| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NVMe over Fabrics TCP target. |
| * Copyright (c) 2018 Lightbits Labs. All rights reserved. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/key.h> |
| #include <linux/nvme-tcp.h> |
| #include <linux/nvme-keyring.h> |
| #include <net/sock.h> |
| #include <net/tcp.h> |
| #include <net/tls.h> |
| #include <net/tls_prot.h> |
| #include <net/handshake.h> |
| #include <linux/inet.h> |
| #include <linux/llist.h> |
| #include <crypto/hash.h> |
| #include <trace/events/sock.h> |
| |
| #include "nvmet.h" |
| |
| #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) |
| #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */ |
| #define NVMET_TCP_BACKLOG 128 |
| |
| static int param_store_val(const char *str, int *val, int min, int max) |
| { |
| int ret, new_val; |
| |
| ret = kstrtoint(str, 10, &new_val); |
| if (ret) |
| return -EINVAL; |
| |
| if (new_val < min || new_val > max) |
| return -EINVAL; |
| |
| *val = new_val; |
| return 0; |
| } |
| |
| static int set_params(const char *str, const struct kernel_param *kp) |
| { |
| return param_store_val(str, kp->arg, 0, INT_MAX); |
| } |
| |
| static const struct kernel_param_ops set_param_ops = { |
| .set = set_params, |
| .get = param_get_int, |
| }; |
| |
| /* Define the socket priority to use for connections were it is desirable |
| * that the NIC consider performing optimized packet processing or filtering. |
| * A non-zero value being sufficient to indicate general consideration of any |
| * possible optimization. Making it a module param allows for alternative |
| * values that may be unique for some NIC implementations. |
| */ |
| static int so_priority; |
| device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); |
| MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); |
| |
| /* Define a time period (in usecs) that io_work() shall sample an activated |
| * queue before determining it to be idle. This optional module behavior |
| * can enable NIC solutions that support socket optimized packet processing |
| * using advanced interrupt moderation techniques. |
| */ |
| static int idle_poll_period_usecs; |
| device_param_cb(idle_poll_period_usecs, &set_param_ops, |
| &idle_poll_period_usecs, 0644); |
| MODULE_PARM_DESC(idle_poll_period_usecs, |
| "nvmet tcp io_work poll till idle time period in usecs: Default 0"); |
| |
| #ifdef CONFIG_NVME_TARGET_TCP_TLS |
| /* |
| * TLS handshake timeout |
| */ |
| static int tls_handshake_timeout = 10; |
| module_param(tls_handshake_timeout, int, 0644); |
| MODULE_PARM_DESC(tls_handshake_timeout, |
| "nvme TLS handshake timeout in seconds (default 10)"); |
| #endif |
| |
| #define NVMET_TCP_RECV_BUDGET 8 |
| #define NVMET_TCP_SEND_BUDGET 8 |
| #define NVMET_TCP_IO_WORK_BUDGET 64 |
| |
| enum nvmet_tcp_send_state { |
| NVMET_TCP_SEND_DATA_PDU, |
| NVMET_TCP_SEND_DATA, |
| NVMET_TCP_SEND_R2T, |
| NVMET_TCP_SEND_DDGST, |
| NVMET_TCP_SEND_RESPONSE |
| }; |
| |
| enum nvmet_tcp_recv_state { |
| NVMET_TCP_RECV_PDU, |
| NVMET_TCP_RECV_DATA, |
| NVMET_TCP_RECV_DDGST, |
| NVMET_TCP_RECV_ERR, |
| }; |
| |
| enum { |
| NVMET_TCP_F_INIT_FAILED = (1 << 0), |
| }; |
| |
| struct nvmet_tcp_cmd { |
| struct nvmet_tcp_queue *queue; |
| struct nvmet_req req; |
| |
| struct nvme_tcp_cmd_pdu *cmd_pdu; |
| struct nvme_tcp_rsp_pdu *rsp_pdu; |
| struct nvme_tcp_data_pdu *data_pdu; |
| struct nvme_tcp_r2t_pdu *r2t_pdu; |
| |
| u32 rbytes_done; |
| u32 wbytes_done; |
| |
| u32 pdu_len; |
| u32 pdu_recv; |
| int sg_idx; |
| char recv_cbuf[CMSG_LEN(sizeof(char))]; |
| struct msghdr recv_msg; |
| struct bio_vec *iov; |
| u32 flags; |
| |
| struct list_head entry; |
| struct llist_node lentry; |
| |
| /* send state */ |
| u32 offset; |
| struct scatterlist *cur_sg; |
| enum nvmet_tcp_send_state state; |
| |
| __le32 exp_ddgst; |
| __le32 recv_ddgst; |
| }; |
| |
| enum nvmet_tcp_queue_state { |
| NVMET_TCP_Q_CONNECTING, |
| NVMET_TCP_Q_TLS_HANDSHAKE, |
| NVMET_TCP_Q_LIVE, |
| NVMET_TCP_Q_DISCONNECTING, |
| NVMET_TCP_Q_FAILED, |
| }; |
| |
| struct nvmet_tcp_queue { |
| struct socket *sock; |
| struct nvmet_tcp_port *port; |
| struct work_struct io_work; |
| struct nvmet_cq nvme_cq; |
| struct nvmet_sq nvme_sq; |
| struct kref kref; |
| |
| /* send state */ |
| struct nvmet_tcp_cmd *cmds; |
| unsigned int nr_cmds; |
| struct list_head free_list; |
| struct llist_head resp_list; |
| struct list_head resp_send_list; |
| int send_list_len; |
| struct nvmet_tcp_cmd *snd_cmd; |
| |
| /* recv state */ |
| int offset; |
| int left; |
| enum nvmet_tcp_recv_state rcv_state; |
| struct nvmet_tcp_cmd *cmd; |
| union nvme_tcp_pdu pdu; |
| |
| /* digest state */ |
| bool hdr_digest; |
| bool data_digest; |
| struct ahash_request *snd_hash; |
| struct ahash_request *rcv_hash; |
| |
| /* TLS state */ |
| key_serial_t tls_pskid; |
| struct delayed_work tls_handshake_tmo_work; |
| |
| unsigned long poll_end; |
| |
| spinlock_t state_lock; |
| enum nvmet_tcp_queue_state state; |
| |
| struct sockaddr_storage sockaddr; |
| struct sockaddr_storage sockaddr_peer; |
| struct work_struct release_work; |
| |
| int idx; |
| struct list_head queue_list; |
| |
| struct nvmet_tcp_cmd connect; |
| |
| struct page_frag_cache pf_cache; |
| |
| void (*data_ready)(struct sock *); |
| void (*state_change)(struct sock *); |
| void (*write_space)(struct sock *); |
| }; |
| |
| struct nvmet_tcp_port { |
| struct socket *sock; |
| struct work_struct accept_work; |
| struct nvmet_port *nport; |
| struct sockaddr_storage addr; |
| void (*data_ready)(struct sock *); |
| }; |
| |
| static DEFINE_IDA(nvmet_tcp_queue_ida); |
| static LIST_HEAD(nvmet_tcp_queue_list); |
| static DEFINE_MUTEX(nvmet_tcp_queue_mutex); |
| |
| static struct workqueue_struct *nvmet_tcp_wq; |
| static const struct nvmet_fabrics_ops nvmet_tcp_ops; |
| static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); |
| static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); |
| |
| static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, |
| struct nvmet_tcp_cmd *cmd) |
| { |
| if (unlikely(!queue->nr_cmds)) { |
| /* We didn't allocate cmds yet, send 0xffff */ |
| return USHRT_MAX; |
| } |
| |
| return cmd - queue->cmds; |
| } |
| |
| static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) |
| { |
| return nvme_is_write(cmd->req.cmd) && |
| cmd->rbytes_done < cmd->req.transfer_len; |
| } |
| |
| static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) |
| { |
| return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; |
| } |
| |
| static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) |
| { |
| return !nvme_is_write(cmd->req.cmd) && |
| cmd->req.transfer_len > 0 && |
| !cmd->req.cqe->status; |
| } |
| |
| static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) |
| { |
| return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && |
| !cmd->rbytes_done; |
| } |
| |
| static inline struct nvmet_tcp_cmd * |
| nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) |
| { |
| struct nvmet_tcp_cmd *cmd; |
| |
| cmd = list_first_entry_or_null(&queue->free_list, |
| struct nvmet_tcp_cmd, entry); |
| if (!cmd) |
| return NULL; |
| list_del_init(&cmd->entry); |
| |
| cmd->rbytes_done = cmd->wbytes_done = 0; |
| cmd->pdu_len = 0; |
| cmd->pdu_recv = 0; |
| cmd->iov = NULL; |
| cmd->flags = 0; |
| return cmd; |
| } |
| |
| static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) |
| { |
| if (unlikely(cmd == &cmd->queue->connect)) |
| return; |
| |
| list_add_tail(&cmd->entry, &cmd->queue->free_list); |
| } |
| |
| static inline int queue_cpu(struct nvmet_tcp_queue *queue) |
