xprt->sc_rq_dto_lock);
spin_lock_init(&cma_xprt->sc_send_lock);
spin_lock_init(&cma_xprt->sc_recv_lock);
spin_lock_init(&cma_xprt->sc_rw_ctxt_lock);
/*
* Note that this implies that the underlying transport support
* has some form of congestion control (see RFC 7530 section 3.1
* paragraph 2). For now, we assume that all supported RDMA
* transports are suitable here.
*/
set_bit(XPT_CONG_CTRL, &cma_xprt->sc_xprt.xpt_flags);
return cma_xprt;
}
static void
svc_rdma_parse_connect_private(struct svcxprt_rdma *newxprt,
struct rdma_conn_param *param)
{
const struct rpcrdma_connect_private *pmsg = param->private_data;
if (pmsg &&
pmsg->cp_magic == rpcrdma_cmp_magic &&
pmsg->cp_version == RPCRDMA_CMP_VERSION) {
newxprt->sc_snd_w_inv = pmsg->cp_flags &
RPCRDMA_CMP_F_SND_W_INV_OK;
dprintk("svcrdma: client send_size %u, recv_size %u "
"remote inv %ssupported\n",
rpcrdma_decode_buffer_size(pmsg->cp_send_size),
rpcrdma_decode_buffer_size(pmsg->cp_recv_size),
newxprt->sc_snd_w_inv ? "" : "un");
}
}
/*
* This function handles the CONNECT_REQUEST event on a listening
* endpoint. It is passed the cma_id for the _new_ connection. The context in
* this cma_id is inherited from the listening cma_id and is the svc_xprt
* structure for the listening endpoint.
*
* This function creates a new xprt for the new connection and enqueues it on
* the accept queue for the listent xprt. When the listen thread is kicked, it
* will call the recvfrom method on the listen xprt which will accept the new
* connection.
*/
static void handle_connect_req(struct rdma_cm_id *new_cma_id,
struct rdma_conn_param *param)
{
struct svcxprt_rdma *listen_xprt = new_cma_id->context;
struct svcxprt_rdma *newxprt;
struct sockaddr *sa;
/* Create a new transport */
newxprt = svc_rdma_create_xprt(listen_xprt->sc_xprt.xpt_server,
listen_xprt->sc_xprt.xpt_net);
if (!newxprt)
return;
newxprt->sc_cm_id = new_cma_id;
new_cma_id->context = newxprt;
svc_rdma_parse_connect_private(newxprt, param);
/* Save client advertised inbound read limit for use later in accept. */
newxprt->sc_ord = param->initiator_depth;
/* Set the local and remote addresses in the transport */
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
/*
* Enqueue the new transport on the accept queue of the listening
* transport
*/
spin_lock_bh(&listen_xprt->sc_lock);
list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
spin_unlock_bh(&listen_xprt->sc_lock);
set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
svc_xprt_enqueue(&listen_xprt->sc_xprt);
}
/*
* Handles events generated on the listening endpoint. These events will be
* either be incoming connect requests or adapter removal events.
*/
static int rdma_listen_handler(struct rdma_cm_id *cma_id,
struct rdma_cm_event *event)
{
struct sockaddr *sap = (struct sockaddr *)&cma_id->route.addr.src_addr;
trace_svcrdma_cm_event(event, sap);
switch (event->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
"event = %s (%d)\n", cma_id, cma_id->context,
rdma_event_msg(event->event), event->event);
handle_connect_req(cma_id, &event->param.conn);
break;
default:
/* NB: No device removal upcall for INADDR_ANY listeners */
dprintk("svcrdma: Unexpected event on listening endpoint %p, "
"event = %s (%d)\n", cma_id,
rdma_event_msg(event->event), event->event);
break;
}
return 0;
}
static int rdma_cma_handler(struct rdma_cm_id *cma_id,
struct rdma_cm_event *event)
{
struct sockaddr *sap = (struct sockaddr *)&cma_id->route.addr.dst_addr;
struct svcxprt_rdma *rdma = cma_id->context;
struct svc_xprt *xprt = &rdma->sc_xprt;
trace_svcrdma_cm_event(event, sap);
switch (event->event) {
case RDMA_CM_EVENT_ESTABLISHED:
/* Accept complete */
svc_xprt_get(xprt);
dprintk("svcrdma: Connection completed on DTO xprt=%p, "
"cm_id=%p\n", xprt, cma_id);
clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
svc_xprt_enqueue(xprt);
break;
case RDMA_CM_EVENT_DISCONNECTED:
dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
xprt, cma_id);
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
svc_xprt_put(xprt);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
"event = %s (%d)\n", cma_id, xprt,
rdma_event_msg(event->event), event->event);
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
svc_xprt_put(xprt);
break;
default:
dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
"event = %s (%d)\n", cma_id,
rdma_event_msg(event->event), event->event);
break;
}
return 0;
}
/*
* Create a listening RDMA service endpoint.
