| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Moving/copying garbage collector |
| * |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcachefs.h" |
| #include "alloc_foreground.h" |
| #include "btree_iter.h" |
| #include "btree_update.h" |
| #include "buckets.h" |
| #include "clock.h" |
| #include "disk_groups.h" |
| #include "error.h" |
| #include "extents.h" |
| #include "eytzinger.h" |
| #include "io.h" |
| #include "keylist.h" |
| #include "move.h" |
| #include "movinggc.h" |
| #include "super-io.h" |
| #include "trace.h" |
| |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include <linux/math64.h> |
| #include <linux/sched/task.h> |
| #include <linux/sort.h> |
| #include <linux/wait.h> |
| |
| /* |
| * We can't use the entire copygc reserve in one iteration of copygc: we may |
| * need the buckets we're freeing up to go back into the copygc reserve to make |
| * forward progress, but if the copygc reserve is full they'll be available for |
| * any allocation - and it's possible that in a given iteration, we free up most |
| * of the buckets we're going to free before we allocate most of the buckets |
| * we're going to allocate. |
| * |
| * If we only use half of the reserve per iteration, then in steady state we'll |
| * always have room in the reserve for the buckets we're going to need in the |
| * next iteration: |
| */ |
| #define COPYGC_BUCKETS_PER_ITER(ca) \ |
| ((ca)->free[RESERVE_MOVINGGC].size / 2) |
| |
| static int bucket_offset_cmp(const void *_l, const void *_r, size_t size) |
| { |
| const struct copygc_heap_entry *l = _l; |
| const struct copygc_heap_entry *r = _r; |
| |
| return cmp_int(l->dev, r->dev) ?: |
| cmp_int(l->offset, r->offset); |
| } |
| |
| static enum data_cmd copygc_pred(struct bch_fs *c, void *arg, |
| struct bkey_s_c k, |
| struct bch_io_opts *io_opts, |
| struct data_opts *data_opts) |
| { |
| copygc_heap *h = &c->copygc_heap; |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); |
| struct copygc_heap_entry search = { |
| .dev = p.ptr.dev, |
| .offset = p.ptr.offset, |
| }; |
| |
| ssize_t i = eytzinger0_find_le(h->data, h->used, |
| sizeof(h->data[0]), |
| bucket_offset_cmp, &search); |
| #if 0 |
| /* eytzinger search verify code: */ |
| ssize_t j = -1, k; |
| |
| for (k = 0; k < h->used; k++) |
| if (h->data[k].offset <= ptr->offset && |
| (j < 0 || h->data[k].offset > h->data[j].offset)) |
| j = k; |
| |
| BUG_ON(i != j); |
| #endif |
| if (i >= 0 && |
| p.ptr.offset < h->data[i].offset + ca->mi.bucket_size && |
| p.ptr.gen == h->data[i].gen) { |
| data_opts->target = io_opts->background_target; |
| data_opts->nr_replicas = 1; |
| data_opts->btree_insert_flags = BTREE_INSERT_USE_RESERVE; |
| data_opts->rewrite_dev = p.ptr.dev; |
| |
| if (p.has_ec) { |
| struct stripe *m = genradix_ptr(&c->stripes[0], p.ec.idx); |
| |
| data_opts->nr_replicas += m->nr_redundant; |
| } |
| |
| return DATA_REWRITE; |
| } |
| } |
| |
| return DATA_SKIP; |
| } |
| |
| static bool have_copygc_reserve(struct bch_dev *ca) |
| { |
| bool ret; |
| |
| spin_lock(&ca->fs->freelist_lock); |
| ret = fifo_full(&ca->free[RESERVE_MOVINGGC]) || |
| ca->allocator_state != ALLOCATOR_RUNNING; |
| spin_unlock(&ca->fs->freelist_lock); |
| |
| return ret; |
| } |
| |
| static inline int fragmentation_cmp(copygc_heap *heap, |
| struct copygc_heap_entry l, |
| struct copygc_heap_entry r) |
