| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2014 IBM Corp. |
| */ |
| |
| #include <linux/spinlock.h> |
| #include <linux/sched.h> |
| #include <linux/sched/clock.h> |
| #include <linux/slab.h> |
| #include <linux/mutex.h> |
| #include <linux/mm.h> |
| #include <linux/uaccess.h> |
| #include <linux/delay.h> |
| #include <linux/irqdomain.h> |
| #include <asm/synch.h> |
| #include <asm/switch_to.h> |
| #include <misc/cxl-base.h> |
| |
| #include "cxl.h" |
| #include "trace.h" |
| |
| static int afu_control(struct cxl_afu *afu, u64 command, u64 clear, |
| u64 result, u64 mask, bool enabled) |
| { |
| u64 AFU_Cntl; |
| unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); |
| int rc = 0; |
| |
| spin_lock(&afu->afu_cntl_lock); |
| pr_devel("AFU command starting: %llx\n", command); |
| |
| trace_cxl_afu_ctrl(afu, command); |
| |
| AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); |
| cxl_p2n_write(afu, CXL_AFU_Cntl_An, (AFU_Cntl & ~clear) | command); |
| |
| AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); |
| while ((AFU_Cntl & mask) != result) { |
| if (time_after_eq(jiffies, timeout)) { |
| dev_warn(&afu->dev, "WARNING: AFU control timed out!\n"); |
| rc = -EBUSY; |
| goto out; |
| } |
| |
| if (!cxl_ops->link_ok(afu->adapter, afu)) { |
| afu->enabled = enabled; |
| rc = -EIO; |
| goto out; |
| } |
| |
| pr_devel_ratelimited("AFU control... (0x%016llx)\n", |
| AFU_Cntl | command); |
| cpu_relax(); |
| AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); |
| } |
| |
| if (AFU_Cntl & CXL_AFU_Cntl_An_RA) { |
| /* |
| * Workaround for a bug in the XSL used in the Mellanox CX4 |
| * that fails to clear the RA bit after an AFU reset, |
| * preventing subsequent AFU resets from working. |
| */ |
| cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl & ~CXL_AFU_Cntl_An_RA); |
| } |
| |
| pr_devel("AFU command complete: %llx\n", command); |
| afu->enabled = enabled; |
| out: |
| trace_cxl_afu_ctrl_done(afu, command, rc); |
| spin_unlock(&afu->afu_cntl_lock); |
| |
| return rc; |
| } |
| |
| static int afu_enable(struct cxl_afu *afu) |
| { |
| pr_devel("AFU enable request\n"); |
| |
| return afu_control(afu, CXL_AFU_Cntl_An_E, 0, |
| CXL_AFU_Cntl_An_ES_Enabled, |
| CXL_AFU_Cntl_An_ES_MASK, true); |
| } |
| |
| int cxl_afu_disable(struct cxl_afu *afu) |
| { |
| pr_devel("AFU disable request\n"); |
| |
| return afu_control(afu, 0, CXL_AFU_Cntl_An_E, |
| CXL_AFU_Cntl_An_ES_Disabled, |
| CXL_AFU_Cntl_An_ES_MASK, false); |
| } |
| |
| /* This will disable as well as reset */ |
| static int native_afu_reset(struct cxl_afu *afu) |
| { |
| int rc; |
| u64 serr; |
| |
| pr_devel("AFU reset request\n"); |
| |
| rc = afu_control(afu, CXL_AFU_Cntl_An_RA, 0, |
| CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled, |
| CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK, |
| false); |
| |
| /* |
| * Re-enable any masked interrupts when the AFU is not |
| * activated to avoid side effects after attaching a process |
| * in dedicated mode. |
| */ |
| if (afu->current_mode == 0) { |
| serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); |
| serr &= ~CXL_PSL_SERR_An_IRQ_MASKS; |
| cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); |
| } |
| |
| return rc; |
| } |
| |
| static int native_afu_check_and_enable(struct cxl_afu *afu) |
| { |
| if (!cxl_ops->link_ok(afu->adapter, afu)) { |
| WARN(1, "Refusing to enable afu while link down!\n"); |
| return -EIO; |
| } |
| if (afu->enabled) |
| return 0; |
| return afu_enable(afu); |
| } |
| |
| int cxl_psl_purge(struct cxl_afu *afu) |
| { |
| u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); |
| u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); |
| u64 dsisr, dar; |
| u64 start, end; |
| u64 trans_fault = 0x0ULL; |
| unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); |
| int rc = 0; |
| |
| trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc); |
| |
| pr_devel("PSL purge request\n"); |
| |
| if (cxl_is_power8()) |
| trans_fault = CXL_PSL_DSISR_TRANS; |
| if (cxl_is_power9()) |
| trans_fault = CXL_PSL9_DSISR_An_TF; |
| |
| if (!cxl_ops->link_ok(afu->adapter, afu)) { |
| dev_warn(&afu->dev, "PSL Purge called with link down, ignoring\n"); |
| rc = -EIO; |
| goto out; |
| } |
| |
| if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) { |
| WARN(1, "psl_purge request while AFU not disabled!\n"); |
| cxl_afu_disable(afu); |
| } |
| |
| cxl_p1n_write(afu, CXL_PSL_SCNTL_An, |
| PSL_CNTL | CXL_PSL_SCNTL_An_Pc); |
| start = local_clock(); |
| PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); |
| while ((PSL_CNTL & CXL_PSL_SCNTL_An_Ps_MASK) |
| == CXL_PSL_SCNTL_An_Ps_Pending) { |
| if (time_after_eq(jiffies, timeout)) { |
| dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n"); |
| rc = -EBUSY; |
| goto out; |
| } |
| if (!cxl_ops->link_ok(afu->adapter, afu)) { |
| rc = -EIO; |
| goto out; |
| } |
| |
| dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); |
| pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx PSL_DSISR: 0x%016llx\n", |
| PSL_CNTL, dsisr); |
| |
| if (dsisr & trans_fault) { |
| dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); |
| dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n", |
| dsisr, dar); |
| cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); |
| } else if (dsisr) { |
| dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n", |
| dsisr); |
| cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); |
| } else { |
| cpu_relax(); |
| } |
| PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); |
| } |
| end = local_clock(); |
| pr_devel("PSL purged in %lld ns\n", end - start); |
| |
| cxl_p1n_write(afu, CXL_PSL_SCNTL_An, |
| PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc); |
| out: |
| trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc); |
| return rc; |
| } |
| |
| static int spa_max_procs(int spa_size) |
| { |
| /* |
| * From the CAIA: |
| * end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255 |
| * Most of that junk is really just an overly-complicated way of saying |
| * the last 256 bytes are __aligned(128), so it's really: |
