| /* |
| * Strictly speaking, this is not a test. But it can report during test |
| * runs so relative performace can be measured. |
| */ |
| #define _GNU_SOURCE |
| #include <assert.h> |
| #include <err.h> |
| #include <limits.h> |
| #include <sched.h> |
| #include <stdbool.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <linux/filter.h> |
| #include <linux/seccomp.h> |
| #include <sys/param.h> |
| #include <sys/prctl.h> |
| #include <sys/syscall.h> |
| #include <sys/types.h> |
| |
| #include "../kselftest.h" |
| |
| unsigned long long timing(clockid_t clk_id, unsigned long long samples) |
| { |
| struct timespec start, finish; |
| unsigned long long i; |
| pid_t pid, ret; |
| |
| pid = getpid(); |
| assert(clock_gettime(clk_id, &start) == 0); |
| for (i = 0; i < samples; i++) { |
| ret = syscall(__NR_getpid); |
| assert(pid == ret); |
| } |
| assert(clock_gettime(clk_id, &finish) == 0); |
| |
| i = finish.tv_sec - start.tv_sec; |
| i *= 1000000000ULL; |
| i += finish.tv_nsec - start.tv_nsec; |
| |
| ksft_print_msg("%lu.%09lu - %lu.%09lu = %llu (%.1fs)\n", |
| finish.tv_sec, finish.tv_nsec, |
| start.tv_sec, start.tv_nsec, |
| i, (double)i / 1000000000.0); |
| |
| return i; |
| } |
| |
| unsigned long long calibrate(void) |
| { |
| struct timespec start, finish; |
| unsigned long long i, samples, step = 9973; |
| pid_t pid, ret; |
| int seconds = 15; |
| |
| ksft_print_msg("Calibrating sample size for %d seconds worth of syscalls ...\n", seconds); |
| |
| samples = 0; |
| pid = getpid(); |
| assert(clock_gettime(CLOCK_MONOTONIC, &start) == 0); |
| do { |
| for (i = 0; i < step; i++) { |
| ret = syscall(__NR_getpid); |
| assert(pid == ret); |
| } |
| assert(clock_gettime(CLOCK_MONOTONIC, &finish) == 0); |
| |
| samples += step; |
| i = finish.tv_sec - start.tv_sec; |
| i *= 1000000000ULL; |
| i += finish.tv_nsec - start.tv_nsec; |
| } while (i < 1000000000ULL); |
| |
| return samples * seconds; |
| } |
| |
| bool approx(int i_one, int i_two) |
| { |
| /* |
| * This continues to be a noisy test. Instead of a 1% comparison |
| * go with 10%. |
| */ |
| double one = i_one, one_bump = one * 0.1; |
| double two = i_two, two_bump = two * 0.1; |
| |
| one_bump = one + MAX(one_bump, 2.0); |
| two_bump = two + MAX(two_bump, 2.0); |
| |
| /* Equal to, or within 1% or 2 digits */ |
| if (one == two || |
| (one > two && one <= two_bump) || |
| (two > one && two <= one_bump)) |
| return true; |
| return false; |
| } |
| |
| bool le(int i_one, int i_two) |
| { |
| if (i_one <= i_two) |
| return true; |
| return false; |
| } |
| |
| long compare(const char *name_one, const char *name_eval, const char *name_two, |
| unsigned long long one, bool (*eval)(int, int), unsigned long long two, |
| bool skip) |
| { |
| bool good; |
| |
| if (skip) { |
| ksft_test_result_skip("%s %s %s\n", name_one, name_eval, |
| name_two); |
| return 0; |
| } |
| |
| ksft_print_msg("\t%s %s %s (%lld %s %lld): ", name_one, name_eval, name_two, |
| (long long)one, name_eval, (long long)two); |
| if (one > INT_MAX) { |
| ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)one); |
| good = false; |
| goto out; |
| } |
| if (two > INT_MAX) { |
| ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)two); |
| good = false; |
| goto out; |
| } |
| |
| good = eval(one, two); |
| printf("%s\n", good ? "✔️" : "❌"); |
| |
| out: |
| ksft_test_result(good, "%s %s %s\n", name_one, name_eval, name_two); |
| |
| return good ? 0 : 1; |
| } |
| |
| /* Pin to a single CPU so the benchmark won't bounce around the system. */ |
| void affinity(void) |
| { |
| long cpu; |
| ulong ncores = sysconf(_SC_NPROCESSORS_CONF); |
| cpu_set_t *setp = CPU_ALLOC(ncores); |
| ulong setsz = CPU_ALLOC_SIZE(ncores); |
| |
| /* |
| * Totally unscientific way to avoid CPUs that might be busier: |
| * choose the highest CPU instead of the lowest. |
| */ |
| for (cpu = ncores - 1; cpu >= 0; cpu--) { |
| CPU_ZERO_S(setsz, setp); |
| CPU_SET_S(cpu, setsz, setp); |
| if (sched_setaffinity(getpid(), setsz, setp) == -1) |
| continue; |
| printf("Pinned to CPU %lu of %lu\n", cpu + 1, ncores); |
| goto out; |
| } |
| fprintf(stderr, "Could not set CPU affinity -- calibration may not work well"); |
| |
| out: |
| CPU_FREE(setp); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct sock_filter bitmap_filter[] = { |
| BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), |
| BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), |
| }; |
| struct sock_fprog bitmap_prog = { |
| .len = (unsigned short)ARRAY_SIZE(bitmap_filter), |
| .filter = bitmap_filter, |
| }; |
| struct sock_filter filter[] = { |
| BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, args[0])), |
| BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), |
| }; |
| struct sock_fprog prog = { |
| .len = (unsigned short)ARRAY_SIZE(filter), |
| .filter = filter, |
| }; |
| |
| long ret, bits; |
| unsigned long long samples, calc; |
| unsigned long long native, filter1, filter2, bitmap1, bitmap2; |
| unsigned long long entry, per_filter1, per_filter2; |
| bool skip = false; |
| |
| setbuf(stdout, NULL); |
| |
| ksft_print_header(); |
| ksft_set_plan(7); |
| |
| ksft_print_msg("Running on:\n"); |
| ksft_print_msg(""); |
| system("uname -a"); |
| |
| ksft_print_msg("Current BPF sysctl settings:\n"); |
| /* Avoid using "sysctl" which may not be installed. */ |
| ksft_print_msg(""); |
| system("grep -H . /proc/sys/net/core/bpf_jit_enable"); |
| ksft_print_msg(""); |
| system("grep -H . /proc/sys/net/core/bpf_jit_harden"); |
| |
| affinity(); |
| |
| if (argc > 1) |
| samples = strtoull(argv[1], NULL, 0); |
| else |
| samples = calibrate(); |
| |
| ksft_print_msg("Benchmarking %llu syscalls...\n", samples); |
| |
| /* Native call */ |
| native = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; |
| ksft_print_msg("getpid native: %llu ns\n", native); |
| |
| ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); |
| assert(ret == 0); |
| |
| /* One filter resulting in a bitmap */ |
| ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); |
| assert(ret == 0); |
| |
| bitmap1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; |
| ksft_print_msg("getpid RET_ALLOW 1 filter (bitmap): %llu ns\n", bitmap1); |
| |
| /* Second filter resulting in a bitmap */ |
| ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); |
| assert(ret == 0); |
| |
| bitmap2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; |
| ksft_print_msg("getpid RET_ALLOW 2 filters (bitmap): %llu ns\n", bitmap2); |
| |
| /* Third filter, can no longer be converted to bitmap */ |
| ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); |
| assert(ret == 0); |
| |
| filter1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; |
| ksft_print_msg("getpid RET_ALLOW 3 filters (full): %llu ns\n", filter1); |
| |
| /* Fourth filter, can not be converted to bitmap because of filter 3 */ |
| ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); |
| assert(ret == 0); |
| |
| filter2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; |
| ksft_print_msg("getpid RET_ALLOW 4 filters (full): %llu ns\n", filter2); |
| |
| /* Estimations */ |
| #define ESTIMATE(fmt, var, what) do { \ |
| var = (what); \ |
| ksft_print_msg("Estimated " fmt ": %llu ns\n", var); \ |
| if (var > INT_MAX) { \ |
| skip = true; \ |
| ret |= 1; \ |
| } \ |
| } while (0) |
| |
| ESTIMATE("total seccomp overhead for 1 bitmapped filter", calc, |
| bitmap1 - native); |
| ESTIMATE("total seccomp overhead for 2 bitmapped filters", calc, |
| bitmap2 - native); |
| ESTIMATE("total seccomp overhead for 3 full filters", calc, |
| filter1 - native); |
| ESTIMATE("total seccomp overhead for 4 full filters", calc, |
| filter2 - native); |
| ESTIMATE("seccomp entry overhead", entry, |
| bitmap1 - native - (bitmap2 - bitmap1)); |
| ESTIMATE("seccomp per-filter overhead (last 2 diff)", per_filter1, |
| filter2 - filter1); |
| ESTIMATE("seccomp per-filter overhead (filters / 4)", per_filter2, |
| (filter2 - native - entry) / 4); |
| |
| ksft_print_msg("Expectations:\n"); |
| ret |= compare("native", "≤", "1 bitmap", native, le, bitmap1, |
| skip); |
| bits = compare("native", "≤", "1 filter", native, le, filter1, |
| skip); |
| if (bits) |
| skip = true; |
| |
| ret |= compare("per-filter (last 2 diff)", "≈", "per-filter (filters / 4)", |
| per_filter1, approx, per_filter2, skip); |
| |
| bits = compare("1 bitmapped", "≈", "2 bitmapped", |
| bitmap1 - native, approx, bitmap2 - native, skip); |
| if (bits) { |
| ksft_print_msg("Skipping constant action bitmap expectations: they appear unsupported.\n"); |
| skip = true; |
| } |
| |
| ret |= compare("entry", "≈", "1 bitmapped", entry, approx, |
| bitmap1 - native, skip); |
| ret |= compare("entry", "≈", "2 bitmapped", entry, approx, |
| bitmap2 - native, skip); |
| ret |= compare("native + entry + (per filter * 4)", "≈", "4 filters total", |
| entry + (per_filter1 * 4) + native, approx, filter2, |
| skip); |
| |
| if (ret) |
| ksft_print_msg("Saw unexpected benchmark result. Try running again with more samples?\n"); |
| |
| ksft_finished(); |
| } |