*/
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags)
{
struct rdma_cm_id *listen_id;
struct svcxprt_rdma *cma_xprt;
int ret;
dprintk("svcrdma: Creating RDMA listener\n");
if ((sa->sa_family != AF_INET) && (sa->sa_family != AF_INET6)) {
dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
return ERR_PTR(-EAFNOSUPPORT);
}
cma_xprt = svc_rdma_create_xprt(serv, net);
if (!cma_xprt)
return ERR_PTR(-ENOMEM);
set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
strcpy(cma_xprt->sc_xprt.xpt_remotebuf, "listener");
listen_id = rdma_create_id(net, rdma_listen_handler, cma_xprt,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(listen_id)) {
ret = PTR_ERR(listen_id);
dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
goto err0;
}
/* Allow both IPv4 and IPv6 sockets to bind a single port
* at the same time.
*/
#if IS_ENABLED(CONFIG_IPV6)
ret = rdma_set_afonly(listen_id, 1);
if (ret) {
dprintk("svcrdma: rdma_set_afonly failed = %d\n", ret);
goto err1;
}
#endif
ret = rdma_bind_addr(listen_id, sa);
if (ret) {
dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
goto err1;
}
cma_xprt->sc_cm_id = listen_id;
ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
if (ret) {
dprintk("svcrdma: rdma_listen failed = %d\n", ret);
goto err1;
}
/*
* We need to use the address from the cm_id in case the
* caller specified 0 for the port number.
*/
sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
return &cma_xprt->sc_xprt;
err1:
rdma_destroy_id(listen_id);
err0:
kfree(cma_xprt);
return ERR_PTR(ret);
}
/*
* This is the xpo_recvfrom function for listening endpoints. Its
* purpose is to accept incoming connections. The CMA callback handler
* has already created a new transport and attached it to the new CMA
* ID.
*
* There is a queue of pending connections hung on the listening
* transport. This queue contains the new svc_xprt structure. This
* function takes svc_xprt structures off the accept_q and completes
* the connection.
*/
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
{
struct svcxprt_rdma *listen_rdma;
struct svcxprt_rdma *newxprt = NULL;
struct rdma_conn_param conn_param;
struct rpcrdma_connect_private pmsg;
struct ib_qp_init_attr qp_attr;
unsigned int ctxts, rq_depth;
struct ib_device *dev;
struct sockaddr *sap;
int ret = 0;
listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
clear_bit(XPT_CONN, &xprt->xpt_flags);
/* Get the next entry off the accept list */
spin_lock_bh(&listen_rdma->sc_lock);
if (!list_empty(&listen_rdma->sc_accept_q)) {
newxprt = list_entry(listen_rdma->sc_accept_q.next,
struct svcxprt_rdma, sc_accept_q);
list_del_init(&newxprt->sc_accept_q);
}
if (!list_empty(&listen_rdma->sc_accept_q))
set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
spin_unlock_bh(&listen_rdma->sc_lock);
if (!newxprt)
return NULL;
dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
newxprt, newxprt->sc_cm_id);
dev = newxprt->sc_cm_id->device;
newxprt->sc_port_num = newxprt->sc_cm_id->port_num;
/* Qualify the transport resource defaults with the
* capabilities of this particular device */
/* Transport header, head iovec, tail iovec */
newxprt->sc_max_send_sges = 3;
/* Add one SGE per page list entry */
newxprt->sc_max_send_sges += svcrdma_max_req_size / PAGE_SIZE;
if (newxprt->sc_max_send_sges > dev->attrs.max_send_sge) {
pr_err("svcrdma: too few Send SGEs available (%d needed)\n",
newxprt->sc_max_send_sges);
goto errout;
}
