| /* |
| * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. |
| * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. |
| * |
| * This copyrighted material is made available to anyone wishing to use, |
| * modify, copy, or redistribute it subject to the terms and conditions |
| * of the GNU General Public License version 2. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/completion.h> |
| #include <linux/buffer_head.h> |
| #include <linux/fs.h> |
| #include <linux/gfs2_ondisk.h> |
| #include <linux/prefetch.h> |
| #include <linux/blkdev.h> |
| #include <linux/rbtree.h> |
| #include <linux/random.h> |
| |
| #include "gfs2.h" |
| #include "incore.h" |
| #include "glock.h" |
| #include "glops.h" |
| #include "lops.h" |
| #include "meta_io.h" |
| #include "quota.h" |
| #include "rgrp.h" |
| #include "super.h" |
| #include "trans.h" |
| #include "util.h" |
| #include "log.h" |
| #include "inode.h" |
| #include "trace_gfs2.h" |
| #include "dir.h" |
| |
| #define BFITNOENT ((u32)~0) |
| #define NO_BLOCK ((u64)~0) |
| |
| #if BITS_PER_LONG == 32 |
| #define LBITMASK (0x55555555UL) |
| #define LBITSKIP55 (0x55555555UL) |
| #define LBITSKIP00 (0x00000000UL) |
| #else |
| #define LBITMASK (0x5555555555555555UL) |
| #define LBITSKIP55 (0x5555555555555555UL) |
| #define LBITSKIP00 (0x0000000000000000UL) |
| #endif |
| |
| /* |
| * These routines are used by the resource group routines (rgrp.c) |
| * to keep track of block allocation. Each block is represented by two |
| * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. |
| * |
| * 0 = Free |
| * 1 = Used (not metadata) |
| * 2 = Unlinked (still in use) inode |
| * 3 = Used (metadata) |
| */ |
| |
| struct gfs2_extent { |
| struct gfs2_rbm rbm; |
| u32 len; |
| }; |
| |
| static const char valid_change[16] = { |
| /* current */ |
| /* n */ 0, 1, 1, 1, |
| /* e */ 1, 0, 0, 0, |
| /* w */ 0, 0, 0, 1, |
| 1, 0, 0, 0 |
| }; |
| |
| static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, |
| const struct gfs2_inode *ip, bool nowrap); |
| |
| |
| /** |
| * gfs2_setbit - Set a bit in the bitmaps |
| * @rbm: The position of the bit to set |
| * @do_clone: Also set the clone bitmap, if it exists |
| * @new_state: the new state of the block |
| * |
| */ |
| |
| static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, |
| unsigned char new_state) |
| { |
| unsigned char *byte1, *byte2, *end, cur_state; |
| struct gfs2_bitmap *bi = rbm_bi(rbm); |
| unsigned int buflen = bi->bi_len; |
| const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; |
| |
| byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); |
| end = bi->bi_bh->b_data + bi->bi_offset + buflen; |
| |
| BUG_ON(byte1 >= end); |
| |
| cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; |
| |
| if (unlikely(!valid_change[new_state * 4 + cur_state])) { |
| pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", |
| rbm->offset, cur_state, new_state); |
| pr_warn("rgrp=0x%llx bi_start=0x%x\n", |
| (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); |
| pr_warn("bi_offset=0x%x bi_len=0x%x\n", |
| bi->bi_offset, bi->bi_len); |
| dump_stack(); |
| gfs2_consist_rgrpd(rbm->rgd); |
| return; |
| } |
| *byte1 ^= (cur_state ^ new_state) << bit; |
| |
| if (do_clone && bi->bi_clone) { |
| byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); |
| cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; |
| *byte2 ^= (cur_state ^ new_state) << bit; |
| } |
| } |
| |
| /** |
| * gfs2_testbit - test a bit in the bitmaps |
| * @rbm: The bit to test |
| * |
| * Returns: The two bit block state of the requested bit |
| */ |
| |
| static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) |
| { |
| struct gfs2_bitmap *bi = rbm_bi(rbm); |
| const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; |
| const u8 *byte; |
| unsigned int bit; |
| |
| byte = buffer + (rbm->offset / GFS2_NBBY); |
| bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; |
| |
| return (*byte >> bit) & GFS2_BIT_MASK; |
| } |
| |
| /** |
| * gfs2_bit_search |
| * @ptr: Pointer to bitmap data |
| * @mask: Mask to use (normally 0x55555.... but adjusted for search start) |
| * @state: The state we are searching for |
| * |
| * We xor the bitmap data with a patter which is the bitwise opposite |
| * of what we are looking for, this gives rise to a pattern of ones |
| * wherever there is a match. Since we have two bits per entry, we |
| * take this pattern, shift it down by one place and then and it with |
| * the original. All the even bit positions (0,2,4, etc) then represent |
| * successful matches, so we mask with 0x55555..... to remove the unwanted |
| * odd bit positions. |
| * |
| * This allows searching of a whole u64 at once (32 blocks) with a |
| * single test (on 64 bit arches). |
| */ |
| |
| static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) |
| { |
| u64 tmp; |
| static const u64 search[] = { |
| [0] = 0xffffffffffffffffULL, |
| [1] = 0xaaaaaaaaaaaaaaaaULL, |
| [2] = 0x5555555555555555ULL, |
| [3] = 0x0000000000000000ULL, |
| }; |
| tmp = le64_to_cpu(*ptr) ^ search[state]; |
| tmp &= (tmp >> 1); |
| tmp &= mask; |
| return tmp; |
| } |
| |
| /** |
| * rs_cmp - multi-block reservation range compare |
| * @blk: absolute file system block number of the new reservation |
| * @len: number of blocks in the new reservation |
| * @rs: existing reservation to compare against |
| * |
| * returns: 1 if the block range is beyond the reach of the reservation |
| * -1 if the block range is before the start of the reservation |
| * 0 if the block range overlaps with the reservation |
| */ |
| static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) |
| { |
| u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); |
| |
| if (blk >= startblk + rs->rs_free) |
| return 1; |
| if (blk + len - 1 < startblk) |
| return -1; |
| return 0; |
| } |
| |
| /** |
| * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing |
| * a block in a given allocation state. |
| * @buf: the buffer that holds the bitmaps |
| * @len: the length (in bytes) of the buffer |
| * @goal: start search at this block's bit-pair (within @buffer) |
| * @state: GFS2_BLKST_XXX the state of the block we're looking for. |
| * |
| * Scope of @goal and returned block number is only within this bitmap buffer, |
| * not entire rgrp or filesystem. @buffer will be offset from the actual |
| * beginning of a bitmap block buffer, skipping any header structures, but |
| * headers are always a multiple of 64 bits long so that the buffer is |
| * always aligned to a 64 bit boundary. |
| * |
| * The size of the buffer is in bytes, but is it assumed that it is |
| * always ok to read a complete multiple of 64 bits at the end |
| * of the block in case the end is no aligned to a natural boundary. |
| * |
| * Return: the block number (bitmap buffer scope) that was found |
| */ |
| |
| static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, |
| u32 goal, u8 state) |
| { |
| u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); |
| const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); |
| const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); |
| u64 tmp; |
| u64 mask = 0x5555555555555555ULL; |
| u32 bit; |
| |
| /* Mask off bits we don't care about at the start of the search */ |
| mask <<= spoint; |
| tmp = gfs2_bit_search(ptr, mask, state); |
| ptr++; |
| while(tmp == 0 && ptr < end) { |
| tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); |
| ptr++; |
| } |
| /* Mask off any bits which are more than len bytes from the start */ |
| if (ptr == end && (len & (sizeof(u64) - 1))) |
| tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); |
| /* Didn't find anything, so return */ |
| if (tmp == 0) |
| return BFITNOENT; |
| ptr--; |
| bit = __ffs64(tmp); |
| bit /= 2; /* two bits per entry in the bitmap */ |
| return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; |
| } |
| |
| /** |
| * gfs2_rbm_from_block - Set the rbm based upon rgd and block number |
| * @rbm: The rbm with rgd already set correctly |
| * @block: The block number (filesystem relative) |
| * |
| * This sets the bi and offset members of an rbm based on a |
| * resource group and a filesystem relative block number. The |
| * resource group must be set in the rbm on entry, the bi and |
| * offset members will be set by this function. |
| * |
| * Returns: 0 on success, or an error code |
| */ |
| |
| static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) |
| { |
| u64 rblock = block - rbm->rgd->rd_data0; |
| |
| if (WARN_ON_ONCE(rblock > UINT_MAX)) |
| return -EINVAL; |
| if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) |
| return -E2BIG; |
| |
| rbm->bii = 0; |
| rbm->offset = (u32)(rblock); |
| /* Check if the block is within the first block */ |
| if (rbm->offset < rbm_bi(rbm)->bi_blocks) |
| return 0; |
| |
| /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ |
| rbm->offset += (sizeof(struct gfs2_rgrp) - |
| sizeof(struct gfs2_meta_header)) * GFS2_NBBY; |
| rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; |
| rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; |
| return 0; |
| } |
| |
| /** |
| * gfs2_rbm_incr - increment an rbm structure |
| * @rbm: The rbm with rgd already set correctly |
| * |
| * This function takes an existing rbm structure and increments it to the next |
| * viable block offset. |
| * |
| * Returns: If incrementing the offset would cause the rbm to go past the |
| * end of the rgrp, true is returned, otherwise false. |
| * |
| */ |
| |