| { |
| return queue->sock->sk->sk_incoming_cpu; |
| } |
| |
| static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) |
| { |
| return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; |
| } |
| |
| static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) |
| { |
| return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; |
| } |
| |
| static inline void nvmet_tcp_hdgst(struct ahash_request *hash, |
| void *pdu, size_t len) |
| { |
| struct scatterlist sg; |
| |
| sg_init_one(&sg, pdu, len); |
| ahash_request_set_crypt(hash, &sg, pdu + len, len); |
| crypto_ahash_digest(hash); |
| } |
| |
| static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, |
| void *pdu, size_t len) |
| { |
| struct nvme_tcp_hdr *hdr = pdu; |
| __le32 recv_digest; |
| __le32 exp_digest; |
| |
| if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { |
| pr_err("queue %d: header digest enabled but no header digest\n", |
| queue->idx); |
| return -EPROTO; |
| } |
| |
| recv_digest = *(__le32 *)(pdu + hdr->hlen); |
| nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); |
| exp_digest = *(__le32 *)(pdu + hdr->hlen); |
| if (recv_digest != exp_digest) { |
| pr_err("queue %d: header digest error: recv %#x expected %#x\n", |
| queue->idx, le32_to_cpu(recv_digest), |
| le32_to_cpu(exp_digest)); |
| return -EPROTO; |
| } |
| |
| return 0; |
| } |
| |
| static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) |
| { |
| struct nvme_tcp_hdr *hdr = pdu; |
| u8 digest_len = nvmet_tcp_hdgst_len(queue); |
| u32 len; |
| |
| len = le32_to_cpu(hdr->plen) - hdr->hlen - |
| (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); |
| |
| if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { |
| pr_err("queue %d: data digest flag is cleared\n", queue->idx); |
| return -EPROTO; |
| } |
| |
| return 0; |
| } |
| |
| static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) |
| { |
| kfree(cmd->iov); |
| sgl_free(cmd->req.sg); |
| cmd->iov = NULL; |
| cmd->req.sg = NULL; |
| } |
| |
| static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) |
| { |
| struct bio_vec *iov = cmd->iov; |
| struct scatterlist *sg; |
| u32 length, offset, sg_offset; |
| int nr_pages; |
| |
| length = cmd->pdu_len; |
| nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); |
| offset = cmd->rbytes_done; |
| cmd->sg_idx = offset / PAGE_SIZE; |
| sg_offset = offset % PAGE_SIZE; |
| sg = &cmd->req.sg[cmd->sg_idx]; |
| |
| while (length) { |
| u32 iov_len = min_t(u32, length, sg->length - sg_offset); |
| |
| bvec_set_page(iov, sg_page(sg), iov_len, |
| sg->offset + sg_offset); |
| |
| length -= iov_len; |
| sg = sg_next(sg); |
| iov++; |
| sg_offset = 0; |
| } |
| |
| iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, |
| nr_pages, cmd->pdu_len); |
| } |
| |
| static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) |
| { |
| queue->rcv_state = NVMET_TCP_RECV_ERR; |
| if (queue->nvme_sq.ctrl) |
| nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); |
| else |
| kernel_sock_shutdown(queue->sock, SHUT_RDWR); |
| } |
| |
| static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) |
| { |
| queue->rcv_state = NVMET_TCP_RECV_ERR; |
| if (status == -EPIPE || status == -ECONNRESET) |
| kernel_sock_shutdown(queue->sock, SHUT_RDWR); |
| else |
| nvmet_tcp_fatal_error(queue); |
| } |
| |
| static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) |
| { |
| struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; |
| u32 len = le32_to_cpu(sgl->length); |
| |
| if (!len) |
| return 0; |
| |
| if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | |
| NVME_SGL_FMT_OFFSET)) { |
| if (!nvme_is_write(cmd->req.cmd)) |
| return NVME_SC_INVALID_FIELD | NVME_SC_DNR; |
| |
| if (len > cmd->req.port->inline_data_size) |
| return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; |
| cmd->pdu_len = len; |
| } |
| cmd->req.transfer_len += len; |
| |
| cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); |
| if (!cmd->req.sg) |
| return NVME_SC_INTERNAL; |
| cmd->cur_sg = cmd->req.sg; |
| |
| if (nvmet_tcp_has_data_in(cmd)) { |
| cmd->iov = kmalloc_array(cmd->req.sg_cnt, |
| sizeof(*cmd->iov), GFP_KERNEL); |
| if (!cmd->iov) |
| goto err; |
| } |
| |
| return 0; |
| err: |
| nvmet_tcp_free_cmd_buffers(cmd); |
| return NVME_SC_INTERNAL; |
| } |
| |
| static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, |
| struct nvmet_tcp_cmd *cmd) |
| { |
| ahash_request_set_crypt(hash, cmd->req.sg, |
| (void *)&cmd->exp_ddgst, cmd->req.transfer_len); |
| crypto_ahash_digest(hash); |
| } |
| |
| static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) |
| { |
| struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); |
| u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); |
| |
| cmd->offset = 0; |
| cmd->state = NVMET_TCP_SEND_DATA_PDU; |
| |
| pdu->hdr.type = nvme_tcp_c2h_data; |
| pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? |
| NVME_TCP_F_DATA_SUCCESS : 0); |
| pdu->hdr.hlen = sizeof(*pdu); |
| pdu->hdr.pdo = pdu->hdr.hlen + hdgst; |
| pdu->hdr.plen = |
| cpu_to_le32(pdu->hdr.hlen + hdgst + |
| cmd->req.transfer_len + ddgst); |
| pdu->command_id = cmd->req.cqe->command_id; |
| pdu->data_length = cpu_to_le32(cmd->req.transfer_len); |
| pdu->data_offset = cpu_to_le32(cmd->wbytes_done); |
| |
| if (queue->data_digest) { |
| pdu->hdr.flags |= NVME_TCP_F_DDGST; |
| nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); |
| } |
| |
| if (cmd->queue->hdr_digest) { |
| pdu->hdr.flags |= NVME_TCP_F_HDGST; |
| nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); |
| } |
| } |
| |
| static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) |
| { |
| struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); |
| |
| cmd->offset = 0; |
| cmd->state = NVMET_TCP_SEND_R2T; |
| |
| pdu->hdr.type = nvme_tcp_r2t; |
| pdu->hdr.flags = 0; |
| pdu->hdr.hlen = sizeof(*pdu); |
| pdu->hdr.pdo = 0; |
| pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); |
| |
| pdu->command_id = cmd->req.cmd->common.command_id; |
| pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); |
| pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); |
| pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); |
| if (cmd->queue->hdr_digest) { |
| pdu->hdr.flags |= NVME_TCP_F_HDGST; |
| nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); |
| } |
| } |
| |
| static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) |
| { |
| struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); |
| |
| cmd->offset = 0; |
| cmd->state = NVMET_TCP_SEND_RESPONSE; |
| |
| pdu->hdr.type = nvme_tcp_rsp; |
| pdu->hdr.flags = 0; |
| pdu->hdr.hlen = sizeof(*pdu); |
| pdu->hdr.pdo = 0; |
| pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); |
| if (cmd->queue->hdr_digest) { |
| pdu->hdr.flags |= NVME_TCP_F_HDGST; |
| nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); |
| } |
| } |
| |
| static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) |
| { |
| struct llist_node *node; |
| struct nvmet_tcp_cmd *cmd; |
| |
| for (node = llist_del_all(&queue->resp_list); node; node = node->next) { |
| cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); |
| list_add(&cmd->entry, &queue->resp_send_list); |
| queue->send_list_len++; |
| } |
| } |
| |
| static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) |
| { |
| queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, |
| struct nvmet_tcp_cmd, entry); |
| if (!queue->snd_cmd) { |
| nvmet_tcp_process_resp_list(queue); |
| queue->snd_cmd = |
| list_first_entry_or_null(&queue->resp_send_list, |
| struct nvmet_tcp_cmd, entry); |