newxprt->sc_max_req_size = svcrdma_max_req_size;
newxprt->sc_max_requests = svcrdma_max_requests;
newxprt->sc_max_bc_requests = svcrdma_max_bc_requests;
rq_depth = newxprt->sc_max_requests + newxprt->sc_max_bc_requests;
if (rq_depth > dev->attrs.max_qp_wr) {
pr_warn("svcrdma: reducing receive depth to %d\n",
dev->attrs.max_qp_wr);
rq_depth = dev->attrs.max_qp_wr;
newxprt->sc_max_requests = rq_depth - 2;
newxprt->sc_max_bc_requests = 2;
}
newxprt->sc_fc_credits = cpu_to_be32(newxprt->sc_max_requests);
ctxts = rdma_rw_mr_factor(dev, newxprt->sc_port_num, RPCSVC_MAXPAGES);
ctxts *= newxprt->sc_max_requests;
newxprt->sc_sq_depth = rq_depth + ctxts;
if (newxprt->sc_sq_depth > dev->attrs.max_qp_wr) {
pr_warn("svcrdma: reducing send depth to %d\n",
dev->attrs.max_qp_wr);
newxprt->sc_sq_depth = dev->attrs.max_qp_wr;
}
atomic_set(&newxprt->sc_sq_avail, newxprt->sc_sq_depth);
newxprt->sc_pd = ib_alloc_pd(dev, 0);
if (IS_ERR(newxprt->sc_pd)) {
dprintk("svcrdma: error creating PD for connect request\n");
goto errout;
}
newxprt->sc_sq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_sq_depth,
0, IB_POLL_WORKQUEUE);
if (IS_ERR(newxprt->sc_sq_cq)) {
dprintk("svcrdma: error creating SQ CQ for connect request\n");
goto errout;
}
newxprt->sc_rq_cq = ib_alloc_cq(dev, newxprt, rq_depth,
0, IB_POLL_WORKQUEUE);
if (IS_ERR(newxprt->sc_rq_cq)) {
dprintk("svcrdma: error creating RQ CQ for connect request\n");
goto errout;
}
memset(&qp_attr, 0, sizeof qp_attr);
qp_attr.event_handler = qp_event_handler;
qp_attr.qp_context = &newxprt->sc_xprt;
qp_attr.port_num = newxprt->sc_port_num;
qp_attr.cap.max_rdma_ctxs = ctxts;
qp_attr.cap.max_send_wr = newxprt->sc_sq_depth - ctxts;
qp_attr.cap.max_recv_wr = rq_depth;
qp_attr.cap.max_send_sge = newxprt->sc_max_send_sges;
qp_attr.cap.max_recv_sge = 1;
qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
qp_attr.qp_type = IB_QPT_RC;
qp_attr.send_cq = newxprt->sc_sq_cq;
qp_attr.recv_cq = newxprt->sc_rq_cq;
dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n",
newxprt->sc_cm_id, newxprt->sc_pd);
dprintk(" cap.max_send_wr = %d, cap.max_recv_wr = %d\n",
qp_attr.cap.max_send_wr, qp_attr.cap.max_recv_wr);
dprintk(" cap.max_send_sge = %d, cap.max_recv_sge = %d\n",
qp_attr.cap.max_send_sge, qp_attr.cap.max_recv_sge);
ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
if (ret) {
dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
goto errout;
}
newxprt->sc_qp = newxprt->sc_cm_id->qp;
if (!(dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
newxprt->sc_snd_w_inv = false;
if (!rdma_protocol_iwarp(dev, newxprt->sc_port_num) &&
!rdma_ib_or_roce(dev, newxprt->sc_port_num))
goto errout;
if (!svc_rdma_post_recvs(newxprt))
goto errout;
/* Swap out the handler */
newxprt->sc_cm_id->event_handler = rdma_cma_handler;
/* Construct RDMA-CM private message */
pmsg.cp_magic = rpcrdma_cmp_magic;
pmsg.cp_version = RPCRDMA_CMP_VERSION;
pmsg.cp_flags = 0;
pmsg.cp_send_size = pmsg.cp_recv_size =
rpcrdma_encode_buffer_size(newxprt->sc_max_req_size);
/* Accept Connection */
set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = 0;
conn_param.initiator_depth = min_t(int, newxprt->sc_ord,
dev->attrs.max_qp_init_rd_atom);
if (!conn_param.initiator_depth) {
dprintk("svcrdma: invalid ORD setting\n");
ret = -EINVAL;
goto errout;
}
conn_param.private_data = &pmsg;
conn_param.private_data_len = sizeof(pmsg);
ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