| { |
| return cmp_int(l.fragmentation, r.fragmentation); |
| } |
| |
| static int bch2_copygc(struct bch_fs *c) |
| { |
| copygc_heap *h = &c->copygc_heap; |
| struct copygc_heap_entry e, *i; |
| struct bucket_array *buckets; |
| struct bch_move_stats move_stats; |
| u64 sectors_to_move = 0, sectors_not_moved = 0; |
| u64 sectors_reserved = 0; |
| u64 buckets_to_move, buckets_not_moved = 0; |
| struct bch_dev *ca; |
| unsigned dev_idx; |
| size_t b, heap_size = 0; |
| int ret; |
| |
| memset(&move_stats, 0, sizeof(move_stats)); |
| /* |
| * Find buckets with lowest sector counts, skipping completely |
| * empty buckets, by building a maxheap sorted by sector count, |
| * and repeatedly replacing the maximum element until all |
| * buckets have been visited. |
| */ |
| h->used = 0; |
| |
| for_each_rw_member(ca, c, dev_idx) |
| heap_size += ca->mi.nbuckets >> 7; |
| |
| if (h->size < heap_size) { |
| free_heap(&c->copygc_heap); |
| if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) { |
| bch_err(c, "error allocating copygc heap"); |
| return 0; |
| } |
| } |
| |
| for_each_rw_member(ca, c, dev_idx) { |
| closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca)); |
| |
| spin_lock(&ca->fs->freelist_lock); |
| sectors_reserved += fifo_used(&ca->free[RESERVE_MOVINGGC]) * ca->mi.bucket_size; |
| spin_unlock(&ca->fs->freelist_lock); |
| |
| down_read(&ca->bucket_lock); |
| buckets = bucket_array(ca); |
| |
| for (b = buckets->first_bucket; b < buckets->nbuckets; b++) { |
| struct bucket *g = buckets->b + b; |
| struct bucket_mark m = READ_ONCE(g->mark); |
| struct copygc_heap_entry e; |
| |
| if (m.owned_by_allocator || |
| m.data_type != BCH_DATA_user || |
| !bucket_sectors_used(m) || |
| bucket_sectors_used(m) >= ca->mi.bucket_size) |
| continue; |
| |
| WARN_ON(m.stripe && !g->ec_redundancy); |
| |
| e = (struct copygc_heap_entry) { |
| .dev = dev_idx, |
| .gen = m.gen, |
| .replicas = 1 + g->ec_redundancy, |
| .fragmentation = bucket_sectors_used(m) * (1U << 15) |
| / ca->mi.bucket_size, |
| .sectors = bucket_sectors_used(m), |
| .offset = bucket_to_sector(ca, b), |
| }; |
| heap_add_or_replace(h, e, -fragmentation_cmp, NULL); |
| } |
| up_read(&ca->bucket_lock); |
| } |
| |
| if (!sectors_reserved) { |
| bch2_fs_fatal_error(c, "stuck, ran out of copygc reserve!"); |
| return -1; |
| } |
| |
| for (i = h->data; i < h->data + h->used; i++) |
| sectors_to_move += i->sectors * i->replicas; |
| |
| while (sectors_to_move > sectors_reserved) { |
| BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL)); |
| sectors_to_move -= e.sectors * e.replicas; |
| } |
| |
| buckets_to_move = h->used; |
| |
| if (!buckets_to_move) |
| return 0; |
| |
| eytzinger0_sort(h->data, h->used, |
| sizeof(h->data[0]), |
| bucket_offset_cmp, NULL); |
| |
| ret = bch2_move_data(c, &c->copygc_pd.rate, |
| writepoint_ptr(&c->copygc_write_point), |
| POS_MIN, POS_MAX, |
| copygc_pred, NULL, |
| &move_stats); |
| |
| for_each_rw_member(ca, c, dev_idx) { |
| down_read(&ca->bucket_lock); |
| buckets = bucket_array(ca); |
| for (i = h->data; i < h->data + h->used; i++) { |
| struct bucket_mark m; |
| size_t b; |
| |
| if (i->dev != dev_idx) |
| continue; |
| |
| b = sector_to_bucket(ca, i->offset); |
| m = READ_ONCE(buckets->b[b].mark); |
| |
| if (i->gen == m.gen && |
| bucket_sectors_used(m)) { |