| if (unlikely(!queue->snd_cmd)) |
| return NULL; |
| } |
| |
| list_del_init(&queue->snd_cmd->entry); |
| queue->send_list_len--; |
| |
| if (nvmet_tcp_need_data_out(queue->snd_cmd)) |
| nvmet_setup_c2h_data_pdu(queue->snd_cmd); |
| else if (nvmet_tcp_need_data_in(queue->snd_cmd)) |
| nvmet_setup_r2t_pdu(queue->snd_cmd); |
| else |
| nvmet_setup_response_pdu(queue->snd_cmd); |
| |
| return queue->snd_cmd; |
| } |
| |
| static void nvmet_tcp_queue_response(struct nvmet_req *req) |
| { |
| struct nvmet_tcp_cmd *cmd = |
| container_of(req, struct nvmet_tcp_cmd, req); |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| struct nvme_sgl_desc *sgl; |
| u32 len; |
| |
| if (unlikely(cmd == queue->cmd)) { |
| sgl = &cmd->req.cmd->common.dptr.sgl; |
| len = le32_to_cpu(sgl->length); |
| |
| /* |
| * Wait for inline data before processing the response. |
| * Avoid using helpers, this might happen before |
| * nvmet_req_init is completed. |
| */ |
| if (queue->rcv_state == NVMET_TCP_RECV_PDU && |
| len && len <= cmd->req.port->inline_data_size && |
| nvme_is_write(cmd->req.cmd)) |
| return; |
| } |
| |
| llist_add(&cmd->lentry, &queue->resp_list); |
| queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); |
| } |
| |
| static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) |
| { |
| if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) |
| nvmet_tcp_queue_response(&cmd->req); |
| else |
| cmd->req.execute(&cmd->req); |
| } |
| |
| static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) |
| { |
| struct msghdr msg = { |
| .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, |
| }; |
| struct bio_vec bvec; |
| u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); |
| int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; |
| int ret; |
| |
| bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); |
| ret = sock_sendmsg(cmd->queue->sock, &msg); |
| if (ret <= 0) |
| return ret; |
| |
| cmd->offset += ret; |
| left -= ret; |
| |
| if (left) |
| return -EAGAIN; |
| |
| cmd->state = NVMET_TCP_SEND_DATA; |
| cmd->offset = 0; |
| return 1; |
| } |
| |
| static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) |
| { |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| int ret; |
| |
| while (cmd->cur_sg) { |
| struct msghdr msg = { |
| .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, |
| }; |
| struct page *page = sg_page(cmd->cur_sg); |
| struct bio_vec bvec; |
| u32 left = cmd->cur_sg->length - cmd->offset; |
| |
| if ((!last_in_batch && cmd->queue->send_list_len) || |
| cmd->wbytes_done + left < cmd->req.transfer_len || |
| queue->data_digest || !queue->nvme_sq.sqhd_disabled) |
| msg.msg_flags |= MSG_MORE; |
| |
| bvec_set_page(&bvec, page, left, cmd->offset); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); |
| ret = sock_sendmsg(cmd->queue->sock, &msg); |
| if (ret <= 0) |
| return ret; |
| |
| cmd->offset += ret; |
| cmd->wbytes_done += ret; |
| |
| /* Done with sg?*/ |
| if (cmd->offset == cmd->cur_sg->length) { |
| cmd->cur_sg = sg_next(cmd->cur_sg); |
| cmd->offset = 0; |
| } |
| } |
| |
| if (queue->data_digest) { |
| cmd->state = NVMET_TCP_SEND_DDGST; |
| cmd->offset = 0; |
| } else { |
| if (queue->nvme_sq.sqhd_disabled) { |
| cmd->queue->snd_cmd = NULL; |
| nvmet_tcp_put_cmd(cmd); |
| } else { |
| nvmet_setup_response_pdu(cmd); |
| } |
| } |
| |
| if (queue->nvme_sq.sqhd_disabled) |
| nvmet_tcp_free_cmd_buffers(cmd); |
| |
| return 1; |
| |
| } |
| |
| static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, |
| bool last_in_batch) |
| { |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; |
| struct bio_vec bvec; |
| u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); |
| int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; |
| int ret; |
| |
| if (!last_in_batch && cmd->queue->send_list_len) |
| msg.msg_flags |= MSG_MORE; |
| else |
| msg.msg_flags |= MSG_EOR; |
| |
| bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); |
| ret = sock_sendmsg(cmd->queue->sock, &msg); |
| if (ret <= 0) |
| return ret; |
| cmd->offset += ret; |
| left -= ret; |
| |
| if (left) |
| return -EAGAIN; |
| |
| nvmet_tcp_free_cmd_buffers(cmd); |
| cmd->queue->snd_cmd = NULL; |
| nvmet_tcp_put_cmd(cmd); |
| return 1; |
| } |
| |
| static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) |
| { |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; |
| struct bio_vec bvec; |
| u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); |
| int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; |
| int ret; |
| |
| if (!last_in_batch && cmd->queue->send_list_len) |
| msg.msg_flags |= MSG_MORE; |
| else |
| msg.msg_flags |= MSG_EOR; |
| |
| bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); |
| ret = sock_sendmsg(cmd->queue->sock, &msg); |
| if (ret <= 0) |
| return ret; |
| cmd->offset += ret; |
| left -= ret; |
| |
| if (left) |
| return -EAGAIN; |
| |
| cmd->queue->snd_cmd = NULL; |
| return 1; |
| } |
| |
| static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) |
| { |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; |
| struct kvec iov = { |
| .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, |
| .iov_len = left |
| }; |
| int ret; |
| |
| if (!last_in_batch && cmd->queue->send_list_len) |
| msg.msg_flags |= MSG_MORE; |
| else |
| msg.msg_flags |= MSG_EOR; |
| |
| ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); |
| if (unlikely(ret <= 0)) |
| return ret; |
| |
| cmd->offset += ret; |
| left -= ret; |
| |
| if (left) |
| return -EAGAIN; |
| |
| if (queue->nvme_sq.sqhd_disabled) { |
| cmd->queue->snd_cmd = NULL; |
| nvmet_tcp_put_cmd(cmd); |
| } else { |
| nvmet_setup_response_pdu(cmd); |
| } |
| return 1; |
| } |
| |
| static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, |
| bool last_in_batch) |
| { |
| struct nvmet_tcp_cmd *cmd = queue->snd_cmd; |
| int ret = 0; |
| |
| if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { |
| cmd = nvmet_tcp_fetch_cmd(queue); |
| if (unlikely(!cmd)) |
| return 0; |
| } |
| |
| if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { |
| ret = nvmet_try_send_data_pdu(cmd); |
| if (ret <= 0) |
| goto done_send; |
| } |
| |
| if (cmd->state == NVMET_TCP_SEND_DATA) { |
| ret = nvmet_try_send_data(cmd, last_in_batch); |
| if (ret <= 0) |
| goto done_send; |
| } |
| |
| if (cmd->state == NVMET_TCP_SEND_DDGST) { |
| ret = nvmet_try_send_ddgst(cmd, last_in_batch); |
| if (ret <= 0) |
| goto done_send; |
| } |
| |
| if (cmd->state == NVMET_TCP_SEND_R2T) { |
| ret = nvmet_try_send_r2t(cmd, last_in_batch); |
| if (ret <= 0) |
| goto done_send; |
| } |
| |
| if (cmd->state == NVMET_TCP_SEND_RESPONSE) |
| ret = nvmet_try_send_response(cmd, last_in_batch); |
| |
| done_send: |
| if (ret < 0) { |
| if (ret == -EAGAIN) |
| return 0; |
| return ret; |
| } |
| |
| return 1; |
| } |
| |
| static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, |
| int budget, int *sends) |
| { |
| int i, ret = 0; |
| |
| for (i = 0; i < budget; i++) { |
| ret = nvmet_tcp_try_send_one(queue, i == budget - 1); |
| if (unlikely(ret < 0)) { |
| nvmet_tcp_socket_error(queue, ret); |
| goto done; |
| } else if (ret == 0) { |
| break; |
| } |
| (*sends)++; |
| } |
| done: |
| return ret; |
| } |
| |
| static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) |
| { |
| queue->offset = 0; |
| queue->left = sizeof(struct nvme_tcp_hdr); |
| queue->cmd = NULL; |
| queue->rcv_state = NVMET_TCP_RECV_PDU; |
| } |
| |
| static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); |
| |
| ahash_request_free(queue->rcv_hash); |
| ahash_request_free(queue->snd_hash); |