if (ret)
goto errout;
dprintk("svcrdma: new connection %p accepted:\n", newxprt);
sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
dprintk(" local address : %pIS:%u\n", sap, rpc_get_port(sap));
sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
dprintk(" remote address : %pIS:%u\n", sap, rpc_get_port(sap));
dprintk(" max_sge : %d\n", newxprt->sc_max_send_sges);
dprintk(" sq_depth : %d\n", newxprt->sc_sq_depth);
dprintk(" rdma_rw_ctxs : %d\n", ctxts);
dprintk(" max_requests : %d\n", newxprt->sc_max_requests);
dprintk(" ord : %d\n", conn_param.initiator_depth);
trace_svcrdma_xprt_accept(&newxprt->sc_xprt);
return &newxprt->sc_xprt;
errout:
dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
trace_svcrdma_xprt_fail(&newxprt->sc_xprt);
/* Take a reference in case the DTO handler runs */
svc_xprt_get(&newxprt->sc_xprt);
if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
ib_destroy_qp(newxprt->sc_qp);
rdma_destroy_id(newxprt->sc_cm_id);
/* This call to put will destroy the transport */
svc_xprt_put(&newxprt->sc_xprt);
return NULL;
}
static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
{
}
/*
* When connected, an svc_xprt has at least two references:
*
* - A reference held by the cm_id between the ESTABLISHED and
* DISCONNECTED events. If the remote peer disconnected first, this
* reference could be gone.
*
* - A reference held by the svc_recv code that called this function
* as part of close processing.
*
* At a minimum one references should still be held.
*/
static void svc_rdma_detach(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
/* Disconnect and flush posted WQE */
rdma_disconnect(rdma->sc_cm_id);
}
static void __svc_rdma_free(struct work_struct *work)
{
struct svcxprt_rdma *rdma =
container_of(work, struct svcxprt_rdma, sc_work);
struct svc_xprt *xprt = &rdma->sc_xprt;
trace_svcrdma_xprt_free(xprt);
if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
ib_drain_qp(rdma->sc_qp);
/* We should only be called from kref_put */
if (kref_read(&xprt->xpt_ref) != 0)
pr_err("svcrdma: sc_xprt still in use? (%d)\n",
kref_read(&xprt->xpt_ref));
svc_rdma_flush_recv_queues(rdma);
/* Final put of backchannel client transport */
if (xprt->xpt_bc_xprt) {
xprt_put(xprt->xpt_bc_xprt);
xprt->xpt_bc_xprt = NULL;
}
svc_rdma_destroy_rw_ctxts(rdma);
svc_rdma_send_ctxts_destroy(rdma);
svc_rdma_recv_ctxts_destroy(rdma);
/* Destroy the QP if present (not a listener) */
if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
ib_destroy_qp(rdma->sc_qp);
if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
ib_free_cq(rdma->sc_sq_cq);
if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
ib_free_cq(rdma->sc_rq_cq);
if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
ib_dealloc_pd(rdma->sc_pd);
/* Destroy the CM ID */
rdma_destroy_id(rdma->sc_cm_id);
kfree(rdma);
}
static void svc_rdma_free(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
INIT_WORK(&rdma->sc_work, __svc_rdma_free);
queue_work(svc_rdma_wq, &rdma->sc_work);
}
static int svc_rdma_has_wspace(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
/*
* If there are already waiters on the SQ,
* return false.
*/
if (waitqueue_active(&rdma->sc_send_wait))
return 0;
/* Otherwise return true. */
return 1;
}
static void svc_rdma_secure_port(struct svc_rqst *rqstp)
{
set_bit(RQ_SECURE, &rqstp->rq_flags);
}
static void svc_rdma_kill_temp_xprt(struct svc_xprt *xprt)
{
}