| * end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255 |
| * and |
| * end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1 |
| * so |
| * sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256 |
| * Ignore the alignment (which is safe in this case as long as we are |
| * careful with our rounding) and solve for n: |
| */ |
| return ((spa_size / 8) - 96) / 17; |
| } |
| |
| static int cxl_alloc_spa(struct cxl_afu *afu, int mode) |
| { |
| unsigned spa_size; |
| |
| /* Work out how many pages to allocate */ |
| afu->native->spa_order = -1; |
| do { |
| afu->native->spa_order++; |
| spa_size = (1 << afu->native->spa_order) * PAGE_SIZE; |
| |
| if (spa_size > 0x100000) { |
| dev_warn(&afu->dev, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n", |
| afu->native->spa_max_procs, afu->native->spa_size); |
| if (mode != CXL_MODE_DEDICATED) |
| afu->num_procs = afu->native->spa_max_procs; |
| break; |
| } |
| |
| afu->native->spa_size = spa_size; |
| afu->native->spa_max_procs = spa_max_procs(afu->native->spa_size); |
| } while (afu->native->spa_max_procs < afu->num_procs); |
| |
| if (!(afu->native->spa = (struct cxl_process_element *) |
| __get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->native->spa_order))) { |
| pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n"); |
| return -ENOMEM; |
| } |
| pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n", |
| 1<<afu->native->spa_order, afu->native->spa_max_procs, afu->num_procs); |
| |
| return 0; |
| } |
| |
| static void attach_spa(struct cxl_afu *afu) |
| { |
| u64 spap; |
| |
| afu->native->sw_command_status = (__be64 *)((char *)afu->native->spa + |
| ((afu->native->spa_max_procs + 3) * 128)); |
| |
| spap = virt_to_phys(afu->native->spa) & CXL_PSL_SPAP_Addr; |
| spap |= ((afu->native->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size; |
| spap |= CXL_PSL_SPAP_V; |
| pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n", |
| afu->native->spa, afu->native->spa_max_procs, |
| afu->native->sw_command_status, spap); |
| cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap); |
| } |
| |
| void cxl_release_spa(struct cxl_afu *afu) |
| { |
| if (afu->native->spa) { |
| free_pages((unsigned long) afu->native->spa, |
| afu->native->spa_order); |
| afu->native->spa = NULL; |
| } |
| } |
| |
| /* |
| * Invalidation of all ERAT entries is no longer required by CAIA2. Use |
| * only for debug. |
| */ |
| int cxl_invalidate_all_psl9(struct cxl *adapter) |
| { |
| unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); |
| u64 ierat; |
| |
| pr_devel("CXL adapter - invalidation of all ERAT entries\n"); |
| |
| /* Invalidates all ERAT entries for Radix or HPT */ |
| ierat = CXL_XSL9_IERAT_IALL; |
| if (radix_enabled()) |
| ierat |= CXL_XSL9_IERAT_INVR; |
| cxl_p1_write(adapter, CXL_XSL9_IERAT, ierat); |
| |
| while (cxl_p1_read(adapter, CXL_XSL9_IERAT) & CXL_XSL9_IERAT_IINPROG) { |
| if (time_after_eq(jiffies, timeout)) { |
| dev_warn(&adapter->dev, |
| "WARNING: CXL adapter invalidation of all ERAT entries timed out!\n"); |
| return -EBUSY; |
| } |
| if (!cxl_ops->link_ok(adapter, NULL)) |
| return -EIO; |
| cpu_relax(); |
| } |
| return 0; |
| } |
| |
| int cxl_invalidate_all_psl8(struct cxl *adapter) |
| { |
| unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); |
| |
| pr_devel("CXL adapter wide TLBIA & SLBIA\n"); |
| |
| cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A); |
| |
| cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL); |
| while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) { |
| if (time_after_eq(jiffies, timeout)) { |
| dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n"); |
| return -EBUSY; |
| } |
| if (!cxl_ops->link_ok(adapter, NULL)) |
| return -EIO; |
| cpu_relax(); |
| } |
| |
| cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL); |
| while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) { |
| if (time_after_eq(jiffies, timeout)) { |
| dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n"); |
| return -EBUSY; |
| } |
| if (!cxl_ops->link_ok(adapter, NULL)) |
| return -EIO; |
| cpu_relax(); |
| } |
| return 0; |
| } |
| |
| int cxl_data_cache_flush(struct cxl *adapter) |
| { |
| u64 reg; |
| unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); |
| |
| /* |
| * Do a datacache flush only if datacache is available. |
| * In case of PSL9D datacache absent hence flush operation. |
| * would timeout. |
| */ |
| if (adapter->native->no_data_cache) { |
| pr_devel("No PSL data cache. Ignoring cache flush req.\n"); |
| return 0; |
| } |
| |
| pr_devel("Flushing data cache\n"); |
| reg = cxl_p1_read(adapter, CXL_PSL_Control); |
| reg |= CXL_PSL_Control_Fr; |
| cxl_p1_write(adapter, CXL_PSL_Control, reg); |
| |
| reg = cxl_p1_read(adapter, CXL_PSL_Control); |
| while ((reg & CXL_PSL_Control_Fs_MASK) != CXL_PSL_Control_Fs_Complete) { |
| if (time_after_eq(jiffies, timeout)) { |
| dev_warn(&adapter->dev, "WARNING: cache flush timed out!\n"); |
| return -EBUSY; |
| } |
| |
| if (!cxl_ops->link_ok(adapter, NULL)) { |
| dev_warn(&adapter->dev, "WARNING: link down when flushing cache\n"); |
| return -EIO; |
| } |
| cpu_relax(); |
| reg = cxl_p1_read(adapter, CXL_PSL_Control); |
| } |
| |
| reg &= ~CXL_PSL_Control_Fr; |
| cxl_p1_write(adapter, CXL_PSL_Control, reg); |
| return 0; |
| } |
| |
| static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1) |
| { |
| int rc; |
| |
| /* 1. Disable SSTP by writing 0 to SSTP1[V] */ |
| cxl_p2n_write(afu, CXL_SSTP1_An, 0); |
| |
| /* 2. Invalidate all SLB entries */ |
| if ((rc = cxl_afu_slbia(afu))) |
| return rc; |
| |
| /* 3. Set SSTP0_An */ |
| cxl_p2n_write(afu, CXL_SSTP0_An, sstp0); |
| |
| /* 4. Set SSTP1_An */ |
| cxl_p2n_write(afu, CXL_SSTP1_An, sstp1); |
| |
| return 0; |
| } |
| |
| /* Using per slice version may improve performance here. (ie. SLBIA_An) */ |
| static void slb_invalid(struct cxl_context *ctx) |
| { |
| struct cxl *adapter = ctx->afu->adapter; |
| u64 slbia; |
| |
| WARN_ON(!mutex_is_locked(&ctx->afu->native->spa_mutex)); |
| |
| cxl_p1_write(adapter, CXL_PSL_LBISEL, |
| ((u64)be32_to_cpu(ctx->elem->common.pid) << 32) | |