| crypto_free_ahash(tfm); |
| } |
| |
| static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) |
| { |
| struct crypto_ahash *tfm; |
| |
| tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!queue->snd_hash) |
| goto free_tfm; |
| ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); |
| |
| queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!queue->rcv_hash) |
| goto free_snd_hash; |
| ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); |
| |
| return 0; |
| free_snd_hash: |
| ahash_request_free(queue->snd_hash); |
| free_tfm: |
| crypto_free_ahash(tfm); |
| return -ENOMEM; |
| } |
| |
| |
| static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) |
| { |
| struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; |
| struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; |
| struct msghdr msg = {}; |
| struct kvec iov; |
| int ret; |
| |
| if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { |
| pr_err("bad nvme-tcp pdu length (%d)\n", |
| le32_to_cpu(icreq->hdr.plen)); |
| nvmet_tcp_fatal_error(queue); |
| } |
| |
| if (icreq->pfv != NVME_TCP_PFV_1_0) { |
| pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); |
| return -EPROTO; |
| } |
| |
| if (icreq->hpda != 0) { |
| pr_err("queue %d: unsupported hpda %d\n", queue->idx, |
| icreq->hpda); |
| return -EPROTO; |
| } |
| |
| queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); |
| queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); |
| if (queue->hdr_digest || queue->data_digest) { |
| ret = nvmet_tcp_alloc_crypto(queue); |
| if (ret) |
| return ret; |
| } |
| |
| memset(icresp, 0, sizeof(*icresp)); |
| icresp->hdr.type = nvme_tcp_icresp; |
| icresp->hdr.hlen = sizeof(*icresp); |
| icresp->hdr.pdo = 0; |
| icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); |
| icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); |
| icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA); |
| icresp->cpda = 0; |
| if (queue->hdr_digest) |
| icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; |
| if (queue->data_digest) |
| icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; |
| |
| iov.iov_base = icresp; |
| iov.iov_len = sizeof(*icresp); |
| ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); |
| if (ret < 0) { |
| queue->state = NVMET_TCP_Q_FAILED; |
| return ret; /* queue removal will cleanup */ |
| } |
| |
| queue->state = NVMET_TCP_Q_LIVE; |
| nvmet_prepare_receive_pdu(queue); |
| return 0; |
| } |
| |
| static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, |
| struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) |
| { |
| size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); |
| int ret; |
| |
| /* |
| * This command has not been processed yet, hence we are trying to |
| * figure out if there is still pending data left to receive. If |
| * we don't, we can simply prepare for the next pdu and bail out, |
| * otherwise we will need to prepare a buffer and receive the |
| * stale data before continuing forward. |
| */ |
| if (!nvme_is_write(cmd->req.cmd) || !data_len || |
| data_len > cmd->req.port->inline_data_size) { |
| nvmet_prepare_receive_pdu(queue); |
| return; |
| } |
| |
| ret = nvmet_tcp_map_data(cmd); |
| if (unlikely(ret)) { |
| pr_err("queue %d: failed to map data\n", queue->idx); |
| nvmet_tcp_fatal_error(queue); |
| return; |
| } |
| |
| queue->rcv_state = NVMET_TCP_RECV_DATA; |
| nvmet_tcp_build_pdu_iovec(cmd); |
| cmd->flags |= NVMET_TCP_F_INIT_FAILED; |
| } |
| |
| static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) |
| { |
| struct nvme_tcp_data_pdu *data = &queue->pdu.data; |
| struct nvmet_tcp_cmd *cmd; |
| unsigned int exp_data_len; |
| |
| if (likely(queue->nr_cmds)) { |
| if (unlikely(data->ttag >= queue->nr_cmds)) { |
| pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", |
| queue->idx, data->ttag, queue->nr_cmds); |
| goto err_proto; |
| } |
| cmd = &queue->cmds[data->ttag]; |
| } else { |
| cmd = &queue->connect; |
| } |
| |
| if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { |
| pr_err("ttag %u unexpected data offset %u (expected %u)\n", |
| data->ttag, le32_to_cpu(data->data_offset), |
| cmd->rbytes_done); |
| goto err_proto; |
| } |
| |
| exp_data_len = le32_to_cpu(data->hdr.plen) - |
| nvmet_tcp_hdgst_len(queue) - |
| nvmet_tcp_ddgst_len(queue) - |
| sizeof(*data); |
| |
| cmd->pdu_len = le32_to_cpu(data->data_length); |
| if (unlikely(cmd->pdu_len != exp_data_len || |
| cmd->pdu_len == 0 || |
| cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) { |
| pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len); |
| goto err_proto; |
| } |
| cmd->pdu_recv = 0; |
| nvmet_tcp_build_pdu_iovec(cmd); |
| queue->cmd = cmd; |
| queue->rcv_state = NVMET_TCP_RECV_DATA; |
| |
| return 0; |
| |
| err_proto: |
| /* FIXME: use proper transport errors */ |
| nvmet_tcp_fatal_error(queue); |
| return -EPROTO; |
| } |
| |
| static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) |
| { |
| struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; |
| struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; |
| struct nvmet_req *req; |
| int ret; |
| |
| if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { |
| if (hdr->type != nvme_tcp_icreq) { |
| pr_err("unexpected pdu type (%d) before icreq\n", |
| hdr->type); |
| nvmet_tcp_fatal_error(queue); |
| return -EPROTO; |
| } |
| return nvmet_tcp_handle_icreq(queue); |
| } |
| |
| if (unlikely(hdr->type == nvme_tcp_icreq)) { |
| pr_err("queue %d: received icreq pdu in state %d\n", |
| queue->idx, queue->state); |
| nvmet_tcp_fatal_error(queue); |
| return -EPROTO; |
| } |
| |
| if (hdr->type == nvme_tcp_h2c_data) { |
| ret = nvmet_tcp_handle_h2c_data_pdu(queue); |
| if (unlikely(ret)) |
| return ret; |
| return 0; |
| } |
| |
| queue->cmd = nvmet_tcp_get_cmd(queue); |
| if (unlikely(!queue->cmd)) { |
| /* This should never happen */ |
| pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", |
| queue->idx, queue->nr_cmds, queue->send_list_len, |
| nvme_cmd->common.opcode); |
| nvmet_tcp_fatal_error(queue); |
| return -ENOMEM; |
| } |
| |
| req = &queue->cmd->req; |
| memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); |
| |
| if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, |
| &queue->nvme_sq, &nvmet_tcp_ops))) { |
| pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", |
| req->cmd, req->cmd->common.command_id, |
| req->cmd->common.opcode, |
| le32_to_cpu(req->cmd->common.dptr.sgl.length)); |
| |
| nvmet_tcp_handle_req_failure(queue, queue->cmd, req); |
| return 0; |
| } |
| |
| ret = nvmet_tcp_map_data(queue->cmd); |
| if (unlikely(ret)) { |
| pr_err("queue %d: failed to map data\n", queue->idx); |
| if (nvmet_tcp_has_inline_data(queue->cmd)) |
| nvmet_tcp_fatal_error(queue); |
| else |
| nvmet_req_complete(req, ret); |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| if (nvmet_tcp_need_data_in(queue->cmd)) { |
| if (nvmet_tcp_has_inline_data(queue->cmd)) { |
| queue->rcv_state = NVMET_TCP_RECV_DATA; |
| nvmet_tcp_build_pdu_iovec(queue->cmd); |
| return 0; |
| } |
| /* send back R2T */ |
| nvmet_tcp_queue_response(&queue->cmd->req); |
| goto out; |
| } |
| |
| queue->cmd->req.execute(&queue->cmd->req); |
| out: |
| nvmet_prepare_receive_pdu(queue); |
| return ret; |
| } |
| |
| static const u8 nvme_tcp_pdu_sizes[] = { |
| [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), |
| [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), |
| [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), |
| }; |
| |
| static inline u8 nvmet_tcp_pdu_size(u8 type) |
| { |
| size_t idx = type; |
| |