| sectors_not_moved += bucket_sectors_used(m); |
| buckets_not_moved++; |
| } |
| } |
| up_read(&ca->bucket_lock); |
| } |
| |
| if (sectors_not_moved && !ret) |
| bch_warn_ratelimited(c, |
| "copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved (move stats: moved %llu sectors, raced %llu keys, %llu sectors)", |
| sectors_not_moved, sectors_to_move, |
| buckets_not_moved, buckets_to_move, |
| atomic64_read(&move_stats.sectors_moved), |
| atomic64_read(&move_stats.keys_raced), |
| atomic64_read(&move_stats.sectors_raced)); |
| |
| trace_copygc(c, |
| atomic64_read(&move_stats.sectors_moved), sectors_not_moved, |
| buckets_to_move, buckets_not_moved); |
| return 0; |
| } |
| |
| /* |
| * Copygc runs when the amount of fragmented data is above some arbitrary |
| * threshold: |
| * |
| * The threshold at the limit - when the device is full - is the amount of space |
| * we reserved in bch2_recalc_capacity; we can't have more than that amount of |
| * disk space stranded due to fragmentation and store everything we have |
| * promised to store. |
| * |
| * But we don't want to be running copygc unnecessarily when the device still |
| * has plenty of free space - rather, we want copygc to smoothly run every so |
| * often and continually reduce the amount of fragmented space as the device |
| * fills up. So, we increase the threshold by half the current free space. |
| */ |
| unsigned long bch2_copygc_wait_amount(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned dev_idx; |
| u64 fragmented_allowed = c->copygc_threshold; |
| u64 fragmented = 0; |
| |
| for_each_rw_member(ca, c, dev_idx) { |
| struct bch_dev_usage usage = bch2_dev_usage_read(ca); |
| |
| fragmented_allowed += ((__dev_buckets_available(ca, usage) * |
| ca->mi.bucket_size) >> 1); |
| fragmented += usage.sectors_fragmented; |
| } |
| |
| return max_t(s64, 0, fragmented_allowed - fragmented); |
| } |
| |
| static int bch2_copygc_thread(void *arg) |
| { |
| struct bch_fs *c = arg; |
| struct io_clock *clock = &c->io_clock[WRITE]; |
| unsigned long last, wait; |
| |
| set_freezable(); |
| |
| while (!kthread_should_stop()) { |
| if (kthread_wait_freezable(c->copy_gc_enabled)) |
| break; |
| |
| last = atomic_long_read(&clock->now); |
| wait = bch2_copygc_wait_amount(c); |
| |
| if (wait > clock->max_slop) { |
| bch2_kthread_io_clock_wait(clock, last + wait, |
| MAX_SCHEDULE_TIMEOUT); |
| continue; |
| } |
| |
| if (bch2_copygc(c)) |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void bch2_copygc_stop(struct bch_fs *c) |
| { |
| c->copygc_pd.rate.rate = UINT_MAX; |
| bch2_ratelimit_reset(&c->copygc_pd.rate); |
| |
| if (c->copygc_thread) { |
| kthread_stop(c->copygc_thread); |
| put_task_struct(c->copygc_thread); |
| } |
| c->copygc_thread = NULL; |
| } |
| |
| int bch2_copygc_start(struct bch_fs *c) |
| { |
| struct task_struct *t; |
| |
| if (c->copygc_thread) |
| return 0; |
| |
| if (c->opts.nochanges) |
| return 0; |
| |
| if (bch2_fs_init_fault("copygc_start")) |
| return -ENOMEM; |
| |
| t = kthread_create(bch2_copygc_thread, c, "bch_copygc"); |
| if (IS_ERR(t)) |
| return PTR_ERR(t); |
| |
| get_task_struct(t); |
| |
| c->copygc_thread = t; |
| wake_up_process(c->copygc_thread); |
| |
| return 0; |
| } |
| |
| void bch2_fs_copygc_init(struct bch_fs *c) |
| { |
| bch2_pd_controller_init(&c->copygc_pd); |
| c->copygc_pd.d_term = 0; |
| } |