| be32_to_cpu(ctx->elem->lpid)); |
| cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID); |
| |
| while (1) { |
| if (!cxl_ops->link_ok(adapter, NULL)) |
| break; |
| slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA); |
| if (!(slbia & CXL_TLB_SLB_P)) |
| break; |
| cpu_relax(); |
| } |
| } |
| |
| static int do_process_element_cmd(struct cxl_context *ctx, |
| u64 cmd, u64 pe_state) |
| { |
| u64 state; |
| unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); |
| int rc = 0; |
| |
| trace_cxl_llcmd(ctx, cmd); |
| |
| WARN_ON(!ctx->afu->enabled); |
| |
| ctx->elem->software_state = cpu_to_be32(pe_state); |
| smp_wmb(); |
| *(ctx->afu->native->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe); |
| smp_mb(); |
| cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe); |
| while (1) { |
| if (time_after_eq(jiffies, timeout)) { |
| dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n"); |
| rc = -EBUSY; |
| goto out; |
| } |
| if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) { |
| dev_warn(&ctx->afu->dev, "WARNING: Device link down, aborting Process Element Command!\n"); |
| rc = -EIO; |
| goto out; |
| } |
| state = be64_to_cpup(ctx->afu->native->sw_command_status); |
| if (state == ~0ULL) { |
| pr_err("cxl: Error adding process element to AFU\n"); |
| rc = -1; |
| goto out; |
| } |
| if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK | CXL_SPA_SW_LINK_MASK)) == |
| (cmd | (cmd >> 16) | ctx->pe)) |
| break; |
| /* |
| * The command won't finish in the PSL if there are |
| * outstanding DSIs. Hence we need to yield here in |
| * case there are outstanding DSIs that we need to |
| * service. Tuning possiblity: we could wait for a |
| * while before sched |
| */ |
| schedule(); |
| |
| } |
| out: |
| trace_cxl_llcmd_done(ctx, cmd, rc); |
| return rc; |
| } |
| |
| static int add_process_element(struct cxl_context *ctx) |
| { |
| int rc = 0; |
| |
| mutex_lock(&ctx->afu->native->spa_mutex); |
| pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe); |
| if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V))) |
| ctx->pe_inserted = true; |
| pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe); |
| mutex_unlock(&ctx->afu->native->spa_mutex); |
| return rc; |
| } |
| |
| static int terminate_process_element(struct cxl_context *ctx) |
| { |
| int rc = 0; |
| |
| /* fast path terminate if it's already invalid */ |
| if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V))) |
| return rc; |
| |
| mutex_lock(&ctx->afu->native->spa_mutex); |
| pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe); |
| /* We could be asked to terminate when the hw is down. That |
| * should always succeed: it's not running if the hw has gone |
| * away and is being reset. |
| */ |
| if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) |
| rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE, |
| CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T); |
| ctx->elem->software_state = 0; /* Remove Valid bit */ |
| pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe); |
| mutex_unlock(&ctx->afu->native->spa_mutex); |
| return rc; |
| } |
| |
| static int remove_process_element(struct cxl_context *ctx) |
| { |
| int rc = 0; |
| |
| mutex_lock(&ctx->afu->native->spa_mutex); |
| pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe); |
| |
| /* We could be asked to remove when the hw is down. Again, if |
| * the hw is down, the PE is gone, so we succeed. |
| */ |
| if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) |
| rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0); |
| |
| if (!rc) |
| ctx->pe_inserted = false; |
| if (cxl_is_power8()) |
| slb_invalid(ctx); |
| pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe); |
| mutex_unlock(&ctx->afu->native->spa_mutex); |
| |
| return rc; |
| } |
| |
| void cxl_assign_psn_space(struct cxl_context *ctx) |
| { |
| if (!ctx->afu->pp_size || ctx->master) { |
| ctx->psn_phys = ctx->afu->psn_phys; |
| ctx->psn_size = ctx->afu->adapter->ps_size; |
| } else { |
| ctx->psn_phys = ctx->afu->psn_phys + |
| (ctx->afu->native->pp_offset + ctx->afu->pp_size * ctx->pe); |
| ctx->psn_size = ctx->afu->pp_size; |
| } |
| } |
| |
| static int activate_afu_directed(struct cxl_afu *afu) |
| { |
| int rc; |
| |
| dev_info(&afu->dev, "Activating AFU directed mode\n"); |
| |
| afu->num_procs = afu->max_procs_virtualised; |
| if (afu->native->spa == NULL) { |
| if (cxl_alloc_spa(afu, CXL_MODE_DIRECTED)) |
| return -ENOMEM; |
| } |
| attach_spa(afu); |
| |
| cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU); |
| if (cxl_is_power8()) |
| cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); |
| cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L); |
| |
| afu->current_mode = CXL_MODE_DIRECTED; |
| |
| if ((rc = cxl_chardev_m_afu_add(afu))) |
| return rc; |
| |
| if ((rc = cxl_sysfs_afu_m_add(afu))) |
| goto err; |
| |
| if ((rc = cxl_chardev_s_afu_add(afu))) |
| goto err1; |
| |
| return 0; |
| err1: |
| cxl_sysfs_afu_m_remove(afu); |
| err: |
| cxl_chardev_afu_remove(afu); |
| return rc; |
| } |
| |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE) |
| #else |
| #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE)) |
| #endif |
| |
| u64 cxl_calculate_sr(bool master, bool kernel, bool real_mode, bool p9) |
| { |
| u64 sr = 0; |
| |
| set_endian(sr); |
| if (master) |
| sr |= CXL_PSL_SR_An_MP; |
| if (mfspr(SPRN_LPCR) & LPCR_TC) |
| sr |= CXL_PSL_SR_An_TC; |
| |
| if (kernel) { |
| if (!real_mode) |
| sr |= CXL_PSL_SR_An_R; |
| sr |= (mfmsr() & MSR_SF) | CXL_PSL_SR_An_HV; |
| } else { |
| sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R; |
| if (radix_enabled()) |
| sr |= CXL_PSL_SR_An_HV; |
| else |
| sr &= ~(CXL_PSL_SR_An_HV); |
| if (!test_tsk_thread_flag(current, TIF_32BIT)) |
| sr |= CXL_PSL_SR_An_SF; |
| } |
| if (p9) { |
| if (radix_enabled()) |
| sr |= CXL_PSL_SR_An_XLAT_ror; |
| else |
| sr |= CXL_PSL_SR_An_XLAT_hpt; |
| } |
| return sr; |
| } |
| |
| static u64 calculate_sr(struct cxl_context *ctx) |
| { |
| return cxl_calculate_sr(ctx->master, ctx->kernel, false, |