| return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && |
| nvme_tcp_pdu_sizes[idx]) ? |
| nvme_tcp_pdu_sizes[idx] : 0; |
| } |
| |
| static inline bool nvmet_tcp_pdu_valid(u8 type) |
| { |
| switch (type) { |
| case nvme_tcp_icreq: |
| case nvme_tcp_cmd: |
| case nvme_tcp_h2c_data: |
| /* fallthru */ |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue, |
| struct msghdr *msg, char *cbuf) |
| { |
| struct cmsghdr *cmsg = (struct cmsghdr *)cbuf; |
| u8 ctype, level, description; |
| int ret = 0; |
| |
| ctype = tls_get_record_type(queue->sock->sk, cmsg); |
| switch (ctype) { |
| case 0: |
| break; |
| case TLS_RECORD_TYPE_DATA: |
| break; |
| case TLS_RECORD_TYPE_ALERT: |
| tls_alert_recv(queue->sock->sk, msg, &level, &description); |
| if (level == TLS_ALERT_LEVEL_FATAL) { |
| pr_err("queue %d: TLS Alert desc %u\n", |
| queue->idx, description); |
| ret = -ENOTCONN; |
| } else { |
| pr_warn("queue %d: TLS Alert desc %u\n", |
| queue->idx, description); |
| ret = -EAGAIN; |
| } |
| break; |
| default: |
| /* discard this record type */ |
| pr_err("queue %d: TLS record %d unhandled\n", |
| queue->idx, ctype); |
| ret = -EAGAIN; |
| break; |
| } |
| return ret; |
| } |
| |
| static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) |
| { |
| struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; |
| int len, ret; |
| struct kvec iov; |
| char cbuf[CMSG_LEN(sizeof(char))] = {}; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; |
| |
| recv: |
| iov.iov_base = (void *)&queue->pdu + queue->offset; |
| iov.iov_len = queue->left; |
| if (queue->tls_pskid) { |
| msg.msg_control = cbuf; |
| msg.msg_controllen = sizeof(cbuf); |
| } |
| len = kernel_recvmsg(queue->sock, &msg, &iov, 1, |
| iov.iov_len, msg.msg_flags); |
| if (unlikely(len < 0)) |
| return len; |
| if (queue->tls_pskid) { |
| ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); |
| if (ret < 0) |
| return ret; |
| } |
| |
| queue->offset += len; |
| queue->left -= len; |
| if (queue->left) |
| return -EAGAIN; |
| |
| if (queue->offset == sizeof(struct nvme_tcp_hdr)) { |
| u8 hdgst = nvmet_tcp_hdgst_len(queue); |
| |
| if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { |
| pr_err("unexpected pdu type %d\n", hdr->type); |
| nvmet_tcp_fatal_error(queue); |
| return -EIO; |
| } |
| |
| if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { |
| pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); |
| return -EIO; |
| } |
| |
| queue->left = hdr->hlen - queue->offset + hdgst; |
| goto recv; |
| } |
| |
| if (queue->hdr_digest && |
| nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { |
| nvmet_tcp_fatal_error(queue); /* fatal */ |
| return -EPROTO; |
| } |
| |
| if (queue->data_digest && |
| nvmet_tcp_check_ddgst(queue, &queue->pdu)) { |
| nvmet_tcp_fatal_error(queue); /* fatal */ |
| return -EPROTO; |
| } |
| |
| return nvmet_tcp_done_recv_pdu(queue); |
| } |
| |
| static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) |
| { |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| |
| nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); |
| queue->offset = 0; |
| queue->left = NVME_TCP_DIGEST_LENGTH; |
| queue->rcv_state = NVMET_TCP_RECV_DDGST; |
| } |
| |
| static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) |
| { |
| struct nvmet_tcp_cmd *cmd = queue->cmd; |
| int len, ret; |
| |
| while (msg_data_left(&cmd->recv_msg)) { |
| len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, |
| cmd->recv_msg.msg_flags); |
| if (len <= 0) |
| return len; |
| if (queue->tls_pskid) { |
| ret = nvmet_tcp_tls_record_ok(cmd->queue, |
| &cmd->recv_msg, cmd->recv_cbuf); |
| if (ret < 0) |
| return ret; |
| } |
| |
| cmd->pdu_recv += len; |
| cmd->rbytes_done += len; |
| } |
| |
| if (queue->data_digest) { |
| nvmet_tcp_prep_recv_ddgst(cmd); |
| return 0; |
| } |
| |
| if (cmd->rbytes_done == cmd->req.transfer_len) |
| nvmet_tcp_execute_request(cmd); |
| |
| nvmet_prepare_receive_pdu(queue); |
| return 0; |
| } |
| |
| static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) |
| { |
| struct nvmet_tcp_cmd *cmd = queue->cmd; |
| int ret, len; |
| char cbuf[CMSG_LEN(sizeof(char))] = {}; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; |
| struct kvec iov = { |
| .iov_base = (void *)&cmd->recv_ddgst + queue->offset, |
| .iov_len = queue->left |
| }; |
| |
| if (queue->tls_pskid) { |
| msg.msg_control = cbuf; |
| msg.msg_controllen = sizeof(cbuf); |
| } |
| len = kernel_recvmsg(queue->sock, &msg, &iov, 1, |
| iov.iov_len, msg.msg_flags); |
| if (unlikely(len < 0)) |
| return len; |
| if (queue->tls_pskid) { |
| ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); |
| if (ret < 0) |
| return ret; |
| } |
| |
| queue->offset += len; |
| queue->left -= len; |
| if (queue->left) |
| return -EAGAIN; |
| |
| if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { |
| pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", |
| queue->idx, cmd->req.cmd->common.command_id, |
| queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), |
| le32_to_cpu(cmd->exp_ddgst)); |
| nvmet_req_uninit(&cmd->req); |
| nvmet_tcp_free_cmd_buffers(cmd); |
| nvmet_tcp_fatal_error(queue); |
| ret = -EPROTO; |
| goto out; |
| } |
| |
| if (cmd->rbytes_done == cmd->req.transfer_len) |
| nvmet_tcp_execute_request(cmd); |
| |
| ret = 0; |
| out: |
| nvmet_prepare_receive_pdu(queue); |
| return ret; |
| } |
| |
| static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) |
| { |
| int result = 0; |
| |
| if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) |
| return 0; |
| |
| if (queue->rcv_state == NVMET_TCP_RECV_PDU) { |
| result = nvmet_tcp_try_recv_pdu(queue); |
| if (result != 0) |
| goto done_recv; |
| } |
| |
| if (queue->rcv_state == NVMET_TCP_RECV_DATA) { |
| result = nvmet_tcp_try_recv_data(queue); |
| if (result != 0) |
| goto done_recv; |
| } |
| |
| if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { |
| result = nvmet_tcp_try_recv_ddgst(queue); |
| if (result != 0) |
| goto done_recv; |
| } |
| |
| done_recv: |
| if (result < 0) { |
| if (result == -EAGAIN) |
| return 0; |
| return result; |
| } |
| return 1; |
| } |
| |
| static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, |
| int budget, int *recvs) |
| { |
| int i, ret = 0; |
| |
| for (i = 0; i < budget; i++) { |
| ret = nvmet_tcp_try_recv_one(queue); |
| if (unlikely(ret < 0)) { |
| nvmet_tcp_socket_error(queue, ret); |
| goto done; |
| } else if (ret == 0) { |
| break; |
| } |
| (*recvs)++; |
| } |
| done: |
| return ret; |
| } |
| |
| static void nvmet_tcp_release_queue(struct kref *kref) |
| { |
| struct nvmet_tcp_queue *queue = |
| container_of(kref, struct nvmet_tcp_queue, kref); |
| |
| WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING); |
| queue_work(nvmet_wq, &queue->release_work); |
| } |
| |
| static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) |
| { |
| spin_lock_bh(&queue->state_lock); |
| if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { |
| /* Socket closed during handshake */ |
| tls_handshake_cancel(queue->sock->sk); |
| } |
| if (queue->state != NVMET_TCP_Q_DISCONNECTING) { |
| queue->state = NVMET_TCP_Q_DISCONNECTING; |
| kref_put(&queue->kref, nvmet_tcp_release_queue); |
| } |
| spin_unlock_bh(&queue->state_lock); |
| } |
| |
| static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) |
| { |
| queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); |
| } |
| |
| static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, |
| int ops) |
| { |
| if (!idle_poll_period_usecs) |
| return false; |
| |
| if (ops) |
| nvmet_tcp_arm_queue_deadline(queue); |