| static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) |
| { |
| if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ |
| rbm->offset++; |
| return false; |
| } |
| if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ |
| return true; |
| |
| rbm->offset = 0; |
| rbm->bii++; |
| return false; |
| } |
| |
| /** |
| * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned |
| * @rbm: Position to search (value/result) |
| * @n_unaligned: Number of unaligned blocks to check |
| * @len: Decremented for each block found (terminate on zero) |
| * |
| * Returns: true if a non-free block is encountered |
| */ |
| |
| static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) |
| { |
| u32 n; |
| u8 res; |
| |
| for (n = 0; n < n_unaligned; n++) { |
| res = gfs2_testbit(rbm); |
| if (res != GFS2_BLKST_FREE) |
| return true; |
| (*len)--; |
| if (*len == 0) |
| return true; |
| if (gfs2_rbm_incr(rbm)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * gfs2_free_extlen - Return extent length of free blocks |
| * @rrbm: Starting position |
| * @len: Max length to check |
| * |
| * Starting at the block specified by the rbm, see how many free blocks |
| * there are, not reading more than len blocks ahead. This can be done |
| * using memchr_inv when the blocks are byte aligned, but has to be done |
| * on a block by block basis in case of unaligned blocks. Also this |
| * function can cope with bitmap boundaries (although it must stop on |
| * a resource group boundary) |
| * |
| * Returns: Number of free blocks in the extent |
| */ |
| |
| static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) |
| { |
| struct gfs2_rbm rbm = *rrbm; |
| u32 n_unaligned = rbm.offset & 3; |
| u32 size = len; |
| u32 bytes; |
| u32 chunk_size; |
| u8 *ptr, *start, *end; |
| u64 block; |
| struct gfs2_bitmap *bi; |
| |
| if (n_unaligned && |
| gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) |
| goto out; |
| |
| n_unaligned = len & 3; |
| /* Start is now byte aligned */ |
| while (len > 3) { |
| bi = rbm_bi(&rbm); |
| start = bi->bi_bh->b_data; |
| if (bi->bi_clone) |
| start = bi->bi_clone; |
| end = start + bi->bi_bh->b_size; |
| start += bi->bi_offset; |
| BUG_ON(rbm.offset & 3); |
| start += (rbm.offset / GFS2_NBBY); |
| bytes = min_t(u32, len / GFS2_NBBY, (end - start)); |
| ptr = memchr_inv(start, 0, bytes); |
| chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); |
| chunk_size *= GFS2_NBBY; |
| BUG_ON(len < chunk_size); |
| len -= chunk_size; |
| block = gfs2_rbm_to_block(&rbm); |
| if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { |
| n_unaligned = 0; |
| break; |
| } |
| if (ptr) { |
| n_unaligned = 3; |
| break; |
| } |
| n_unaligned = len & 3; |
| } |
| |
| /* Deal with any bits left over at the end */ |
| if (n_unaligned) |
| gfs2_unaligned_extlen(&rbm, n_unaligned, &len); |
| out: |
| return size - len; |
| } |
| |
| /** |
| * gfs2_bitcount - count the number of bits in a certain state |
| * @rgd: the resource group descriptor |
| * @buffer: the buffer that holds the bitmaps |
| * @buflen: the length (in bytes) of the buffer |
| * @state: the state of the block we're looking for |
| * |
| * Returns: The number of bits |
| */ |
| |
| static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, |
| unsigned int buflen, u8 state) |
| { |
| const u8 *byte = buffer; |
| const u8 *end = buffer + buflen; |
| const u8 state1 = state << 2; |
| const u8 state2 = state << 4; |
| const u8 state3 = state << 6; |
| u32 count = 0; |
| |
| for (; byte < end; byte++) { |
| if (((*byte) & 0x03) == state) |
| count++; |
| if (((*byte) & 0x0C) == state1) |
| count++; |
| if (((*byte) & 0x30) == state2) |
| count++; |
| if (((*byte) & 0xC0) == state3) |
| count++; |
| } |
| |
| return count; |
| } |
| |
| /** |
| * gfs2_rgrp_verify - Verify that a resource group is consistent |
| * @rgd: the rgrp |
| * |
| */ |
| |
| void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| struct gfs2_bitmap *bi = NULL; |
| u32 length = rgd->rd_length; |
| u32 count[4], tmp; |
| int buf, x; |
| |
| memset(count, 0, 4 * sizeof(u32)); |
| |
| /* Count # blocks in each of 4 possible allocation states */ |
| for (buf = 0; buf < length; buf++) { |
| bi = rgd->rd_bits + buf; |
| for (x = 0; x < 4; x++) |
| count[x] += gfs2_bitcount(rgd, |
| bi->bi_bh->b_data + |
| bi->bi_offset, |
| bi->bi_len, x); |
| } |
| |
| if (count[0] != rgd->rd_free) { |
| if (gfs2_consist_rgrpd(rgd)) |
| fs_err(sdp, "free data mismatch: %u != %u\n", |
| count[0], rgd->rd_free); |
| return; |
| } |
| |
| tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; |
| if (count[1] != tmp) { |
| if (gfs2_consist_rgrpd(rgd)) |
| fs_err(sdp, "used data mismatch: %u != %u\n", |
| count[1], tmp); |
| return; |
| } |
| |
| if (count[2] + count[3] != rgd->rd_dinodes) { |
| if (gfs2_consist_rgrpd(rgd)) |
| fs_err(sdp, "used metadata mismatch: %u != %u\n", |
| count[2] + count[3], rgd->rd_dinodes); |
| return; |
| } |
| } |
| |
| /** |
| * gfs2_blk2rgrpd - Find resource group for a given data/meta block number |
| * @sdp: The GFS2 superblock |
| * @blk: The data block number |
| * @exact: True if this needs to be an exact match |
| * |
| * The @exact argument should be set to true by most callers. The exception |
| * is when we need to match blocks which are not represented by the rgrp |
| * bitmap, but which are part of the rgrp (i.e. padding blocks) which are |
| * there for alignment purposes. Another way of looking at it is that @exact |
| * matches only valid data/metadata blocks, but with @exact false, it will |
| * match any block within the extent of the rgrp. |
| * |
| * Returns: The resource group, or NULL if not found |
| */ |
| |
| struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) |
| { |
| struct rb_node *n, *next; |
| struct gfs2_rgrpd *cur; |
| |
| spin_lock(&sdp->sd_rindex_spin); |
| n = sdp->sd_rindex_tree.rb_node; |
| while (n) { |
| cur = rb_entry(n, struct gfs2_rgrpd, rd_node); |
| next = NULL; |
| if (blk < cur->rd_addr) |
| next = n->rb_left; |
| else if (blk >= cur->rd_data0 + cur->rd_data) |
| next = n->rb_right; |
| if (next == NULL) { |
| spin_unlock(&sdp->sd_rindex_spin); |
| if (exact) { |
| if (blk < cur->rd_addr) |
| return NULL; |
| if (blk >= cur->rd_data0 + cur->rd_data) |
| return NULL; |
| } |
| return cur; |
| } |
| n = next; |
| } |
| spin_unlock(&sdp->sd_rindex_spin); |
| |
| return NULL; |
| } |
| |
| /** |
| * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem |
| * @sdp: The GFS2 superblock |
| * |
| * Returns: The first rgrp in the filesystem |
| */ |
| |
| struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) |
| { |
| const struct rb_node *n; |
| struct gfs2_rgrpd *rgd; |
| |
| spin_lock(&sdp->sd_rindex_spin); |
| n = rb_first(&sdp->sd_rindex_tree); |
| rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); |
| spin_unlock(&sdp->sd_rindex_spin); |
| |
| return rgd; |
| } |
| |
| /** |
| * gfs2_rgrpd_get_next - get the next RG |
| * @rgd: the resource group descriptor |
| * |
| * Returns: The next rgrp |
| */ |
| |
| struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| const struct rb_node *n; |
| |
| spin_lock(&sdp->sd_rindex_spin); |
| n = rb_next(&rgd->rd_node); |
| if (n == NULL) |
| n = rb_first(&sdp->sd_rindex_tree); |
| |
| if (unlikely(&rgd->rd_node == n)) { |
| spin_unlock(&sdp->sd_rindex_spin); |
| return NULL; |
| } |
| rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); |
| spin_unlock(&sdp->sd_rindex_spin); |
| return rgd; |
| } |
| |
| void check_and_update_goal(struct gfs2_inode *ip) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) |
| ip->i_goal = ip->i_no_addr; |
| } |
| |
| void gfs2_free_clones(struct gfs2_rgrpd *rgd) |
| { |
| int x; |
| |
| for (x = 0; x < rgd->rd_length; x++) { |
| struct gfs2_bitmap *bi = rgd->rd_bits + x; |
| kfree(bi->bi_clone); |
| bi->bi_clone = NULL; |
| } |
| } |
| |
| /** |
| * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode |
| * plus a quota allocations data structure, if necessary |
| * @ip: the inode for this reservation |
| */ |
| int gfs2_rsqa_alloc(struct gfs2_inode *ip) |
| { |
| return gfs2_qa_alloc(ip); |
| } |
| |
| static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) |
| { |
| gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", |
| (unsigned long long)rs->rs_inum, |
| (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), |
| rs->rs_rbm.offset, rs->rs_free); |
| } |
| |
| /** |
| * __rs_deltree - remove a multi-block reservation from the rgd tree |
| * @rs: The reservation to remove |
| * |
| */ |
| static void __rs_deltree(struct gfs2_blkreserv *rs) |
| { |
| struct gfs2_rgrpd *rgd; |
| |
| if (!gfs2_rs_active(rs)) |
| return; |
| |
| rgd = rs->rs_rbm.rgd; |
| trace_gfs2_rs(rs, TRACE_RS_TREEDEL); |
| rb_erase(&rs->rs_node, &rgd->rd_rstree); |
| RB_CLEAR_NODE(&rs->rs_node); |
| |
| if (rs->rs_free) { |
| struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); |
| |
| /* return reserved blocks to the rgrp */ |
| BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); |
| rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; |
| /* The rgrp extent failure point is likely not to increase; |
| it will only do so if the freed blocks are somehow |
| contiguous with a span of free blocks that follows. Still, |
| it will force the number to be recalculated later. */ |
| rgd->rd_extfail_pt += rs->rs_free; |
| rs->rs_free = 0; |
| clear_bit(GBF_FULL, &bi->bi_flags); |
| } |
| } |
| |
| /** |
| * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree |
| * @rs: The reservation to remove |
| * |
| */ |
| void gfs2_rs_deltree(struct gfs2_blkreserv *rs) |
| { |
| struct gfs2_rgrpd *rgd; |
| |
| rgd = rs->rs_rbm.rgd; |
| if (rgd) { |
| spin_lock(&rgd->rd_rsspin); |
| __rs_deltree(rs); |
| BUG_ON(rs->rs_free); |
| spin_unlock(&rgd->rd_rsspin); |
| } |
| } |
| |
| /** |
| * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation |
| * @ip: The inode for this reservation |
| * @wcount: The inode's write count, or NULL |
| * |
| */ |
| void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) |
| { |
| down_write(&ip->i_rw_mutex); |
| if ((wcount == NULL) || (atomic_read(wcount) <= 1)) |
| gfs2_rs_deltree(&ip->i_res); |
| up_write(&ip->i_rw_mutex); |
| gfs2_qa_delete(ip, wcount); |
| } |
| |
| /** |
| * return_all_reservations - return all reserved blocks back to the rgrp. |
| * @rgd: the rgrp that needs its space back |
| * |
| * We previously reserved a bunch of blocks for allocation. Now we need to |
| * give them back. This leave the reservation structures in tact, but removes |
| * all of their corresponding "no-fly zones". |
| */ |
| static void return_all_reservations(struct gfs2_rgrpd *rgd) |
| { |
| struct rb_node *n; |
| struct gfs2_blkreserv *rs; |
| |
| spin_lock(&rgd->rd_rsspin); |
| while ((n = rb_first(&rgd->rd_rstree))) { |
| rs = rb_entry(n, struct gfs2_blkreserv, rs_node); |
| __rs_deltree(rs); |
| } |
| spin_unlock(&rgd->rd_rsspin); |
| } |
| |
| void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) |
| { |
| struct rb_node *n; |
| struct gfs2_rgrpd *rgd; |
| struct gfs2_glock *gl; |
| |
| while ((n = rb_first(&sdp->sd_rindex_tree))) { |
| rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); |
| gl = rgd->rd_gl; |
| |
| rb_erase(n, &sdp->sd_rindex_tree); |
| |
| if (gl) { |
| glock_clear_object(gl, rgd); |
| gfs2_glock_put(gl); |
| } |
| |
| gfs2_free_clones(rgd); |
| kfree(rgd->rd_bits); |
| rgd->rd_bits = NULL; |
| return_all_reservations(rgd); |
| kmem_cache_free(gfs2_rgrpd_cachep, rgd); |
| } |
| } |
| |
| static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) |
| { |
| pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); |
| pr_info("ri_length = %u\n", rgd->rd_length); |
| pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); |
| pr_info("ri_data = %u\n", rgd->rd_data); |
| pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); |
| } |
| |
| /** |
| * gfs2_compute_bitstructs - Compute the bitmap sizes |
| * @rgd: The resource group descriptor |
| * |
| * Calculates bitmap descriptors, one for each block that contains bitmap data |
| * |
| * Returns: errno |
| */ |
| |
| static int compute_bitstructs(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| struct gfs2_bitmap *bi; |
| u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ |
| u32 bytes_left, bytes; |
| int x; |
| |
| if (!length) |
| return -EINVAL; |
| |
| rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); |
| if (!rgd->rd_bits) |
| return -ENOMEM; |
| |
| bytes_left = rgd->rd_bitbytes; |
| |
| for (x = 0; x < length; x++) { |
| bi = rgd->rd_bits + x; |
| |
| bi->bi_flags = 0; |
| /* small rgrp; bitmap stored completely in header block */ |
| if (length == 1) { |
| bytes = bytes_left; |
| bi->bi_offset = sizeof(struct gfs2_rgrp); |
| bi->bi_start = 0; |
| bi->bi_len = bytes; |
| bi->bi_blocks = bytes * GFS2_NBBY; |
| /* header block */ |
| } else if (x == 0) { |
| bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); |
| bi->bi_offset = sizeof(struct gfs2_rgrp); |
| bi->bi_start = 0; |
| bi->bi_len = bytes; |
| bi->bi_blocks = bytes * GFS2_NBBY; |
| /* last block */ |
| } else if (x + 1 == length) { |
| bytes = bytes_left; |
| bi->bi_offset = sizeof(struct gfs2_meta_header); |
| bi->bi_start = rgd->rd_bitbytes - bytes_left; |
| bi->bi_len = bytes; |
| bi->bi_blocks = bytes * GFS2_NBBY; |
| /* other blocks */ |
| } else { |
| bytes = sdp->sd_sb.sb_bsize - |
| sizeof(struct gfs2_meta_header); |
| bi->bi_offset = sizeof(struct gfs2_meta_header); |
| bi->bi_start = rgd->rd_bitbytes - bytes_left; |
| bi->bi_len = bytes; |
| bi->bi_blocks = bytes * GFS2_NBBY; |
| } |
| |
| bytes_left -= bytes; |
| } |
| |
| if (bytes_left) { |
| gfs2_consist_rgrpd(rgd); |
| return -EIO; |
| } |
| bi = rgd->rd_bits + (length - 1); |
| if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { |
| if (gfs2_consist_rgrpd(rgd)) { |
| gfs2_rindex_print(rgd); |
| fs_err(sdp, "start=%u len=%u offset=%u\n", |
| bi->bi_start, bi->bi_len, bi->bi_offset); |
| } |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * gfs2_ri_total - Total up the file system space, according to the rindex. |
| * @sdp: the filesystem |
| * |
| */ |
| u64 gfs2_ri_total(struct gfs2_sbd *sdp) |
| { |
| u64 total_data = 0; |
| struct inode *inode = sdp->sd_rindex; |
| struct gfs2_inode *ip = GFS2_I(inode); |
| char buf[sizeof(struct gfs2_rindex)]; |
| int error, rgrps; |
| |
| for (rgrps = 0;; rgrps++) { |
| loff_t pos = rgrps * sizeof(struct gfs2_rindex); |
| |
| if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) |
| break; |
| error = gfs2_internal_read(ip, buf, &pos, |
| sizeof(struct gfs2_rindex)); |
| if (error != sizeof(struct gfs2_rindex)) |
| break; |
| total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); |
| } |
| return total_data; |
| } |
| |
| static int rgd_insert(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; |
| |
| /* Figure out where to put new node */ |
| while (*newn) { |
| struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, |
| rd_node); |
| |
| parent = *newn; |
| if (rgd->rd_addr < cur->rd_addr) |
| newn = &((*newn)->rb_left); |
| else if (rgd->rd_addr > cur->rd_addr) |
| newn = &((*newn)->rb_right); |
| else |
| return -EEXIST; |
| } |
| |
| rb_link_node(&rgd->rd_node, parent, newn); |
| rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); |
| sdp->sd_rgrps++; |
| return 0; |
| } |
| |
| /** |
| * read_rindex_entry - Pull in a new resource index entry from the disk |
| * @ip: Pointer to the rindex inode |
| * |
| * Returns: 0 on success, > 0 on EOF, error code otherwise |
| */ |
| |
| static int read_rindex_entry(struct gfs2_inode *ip) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| const unsigned bsize = sdp->sd_sb.sb_bsize; |
| loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); |
| struct gfs2_rindex buf; |
| int error; |
| struct gfs2_rgrpd *rgd; |
| |
| if (pos >= i_size_read(&ip->i_inode)) |
| return 1; |
| |
| error = gfs2_internal_read(ip, (char *)&buf, &pos, |
| sizeof(struct gfs2_rindex)); |
| |
| if (error != sizeof(struct gfs2_rindex)) |
| return (error == 0) ? 1 : error; |
| |
| rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); |
| error = -ENOMEM; |
| if (!rgd) |
| return error; |
| |
| rgd->rd_sbd = sdp; |
| rgd->rd_addr = be64_to_cpu(buf.ri_addr); |
| rgd->rd_length = be32_to_cpu(buf.ri_length); |
| rgd->rd_data0 = be64_to_cpu(buf.ri_data0); |
| rgd->rd_data = be32_to_cpu(buf.ri_data); |
| rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); |
| spin_lock_init(&rgd->rd_rsspin); |
| |
| error = compute_bitstructs(rgd); |
| if (error) |
| goto fail; |
| |
| error = gfs2_glock_get(sdp, rgd->rd_addr, |
| &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); |
| if (error) |
| goto fail; |
| |
| rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; |
| rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); |
| if (rgd->rd_data > sdp->sd_max_rg_data) |
| sdp->sd_max_rg_data = rgd->rd_data; |
| spin_lock(&sdp->sd_rindex_spin); |
| error = rgd_insert(rgd); |
| spin_unlock(&sdp->sd_rindex_spin); |
| if (!error) { |
| glock_set_object(rgd->rd_gl, rgd); |
| rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; |
| rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + |
| rgd->rd_length) * bsize) - 1; |
| return 0; |
| } |
| |
| error = 0; /* someone else read in the rgrp; free it and ignore it */ |
| gfs2_glock_put(rgd->rd_gl); |
| |
| fail: |
| kfree(rgd->rd_bits); |
| rgd->rd_bits = NULL; |
| kmem_cache_free(gfs2_rgrpd_cachep, rgd); |
| return error; |
| } |
| |
| /** |
| * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use |
| * @sdp: the GFS2 superblock |
| * |
| * The purpose of this function is to select a subset of the resource groups |
| * and mark them as PREFERRED. We do it in such a way that each node prefers |
| * to use a unique set of rgrps to minimize glock contention. |
| */ |
| static void set_rgrp_preferences(struct gfs2_sbd *sdp) |
| { |
| struct gfs2_rgrpd *rgd, *first; |
| int i; |
| |
| /* Skip an initial number of rgrps, based on this node's journal ID. |
| That should start each node out on its own set. */ |
| rgd = gfs2_rgrpd_get_first(sdp); |
| for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) |
| rgd = gfs2_rgrpd_get_next(rgd); |
| first = rgd; |
| |
| do { |
| rgd->rd_flags |= GFS2_RDF_PREFERRED; |
| for (i = 0; i < sdp->sd_journals; i++) { |
| rgd = gfs2_rgrpd_get_next(rgd); |
| if (!rgd || rgd == first) |
| break; |
| } |
| } while (rgd && rgd != first); |
| } |
| |
| /** |
| * gfs2_ri_update - Pull in a new resource index from the disk |
| * @ip: pointer to the rindex inode |
| * |
| * Returns: 0 on successful update, error code otherwise |
| */ |
| |
| static int gfs2_ri_update(struct gfs2_inode *ip) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| int error; |
| |
| do { |
| error = read_rindex_entry(ip); |
| } while (error == 0); |
| |
| if (error < 0) |
| return error; |
| |
| set_rgrp_preferences(sdp); |
| |
| sdp->sd_rindex_uptodate = 1; |
| return 0; |