| cxl_is_power9()); |
| } |
| |
| static void update_ivtes_directed(struct cxl_context *ctx) |
| { |
| bool need_update = (ctx->status == STARTED); |
| int r; |
| |
| if (need_update) { |
| WARN_ON(terminate_process_element(ctx)); |
| WARN_ON(remove_process_element(ctx)); |
| } |
| |
| for (r = 0; r < CXL_IRQ_RANGES; r++) { |
| ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]); |
| ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]); |
| } |
| |
| /* |
| * Theoretically we could use the update llcmd, instead of a |
| * terminate/remove/add (or if an atomic update was required we could |
| * do a suspend/update/resume), however it seems there might be issues |
| * with the update llcmd on some cards (including those using an XSL on |
| * an ASIC) so for now it's safest to go with the commands that are |
| * known to work. In the future if we come across a situation where the |
| * card may be performing transactions using the same PE while we are |
| * doing this update we might need to revisit this. |
| */ |
| if (need_update) |
| WARN_ON(add_process_element(ctx)); |
| } |
| |
| static int process_element_entry_psl9(struct cxl_context *ctx, u64 wed, u64 amr) |
| { |
| u32 pid; |
| int rc; |
| |
| cxl_assign_psn_space(ctx); |
| |
| ctx->elem->ctxtime = 0; /* disable */ |
| ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID)); |
| ctx->elem->haurp = 0; /* disable */ |
| |
| if (ctx->kernel) |
| pid = 0; |
| else { |
| if (ctx->mm == NULL) { |
| pr_devel("%s: unable to get mm for pe=%d pid=%i\n", |
| __func__, ctx->pe, pid_nr(ctx->pid)); |
| return -EINVAL; |
| } |
| pid = ctx->mm->context.id; |
| } |
| |
| /* Assign a unique TIDR (thread id) for the current thread */ |
| if (!(ctx->tidr) && (ctx->assign_tidr)) { |
| rc = set_thread_tidr(current); |
| if (rc) |
| return -ENODEV; |
| ctx->tidr = current->thread.tidr; |
| pr_devel("%s: current tidr: %d\n", __func__, ctx->tidr); |
| } |
| |
| ctx->elem->common.tid = cpu_to_be32(ctx->tidr); |
| ctx->elem->common.pid = cpu_to_be32(pid); |
| |
| ctx->elem->sr = cpu_to_be64(calculate_sr(ctx)); |
| |
| ctx->elem->common.csrp = 0; /* disable */ |
| |
| cxl_prefault(ctx, wed); |
| |
| /* |
| * Ensure we have the multiplexed PSL interrupt set up to take faults |
| * for kernel contexts that may not have allocated any AFU IRQs at all: |
| */ |
| if (ctx->irqs.range[0] == 0) { |
| ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq; |
| ctx->irqs.range[0] = 1; |
| } |
| |
| ctx->elem->common.amr = cpu_to_be64(amr); |
| ctx->elem->common.wed = cpu_to_be64(wed); |
| |
| return 0; |
| } |
| |
| int cxl_attach_afu_directed_psl9(struct cxl_context *ctx, u64 wed, u64 amr) |
| { |
| int result; |
| |
| /* fill the process element entry */ |
| result = process_element_entry_psl9(ctx, wed, amr); |
| if (result) |
| return result; |
| |
| update_ivtes_directed(ctx); |
| |
| /* first guy needs to enable */ |
| result = cxl_ops->afu_check_and_enable(ctx->afu); |
| if (result) |
| return result; |
| |
| return add_process_element(ctx); |
| } |
| |
| int cxl_attach_afu_directed_psl8(struct cxl_context *ctx, u64 wed, u64 amr) |
| { |
| u32 pid; |
| int result; |
| |
| cxl_assign_psn_space(ctx); |
| |
| ctx->elem->ctxtime = 0; /* disable */ |
| ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID)); |
| ctx->elem->haurp = 0; /* disable */ |
| ctx->elem->u.sdr = cpu_to_be64(mfspr(SPRN_SDR1)); |
| |
| pid = current->pid; |
| if (ctx->kernel) |
| pid = 0; |
| ctx->elem->common.tid = 0; |
| ctx->elem->common.pid = cpu_to_be32(pid); |
| |
| ctx->elem->sr = cpu_to_be64(calculate_sr(ctx)); |
| |
| ctx->elem->common.csrp = 0; /* disable */ |
| ctx->elem->common.u.psl8.aurp0 = 0; /* disable */ |
| ctx->elem->common.u.psl8.aurp1 = 0; /* disable */ |
| |
| cxl_prefault(ctx, wed); |
| |
| ctx->elem->common.u.psl8.sstp0 = cpu_to_be64(ctx->sstp0); |
| ctx->elem->common.u.psl8.sstp1 = cpu_to_be64(ctx->sstp1); |
| |
| /* |
| * Ensure we have the multiplexed PSL interrupt set up to take faults |
| * for kernel contexts that may not have allocated any AFU IRQs at all: |
| */ |
| if (ctx->irqs.range[0] == 0) { |
| ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq; |
| ctx->irqs.range[0] = 1; |
| } |
| |
| update_ivtes_directed(ctx); |
| |
| ctx->elem->common.amr = cpu_to_be64(amr); |
| ctx->elem->common.wed = cpu_to_be64(wed); |
| |
| /* first guy needs to enable */ |
| if ((result = cxl_ops->afu_check_and_enable(ctx->afu))) |
| return result; |
| |
| return add_process_element(ctx); |
| } |
| |
| static int deactivate_afu_directed(struct cxl_afu *afu) |
| { |
| dev_info(&afu->dev, "Deactivating AFU directed mode\n"); |
| |
| afu->current_mode = 0; |
| afu->num_procs = 0; |
| |
| cxl_sysfs_afu_m_remove(afu); |
| cxl_chardev_afu_remove(afu); |
| |
| /* |
| * The CAIA section 2.2.1 indicates that the procedure for starting and |
| * stopping an AFU in AFU directed mode is AFU specific, which is not |
| * ideal since this code is generic and with one exception has no |
| * knowledge of the AFU. This is in contrast to the procedure for |
| * disabling a dedicated process AFU, which is documented to just |
| * require a reset. The architecture does indicate that both an AFU |
| * reset and an AFU disable should result in the AFU being disabled and |
| * we do both followed by a PSL purge for safety. |
| * |
| * Notably we used to have some issues with the disable sequence on PSL |
| * cards, which is why we ended up using this heavy weight procedure in |
| * the first place, however a bug was discovered that had rendered the |
| * disable operation ineffective, so it is conceivable that was the |
| * sole explanation for those difficulties. Careful regression testing |
| * is recommended if anyone attempts to remove or reorder these |
| * operations. |
| * |
| * The XSL on the Mellanox CX4 behaves a little differently from the |
| * PSL based cards and will time out an AFU reset if the AFU is still |
| * enabled. That card is special in that we do have a means to identify |
| * it from this code, so in that case we skip the reset and just use a |
| * disable/purge to avoid the timeout and corresponding noise in the |