| |
| return !time_after(jiffies, queue->poll_end); |
| } |
| |
| static void nvmet_tcp_io_work(struct work_struct *w) |
| { |
| struct nvmet_tcp_queue *queue = |
| container_of(w, struct nvmet_tcp_queue, io_work); |
| bool pending; |
| int ret, ops = 0; |
| |
| do { |
| pending = false; |
| |
| ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); |
| if (ret > 0) |
| pending = true; |
| else if (ret < 0) |
| return; |
| |
| ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); |
| if (ret > 0) |
| pending = true; |
| else if (ret < 0) |
| return; |
| |
| } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); |
| |
| /* |
| * Requeue the worker if idle deadline period is in progress or any |
| * ops activity was recorded during the do-while loop above. |
| */ |
| if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) |
| queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); |
| } |
| |
| static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, |
| struct nvmet_tcp_cmd *c) |
| { |
| u8 hdgst = nvmet_tcp_hdgst_len(queue); |
| |
| c->queue = queue; |
| c->req.port = queue->port->nport; |
| |
| c->cmd_pdu = page_frag_alloc(&queue->pf_cache, |
| sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); |
| if (!c->cmd_pdu) |
| return -ENOMEM; |
| c->req.cmd = &c->cmd_pdu->cmd; |
| |
| c->rsp_pdu = page_frag_alloc(&queue->pf_cache, |
| sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); |
| if (!c->rsp_pdu) |
| goto out_free_cmd; |
| c->req.cqe = &c->rsp_pdu->cqe; |
| |
| c->data_pdu = page_frag_alloc(&queue->pf_cache, |
| sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); |
| if (!c->data_pdu) |
| goto out_free_rsp; |
| |
| c->r2t_pdu = page_frag_alloc(&queue->pf_cache, |
| sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); |
| if (!c->r2t_pdu) |
| goto out_free_data; |
| |
| if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { |
| c->recv_msg.msg_control = c->recv_cbuf; |
| c->recv_msg.msg_controllen = sizeof(c->recv_cbuf); |
| } |
| c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; |
| |
| list_add_tail(&c->entry, &queue->free_list); |
| |
| return 0; |
| out_free_data: |
| page_frag_free(c->data_pdu); |
| out_free_rsp: |
| page_frag_free(c->rsp_pdu); |
| out_free_cmd: |
| page_frag_free(c->cmd_pdu); |
| return -ENOMEM; |
| } |
| |
| static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) |
| { |
| page_frag_free(c->r2t_pdu); |
| page_frag_free(c->data_pdu); |
| page_frag_free(c->rsp_pdu); |
| page_frag_free(c->cmd_pdu); |
| } |
| |
| static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) |
| { |
| struct nvmet_tcp_cmd *cmds; |
| int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; |
| |
| cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); |
| if (!cmds) |
| goto out; |
| |
| for (i = 0; i < nr_cmds; i++) { |
| ret = nvmet_tcp_alloc_cmd(queue, cmds + i); |
| if (ret) |
| goto out_free; |
| } |
| |
| queue->cmds = cmds; |
| |
| return 0; |
| out_free: |
| while (--i >= 0) |
| nvmet_tcp_free_cmd(cmds + i); |
| kfree(cmds); |
| out: |
| return ret; |
| } |
| |
| static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) |
| { |
| struct nvmet_tcp_cmd *cmds = queue->cmds; |
| int i; |
| |
| for (i = 0; i < queue->nr_cmds; i++) |
| nvmet_tcp_free_cmd(cmds + i); |
| |
| nvmet_tcp_free_cmd(&queue->connect); |
| kfree(cmds); |
| } |
| |
| static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) |
| { |
| struct socket *sock = queue->sock; |
| |
| write_lock_bh(&sock->sk->sk_callback_lock); |
| sock->sk->sk_data_ready = queue->data_ready; |
| sock->sk->sk_state_change = queue->state_change; |
| sock->sk->sk_write_space = queue->write_space; |
| sock->sk->sk_user_data = NULL; |
| write_unlock_bh(&sock->sk->sk_callback_lock); |
| } |
| |
| static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) |
| { |
| struct nvmet_tcp_cmd *cmd = queue->cmds; |
| int i; |
| |
| for (i = 0; i < queue->nr_cmds; i++, cmd++) { |
| if (nvmet_tcp_need_data_in(cmd)) |
| nvmet_req_uninit(&cmd->req); |
| } |
| |
| if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { |
| /* failed in connect */ |
| nvmet_req_uninit(&queue->connect.req); |
| } |
| } |
| |
| static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) |
| { |
| struct nvmet_tcp_cmd *cmd = queue->cmds; |
| int i; |
| |
| for (i = 0; i < queue->nr_cmds; i++, cmd++) { |
| if (nvmet_tcp_need_data_in(cmd)) |
| nvmet_tcp_free_cmd_buffers(cmd); |
| } |
| |
| if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) |
| nvmet_tcp_free_cmd_buffers(&queue->connect); |
| } |
| |
| static void nvmet_tcp_release_queue_work(struct work_struct *w) |
| { |
| struct page *page; |
| struct nvmet_tcp_queue *queue = |
| container_of(w, struct nvmet_tcp_queue, release_work); |
| |
| mutex_lock(&nvmet_tcp_queue_mutex); |
| list_del_init(&queue->queue_list); |
| mutex_unlock(&nvmet_tcp_queue_mutex); |
| |
| nvmet_tcp_restore_socket_callbacks(queue); |
| cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); |
| cancel_work_sync(&queue->io_work); |
| /* stop accepting incoming data */ |
| queue->rcv_state = NVMET_TCP_RECV_ERR; |
| |
| nvmet_tcp_uninit_data_in_cmds(queue); |
| nvmet_sq_destroy(&queue->nvme_sq); |
| cancel_work_sync(&queue->io_work); |
| nvmet_tcp_free_cmd_data_in_buffers(queue); |
| /* ->sock will be released by fput() */ |
| fput(queue->sock->file); |
| nvmet_tcp_free_cmds(queue); |
| if (queue->hdr_digest || queue->data_digest) |
| nvmet_tcp_free_crypto(queue); |
| ida_free(&nvmet_tcp_queue_ida, queue->idx); |
| page = virt_to_head_page(queue->pf_cache.va); |
| __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); |
| kfree(queue); |
| } |
| |
| static void nvmet_tcp_data_ready(struct sock *sk) |
| { |
| struct nvmet_tcp_queue *queue; |
| |
| trace_sk_data_ready(sk); |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| queue = sk->sk_user_data; |
| if (likely(queue)) { |
| if (queue->data_ready) |
| queue->data_ready(sk); |
| if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) |
| queue_work_on(queue_cpu(queue), nvmet_tcp_wq, |
| &queue->io_work); |
| } |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static void nvmet_tcp_write_space(struct sock *sk) |
| { |
| struct nvmet_tcp_queue *queue; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| queue = sk->sk_user_data; |
| if (unlikely(!queue)) |
| goto out; |
| |
| if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { |
| queue->write_space(sk); |
| goto out; |
| } |
| |
| if (sk_stream_is_writeable(sk)) { |
| clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); |
| } |
| out: |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static void nvmet_tcp_state_change(struct sock *sk) |
| { |
| struct nvmet_tcp_queue *queue; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| queue = sk->sk_user_data; |
| if (!queue) |
| goto done; |
| |
| switch (sk->sk_state) { |
| case TCP_FIN_WAIT2: |
| case TCP_LAST_ACK: |
| break; |
| case TCP_FIN_WAIT1: |
| case TCP_CLOSE_WAIT: |
| case TCP_CLOSE: |
| /* FALLTHRU */ |
| nvmet_tcp_schedule_release_queue(queue); |
| break; |
| default: |
| pr_warn("queue %d unhandled state %d\n", |
| queue->idx, sk->sk_state); |
| } |
| done: |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) |
| { |
| struct socket *sock = queue->sock; |
| struct inet_sock *inet = inet_sk(sock->sk); |
| int ret; |
| |
| ret = kernel_getsockname(sock, |
| (struct sockaddr *)&queue->sockaddr); |
| if (ret < 0) |
| return ret; |
| |
| ret = kernel_getpeername(sock, |
| (struct sockaddr *)&queue->sockaddr_peer); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Cleanup whatever is sitting in the TCP transmit queue on socket |