| } |
| |
| /** |
| * gfs2_rindex_update - Update the rindex if required |
| * @sdp: The GFS2 superblock |
| * |
| * We grab a lock on the rindex inode to make sure that it doesn't |
| * change whilst we are performing an operation. We keep this lock |
| * for quite long periods of time compared to other locks. This |
| * doesn't matter, since it is shared and it is very, very rarely |
| * accessed in the exclusive mode (i.e. only when expanding the filesystem). |
| * |
| * This makes sure that we're using the latest copy of the resource index |
| * special file, which might have been updated if someone expanded the |
| * filesystem (via gfs2_grow utility), which adds new resource groups. |
| * |
| * Returns: 0 on succeess, error code otherwise |
| */ |
| |
| int gfs2_rindex_update(struct gfs2_sbd *sdp) |
| { |
| struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); |
| struct gfs2_glock *gl = ip->i_gl; |
| struct gfs2_holder ri_gh; |
| int error = 0; |
| int unlock_required = 0; |
| |
| /* Read new copy from disk if we don't have the latest */ |
| if (!sdp->sd_rindex_uptodate) { |
| if (!gfs2_glock_is_locked_by_me(gl)) { |
| error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); |
| if (error) |
| return error; |
| unlock_required = 1; |
| } |
| if (!sdp->sd_rindex_uptodate) |
| error = gfs2_ri_update(ip); |
| if (unlock_required) |
| gfs2_glock_dq_uninit(&ri_gh); |
| } |
| |
| return error; |
| } |
| |
| static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) |
| { |
| const struct gfs2_rgrp *str = buf; |
| u32 rg_flags; |
| |
| rg_flags = be32_to_cpu(str->rg_flags); |
| rg_flags &= ~GFS2_RDF_MASK; |
| rgd->rd_flags &= GFS2_RDF_MASK; |
| rgd->rd_flags |= rg_flags; |
| rgd->rd_free = be32_to_cpu(str->rg_free); |
| rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); |
| rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); |
| /* rd_data0, rd_data and rd_bitbytes already set from rindex */ |
| } |
| |
| static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) |
| { |
| struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); |
| struct gfs2_rgrp *str = buf; |
| u32 crc; |
| |
| str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); |
| str->rg_free = cpu_to_be32(rgd->rd_free); |
| str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); |
| if (next == NULL) |
| str->rg_skip = 0; |
| else if (next->rd_addr > rgd->rd_addr) |
| str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); |
| str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); |
| str->rg_data0 = cpu_to_be64(rgd->rd_data0); |
| str->rg_data = cpu_to_be32(rgd->rd_data); |
| str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); |
| str->rg_crc = 0; |
| crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); |
| str->rg_crc = cpu_to_be32(crc); |
| |
| memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); |
| } |
| |
| static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; |
| struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; |
| |
| if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || |
| rgl->rl_dinodes != str->rg_dinodes || |
| rgl->rl_igeneration != str->rg_igeneration) |
| return 0; |
| return 1; |
| } |
| |
| static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) |
| { |
| const struct gfs2_rgrp *str = buf; |
| |
| rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); |
| rgl->rl_flags = str->rg_flags; |
| rgl->rl_free = str->rg_free; |
| rgl->rl_dinodes = str->rg_dinodes; |
| rgl->rl_igeneration = str->rg_igeneration; |
| rgl->__pad = 0UL; |
| } |
| |
| static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) |
| { |
| struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; |
| u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; |
| rgl->rl_unlinked = cpu_to_be32(unlinked); |
| } |
| |
| static u32 count_unlinked(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_bitmap *bi; |
| const u32 length = rgd->rd_length; |
| const u8 *buffer = NULL; |
| u32 i, goal, count = 0; |
| |
| for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { |
| goal = 0; |
| buffer = bi->bi_bh->b_data + bi->bi_offset; |
| WARN_ON(!buffer_uptodate(bi->bi_bh)); |
| while (goal < bi->bi_len * GFS2_NBBY) { |
| goal = gfs2_bitfit(buffer, bi->bi_len, goal, |
| GFS2_BLKST_UNLINKED); |
| if (goal == BFITNOENT) |
| break; |
| count++; |
| goal++; |
| } |
| } |
| |
| return count; |
| } |
| |
| |
| /** |
| * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps |
| * @rgd: the struct gfs2_rgrpd describing the RG to read in |
| * |
| * Read in all of a Resource Group's header and bitmap blocks. |
| * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. |
| * |
| * Returns: errno |
| */ |
| |
| static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| struct gfs2_glock *gl = rgd->rd_gl; |
| unsigned int length = rgd->rd_length; |
| struct gfs2_bitmap *bi; |
| unsigned int x, y; |
| int error; |
| |
| if (rgd->rd_bits[0].bi_bh != NULL) |
| return 0; |
| |
| for (x = 0; x < length; x++) { |
| bi = rgd->rd_bits + x; |
| error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); |
| if (error) |
| goto fail; |
| } |
| |
| for (y = length; y--;) { |
| bi = rgd->rd_bits + y; |
| error = gfs2_meta_wait(sdp, bi->bi_bh); |
| if (error) |
| goto fail; |
| if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : |
| GFS2_METATYPE_RG)) { |
| error = -EIO; |
| goto fail; |
| } |
| } |
| |
| if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { |
| for (x = 0; x < length; x++) |
| clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); |
| gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); |
| rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); |
| rgd->rd_free_clone = rgd->rd_free; |
| /* max out the rgrp allocation failure point */ |
| rgd->rd_extfail_pt = rgd->rd_free; |
| } |
| if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { |
| rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); |
| gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, |
| rgd->rd_bits[0].bi_bh->b_data); |
| } |
| else if (sdp->sd_args.ar_rgrplvb) { |
| if (!gfs2_rgrp_lvb_valid(rgd)){ |
| gfs2_consist_rgrpd(rgd); |
| error = -EIO; |
| goto fail; |
| } |
| if (rgd->rd_rgl->rl_unlinked == 0) |
| rgd->rd_flags &= ~GFS2_RDF_CHECK; |
| } |
| return 0; |
| |
| fail: |
| while (x--) { |
| bi = rgd->rd_bits + x; |
| brelse(bi->bi_bh); |
| bi->bi_bh = NULL; |
| gfs2_assert_warn(sdp, !bi->bi_clone); |
| } |
| |
| return error; |
| } |
| |
| static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) |
| { |
| u32 rl_flags; |
| |
| if (rgd->rd_flags & GFS2_RDF_UPTODATE) |
| return 0; |
| |
| if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) |
| return gfs2_rgrp_bh_get(rgd); |
| |
| rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); |
| rl_flags &= ~GFS2_RDF_MASK; |
| rgd->rd_flags &= GFS2_RDF_MASK; |
| rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); |
| if (rgd->rd_rgl->rl_unlinked == 0) |
| rgd->rd_flags &= ~GFS2_RDF_CHECK; |
| rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); |
| rgd->rd_free_clone = rgd->rd_free; |
| rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); |
| rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); |
| return 0; |
| } |
| |
| int gfs2_rgrp_go_lock(struct gfs2_holder *gh) |
| { |
| struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| |
| if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) |
| return 0; |
| return gfs2_rgrp_bh_get(rgd); |
| } |
| |
| /** |
| * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() |
| * @rgd: The resource group |
| * |
| */ |
| |
| void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) |
| { |
| int x, length = rgd->rd_length; |
| |
| for (x = 0; x < length; x++) { |
| struct gfs2_bitmap *bi = rgd->rd_bits + x; |
| if (bi->bi_bh) { |
| brelse(bi->bi_bh); |
| bi->bi_bh = NULL; |
| } |
| } |
| |
| } |
| |
| /** |
| * gfs2_rgrp_go_unlock - Unlock a rgrp glock |
| * @gh: The glock holder for the resource group |
| * |
| */ |
| |
| void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) |
| { |
| struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; |
| int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | |
| test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); |
| |
| if (rgd && demote_requested) |
| gfs2_rgrp_brelse(rgd); |
| } |
| |
| int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, |
| struct buffer_head *bh, |
| const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) |
| { |
| struct super_block *sb = sdp->sd_vfs; |
| u64 blk; |
| sector_t start = 0; |
| sector_t nr_blks = 0; |
| int rv; |
| unsigned int x; |
| u32 trimmed = 0; |
| u8 diff; |
| |
| for (x = 0; x < bi->bi_len; x++) { |
| const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; |
| clone += bi->bi_offset; |
| clone += x; |
| if (bh) { |
| const u8 *orig = bh->b_data + bi->bi_offset + x; |
| diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); |
| } else { |
| diff = ~(*clone | (*clone >> 1)); |
| } |
| diff &= 0x55; |
| if (diff == 0) |
| continue; |
| blk = offset + ((bi->bi_start + x) * GFS2_NBBY); |
| while(diff) { |
| if (diff & 1) { |
| if (nr_blks == 0) |
| goto start_new_extent; |
| if ((start + nr_blks) != blk) { |
| if (nr_blks >= minlen) { |
| rv = sb_issue_discard(sb, |
| start, nr_blks, |
| GFP_NOFS, 0); |
| if (rv) |
| goto fail; |
| trimmed += nr_blks; |
| } |
| nr_blks = 0; |
| start_new_extent: |
| start = blk; |
| } |
| nr_blks++; |
| } |
| diff >>= 2; |
| blk++; |
| } |
| } |
| if (nr_blks >= minlen) { |
| rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); |
| if (rv) |
| goto fail; |
| trimmed += nr_blks; |
| } |
| if (ptrimmed) |
| *ptrimmed = trimmed; |
| return 0; |
| |
| fail: |
| if (sdp->sd_args.ar_discard) |
| fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); |
| sdp->sd_args.ar_discard = 0; |
| return -EIO; |
| } |
| |
| /** |
| * gfs2_fitrim - Generate discard requests for unused bits of the filesystem |
| * @filp: Any file on the filesystem |
| * @argp: Pointer to the arguments (also used to pass result) |
| * |
| * Returns: 0 on success, otherwise error code |
| */ |
| |
| int gfs2_fitrim(struct file *filp, void __user *argp) |
| { |
| struct inode *inode = file_inode(filp); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); |
| struct buffer_head *bh; |
| struct gfs2_rgrpd *rgd; |
| struct gfs2_rgrpd *rgd_end; |
| struct gfs2_holder gh; |
| struct fstrim_range r; |
| int ret = 0; |
| u64 amt; |
| u64 trimmed = 0; |
| u64 start, end, minlen; |
| unsigned int x; |
| unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (!blk_queue_discard(q)) |
| return -EOPNOTSUPP; |
| |
| if (copy_from_user(&r, argp, sizeof(r))) |
| return -EFAULT; |
| |
| ret = gfs2_rindex_update(sdp); |
| if (ret) |
| return ret; |
| |
| start = r.start >> bs_shift; |
| end = start + (r.len >> bs_shift); |
| minlen = max_t(u64, r.minlen, |
| q->limits.discard_granularity) >> bs_shift; |
| |
| if (end <= start || minlen > sdp->sd_max_rg_data) |
| return -EINVAL; |
| |
| rgd = gfs2_blk2rgrpd(sdp, start, 0); |
| rgd_end = gfs2_blk2rgrpd(sdp, end, 0); |
| |
| if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) |
| && (start > rgd_end->rd_data0 + rgd_end->rd_data)) |
| return -EINVAL; /* start is beyond the end of the fs */ |
| |
| while (1) { |
| |
| ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); |
| if (ret) |
| goto out; |
| |
| if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { |
| /* Trim each bitmap in the rgrp */ |
| for (x = 0; x < rgd->rd_length; x++) { |
| struct gfs2_bitmap *bi = rgd->rd_bits + x; |
| ret = gfs2_rgrp_send_discards(sdp, |
| rgd->rd_data0, NULL, bi, minlen, |
| &amt); |
| if (ret) { |
| gfs2_glock_dq_uninit(&gh); |
| goto out; |
| } |
| trimmed += amt; |
| } |
| |
| /* Mark rgrp as having been trimmed */ |
| ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); |
| if (ret == 0) { |
| bh = rgd->rd_bits[0].bi_bh; |
| rgd->rd_flags |= GFS2_RGF_TRIMMED; |
| gfs2_trans_add_meta(rgd->rd_gl, bh); |
| gfs2_rgrp_out(rgd, bh->b_data); |
| gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); |
| gfs2_trans_end(sdp); |
| } |
| } |
| gfs2_glock_dq_uninit(&gh); |
| |
| if (rgd == rgd_end) |
| break; |
| |
| rgd = gfs2_rgrpd_get_next(rgd); |
| } |
| |
| out: |
| r.len = trimmed << bs_shift; |
| if (copy_to_user(argp, &r, sizeof(r))) |
| return -EFAULT; |
| |
| return ret; |
| } |
| |
| /** |
| * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree |
| * @ip: the inode structure |
| * |
| */ |
| static void rs_insert(struct gfs2_inode *ip) |
| { |
| struct rb_node **newn, *parent = NULL; |
| int rc; |
| struct gfs2_blkreserv *rs = &ip->i_res; |
| struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; |
| u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); |
| |
| BUG_ON(gfs2_rs_active(rs)); |
| |
| spin_lock(&rgd->rd_rsspin); |
| newn = &rgd->rd_rstree.rb_node; |
| while (*newn) { |
| struct gfs2_blkreserv *cur = |
| rb_entry(*newn, struct gfs2_blkreserv, rs_node); |
| |
| parent = *newn; |
| rc = rs_cmp(fsblock, rs->rs_free, cur); |
| if (rc > 0) |
| newn = &((*newn)->rb_right); |
| else if (rc < 0) |
| newn = &((*newn)->rb_left); |
| else { |
| spin_unlock(&rgd->rd_rsspin); |
| WARN_ON(1); |
| return; |
| } |
| } |
| |
| rb_link_node(&rs->rs_node, parent, newn); |
| rb_insert_color(&rs->rs_node, &rgd->rd_rstree); |
| |
| /* Do our rgrp accounting for the reservation */ |
| rgd->rd_reserved += rs->rs_free; /* blocks reserved */ |
| spin_unlock(&rgd->rd_rsspin); |
| trace_gfs2_rs(rs, TRACE_RS_INSERT); |
| } |
| |
| /** |
| * rg_mblk_search - find a group of multiple free blocks to form a reservation |
| * @rgd: the resource group descriptor |
| * @ip: pointer to the inode for which we're reserving blocks |
| * @ap: the allocation parameters |
| * |
| */ |
| |
| static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, |
| const struct gfs2_alloc_parms *ap) |
| { |
| struct gfs2_rbm rbm = { .rgd = rgd, }; |
| u64 goal; |
| struct gfs2_blkreserv *rs = &ip->i_res; |
| u32 extlen; |
| u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; |
| int ret; |
| struct inode *inode = &ip->i_inode; |
| |
| if (S_ISDIR(inode->i_mode)) |
| extlen = 1; |
| else { |
| extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); |
| extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); |
| } |
| if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) |
| return; |
| |
| /* Find bitmap block that contains bits for goal block */ |
| if (rgrp_contains_block(rgd, ip->i_goal)) |
| goal = ip->i_goal; |
| else |
| goal = rgd->rd_last_alloc + rgd->rd_data0; |
| |
| if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) |
| return; |
| |
| ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); |
| if (ret == 0) { |
| rs->rs_rbm = rbm; |
| rs->rs_free = extlen; |
| rs->rs_inum = ip->i_no_addr; |
| rs_insert(ip); |
| } else { |
| if (goal == rgd->rd_last_alloc + rgd->rd_data0) |
| rgd->rd_last_alloc = 0; |
| } |
| } |
| |
| /** |
| * gfs2_next_unreserved_block - Return next block that is not reserved |
| * @rgd: The resource group |
| * @block: The starting block |
| * @length: The required length |
| * @ip: Ignore any reservations for this inode |
| * |
| * If the block does not appear in any reservation, then return the |
| * block number unchanged. If it does appear in the reservation, then |
| * keep looking through the tree of reservations in order to find the |
| * first block number which is not reserved. |
| */ |
| |
| static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, |
| u32 length, |
| const struct gfs2_inode *ip) |
| { |
| struct gfs2_blkreserv *rs; |
| struct rb_node *n; |
| int rc; |
| |
| spin_lock(&rgd->rd_rsspin); |
| n = rgd->rd_rstree.rb_node; |
| while (n) { |
| rs = rb_entry(n, struct gfs2_blkreserv, rs_node); |
| rc = rs_cmp(block, length, rs); |
| if (rc < 0) |
| n = n->rb_left; |
| else if (rc > 0) |
| n = n->rb_right; |
| else |
| break; |
| } |
| |
| if (n) { |
| while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { |
| block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; |
| n = n->rb_right; |
| if (n == NULL) |
| break; |
| rs = rb_entry(n, struct gfs2_blkreserv, rs_node); |
| } |
| } |
| |
| spin_unlock(&rgd->rd_rsspin); |
| return block; |
| } |
| |
| /** |
| * gfs2_reservation_check_and_update - Check for reservations during block alloc |
| * @rbm: The current position in the resource group |
| * @ip: The inode for which we are searching for blocks |
| * @minext: The minimum extent length |
| * @maxext: A pointer to the maximum extent structure |
| * |
| * This checks the current position in the rgrp to see whether there is |
| * a reservation covering this block. If not then this function is a |
| * no-op. If there is, then the position is moved to the end of the |
| * contiguous reservation(s) so that we are pointing at the first |
| * non-reserved block. |
| * |
| * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error |
| */ |
| |
| static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, |
| const struct gfs2_inode *ip, |
| u32 minext, |
| struct gfs2_extent *maxext) |
| { |
| u64 block = gfs2_rbm_to_block(rbm); |
| u32 extlen = 1; |
| u64 nblock; |
| int ret; |
| |
| /* |
| * If we have a minimum extent length, then skip over any extent |
| * which is less than the min extent length in size. |
| */ |
| if (minext) { |
| extlen = gfs2_free_extlen(rbm, minext); |
| if (extlen <= maxext->len) |
| goto fail; |
| } |
| |
| /* |
| * Check the extent which has been found against the reservations |
| * and skip if parts of it are already reserved |
| */ |
| nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); |
| if (nblock == block) { |
| if (!minext || extlen >= minext) |
| return 0; |
| |
| if (extlen > maxext->len) { |
| maxext->len = extlen; |
| maxext->rbm = *rbm; |
| } |
| fail: |
| nblock = block + extlen; |
| } |
| ret = gfs2_rbm_from_block(rbm, nblock); |
| if (ret < 0) |
| return ret; |
| return 1; |
| } |
| |
| /** |
| * gfs2_rbm_find - Look for blocks of a particular state |
| * @rbm: Value/result starting position and final position |
| * @state: The state which we want to find |
| * @minext: Pointer to the requested extent length (NULL for a single block) |
| * This is updated to be the actual reservation size. |
| * @ip: If set, check for reservations |
| * @nowrap: Stop looking at the end of the rgrp, rather than wrapping |
| * around until we've reached the starting point. |
| * |
| * Side effects: |
| * - If looking for free blocks, we set GBF_FULL on each bitmap which |
| * has no free blocks in it. |
| * - If looking for free blocks, we set rd_extfail_pt on each rgrp which |
| * has come up short on a free block search. |
| * |
| * Returns: 0 on success, -ENOSPC if there is no block of the requested state |
| */ |
| |
| static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, |
| const struct gfs2_inode *ip, bool nowrap) |
| { |
| struct buffer_head *bh; |
| int initial_bii; |
| u32 initial_offset; |
| int first_bii = rbm->bii; |
| u32 first_offset = rbm->offset; |
| u32 offset; |
| u8 *buffer; |
| int n = 0; |
| int iters = rbm->rgd->rd_length; |
| int ret; |
| struct gfs2_bitmap *bi; |
| struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; |
| |
| /* If we are not starting at the beginning of a bitmap, then we |
| * need to add one to the bitmap count to ensure that we search |
| * the starting bitmap twice. |
| */ |
| if (rbm->offset != 0) |
| iters++; |
| |
| while(1) { |
| bi = rbm_bi(rbm); |
| if (test_bit(GBF_FULL, &bi->bi_flags) && |
| (state == GFS2_BLKST_FREE)) |
| goto next_bitmap; |
| |
| bh = bi->bi_bh; |
| buffer = bh->b_data + bi->bi_offset; |
| WARN_ON(!buffer_uptodate(bh)); |
| if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) |
| buffer = bi->bi_clone + bi->bi_offset; |
| initial_offset = rbm->offset; |
| offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); |
| if (offset == BFITNOENT) |
| goto bitmap_full; |
| rbm->offset = offset; |
| if (ip == NULL) |
| return 0; |
| |
| initial_bii = rbm->bii; |
| ret = gfs2_reservation_check_and_update(rbm, ip, |
| minext ? *minext : 0, |
| &maxext); |
| if (ret == 0) |
| return 0; |
| if (ret > 0) { |
| n += (rbm->bii - initial_bii); |
| goto next_iter; |
| } |
| if (ret == -E2BIG) { |
| rbm->bii = 0; |
| rbm->offset = 0; |
| n += (rbm->bii - initial_bii); |
| goto res_covered_end_of_rgrp; |
| } |
| return ret; |
| |
| bitmap_full: /* Mark bitmap as full and fall through */ |
| if ((state == GFS2_BLKST_FREE) && initial_offset == 0) |
| set_bit(GBF_FULL, &bi->bi_flags); |
| |
| next_bitmap: /* Find next bitmap in the rgrp */ |
| rbm->offset = 0; |
| rbm->bii++; |
| if (rbm->bii == rbm->rgd->rd_length) |
| rbm->bii = 0; |
| res_covered_end_of_rgrp: |
| if ((rbm->bii == 0) && nowrap) |
| break; |
| n++; |
| next_iter: |
| if (n >= iters) |
| break; |
| } |
| |
| if (minext == NULL || state != GFS2_BLKST_FREE) |
| return -ENOSPC; |
| |
| /* If the extent was too small, and it's smaller than the smallest |
| to have failed before, remember for future reference that it's |
| useless to search this rgrp again for this amount or more. */ |
| if ((first_offset == 0) && (first_bii == 0) && |
| (*minext < rbm->rgd->rd_extfail_pt)) |
| rbm->rgd->rd_extfail_pt = *minext; |
| |
| /* If the maximum extent we found is big enough to fulfill the |
| minimum requirements, use it anyway. */ |
| if (maxext.len) { |
| *rbm = maxext.rbm; |
| *minext = maxext.len; |
| return 0; |
| } |
| |
| return -ENOSPC; |
| } |
| |
| /** |
| * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes |
| * @rgd: The rgrp |
| * @last_unlinked: block address of the last dinode we unlinked |
| * @skip: block address we should explicitly not unlink |
| * |
| * Returns: 0 if no error |
| * The inode, if one has been found, in inode. |
| */ |
| |
| static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) |
| { |
| u64 block; |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| struct gfs2_glock *gl; |
| struct gfs2_inode *ip; |
| int error; |
| int found = 0; |
| struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; |
| |
| while (1) { |
| down_write(&sdp->sd_log_flush_lock); |
| error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, |
| true); |
| up_write(&sdp->sd_log_flush_lock); |
| if (error == -ENOSPC) |
| break; |
| if (WARN_ON_ONCE(error)) |
| break; |
| |
| block = gfs2_rbm_to_block(&rbm); |
| if (gfs2_rbm_from_block(&rbm, block + 1)) |
| break; |
| if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) |
| continue; |
| if (block == skip) |
| continue; |
| *last_unlinked = block; |
| |
| error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); |
| if (error) |
| continue; |
| |
| /* If the inode is already in cache, we can ignore it here |
| * because the existing inode disposal code will deal with |
| * it when all refs have gone away. Accessing gl_object like |
| * this is not safe in general. Here it is ok because we do |
| * not dereference the pointer, and we only need an approx |
| * answer to whether it is NULL or not. |
| */ |
| ip = gl->gl_object; |
| |
| if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) |
| gfs2_glock_put(gl); |
| else |
| found++; |
| |
| /* Limit reclaim to sensible number of tasks */ |
| if (found > NR_CPUS) |
| return; |
| } |
| |
| rgd->rd_flags &= ~GFS2_RDF_CHECK; |
| return; |
| } |
| |
| /** |
| * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested |
| * @rgd: The rgrp in question |
| * @loops: An indication of how picky we can be (0=very, 1=less so) |
| * |
| * This function uses the recently added glock statistics in order to |
| * figure out whether a parciular resource group is suffering from |
| * contention from multiple nodes. This is done purely on the basis |
| * of timings, since this is the only data we have to work with and |
| * our aim here is to reject a resource group which is highly contended |
| * but (very important) not to do this too often in order to ensure that |
| * we do not land up introducing fragmentation by changing resource |
| * groups when not actually required. |
| * |
| * The calculation is fairly simple, we want to know whether the SRTTB |
| * (i.e. smoothed round trip time for blocking operations) to acquire |
| * the lock for this rgrp's glock is significantly greater than the |
| * time taken for resource groups on average. We introduce a margin in |
| * the form of the variable @var which is computed as the sum of the two |
| * respective variences, and multiplied by a factor depending on @loops |
| * and whether we have a lot of data to base the decision on. This is |
| * then tested against the square difference of the means in order to |
| * decide whether the result is statistically significant or not. |
| * |
| * Returns: A boolean verdict on the congestion status |
| */ |
| |
| static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) |
| { |
| const struct gfs2_glock *gl = rgd->rd_gl; |
| const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; |
| struct gfs2_lkstats *st; |
| u64 r_dcount, l_dcount; |
| u64 l_srttb, a_srttb = 0; |
| s64 srttb_diff; |
| u64 sqr_diff; |
| u64 var; |
| int cpu, nonzero = 0; |
| |
| preempt_disable(); |
| for_each_present_cpu(cpu) { |
| st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; |
| if (st->stats[GFS2_LKS_SRTTB]) { |
| a_srttb += st->stats[GFS2_LKS_SRTTB]; |
| nonzero++; |
| } |
| } |
| st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; |
| if (nonzero) |
| do_div(a_srttb, nonzero); |
| r_dcount = st->stats[GFS2_LKS_DCOUNT]; |
| var = st->stats[GFS2_LKS_SRTTVARB] + |
| gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; |
| preempt_enable(); |
| |
| l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; |
| l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; |
| |
| if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) |
| return false; |
| |
| srttb_diff = a_srttb - l_srttb; |
| sqr_diff = srttb_diff * srttb_diff; |
| |
| var *= 2; |
| if (l_dcount < 8 || r_dcount < 8) |
| var *= 2; |
| if (loops == 1) |
| var *= 2; |
| |
| return ((srttb_diff < 0) && (sqr_diff > var)); |
| } |
| |
| /** |
| * gfs2_rgrp_used_recently |
| * @rs: The block reservation with the rgrp to test |
| * @msecs: The time limit in milliseconds |
| * |
| * Returns: True if the rgrp glock has been used within the time limit |
| */ |
| static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, |
| u64 msecs) |
| { |
| u64 tdiff; |
| |
| tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), |
| rs->rs_rbm.rgd->rd_gl->gl_dstamp)); |
| |
| return tdiff > (msecs * 1000 * 1000); |
| } |
| |
| static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) |
| { |
| const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| u32 skip; |
| |
| get_random_bytes(&skip, sizeof(skip)); |
| return skip % sdp->sd_rgrps; |
| } |
| |
| static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) |
| { |
| struct gfs2_rgrpd *rgd = *pos; |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| |
| rgd = gfs2_rgrpd_get_next(rgd); |
| if (rgd == NULL) |
| rgd = gfs2_rgrpd_get_first(sdp); |
| *pos = rgd; |
| if (rgd != begin) /* If we didn't wrap */ |
| return true; |
| return false; |
| } |
| |
| /** |
| * fast_to_acquire - determine if a resource group will be fast to acquire |
| * |
| * If this is one of our preferred rgrps, it should be quicker to acquire, |
| * because we tried to set ourselves up as dlm lock master. |
| */ |
| static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_glock *gl = rgd->rd_gl; |
| |
| if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && |
| !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && |
| !test_bit(GLF_DEMOTE, &gl->gl_flags)) |
| return 1; |
| if (rgd->rd_flags & GFS2_RDF_PREFERRED) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * gfs2_inplace_reserve - Reserve space in the filesystem |
| * @ip: the inode to reserve space for |
| * @ap: the allocation parameters |
| * |
| * We try our best to find an rgrp that has at least ap->target blocks |
| * available. After a couple of passes (loops == 2), the prospects of finding |
| * such an rgrp diminish. At this stage, we return the first rgrp that has |
| * atleast ap->min_target blocks available. Either way, we set ap->allowed to |
| * the number of blocks available in the chosen rgrp. |
| * |
| * Returns: 0 on success, |
| * -ENOMEM if a suitable rgrp can't be found |
| * errno otherwise |
| */ |
| |
| int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| struct gfs2_rgrpd *begin = NULL; |
| struct gfs2_blkreserv *rs = &ip->i_res; |
| int error = 0, rg_locked, flags = 0; |
| u64 last_unlinked = NO_BLOCK; |
| int loops = 0; |
| u32 skip = 0; |
| |
| if (sdp->sd_args.ar_rgrplvb) |
| flags |= GL_SKIP; |
| if (gfs2_assert_warn(sdp, ap->target)) |
| return -EINVAL; |
| if (gfs2_rs_active(rs)) { |
| begin = rs->rs_rbm.rgd; |
| } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { |
| rs->rs_rbm.rgd = begin = ip->i_rgd; |
| } else { |
| check_and_update_goal(ip); |
| rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); |
| } |
| if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) |
| skip = gfs2_orlov_skip(ip); |
| if (rs->rs_rbm.rgd == NULL) |
| return -EBADSLT; |
| |
| while (loops < 3) { |
| rg_locked = 1; |
| |
| if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { |
| rg_locked = 0; |
| if (skip && skip--) |
| goto next_rgrp; |
| if (!gfs2_rs_active(rs)) { |
| if (loops == 0 && |
| !fast_to_acquire(rs->rs_rbm.rgd)) |
| goto next_rgrp; |
| if ((loops < 2) && |
| gfs2_rgrp_used_recently(rs, 1000) && |
| gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) |
| goto next_rgrp; |
| } |
| error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, |
| LM_ST_EXCLUSIVE, flags, |
| &rs->rs_rgd_gh); |
| if (unlikely(error)) |
| return error; |
| if (!gfs2_rs_active(rs) && (loops < 2) && |
| gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) |
| goto skip_rgrp; |
| if (sdp->sd_args.ar_rgrplvb) { |
| error = update_rgrp_lvb(rs->rs_rbm.rgd); |
| if (unlikely(error)) { |
| gfs2_glock_dq_uninit(&rs->rs_rgd_gh); |
| return error; |
| } |
| } |
| } |
| |
| /* Skip unuseable resource groups */ |
| if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | |
| GFS2_RDF_ERROR)) || |
| (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) |
| goto skip_rgrp; |
| |
| if (sdp->sd_args.ar_rgrplvb) |
| gfs2_rgrp_bh_get(rs->rs_rbm.rgd); |
| |
| /* Get a reservation if we don't already have one */ |
| if (!gfs2_rs_active(rs)) |
| rg_mblk_search(rs->rs_rbm.rgd, ip, ap); |
| |
| /* Skip rgrps when we can't get a reservation on first pass */ |
| if (!gfs2_rs_active(rs) && (loops < 1)) |
| goto check_rgrp; |
| |
| /* If rgrp has enough free space, use it */ |
| if (rs->rs_rbm.rgd->rd_free_clone >= ap->target || |
| (loops == 2 && ap->min_target && |
| rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) { |
| ip->i_rgd = rs->rs_rbm.rgd; |
| ap->allowed = ip->i_rgd->rd_free_clone; |
| return 0; |
| } |
| check_rgrp: |
| /* Check for unlinked inodes which can be reclaimed */ |
| if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) |
| try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, |
| ip->i_no_addr); |
| skip_rgrp: |
| /* Drop reservation, if we couldn't use reserved rgrp */ |
| if (gfs2_rs_active(rs)) |
| gfs2_rs_deltree(rs); |
| |
| /* Unlock rgrp if required */ |
| if (!rg_locked) |
| gfs2_glock_dq_uninit(&rs->rs_rgd_gh); |
| next_rgrp: |
| /* Find the next rgrp, and continue looking */ |
| if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) |
| continue; |
| if (skip) |
| continue; |
| |
| /* If we've scanned all the rgrps, but found no free blocks |
| * then this checks for some less likely conditions before |
| * trying again. |
| */ |
| loops++; |
| /* Check that fs hasn't grown if writing to rindex */ |
| if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { |
| error = gfs2_ri_update(ip); |
| if (error) |
| return error; |
| } |
| /* Flushing the log may release space */ |
| if (loops == 2) |
| gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | |
| GFS2_LFC_INPLACE_RESERVE); |
| } |
| |
| return -ENOSPC; |
| } |
| |
| /** |
| * gfs2_inplace_release - release an inplace reservation |
| * @ip: the inode the reservation was taken out on |
| * |
| * Release a reservation made by gfs2_inplace_reserve(). |
| */ |
| |
| void gfs2_inplace_release(struct gfs2_inode *ip) |
| { |
| struct gfs2_blkreserv *rs = &ip->i_res; |
| |
| if (gfs2_holder_initialized(&rs->rs_rgd_gh)) |
| gfs2_glock_dq_uninit(&rs->rs_rgd_gh); |
| } |
| |
| /** |
| * gfs2_get_block_type - Check a block in a RG is of given type |
| * @rgd: the resource group holding the block |
| * @block: the block number |
| * |
| * Returns: The block type (GFS2_BLKST_*) |
| */ |
| |
| static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) |
| { |
| struct gfs2_rbm rbm = { .rgd = rgd, }; |
| int ret; |
| |
| ret = gfs2_rbm_from_block(&rbm, block); |
| WARN_ON_ONCE(ret != 0); |
| |
| return gfs2_testbit(&rbm); |
| } |
| |
| |
| /** |
| * gfs2_alloc_extent - allocate an extent from a given bitmap |
| * @rbm: the resource group information |
| * @dinode: TRUE if the first block we allocate is for a dinode |
| * @n: The extent length (value/result) |
| * |
| * Add the bitmap buffer to the transaction. |
| * Set the found bits to @new_state to change block's allocation state. |
| */ |
| static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, |
| unsigned int *n) |
| { |
| struct gfs2_rbm pos = { .rgd = rbm->rgd, }; |
| const unsigned int elen = *n; |
| u64 block; |
| int ret; |
| |
| *n = 1; |
| block = gfs2_rbm_to_block(rbm); |
| gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); |
| gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); |
| block++; |
| while (*n < elen) { |
| ret = gfs2_rbm_from_block(&pos, block); |
| if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) |
| break; |
| gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); |
| gfs2_setbit(&pos, true, GFS2_BLKST_USED); |
| (*n)++; |
| block++; |
| } |
| } |
| |
| /** |
| * rgblk_free - Change alloc state of given block(s) |
| * @sdp: the filesystem |
| * @bstart: the start of a run of blocks to free |
| * @blen: the length of the block run (all must lie within ONE RG!) |
| * @new_state: GFS2_BLKST_XXX the after-allocation block state |
| * |
| * Returns: Resource group containing the block(s) |
| */ |
| |
| static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, |
| u32 blen, unsigned char new_state) |
| { |
| struct gfs2_rbm rbm; |
| struct gfs2_bitmap *bi, *bi_prev = NULL; |
| |
| rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); |
| if (!rbm.rgd) { |
| if (gfs2_consist(sdp)) |
| fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); |
| return NULL; |
| } |
| |
| gfs2_rbm_from_block(&rbm, bstart); |
| while (blen--) { |
| bi = rbm_bi(&rbm); |
| if (bi != bi_prev) { |
| if (!bi->bi_clone) { |
| bi->bi_clone = kmalloc(bi->bi_bh->b_size, |
| GFP_NOFS | __GFP_NOFAIL); |
| memcpy(bi->bi_clone + bi->bi_offset, |
| bi->bi_bh->b_data + bi->bi_offset, |
| bi->bi_len); |
| } |
| gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); |
| bi_prev = bi; |
| } |
| gfs2_setbit(&rbm, false, new_state); |
| gfs2_rbm_incr(&rbm); |
| } |
| |
| return rbm.rgd; |
| } |
| |
| /** |
| * gfs2_rgrp_dump - print out an rgrp |
| * @seq: The iterator |
| * @gl: The glock in question |
| * |
| */ |
| |
| void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) |
| { |
| struct gfs2_rgrpd *rgd = gl->gl_object; |
| struct gfs2_blkreserv *trs; |
| const struct rb_node *n; |
| |
| if (rgd == NULL) |
| return; |
| gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", |
| (unsigned long long)rgd->rd_addr, rgd->rd_flags, |
| rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, |
| rgd->rd_reserved, rgd->rd_extfail_pt); |
| spin_lock(&rgd->rd_rsspin); |
| for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { |
| trs = rb_entry(n, struct gfs2_blkreserv, rs_node); |
| dump_rs(seq, trs); |
| } |
| spin_unlock(&rgd->rd_rsspin); |
| } |
| |
| static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) |
| { |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", |
| (unsigned long long)rgd->rd_addr); |
| fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); |
| gfs2_rgrp_dump(NULL, rgd->rd_gl); |
| rgd->rd_flags |= GFS2_RDF_ERROR; |
| } |
| |
| /** |
| * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation |
| * @ip: The inode we have just allocated blocks for |
| * @rbm: The start of the allocated blocks |
| * @len: The extent length |
| * |
| * Adjusts a reservation after an allocation has taken place. If the |
| * reservation does not match the allocation, or if it is now empty |
| * then it is removed. |
| */ |
| |
| static void gfs2_adjust_reservation(struct gfs2_inode *ip, |
| const struct gfs2_rbm *rbm, unsigned len) |
| { |
| struct gfs2_blkreserv *rs = &ip->i_res; |
| struct gfs2_rgrpd *rgd = rbm->rgd; |
| unsigned rlen; |
| u64 block; |
| int ret; |
| |
| spin_lock(&rgd->rd_rsspin); |
| if (gfs2_rs_active(rs)) { |
| if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { |
| block = gfs2_rbm_to_block(rbm); |
| ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); |
| rlen = min(rs->rs_free, len); |
| rs->rs_free -= rlen; |
| rgd->rd_reserved -= rlen; |
| trace_gfs2_rs(rs, TRACE_RS_CLAIM); |
| if (rs->rs_free && !ret) |
| goto out; |
| /* We used up our block reservation, so we should |
| reserve more blocks next time. */ |
| atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint); |
| } |
| __rs_deltree(rs); |
| } |
| out: |
| spin_unlock(&rgd->rd_rsspin); |
| } |
| |
| /** |
| * gfs2_set_alloc_start - Set starting point for block allocation |
| * @rbm: The rbm which will be set to the required location |
| * @ip: The gfs2 inode |
| * @dinode: Flag to say if allocation includes a new inode |
| * |
| * This sets the starting point from the reservation if one is active |
| * otherwise it falls back to guessing a start point based on the |
| * inode's goal block or the last allocation point in the rgrp. |
| */ |
| |
| static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, |
| const struct gfs2_inode *ip, bool dinode) |
| { |
| u64 goal; |
| |
| if (gfs2_rs_active(&ip->i_res)) { |
| *rbm = ip->i_res.rs_rbm; |
| return; |
| } |
| |
| if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) |
| goal = ip->i_goal; |
| else |
| goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; |
| |
| gfs2_rbm_from_block(rbm, goal); |
| } |
| |
| /** |
| * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode |
| * @ip: the inode to allocate the block for |
| * @bn: Used to return the starting block number |
| * @nblocks: requested number of blocks/extent length (value/result) |
| * @dinode: 1 if we're allocating a dinode block, else 0 |
| * @generation: the generation number of the inode |
| * |
| * Returns: 0 or error |
| */ |
| |
| int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, |
| bool dinode, u64 *generation) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| struct buffer_head *dibh; |
| struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; |
| unsigned int ndata; |
| u64 block; /* block, within the file system scope */ |
| int error; |
| |
| gfs2_set_alloc_start(&rbm, ip, dinode); |
| error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); |
| |
| if (error == -ENOSPC) { |
| gfs2_set_alloc_start(&rbm, ip, dinode); |
| error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); |
| } |
| |
| /* Since all blocks are reserved in advance, this shouldn't happen */ |
| if (error) { |
| fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", |
| (unsigned long long)ip->i_no_addr, error, *nblocks, |
| test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), |
| rbm.rgd->rd_extfail_pt); |
| goto rgrp_error; |
| } |
| |
| gfs2_alloc_extent(&rbm, dinode, nblocks); |
| block = gfs2_rbm_to_block(&rbm); |
| rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; |
| if (gfs2_rs_active(&ip->i_res)) |
| gfs2_adjust_reservation(ip, &rbm, *nblocks); |
| ndata = *nblocks; |
| if (dinode) |
| ndata--; |
| |
| if (!dinode) { |
| ip->i_goal = block + ndata - 1; |
| error = gfs2_meta_inode_buffer(ip, &dibh); |
| if (error == 0) { |
| struct gfs2_dinode *di = |
| (struct gfs2_dinode *)dibh->b_data; |
| gfs2_trans_add_meta(ip->i_gl, dibh); |
| di->di_goal_meta = di->di_goal_data = |
| cpu_to_be64(ip->i_goal); |
| brelse(dibh); |
| } |
| } |
| if (rbm.rgd->rd_free < *nblocks) { |
| pr_warn("nblocks=%u\n", *nblocks); |
| goto rgrp_error; |
| } |
| |
| rbm.rgd->rd_free -= *nblocks; |
| if (dinode) { |
| rbm.rgd->rd_dinodes++; |
| *generation = rbm.rgd->rd_igeneration++; |
| if (*generation == 0) |
| *generation = rbm.rgd->rd_igeneration++; |
| } |
| |
| gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); |
| gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); |
| gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); |
| |
| gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); |
| if (dinode) |
| gfs2_trans_add_unrevoke(sdp, block, *nblocks); |
| |
| gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); |
| |
| rbm.rgd->rd_free_clone -= *nblocks; |
| trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, |
| dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); |
| *bn = block; |
| return 0; |
| |
| rgrp_error: |
| gfs2_rgrp_error(rbm.rgd); |
| return -EIO; |
| } |
| |
| /** |
| * __gfs2_free_blocks - free a contiguous run of block(s) |
| * @ip: the inode these blocks are being freed from |
| * @bstart: first block of a run of contiguous blocks |
| * @blen: the length of the block run |
| * @meta: 1 if the blocks represent metadata |
| * |
| */ |
| |
| void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| struct gfs2_rgrpd *rgd; |
| |
| rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); |
| if (!rgd) |
| return; |
| trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); |
| rgd->rd_free += blen; |
| rgd->rd_flags &= ~GFS2_RGF_TRIMMED; |
| gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); |
| gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); |
| gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); |
| |
| /* Directories keep their data in the metadata address space */ |
| if (meta || ip->i_depth) |
| gfs2_meta_wipe(ip, bstart, blen); |
| } |
| |
| /** |
| * gfs2_free_meta - free a contiguous run of data block(s) |
| * @ip: the inode these blocks are being freed from |
| * @bstart: first block of a run of contiguous blocks |
| * @blen: the length of the block run |
| * |
| */ |
| |
| void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| |
| __gfs2_free_blocks(ip, bstart, blen, 1); |
| gfs2_statfs_change(sdp, 0, +blen, 0); |
| gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); |
| } |
| |
| void gfs2_unlink_di(struct inode *inode) |
| { |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct gfs2_rgrpd *rgd; |
| u64 blkno = ip->i_no_addr; |
| |
| rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); |
| if (!rgd) |
| return; |
| trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); |
| gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); |
| gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); |
| gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); |
| update_rgrp_lvb_unlinked(rgd, 1); |
| } |
| |
| void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) |
| { |
| struct gfs2_sbd *sdp = rgd->rd_sbd; |
| struct gfs2_rgrpd *tmp_rgd; |
| |
| tmp_rgd = rgblk_free(sdp, ip->i_no_addr, 1, GFS2_BLKST_FREE); |
| if (!tmp_rgd) |
| return; |
| gfs2_assert_withdraw(sdp, rgd == tmp_rgd); |
| |
| if (!rgd->rd_dinodes) |
| gfs2_consist_rgrpd(rgd); |
| rgd->rd_dinodes--; |
| rgd->rd_free++; |
| |
| gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); |
| gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); |
| gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); |
| update_rgrp_lvb_unlinked(rgd, -1); |
| |
| gfs2_statfs_change(sdp, 0, +1, -1); |
| trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); |
| gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); |
| gfs2_meta_wipe(ip, ip->i_no_addr, 1); |
| } |
| |
| /** |
| * gfs2_check_blk_type - Check the type of a block |
| * @sdp: The superblock |
| * @no_addr: The block number to check |
| * @type: The block type we are looking for |
| * |
| * Returns: 0 if the block type matches the expected type |
| * -ESTALE if it doesn't match |
| * or -ve errno if something went wrong while checking |
| */ |
| |
| int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) |
| { |
| struct gfs2_rgrpd *rgd; |
| struct gfs2_holder rgd_gh; |
| int error = -EINVAL; |
| |
| rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); |
| if (!rgd) |
| goto fail; |
| |
| error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); |
| if (error) |
| goto fail; |
| |
| if (gfs2_get_block_type(rgd, no_addr) != type) |
| error = -ESTALE; |
| |
| gfs2_glock_dq_uninit(&rgd_gh); |
| fail: |
| return error; |
| } |
| |
| /** |
| * gfs2_rlist_add - add a RG to a list of RGs |
| * @ip: the inode |
| * @rlist: the list of resource groups |
| * @block: the block |
| * |
| * Figure out what RG a block belongs to and add that RG to the list |
| * |
| * FIXME: Don't use NOFAIL |
| * |
| */ |
| |
| void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, |
| u64 block) |
| { |
| struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| struct gfs2_rgrpd *rgd; |
| struct gfs2_rgrpd **tmp; |
| unsigned int new_space; |
| unsigned int x; |
| |
| if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) |
| return; |
| |
| if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) |
| rgd = ip->i_rgd; |
| else |
| rgd = gfs2_blk2rgrpd(sdp, block, 1); |
| if (!rgd) { |
| fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); |
| return; |
| } |
| ip->i_rgd = rgd; |
| |
| for (x = 0; x < rlist->rl_rgrps; x++) |
| if (rlist->rl_rgd[x] == rgd) |
| return; |
| |
| if (rlist->rl_rgrps == rlist->rl_space) { |
| new_space = rlist->rl_space + 10; |
| |
| tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), |
| GFP_NOFS | __GFP_NOFAIL); |
| |
| if (rlist->rl_rgd) { |
| memcpy(tmp, rlist->rl_rgd, |
| rlist->rl_space * sizeof(struct gfs2_rgrpd *)); |
| kfree(rlist->rl_rgd); |
| } |
| |
| rlist->rl_space = new_space; |
| rlist->rl_rgd = tmp; |
| } |
| |
| rlist->rl_rgd[rlist->rl_rgrps++] = rgd; |
| } |
| |
| /** |
| * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate |
| * and initialize an array of glock holders for them |
| * @rlist: the list of resource groups |
| * @state: the lock state to acquire the RG lock in |
| * |
| * FIXME: Don't use NOFAIL |
| * |
| */ |
| |
| void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) |
| { |
| unsigned int x; |
| |
| rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder), |
| GFP_NOFS | __GFP_NOFAIL); |
| for (x = 0; x < rlist->rl_rgrps; x++) |
| gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, |
| state, 0, |
| &rlist->rl_ghs[x]); |
| } |
| |
| /** |
| * gfs2_rlist_free - free a resource group list |
| * @rlist: the list of resource groups |
| * |
| */ |
| |
| void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) |
| { |
| unsigned int x; |
| |
| kfree(rlist->rl_rgd); |
| |
| if (rlist->rl_ghs) { |
| for (x = 0; x < rlist->rl_rgrps; x++) |
| gfs2_holder_uninit(&rlist->rl_ghs[x]); |
| kfree(rlist->rl_ghs); |
| rlist->rl_ghs = NULL; |
| } |
| } |
| |