| * kernel log. |
| */ |
| if (afu->adapter->native->sl_ops->needs_reset_before_disable) |
| cxl_ops->afu_reset(afu); |
| cxl_afu_disable(afu); |
| cxl_psl_purge(afu); |
| |
| return 0; |
| } |
| |
| int cxl_activate_dedicated_process_psl9(struct cxl_afu *afu) |
| { |
| dev_info(&afu->dev, "Activating dedicated process mode\n"); |
| |
| /* |
| * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the |
| * XSL and AFU are programmed to work with a single context. |
| * The context information should be configured in the SPA area |
| * index 0 (so PSL_SPAP must be configured before enabling the |
| * AFU). |
| */ |
| afu->num_procs = 1; |
| if (afu->native->spa == NULL) { |
| if (cxl_alloc_spa(afu, CXL_MODE_DEDICATED)) |
| return -ENOMEM; |
| } |
| attach_spa(afu); |
| |
| cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process); |
| cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L); |
| |
| afu->current_mode = CXL_MODE_DEDICATED; |
| |
| return cxl_chardev_d_afu_add(afu); |
| } |
| |
| int cxl_activate_dedicated_process_psl8(struct cxl_afu *afu) |
| { |
| dev_info(&afu->dev, "Activating dedicated process mode\n"); |
| |
| cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process); |
| |
| cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */ |
| cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); /* disable */ |
| cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); |
| cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID)); |
| cxl_p1n_write(afu, CXL_HAURP_An, 0); /* disable */ |
| cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1)); |
| |
| cxl_p2n_write(afu, CXL_CSRP_An, 0); /* disable */ |
| cxl_p2n_write(afu, CXL_AURP0_An, 0); /* disable */ |
| cxl_p2n_write(afu, CXL_AURP1_An, 0); /* disable */ |
| |
| afu->current_mode = CXL_MODE_DEDICATED; |
| afu->num_procs = 1; |
| |
| return cxl_chardev_d_afu_add(afu); |
| } |
| |
| void cxl_update_dedicated_ivtes_psl9(struct cxl_context *ctx) |
| { |
| int r; |
| |
| for (r = 0; r < CXL_IRQ_RANGES; r++) { |
| ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]); |
| ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]); |
| } |
| } |
| |
| void cxl_update_dedicated_ivtes_psl8(struct cxl_context *ctx) |
| { |
| struct cxl_afu *afu = ctx->afu; |
| |
| cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An, |
| (((u64)ctx->irqs.offset[0] & 0xffff) << 48) | |
| (((u64)ctx->irqs.offset[1] & 0xffff) << 32) | |
| (((u64)ctx->irqs.offset[2] & 0xffff) << 16) | |
| ((u64)ctx->irqs.offset[3] & 0xffff)); |
| cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64) |
| (((u64)ctx->irqs.range[0] & 0xffff) << 48) | |
| (((u64)ctx->irqs.range[1] & 0xffff) << 32) | |
| (((u64)ctx->irqs.range[2] & 0xffff) << 16) | |
| ((u64)ctx->irqs.range[3] & 0xffff)); |
| } |
| |
| int cxl_attach_dedicated_process_psl9(struct cxl_context *ctx, u64 wed, u64 amr) |
| { |
| struct cxl_afu *afu = ctx->afu; |
| int result; |
| |
| /* fill the process element entry */ |
| result = process_element_entry_psl9(ctx, wed, amr); |
| if (result) |
| return result; |
| |
| if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes) |
| afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); |
| |
| ctx->elem->software_state = cpu_to_be32(CXL_PE_SOFTWARE_STATE_V); |
| /* |
| * Ideally we should do a wmb() here to make sure the changes to the |
| * PE are visible to the card before we call afu_enable. |
| * On ppc64 though all mmios are preceded by a 'sync' instruction hence |
| * we dont dont need one here. |
| */ |
| |
| result = cxl_ops->afu_reset(afu); |
| if (result) |
| return result; |
| |
| return afu_enable(afu); |
| } |
| |
| int cxl_attach_dedicated_process_psl8(struct cxl_context *ctx, u64 wed, u64 amr) |
| { |
| struct cxl_afu *afu = ctx->afu; |
| u64 pid; |
| int rc; |
| |
| pid = (u64)current->pid << 32; |
| if (ctx->kernel) |
| pid = 0; |
| cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid); |
| |
| cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx)); |
| |
| if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1))) |
| return rc; |
| |
| cxl_prefault(ctx, wed); |
| |
| if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes) |
| afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); |
| |
| cxl_p2n_write(afu, CXL_PSL_AMR_An, amr); |
| |
| /* master only context for dedicated */ |
| cxl_assign_psn_space(ctx); |
| |
| if ((rc = cxl_ops->afu_reset(afu))) |
| return rc; |
| |
| cxl_p2n_write(afu, CXL_PSL_WED_An, wed); |
| |
| return afu_enable(afu); |
| } |
| |
| static int deactivate_dedicated_process(struct cxl_afu *afu) |
| { |
| dev_info(&afu->dev, "Deactivating dedicated process mode\n"); |
| |
| afu->current_mode = 0; |
| afu->num_procs = 0; |
| |
| cxl_chardev_afu_remove(afu); |
| |
| return 0; |
| } |
| |
| static int native_afu_deactivate_mode(struct cxl_afu *afu, int mode) |
| { |
| if (mode == CXL_MODE_DIRECTED) |
| return deactivate_afu_directed(afu); |
| if (mode == CXL_MODE_DEDICATED) |
| return deactivate_dedicated_process(afu); |
| return 0; |
| } |
| |
| static int native_afu_activate_mode(struct cxl_afu *afu, int mode) |
| { |
| if (!mode) |
| return 0; |
| if (!(mode & afu->modes_supported)) |
| return -EINVAL; |
| |
| if (!cxl_ops->link_ok(afu->adapter, afu)) { |
| WARN(1, "Device link is down, refusing to activate!\n"); |
| return -EIO; |
| } |
| |
| if (mode == CXL_MODE_DIRECTED) |
| return activate_afu_directed(afu); |
| if ((mode == CXL_MODE_DEDICATED) && |
| (afu->adapter->native->sl_ops->activate_dedicated_process)) |
| return afu->adapter->native->sl_ops->activate_dedicated_process(afu); |
| |
| return -EINVAL; |
| } |
| |
| static int native_attach_process(struct cxl_context *ctx, bool kernel, |
| u64 wed, u64 amr) |
| { |
| if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) { |
| WARN(1, "Device link is down, refusing to attach process!\n"); |
| return -EIO; |
| } |
| |
| ctx->kernel = kernel; |
| if ((ctx->afu->current_mode == CXL_MODE_DIRECTED) && |
| (ctx->afu->adapter->native->sl_ops->attach_afu_directed)) |
| return ctx->afu->adapter->native->sl_ops->attach_afu_directed(ctx, wed, amr); |
| |
| if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) && |
| (ctx->afu->adapter->native->sl_ops->attach_dedicated_process)) |
| return ctx->afu->adapter->native->sl_ops->attach_dedicated_process(ctx, wed, amr); |
| |
| return -EINVAL; |
| } |
| |
| static inline int detach_process_native_dedicated(struct cxl_context *ctx) |
| { |
| /* |
| * The CAIA section 2.1.1 indicates that we need to do an AFU reset to |
| * stop the AFU in dedicated mode (we therefore do not make that |
| * optional like we do in the afu directed path). It does not indicate |
| * that we need to do an explicit disable (which should occur |
| * implicitly as part of the reset) or purge, but we do these as well |
| * to be on the safe side. |
| * |
| * Notably we used to have some issues with the disable sequence |
| * (before the sequence was spelled out in the architecture) which is |
| * why we were so heavy weight in the first place, however a bug was |
| * discovered that had rendered the disable operation ineffective, so |
| * it is conceivable that was the sole explanation for those |
| * difficulties. Point is, we should be careful and do some regression |
| * testing if we ever attempt to remove any part of this procedure. |
| */ |
| cxl_ops->afu_reset(ctx->afu); |
| cxl_afu_disable(ctx->afu); |
| cxl_psl_purge(ctx->afu); |
| return 0; |
| } |
| |
| static void native_update_ivtes(struct cxl_context *ctx) |
| { |
| if (ctx->afu->current_mode == CXL_MODE_DIRECTED) |
| return update_ivtes_directed(ctx); |
| if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) && |
| (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)) |
| return ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); |
| WARN(1, "native_update_ivtes: Bad mode\n"); |
| } |
| |
| static inline int detach_process_native_afu_directed(struct cxl_context *ctx) |
| { |
| if (!ctx->pe_inserted) |
| return 0; |
| if (terminate_process_element(ctx)) |
| return -1; |
| if (remove_process_element(ctx)) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int native_detach_process(struct cxl_context *ctx) |
| { |
| trace_cxl_detach(ctx); |
| |
| if (ctx->afu->current_mode == CXL_MODE_DEDICATED) |
| return detach_process_native_dedicated(ctx); |
| |
| return detach_process_native_afu_directed(ctx); |
| } |
| |
| static int native_get_irq_info(struct cxl_afu *afu, struct cxl_irq_info *info) |
| { |
| /* If the adapter has gone away, we can't get any meaningful |
| * information. |
| */ |
| if (!cxl_ops->link_ok(afu->adapter, afu)) |
| return -EIO; |
| |
| info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); |
| info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); |
| if (cxl_is_power8()) |
| info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An); |
| info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An); |
| info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); |
| info->proc_handle = 0; |
| |
| return 0; |
| } |
| |
| void cxl_native_irq_dump_regs_psl9(struct cxl_context *ctx) |
| { |
| u64 fir1, serr; |
| |
| fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL9_FIR1); |
| |
| dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1); |
| if (ctx->afu->adapter->native->sl_ops->register_serr_irq) { |
| serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An); |
| cxl_afu_decode_psl_serr(ctx->afu, serr); |
| } |
| } |
| |
| void cxl_native_irq_dump_regs_psl8(struct cxl_context *ctx) |
| { |
| u64 fir1, fir2, fir_slice, serr, afu_debug; |
| |
| fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1); |
| fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2); |
| fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An); |
| afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An); |
| |
| dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1); |
| dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%016llx\n", fir2); |
| if (ctx->afu->adapter->native->sl_ops->register_serr_irq) { |
| serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An); |
| cxl_afu_decode_psl_serr(ctx->afu, serr); |
| } |
| dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice); |
| dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug); |
| } |
| |
| static irqreturn_t native_handle_psl_slice_error(struct cxl_context *ctx, |
| u64 dsisr, u64 errstat) |
| { |
| |
| dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%016llx\n", errstat); |
| |
| if (ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers) |
| ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers(ctx); |
| |
| if (ctx->afu->adapter->native->sl_ops->debugfs_stop_trace) { |
| dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n"); |
| ctx->afu->adapter->native->sl_ops->debugfs_stop_trace(ctx->afu->adapter); |
| } |
| |
| return cxl_ops->ack_irq(ctx, 0, errstat); |
| } |
| |
| static bool cxl_is_translation_fault(struct cxl_afu *afu, u64 dsisr) |
| { |
| if ((cxl_is_power8()) && (dsisr & CXL_PSL_DSISR_TRANS)) |
| return true; |
| |
| if ((cxl_is_power9()) && (dsisr & CXL_PSL9_DSISR_An_TF)) |
| return true; |
| |
| return false; |
| } |
| |
| irqreturn_t cxl_fail_irq_psl(struct cxl_afu *afu, struct cxl_irq_info *irq_info) |
| { |
| if (cxl_is_translation_fault(afu, irq_info->dsisr)) |
| cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); |
| else |
| cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t native_irq_multiplexed(int irq, void *data) |
| { |
| struct cxl_afu *afu = data; |
| struct cxl_context *ctx; |
| struct cxl_irq_info irq_info; |
| u64 phreg = cxl_p2n_read(afu, CXL_PSL_PEHandle_An); |
| int ph, ret = IRQ_HANDLED, res; |
| |
| /* check if eeh kicked in while the interrupt was in flight */ |
| if (unlikely(phreg == ~0ULL)) { |
| dev_warn(&afu->dev, |
| "Ignoring slice interrupt(%d) due to fenced card", |
| irq); |
| return IRQ_HANDLED; |
| } |
| /* Mask the pe-handle from register value */ |
| ph = phreg & 0xffff; |
| if ((res = native_get_irq_info(afu, &irq_info))) { |
| WARN(1, "Unable to get CXL IRQ Info: %i\n", res); |
| if (afu->adapter->native->sl_ops->fail_irq) |
| return afu->adapter->native->sl_ops->fail_irq(afu, &irq_info); |
| return ret; |
| } |
| |
| rcu_read_lock(); |
| ctx = idr_find(&afu->contexts_idr, ph); |
| if (ctx) { |
| if (afu->adapter->native->sl_ops->handle_interrupt) |
| ret = afu->adapter->native->sl_ops->handle_interrupt(irq, ctx, &irq_info); |
| rcu_read_unlock(); |
| return ret; |
| } |
| rcu_read_unlock(); |
| |
| WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR" |
| " %016llx\n(Possible AFU HW issue - was a term/remove acked" |
| " with outstanding transactions?)\n", ph, irq_info.dsisr, |
| irq_info.dar); |
| if (afu->adapter->native->sl_ops->fail_irq) |
| ret = afu->adapter->native->sl_ops->fail_irq(afu, &irq_info); |
| return ret; |
| } |
| |
| static void native_irq_wait(struct cxl_context *ctx) |
| { |
| u64 dsisr; |
| int timeout = 1000; |
| int ph; |
| |
| /* |
| * Wait until no further interrupts are presented by the PSL |
| * for this context. |
| */ |
| while (timeout--) { |
| ph = cxl_p2n_read(ctx->afu, CXL_PSL_PEHandle_An) & 0xffff; |
| if (ph != ctx->pe) |
| return; |
| dsisr = cxl_p2n_read(ctx->afu, CXL_PSL_DSISR_An); |
| if (cxl_is_power8() && |
| ((dsisr & CXL_PSL_DSISR_PENDING) == 0)) |
| return; |
| if (cxl_is_power9() && |
| ((dsisr & CXL_PSL9_DSISR_PENDING) == 0)) |
| return; |
| /* |
| * We are waiting for the workqueue to process our |
| * irq, so need to let that run here. |
| */ |
| msleep(1); |
| } |
| |
| dev_warn(&ctx->afu->dev, "WARNING: waiting on DSI for PE %i" |
| " DSISR %016llx!\n", ph, dsisr); |
| return; |
| } |
| |
| static irqreturn_t native_slice_irq_err(int irq, void *data) |
| { |
| struct cxl_afu *afu = data; |
| u64 errstat, serr, afu_error, dsisr; |
| u64 fir_slice, afu_debug, irq_mask; |
| |
| /* |
| * slice err interrupt is only used with full PSL (no XSL) |
| */ |
| serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); |
| errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); |
| afu_error = cxl_p2n_read(afu, CXL_AFU_ERR_An); |
| dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); |
| cxl_afu_decode_psl_serr(afu, serr); |
| |
| if (cxl_is_power8()) { |
| fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An); |
| afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An); |
| dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice); |
| dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug); |
| } |
| dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat); |
| dev_crit(&afu->dev, "AFU_ERR_An: 0x%.16llx\n", afu_error); |
| dev_crit(&afu->dev, "PSL_DSISR_An: 0x%.16llx\n", dsisr); |
| |
| /* mask off the IRQ so it won't retrigger until the AFU is reset */ |
| irq_mask = (serr & CXL_PSL_SERR_An_IRQS) >> 32; |
| serr |= irq_mask; |
| cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); |
| dev_info(&afu->dev, "Further such interrupts will be masked until the AFU is reset\n"); |
| |
| return IRQ_HANDLED; |
| } |
| |
| void cxl_native_err_irq_dump_regs_psl9(struct cxl *adapter) |
| { |
| u64 fir1; |
| |
| fir1 = cxl_p1_read(adapter, CXL_PSL9_FIR1); |
| dev_crit(&adapter->dev, "PSL_FIR: 0x%016llx\n", fir1); |
| } |
| |
| void cxl_native_err_irq_dump_regs_psl8(struct cxl *adapter) |
| { |
| u64 fir1, fir2; |
| |
| fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1); |
| fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2); |
| dev_crit(&adapter->dev, |
| "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n", |
| fir1, fir2); |
| } |
| |
| static irqreturn_t native_irq_err(int irq, void *data) |
| { |
| struct cxl *adapter = data; |
| u64 err_ivte; |
| |
| WARN(1, "CXL ERROR interrupt %i\n", irq); |
| |
| err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE); |
| dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%016llx\n", err_ivte); |
| |
| if (adapter->native->sl_ops->debugfs_stop_trace) { |
| dev_crit(&adapter->dev, "STOPPING CXL TRACE\n"); |
| adapter->native->sl_ops->debugfs_stop_trace(adapter); |
| } |
| |
| if (adapter->native->sl_ops->err_irq_dump_registers) |
| adapter->native->sl_ops->err_irq_dump_registers(adapter); |
| |
| return IRQ_HANDLED; |
| } |
| |
| int cxl_native_register_psl_err_irq(struct cxl *adapter) |
| { |
| int rc; |
| |
| adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err", |
| dev_name(&adapter->dev)); |
| if (!adapter->irq_name) |
| return -ENOMEM; |
| |
| if ((rc = cxl_register_one_irq(adapter, native_irq_err, adapter, |
| &adapter->native->err_hwirq, |
| &adapter->native->err_virq, |
| adapter->irq_name))) { |
| kfree(adapter->irq_name); |
| adapter->irq_name = NULL; |
| return rc; |
| } |
| |
| cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->native->err_hwirq & 0xffff); |
| |
| return 0; |
| } |
| |
| void cxl_native_release_psl_err_irq(struct cxl *adapter) |
| { |
| if (adapter->native->err_virq == 0 || |
| adapter->native->err_virq != |
| irq_find_mapping(NULL, adapter->native->err_hwirq)) |
| return; |
| |
| cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000); |
| cxl_unmap_irq(adapter->native->err_virq, adapter); |
| cxl_ops->release_one_irq(adapter, adapter->native->err_hwirq); |
| kfree(adapter->irq_name); |
| adapter->native->err_virq = 0; |
| } |
| |
| int cxl_native_register_serr_irq(struct cxl_afu *afu) |
| { |
| u64 serr; |
| int rc; |
| |
| afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err", |
| dev_name(&afu->dev)); |
| if (!afu->err_irq_name) |
| return -ENOMEM; |
| |
| if ((rc = cxl_register_one_irq(afu->adapter, native_slice_irq_err, afu, |
| &afu->serr_hwirq, |
| &afu->serr_virq, afu->err_irq_name))) { |
| kfree(afu->err_irq_name); |
| afu->err_irq_name = NULL; |
| return rc; |
| } |
| |
| serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); |
| if (cxl_is_power8()) |
| serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff); |
| if (cxl_is_power9()) { |
| /* |
| * By default, all errors are masked. So don't set all masks. |
| * Slice errors will be transfered. |
| */ |
| serr = (serr & ~0xff0000007fffffffULL) | (afu->serr_hwirq & 0xffff); |
| } |
| cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); |
| |
| return 0; |
| } |
| |
| void cxl_native_release_serr_irq(struct cxl_afu *afu) |
| { |
| if (afu->serr_virq == 0 || |
| afu->serr_virq != irq_find_mapping(NULL, afu->serr_hwirq)) |
| return; |
| |
| cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000); |
| cxl_unmap_irq(afu->serr_virq, afu); |
| cxl_ops->release_one_irq(afu->adapter, afu->serr_hwirq); |
| kfree(afu->err_irq_name); |
| afu->serr_virq = 0; |
| } |
| |
| int cxl_native_register_psl_irq(struct cxl_afu *afu) |
| { |
| int rc; |
| |
| afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s", |
| dev_name(&afu->dev)); |
| if (!afu->psl_irq_name) |
| return -ENOMEM; |
| |
| if ((rc = cxl_register_one_irq(afu->adapter, native_irq_multiplexed, |
| afu, &afu->native->psl_hwirq, &afu->native->psl_virq, |
| afu->psl_irq_name))) { |
| kfree(afu->psl_irq_name); |
| afu->psl_irq_name = NULL; |
| } |
| return rc; |
| } |
| |
| void cxl_native_release_psl_irq(struct cxl_afu *afu) |
| { |
| if (afu->native->psl_virq == 0 || |
| afu->native->psl_virq != |
| irq_find_mapping(NULL, afu->native->psl_hwirq)) |
| return; |
| |
| cxl_unmap_irq(afu->native->psl_virq, afu); |
| cxl_ops->release_one_irq(afu->adapter, afu->native->psl_hwirq); |
| kfree(afu->psl_irq_name); |
| afu->native->psl_virq = 0; |
| } |
| |
| static void recover_psl_err(struct cxl_afu *afu, u64 errstat) |
| { |
| u64 dsisr; |
| |
| pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat); |
| |
| /* Clear PSL_DSISR[PE] */ |
| dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); |
| cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE); |
| |
| /* Write 1s to clear error status bits */ |
| cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat); |
| } |
| |
| static int native_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask) |
| { |
| trace_cxl_psl_irq_ack(ctx, tfc); |
| if (tfc) |
| cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc); |
| if (psl_reset_mask) |
| recover_psl_err(ctx->afu, psl_reset_mask); |
| |
| return 0; |
| } |
| |
| int cxl_check_error(struct cxl_afu *afu) |
| { |
| return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL); |
| } |
| |
| static bool native_support_attributes(const char *attr_name, |
| enum cxl_attrs type) |
| { |
| return true; |
| } |
| |
| static int native_afu_cr_read64(struct cxl_afu *afu, int cr, u64 off, u64 *out) |
| { |
| if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) |
| return -EIO; |
| if (unlikely(off >= afu->crs_len)) |
| return -ERANGE; |
| *out = in_le64(afu->native->afu_desc_mmio + afu->crs_offset + |
| (cr * afu->crs_len) + off); |
| return 0; |
| } |
| |
| static int native_afu_cr_read32(struct cxl_afu *afu, int cr, u64 off, u32 *out) |
| { |
| if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) |
| return -EIO; |
| if (unlikely(off >= afu->crs_len)) |
| return -ERANGE; |
| *out = in_le32(afu->native->afu_desc_mmio + afu->crs_offset + |
| (cr * afu->crs_len) + off); |
| return 0; |
| } |
| |
| static int native_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off, u16 *out) |
| { |
| u64 aligned_off = off & ~0x3L; |
| u32 val; |
| int rc; |
| |
| rc = native_afu_cr_read32(afu, cr, aligned_off, &val); |
| if (!rc) |
| *out = (val >> ((off & 0x3) * 8)) & 0xffff; |
| return rc; |
| } |
| |
| static int native_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off, u8 *out) |
| { |
| u64 aligned_off = off & ~0x3L; |
| u32 val; |
| int rc; |
| |
| rc = native_afu_cr_read32(afu, cr, aligned_off, &val); |
| if (!rc) |
| *out = (val >> ((off & 0x3) * 8)) & 0xff; |
| return rc; |
| } |
| |
| static int native_afu_cr_write32(struct cxl_afu *afu, int cr, u64 off, u32 in) |
| { |
| if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) |
| return -EIO; |
| if (unlikely(off >= afu->crs_len)) |
| return -ERANGE; |
| out_le32(afu->native->afu_desc_mmio + afu->crs_offset + |
| (cr * afu->crs_len) + off, in); |
| return 0; |
| } |
| |
| static int native_afu_cr_write16(struct cxl_afu *afu, int cr, u64 off, u16 in) |
| { |
| u64 aligned_off = off & ~0x3L; |
| u32 val32, mask, shift; |
| int rc; |
| |
| rc = native_afu_cr_read32(afu, cr, aligned_off, &val32); |
| if (rc) |
| return rc; |
| shift = (off & 0x3) * 8; |
| WARN_ON(shift == 24); |
| mask = 0xffff << shift; |
| val32 = (val32 & ~mask) | (in << shift); |
| |
| rc = native_afu_cr_write32(afu, cr, aligned_off, val32); |
| return rc; |
| } |
| |
| static int native_afu_cr_write8(struct cxl_afu *afu, int cr, u64 off, u8 in) |
| { |
| u64 aligned_off = off & ~0x3L; |
| u32 val32, mask, shift; |
| int rc; |
| |
| rc = native_afu_cr_read32(afu, cr, aligned_off, &val32); |
| if (rc) |
| return rc; |
| shift = (off & 0x3) * 8; |
| mask = 0xff << shift; |
| val32 = (val32 & ~mask) | (in << shift); |
| |
| rc = native_afu_cr_write32(afu, cr, aligned_off, val32); |
| return rc; |
| } |
| |
| const struct cxl_backend_ops cxl_native_ops = { |
| .module = THIS_MODULE, |
| .adapter_reset = cxl_pci_reset, |
| .alloc_one_irq = cxl_pci_alloc_one_irq, |
| .release_one_irq = cxl_pci_release_one_irq, |
| .alloc_irq_ranges = cxl_pci_alloc_irq_ranges, |
| .release_irq_ranges = cxl_pci_release_irq_ranges, |
| .setup_irq = cxl_pci_setup_irq, |
| .handle_psl_slice_error = native_handle_psl_slice_error, |
| .psl_interrupt = NULL, |
| .ack_irq = native_ack_irq, |
| .irq_wait = native_irq_wait, |
| .attach_process = native_attach_process, |
| .detach_process = native_detach_process, |
| .update_ivtes = native_update_ivtes, |
| .support_attributes = native_support_attributes, |
| .link_ok = cxl_adapter_link_ok, |
| .release_afu = cxl_pci_release_afu, |
| .afu_read_err_buffer = cxl_pci_afu_read_err_buffer, |
| .afu_check_and_enable = native_afu_check_and_enable, |
| .afu_activate_mode = native_afu_activate_mode, |
| .afu_deactivate_mode = native_afu_deactivate_mode, |
| .afu_reset = native_afu_reset, |
| .afu_cr_read8 = native_afu_cr_read8, |
| .afu_cr_read16 = native_afu_cr_read16, |
| .afu_cr_read32 = native_afu_cr_read32, |
| .afu_cr_read64 = native_afu_cr_read64, |
| .afu_cr_write8 = native_afu_cr_write8, |
| .afu_cr_write16 = native_afu_cr_write16, |
| .afu_cr_write32 = native_afu_cr_write32, |
| .read_adapter_vpd = cxl_pci_read_adapter_vpd, |
| }; |