| * close. This is done to prevent stale data from being sent should |
| * the network connection be restored before TCP times out. |
| */ |
| sock_no_linger(sock->sk); |
| |
| if (so_priority > 0) |
| sock_set_priority(sock->sk, so_priority); |
| |
| /* Set socket type of service */ |
| if (inet->rcv_tos > 0) |
| ip_sock_set_tos(sock->sk, inet->rcv_tos); |
| |
| ret = 0; |
| write_lock_bh(&sock->sk->sk_callback_lock); |
| if (sock->sk->sk_state != TCP_ESTABLISHED) { |
| /* |
| * If the socket is already closing, don't even start |
| * consuming it |
| */ |
| ret = -ENOTCONN; |
| } else { |
| sock->sk->sk_user_data = queue; |
| queue->data_ready = sock->sk->sk_data_ready; |
| sock->sk->sk_data_ready = nvmet_tcp_data_ready; |
| queue->state_change = sock->sk->sk_state_change; |
| sock->sk->sk_state_change = nvmet_tcp_state_change; |
| queue->write_space = sock->sk->sk_write_space; |
| sock->sk->sk_write_space = nvmet_tcp_write_space; |
| if (idle_poll_period_usecs) |
| nvmet_tcp_arm_queue_deadline(queue); |
| queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); |
| } |
| write_unlock_bh(&sock->sk->sk_callback_lock); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_NVME_TARGET_TCP_TLS |
| static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue) |
| { |
| struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; |
| int len, ret; |
| struct kvec iov = { |
| .iov_base = (u8 *)&queue->pdu + queue->offset, |
| .iov_len = sizeof(struct nvme_tcp_hdr), |
| }; |
| char cbuf[CMSG_LEN(sizeof(char))] = {}; |
| struct msghdr msg = { |
| .msg_control = cbuf, |
| .msg_controllen = sizeof(cbuf), |
| .msg_flags = MSG_PEEK, |
| }; |
| |
| if (nvmet_port_secure_channel_required(queue->port->nport)) |
| return 0; |
| |
| len = kernel_recvmsg(queue->sock, &msg, &iov, 1, |
| iov.iov_len, msg.msg_flags); |
| if (unlikely(len < 0)) { |
| pr_debug("queue %d: peek error %d\n", |
| queue->idx, len); |
| return len; |
| } |
| |
| ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); |
| if (ret < 0) |
| return ret; |
| |
| if (len < sizeof(struct nvme_tcp_hdr)) { |
| pr_debug("queue %d: short read, %d bytes missing\n", |
| queue->idx, (int)iov.iov_len - len); |
| return -EAGAIN; |
| } |
| pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n", |
| queue->idx, hdr->type, hdr->hlen, hdr->plen, |
| (int)sizeof(struct nvme_tcp_icreq_pdu)); |
| if (hdr->type == nvme_tcp_icreq && |
| hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) && |
| hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) { |
| pr_debug("queue %d: icreq detected\n", |
| queue->idx); |
| return len; |
| } |
| return 0; |
| } |
| |
| static void nvmet_tcp_tls_handshake_done(void *data, int status, |
| key_serial_t peerid) |
| { |
| struct nvmet_tcp_queue *queue = data; |
| |
| pr_debug("queue %d: TLS handshake done, key %x, status %d\n", |
| queue->idx, peerid, status); |
| spin_lock_bh(&queue->state_lock); |
| if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { |
| spin_unlock_bh(&queue->state_lock); |
| return; |
| } |
| if (!status) { |
| queue->tls_pskid = peerid; |
| queue->state = NVMET_TCP_Q_CONNECTING; |
| } else |
| queue->state = NVMET_TCP_Q_FAILED; |
| spin_unlock_bh(&queue->state_lock); |
| |
| cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); |
| if (status) |
| nvmet_tcp_schedule_release_queue(queue); |
| else |
| nvmet_tcp_set_queue_sock(queue); |
| kref_put(&queue->kref, nvmet_tcp_release_queue); |
| } |
| |
| static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) |
| { |
| struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w), |
| struct nvmet_tcp_queue, tls_handshake_tmo_work); |
| |
| pr_warn("queue %d: TLS handshake timeout\n", queue->idx); |
| /* |
| * If tls_handshake_cancel() fails we've lost the race with |
| * nvmet_tcp_tls_handshake_done() */ |
| if (!tls_handshake_cancel(queue->sock->sk)) |
| return; |
| spin_lock_bh(&queue->state_lock); |
| if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { |
| spin_unlock_bh(&queue->state_lock); |
| return; |
| } |
| queue->state = NVMET_TCP_Q_FAILED; |
| spin_unlock_bh(&queue->state_lock); |
| nvmet_tcp_schedule_release_queue(queue); |
| kref_put(&queue->kref, nvmet_tcp_release_queue); |
| } |
| |
| static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue) |
| { |
| int ret = -EOPNOTSUPP; |
| struct tls_handshake_args args; |
| |
| if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) { |
| pr_warn("cannot start TLS in state %d\n", queue->state); |
| return -EINVAL; |
| } |
| |
| kref_get(&queue->kref); |
| pr_debug("queue %d: TLS ServerHello\n", queue->idx); |
| memset(&args, 0, sizeof(args)); |
| args.ta_sock = queue->sock; |
| args.ta_done = nvmet_tcp_tls_handshake_done; |
| args.ta_data = queue; |
| args.ta_keyring = key_serial(queue->port->nport->keyring); |
| args.ta_timeout_ms = tls_handshake_timeout * 1000; |
| |
| ret = tls_server_hello_psk(&args, GFP_KERNEL); |
| if (ret) { |
| kref_put(&queue->kref, nvmet_tcp_release_queue); |
| pr_err("failed to start TLS, err=%d\n", ret); |
| } else { |
| queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work, |
| tls_handshake_timeout * HZ); |
| } |
| return ret; |
| } |
| #else |
| static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {} |
| #endif |
| |
| static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, |
| struct socket *newsock) |
| { |
| struct nvmet_tcp_queue *queue; |
| struct file *sock_file = NULL; |
| int ret; |
| |
| queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
| if (!queue) { |
| ret = -ENOMEM; |
| goto out_release; |
| } |
| |
| INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); |
| INIT_WORK(&queue->io_work, nvmet_tcp_io_work); |
| kref_init(&queue->kref); |
| queue->sock = newsock; |
| queue->port = port; |
| queue->nr_cmds = 0; |
| spin_lock_init(&queue->state_lock); |
| if (queue->port->nport->disc_addr.tsas.tcp.sectype == |
| NVMF_TCP_SECTYPE_TLS13) |
| queue->state = NVMET_TCP_Q_TLS_HANDSHAKE; |
| else |
| queue->state = NVMET_TCP_Q_CONNECTING; |
| INIT_LIST_HEAD(&queue->free_list); |
| init_llist_head(&queue->resp_list); |
| INIT_LIST_HEAD(&queue->resp_send_list); |
| |
| sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); |
| if (IS_ERR(sock_file)) { |
| ret = PTR_ERR(sock_file); |
| goto out_free_queue; |
| } |
| |
| queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); |
| if (queue->idx < 0) { |
| ret = queue->idx; |
| goto out_sock; |
| } |
| |
| ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); |
| if (ret) |
| goto out_ida_remove; |
| |
| ret = nvmet_sq_init(&queue->nvme_sq); |
| if (ret) |
| goto out_free_connect; |
| |
| nvmet_prepare_receive_pdu(queue); |
| |
| mutex_lock(&nvmet_tcp_queue_mutex); |
| list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); |
| mutex_unlock(&nvmet_tcp_queue_mutex); |
| |
| INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work, |
| nvmet_tcp_tls_handshake_timeout); |
| #ifdef CONFIG_NVME_TARGET_TCP_TLS |
| if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { |
| struct sock *sk = queue->sock->sk; |
| |
| /* Restore the default callbacks before starting upcall */ |
| read_lock_bh(&sk->sk_callback_lock); |
| sk->sk_user_data = NULL; |
| sk->sk_data_ready = port->data_ready; |
| read_unlock_bh(&sk->sk_callback_lock); |
| if (!nvmet_tcp_try_peek_pdu(queue)) { |
| if (!nvmet_tcp_tls_handshake(queue)) |
| return; |
| /* TLS handshake failed, terminate the connection */ |
| goto out_destroy_sq; |
| } |
| /* Not a TLS connection, continue with normal processing */ |
| queue->state = NVMET_TCP_Q_CONNECTING; |
| } |
| #endif |
| |
| ret = nvmet_tcp_set_queue_sock(queue); |
| if (ret) |
| goto out_destroy_sq; |
| |
| return; |
| out_destroy_sq: |
| mutex_lock(&nvmet_tcp_queue_mutex); |
| list_del_init(&queue->queue_list); |
| mutex_unlock(&nvmet_tcp_queue_mutex); |
| nvmet_sq_destroy(&queue->nvme_sq); |
| out_free_connect: |
| nvmet_tcp_free_cmd(&queue->connect); |
| out_ida_remove: |
| ida_free(&nvmet_tcp_queue_ida, queue->idx); |
| out_sock: |
| fput(queue->sock->file); |
| out_free_queue: |
| kfree(queue); |
| out_release: |
| pr_err("failed to allocate queue, error %d\n", ret); |
| if (!sock_file) |
| sock_release(newsock); |
| } |
| |
| static void nvmet_tcp_accept_work(struct work_struct *w) |
| { |
| struct nvmet_tcp_port *port = |
| container_of(w, struct nvmet_tcp_port, accept_work); |
| struct socket *newsock; |
| int ret; |
| |
| while (true) { |
| ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); |
| if (ret < 0) { |
| if (ret != -EAGAIN) |
| pr_warn("failed to accept err=%d\n", ret); |
| return; |
| } |
| nvmet_tcp_alloc_queue(port, newsock); |
| } |
| } |
| |
| static void nvmet_tcp_listen_data_ready(struct sock *sk) |
| { |
| struct nvmet_tcp_port *port; |
| |
| trace_sk_data_ready(sk); |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| port = sk->sk_user_data; |
| if (!port) |
| goto out; |
| |
| if (sk->sk_state == TCP_LISTEN) |
| queue_work(nvmet_wq, &port->accept_work); |
| out: |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static int nvmet_tcp_add_port(struct nvmet_port *nport) |
| { |
| struct nvmet_tcp_port *port; |
| __kernel_sa_family_t af; |
| int ret; |
| |
| port = kzalloc(sizeof(*port), GFP_KERNEL); |
| if (!port) |
| return -ENOMEM; |
| |
| switch (nport->disc_addr.adrfam) { |
| case NVMF_ADDR_FAMILY_IP4: |
| af = AF_INET; |
| break; |
| case NVMF_ADDR_FAMILY_IP6: |
| af = AF_INET6; |
| break; |
| default: |
| pr_err("address family %d not supported\n", |
| nport->disc_addr.adrfam); |
| ret = -EINVAL; |
| goto err_port; |
| } |
| |
| ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, |
| nport->disc_addr.trsvcid, &port->addr); |
| if (ret) { |
| pr_err("malformed ip/port passed: %s:%s\n", |
| nport->disc_addr.traddr, nport->disc_addr.trsvcid); |
| goto err_port; |
| } |
| |
| port->nport = nport; |
| INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); |
| if (port->nport->inline_data_size < 0) |
| port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; |
| |
| ret = sock_create(port->addr.ss_family, SOCK_STREAM, |
| IPPROTO_TCP, &port->sock); |
| if (ret) { |
| pr_err("failed to create a socket\n"); |
| goto err_port; |
| } |
| |
| port->sock->sk->sk_user_data = port; |
| port->data_ready = port->sock->sk->sk_data_ready; |
| port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; |
| sock_set_reuseaddr(port->sock->sk); |
| tcp_sock_set_nodelay(port->sock->sk); |
| if (so_priority > 0) |
| sock_set_priority(port->sock->sk, so_priority); |
| |
| ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, |
| sizeof(port->addr)); |
| if (ret) { |
| pr_err("failed to bind port socket %d\n", ret); |
| goto err_sock; |
| } |
| |
| ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG); |
| if (ret) { |
| pr_err("failed to listen %d on port sock\n", ret); |
| goto err_sock; |
| } |
| |
| nport->priv = port; |
| pr_info("enabling port %d (%pISpc)\n", |
| le16_to_cpu(nport->disc_addr.portid), &port->addr); |
| |
| return 0; |
| |
| err_sock: |
| sock_release(port->sock); |
| err_port: |
| kfree(port); |
| return ret; |
| } |
| |
| static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) |
| { |
| struct nvmet_tcp_queue *queue; |
| |
| mutex_lock(&nvmet_tcp_queue_mutex); |
| list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) |
| if (queue->port == port) |
| kernel_sock_shutdown(queue->sock, SHUT_RDWR); |
| mutex_unlock(&nvmet_tcp_queue_mutex); |
| } |
| |
| static void nvmet_tcp_remove_port(struct nvmet_port *nport) |
| { |
| struct nvmet_tcp_port *port = nport->priv; |
| |
| write_lock_bh(&port->sock->sk->sk_callback_lock); |
| port->sock->sk->sk_data_ready = port->data_ready; |
| port->sock->sk->sk_user_data = NULL; |
| write_unlock_bh(&port->sock->sk->sk_callback_lock); |
| cancel_work_sync(&port->accept_work); |
| /* |
| * Destroy the remaining queues, which are not belong to any |
| * controller yet. |
| */ |
| nvmet_tcp_destroy_port_queues(port); |
| |
| sock_release(port->sock); |
| kfree(port); |
| } |
| |
| static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) |
| { |
| struct nvmet_tcp_queue *queue; |
| |
| mutex_lock(&nvmet_tcp_queue_mutex); |
| list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) |
| if (queue->nvme_sq.ctrl == ctrl) |
| kernel_sock_shutdown(queue->sock, SHUT_RDWR); |
| mutex_unlock(&nvmet_tcp_queue_mutex); |
| } |
| |
| static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) |
| { |
| struct nvmet_tcp_queue *queue = |
| container_of(sq, struct nvmet_tcp_queue, nvme_sq); |
| |
| if (sq->qid == 0) { |
| struct nvmet_tcp_queue *q; |
| int pending = 0; |
| |
| /* Check for pending controller teardown */ |
| mutex_lock(&nvmet_tcp_queue_mutex); |
| list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) { |
| if (q->nvme_sq.ctrl == sq->ctrl && |
| q->state == NVMET_TCP_Q_DISCONNECTING) |
| pending++; |
| } |
| mutex_unlock(&nvmet_tcp_queue_mutex); |
| if (pending > NVMET_TCP_BACKLOG) |
| return NVME_SC_CONNECT_CTRL_BUSY; |
| } |
| |
| queue->nr_cmds = sq->size * 2; |
| if (nvmet_tcp_alloc_cmds(queue)) |
| return NVME_SC_INTERNAL; |
| return 0; |
| } |
| |
| static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, |
| struct nvmet_port *nport, char *traddr) |
| { |
| struct nvmet_tcp_port *port = nport->priv; |
| |
| if (inet_addr_is_any((struct sockaddr *)&port->addr)) { |
| struct nvmet_tcp_cmd *cmd = |
| container_of(req, struct nvmet_tcp_cmd, req); |
| struct nvmet_tcp_queue *queue = cmd->queue; |
| |
| sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); |
| } else { |
| memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); |
| } |
| } |
| |
| static const struct nvmet_fabrics_ops nvmet_tcp_ops = { |
| .owner = THIS_MODULE, |
| .type = NVMF_TRTYPE_TCP, |
| .msdbd = 1, |
| .add_port = nvmet_tcp_add_port, |
| .remove_port = nvmet_tcp_remove_port, |
| .queue_response = nvmet_tcp_queue_response, |
| .delete_ctrl = nvmet_tcp_delete_ctrl, |
| .install_queue = nvmet_tcp_install_queue, |
| .disc_traddr = nvmet_tcp_disc_port_addr, |
| }; |
| |
| static int __init nvmet_tcp_init(void) |
| { |
| int ret; |
| |
| nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", |
| WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); |
| if (!nvmet_tcp_wq) |
| return -ENOMEM; |
| |
| ret = nvmet_register_transport(&nvmet_tcp_ops); |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| destroy_workqueue(nvmet_tcp_wq); |
| return ret; |
| } |
| |
| static void __exit nvmet_tcp_exit(void) |
| { |
| struct nvmet_tcp_queue *queue; |
| |
| nvmet_unregister_transport(&nvmet_tcp_ops); |
| |
| flush_workqueue(nvmet_wq); |
| mutex_lock(&nvmet_tcp_queue_mutex); |
| list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) |
| kernel_sock_shutdown(queue->sock, SHUT_RDWR); |
| mutex_unlock(&nvmet_tcp_queue_mutex); |
| flush_workqueue(nvmet_wq); |
| |
| destroy_workqueue(nvmet_tcp_wq); |
| ida_destroy(&nvmet_tcp_queue_ida); |
| } |
| |
| module_init(nvmet_tcp_init); |
| module_exit(nvmet_tcp_exit); |
| |
| MODULE_DESCRIPTION("NVMe target TCP transport driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ |