| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_alloc.h" |
| #include "xfs_errortag.h" |
| #include "xfs_error.h" |
| #include "xfs_bmap.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_icreate_item.h" |
| #include "xfs_icache.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_rmap.h" |
| |
| /* |
| * Lookup a record by ino in the btree given by cur. |
| */ |
| int /* error */ |
| xfs_inobt_lookup( |
| struct xfs_btree_cur *cur, /* btree cursor */ |
| xfs_agino_t ino, /* starting inode of chunk */ |
| xfs_lookup_t dir, /* <=, >=, == */ |
| int *stat) /* success/failure */ |
| { |
| cur->bc_rec.i.ir_startino = ino; |
| cur->bc_rec.i.ir_holemask = 0; |
| cur->bc_rec.i.ir_count = 0; |
| cur->bc_rec.i.ir_freecount = 0; |
| cur->bc_rec.i.ir_free = 0; |
| return xfs_btree_lookup(cur, dir, stat); |
| } |
| |
| /* |
| * Update the record referred to by cur to the value given. |
| * This either works (return 0) or gets an EFSCORRUPTED error. |
| */ |
| STATIC int /* error */ |
| xfs_inobt_update( |
| struct xfs_btree_cur *cur, /* btree cursor */ |
| xfs_inobt_rec_incore_t *irec) /* btree record */ |
| { |
| union xfs_btree_rec rec; |
| |
| rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); |
| if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { |
| rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); |
| rec.inobt.ir_u.sp.ir_count = irec->ir_count; |
| rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; |
| } else { |
| /* ir_holemask/ir_count not supported on-disk */ |
| rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); |
| } |
| rec.inobt.ir_free = cpu_to_be64(irec->ir_free); |
| return xfs_btree_update(cur, &rec); |
| } |
| |
| /* Convert on-disk btree record to incore inobt record. */ |
| void |
| xfs_inobt_btrec_to_irec( |
| struct xfs_mount *mp, |
| union xfs_btree_rec *rec, |
| struct xfs_inobt_rec_incore *irec) |
| { |
| irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); |
| if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { |
| irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); |
| irec->ir_count = rec->inobt.ir_u.sp.ir_count; |
| irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; |
| } else { |
| /* |
| * ir_holemask/ir_count not supported on-disk. Fill in hardcoded |
| * values for full inode chunks. |
| */ |
| irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; |
| irec->ir_count = XFS_INODES_PER_CHUNK; |
| irec->ir_freecount = |
| be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); |
| } |
| irec->ir_free = be64_to_cpu(rec->inobt.ir_free); |
| } |
| |
| /* |
| * Get the data from the pointed-to record. |
| */ |
| int |
| xfs_inobt_get_rec( |
| struct xfs_btree_cur *cur, |
| struct xfs_inobt_rec_incore *irec, |
| int *stat) |
| { |
| struct xfs_mount *mp = cur->bc_mp; |
| xfs_agnumber_t agno = cur->bc_ag.agno; |
| union xfs_btree_rec *rec; |
| int error; |
| uint64_t realfree; |
| |
| error = xfs_btree_get_rec(cur, &rec, stat); |
| if (error || *stat == 0) |
| return error; |
| |
| xfs_inobt_btrec_to_irec(mp, rec, irec); |
| |
| if (!xfs_verify_agino(mp, agno, irec->ir_startino)) |
| goto out_bad_rec; |
| if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || |
| irec->ir_count > XFS_INODES_PER_CHUNK) |
| goto out_bad_rec; |
| if (irec->ir_freecount > XFS_INODES_PER_CHUNK) |
| goto out_bad_rec; |
| |
| /* if there are no holes, return the first available offset */ |
| if (!xfs_inobt_issparse(irec->ir_holemask)) |
| realfree = irec->ir_free; |
| else |
| realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); |
| if (hweight64(realfree) != irec->ir_freecount) |
| goto out_bad_rec; |
| |
| return 0; |
| |
| out_bad_rec: |
| xfs_warn(mp, |
| "%s Inode BTree record corruption in AG %d detected!", |
| cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno); |
| xfs_warn(mp, |
| "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", |
| irec->ir_startino, irec->ir_count, irec->ir_freecount, |
| irec->ir_free, irec->ir_holemask); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Insert a single inobt record. Cursor must already point to desired location. |
| */ |
| int |
| xfs_inobt_insert_rec( |
| struct xfs_btree_cur *cur, |
| uint16_t holemask, |
| uint8_t count, |
| int32_t freecount, |
| xfs_inofree_t free, |
| int *stat) |
| { |
| cur->bc_rec.i.ir_holemask = holemask; |
| cur->bc_rec.i.ir_count = count; |
| cur->bc_rec.i.ir_freecount = freecount; |
| cur->bc_rec.i.ir_free = free; |
| return xfs_btree_insert(cur, stat); |
| } |
| |
| /* |
| * Insert records describing a newly allocated inode chunk into the inobt. |
| */ |
| STATIC int |
| xfs_inobt_insert( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_agino_t newino, |
| xfs_agino_t newlen, |
| xfs_btnum_t btnum) |
| { |
| struct xfs_btree_cur *cur; |
| struct xfs_agi *agi = agbp->b_addr; |
| xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
| xfs_agino_t thisino; |
| int i; |
| int error; |
| |
| cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); |
| |
| for (thisino = newino; |
| thisino < newino + newlen; |
| thisino += XFS_INODES_PER_CHUNK) { |
| error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); |
| if (error) { |
| xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| ASSERT(i == 0); |
| |
| error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, |
| XFS_INODES_PER_CHUNK, |
| XFS_INODES_PER_CHUNK, |
| XFS_INOBT_ALL_FREE, &i); |
| if (error) { |
| xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| ASSERT(i == 1); |
| } |
| |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| |
| return 0; |
| } |
| |
| /* |
| * Verify that the number of free inodes in the AGI is correct. |
| */ |
| #ifdef DEBUG |
| STATIC int |
| xfs_check_agi_freecount( |
| struct xfs_btree_cur *cur, |
| struct xfs_agi *agi) |
| { |
| if (cur->bc_nlevels == 1) { |
| xfs_inobt_rec_incore_t rec; |
| int freecount = 0; |
| int error; |
| int i; |
| |
| error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); |
| if (error) |
| return error; |
| |
| do { |
| error = xfs_inobt_get_rec(cur, &rec, &i); |
| if (error) |
| return error; |
| |
| if (i) { |
| freecount += rec.ir_freecount; |
| error = xfs_btree_increment(cur, 0, &i); |
| if (error) |
| return error; |
| } |
| } while (i == 1); |
| |
| if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) |
| ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); |
| } |
| return 0; |
| } |
| #else |
| #define xfs_check_agi_freecount(cur, agi) 0 |
| #endif |
| |
| /* |
| * Initialise a new set of inodes. When called without a transaction context |
| * (e.g. from recovery) we initiate a delayed write of the inode buffers rather |
| * than logging them (which in a transaction context puts them into the AIL |
| * for writeback rather than the xfsbufd queue). |
| */ |
| int |
| xfs_ialloc_inode_init( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct list_head *buffer_list, |
| int icount, |
| xfs_agnumber_t agno, |
| xfs_agblock_t agbno, |
| xfs_agblock_t length, |
| unsigned int gen) |
| { |
| struct xfs_buf *fbuf; |
| struct xfs_dinode *free; |
| int nbufs; |
| int version; |
| int i, j; |
| xfs_daddr_t d; |
| xfs_ino_t ino = 0; |
| int error; |
| |
| /* |
| * Loop over the new block(s), filling in the inodes. For small block |
| * sizes, manipulate the inodes in buffers which are multiples of the |
| * blocks size. |
| */ |
| nbufs = length / M_IGEO(mp)->blocks_per_cluster; |
| |
| /* |
| * Figure out what version number to use in the inodes we create. If |
| * the superblock version has caught up to the one that supports the new |
| * inode format, then use the new inode version. Otherwise use the old |
| * version so that old kernels will continue to be able to use the file |
| * system. |
| * |
| * For v3 inodes, we also need to write the inode number into the inode, |
| * so calculate the first inode number of the chunk here as |
| * XFS_AGB_TO_AGINO() only works within a filesystem block, not |
| * across multiple filesystem blocks (such as a cluster) and so cannot |
| * be used in the cluster buffer loop below. |
| * |
| * Further, because we are writing the inode directly into the buffer |
| * and calculating a CRC on the entire inode, we have ot log the entire |
| * inode so that the entire range the CRC covers is present in the log. |
| * That means for v3 inode we log the entire buffer rather than just the |
| * inode cores. |
| */ |
| if (xfs_sb_version_has_v3inode(&mp->m_sb)) { |
| version = 3; |
| ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); |
| |
| /* |
| * log the initialisation that is about to take place as an |
| * logical operation. This means the transaction does not |
| * need to log the physical changes to the inode buffers as log |
| * recovery will know what initialisation is actually needed. |
| * Hence we only need to log the buffers as "ordered" buffers so |
| * they track in the AIL as if they were physically logged. |
| */ |
| if (tp) |
| xfs_icreate_log(tp, agno, agbno, icount, |
| mp->m_sb.sb_inodesize, length, gen); |
| } else |
| version = 2; |
| |
| for (j = 0; j < nbufs; j++) { |
| /* |
| * Get the block. |
| */ |
| d = XFS_AGB_TO_DADDR(mp, agno, agbno + |
| (j * M_IGEO(mp)->blocks_per_cluster)); |
| error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, |
| mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, |
| XBF_UNMAPPED, &fbuf); |
| if (error) |
| return error; |
| |
| /* Initialize the inode buffers and log them appropriately. */ |
| fbuf->b_ops = &xfs_inode_buf_ops; |
| xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); |
| for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { |
| int ioffset = i << mp->m_sb.sb_inodelog; |
| uint isize = XFS_DINODE_SIZE(&mp->m_sb); |
| |
| free = xfs_make_iptr(mp, fbuf, i); |
| free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); |
| free->di_version = version; |
| free->di_gen = cpu_to_be32(gen); |
| free->di_next_unlinked = cpu_to_be32(NULLAGINO); |
| |
| if (version == 3) { |
| free->di_ino = cpu_to_be64(ino); |
| ino++; |
| uuid_copy(&free->di_uuid, |
| &mp->m_sb.sb_meta_uuid); |
| xfs_dinode_calc_crc(mp, free); |
| } else if (tp) { |
| /* just log the inode core */ |
| xfs_trans_log_buf(tp, fbuf, ioffset, |
| ioffset + isize - 1); |
| } |
| } |
| |
| if (tp) { |
| /* |
| * Mark the buffer as an inode allocation buffer so it |
| * sticks in AIL at the point of this allocation |
| * transaction. This ensures the they are on disk before |
| * the tail of the log can be moved past this |
| * transaction (i.e. by preventing relogging from moving |
| * it forward in the log). |
| */ |
| xfs_trans_inode_alloc_buf(tp, fbuf); |
| if (version == 3) { |
| /* |
| * Mark the buffer as ordered so that they are |
| * not physically logged in the transaction but |
| * still tracked in the AIL as part of the |
| * transaction and pin the log appropriately. |
| */ |
| xfs_trans_ordered_buf(tp, fbuf); |
| } |
| } else { |
| fbuf->b_flags |= XBF_DONE; |
| xfs_buf_delwri_queue(fbuf, buffer_list); |
| xfs_buf_relse(fbuf); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Align startino and allocmask for a recently allocated sparse chunk such that |
| * they are fit for insertion (or merge) into the on-disk inode btrees. |
| * |
| * Background: |
| * |
| * When enabled, sparse inode support increases the inode alignment from cluster |
| * size to inode chunk size. This means that the minimum range between two |
| * non-adjacent inode records in the inobt is large enough for a full inode |
| * record. This allows for cluster sized, cluster aligned block allocation |
| * without need to worry about whether the resulting inode record overlaps with |
| * another record in the tree. Without this basic rule, we would have to deal |
| * with the consequences of overlap by potentially undoing recent allocations in |
| * the inode allocation codepath. |
| * |
| * Because of this alignment rule (which is enforced on mount), there are two |
| * inobt possibilities for newly allocated sparse chunks. One is that the |
| * aligned inode record for the chunk covers a range of inodes not already |
| * covered in the inobt (i.e., it is safe to insert a new sparse record). The |
| * other is that a record already exists at the aligned startino that considers |
| * the newly allocated range as sparse. In the latter case, record content is |
| * merged in hope that sparse inode chunks fill to full chunks over time. |
| */ |
| STATIC void |
| xfs_align_sparse_ino( |
| struct xfs_mount *mp, |
| xfs_agino_t *startino, |
| uint16_t *allocmask) |
| { |
| xfs_agblock_t agbno; |
| xfs_agblock_t mod; |
| int offset; |
| |
| agbno = XFS_AGINO_TO_AGBNO(mp, *startino); |
| mod = agbno % mp->m_sb.sb_inoalignmt; |
| if (!mod) |
| return; |
| |
| /* calculate the inode offset and align startino */ |
| offset = XFS_AGB_TO_AGINO(mp, mod); |
| *startino -= offset; |
| |
| /* |
| * Since startino has been aligned down, left shift allocmask such that |
| * it continues to represent the same physical inodes relative to the |
| * new startino. |
| */ |
| *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; |
| } |
| |
| /* |
| * Determine whether the source inode record can merge into the target. Both |
| * records must be sparse, the inode ranges must match and there must be no |
| * allocation overlap between the records. |
| */ |
| STATIC bool |
| __xfs_inobt_can_merge( |
| struct xfs_inobt_rec_incore *trec, /* tgt record */ |
| struct xfs_inobt_rec_incore *srec) /* src record */ |
| { |
| uint64_t talloc; |
| uint64_t salloc; |
| |
| /* records must cover the same inode range */ |
| if (trec->ir_startino != srec->ir_startino) |
| return false; |
| |
| /* both records must be sparse */ |
| if (!xfs_inobt_issparse(trec->ir_holemask) || |
| !xfs_inobt_issparse(srec->ir_holemask)) |
| return false; |
| |
| /* both records must track some inodes */ |
| if (!trec->ir_count || !srec->ir_count) |
| return false; |
| |
| /* can't exceed capacity of a full record */ |
| if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) |
| return false; |
| |
| /* verify there is no allocation overlap */ |
| talloc = xfs_inobt_irec_to_allocmask(trec); |
| salloc = xfs_inobt_irec_to_allocmask(srec); |
| if (talloc & salloc) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Merge the source inode record into the target. The caller must call |
| * __xfs_inobt_can_merge() to ensure the merge is valid. |
| */ |
| STATIC void |
| __xfs_inobt_rec_merge( |
| struct xfs_inobt_rec_incore *trec, /* target */ |
| struct xfs_inobt_rec_incore *srec) /* src */ |
| { |
| ASSERT(trec->ir_startino == srec->ir_startino); |
| |
| /* combine the counts */ |
| trec->ir_count += srec->ir_count; |
| trec->ir_freecount += srec->ir_freecount; |
| |
| /* |
| * Merge the holemask and free mask. For both fields, 0 bits refer to |
| * allocated inodes. We combine the allocated ranges with bitwise AND. |
| */ |
| trec->ir_holemask &= srec->ir_holemask; |
| trec->ir_free &= srec->ir_free; |
| } |
| |
| /* |
| * Insert a new sparse inode chunk into the associated inode btree. The inode |
| * record for the sparse chunk is pre-aligned to a startino that should match |
| * any pre-existing sparse inode record in the tree. This allows sparse chunks |
| * to fill over time. |
| * |
| * This function supports two modes of handling preexisting records depending on |
| * the merge flag. If merge is true, the provided record is merged with the |
| * existing record and updated in place. The merged record is returned in nrec. |
| * If merge is false, an existing record is replaced with the provided record. |
| * If no preexisting record exists, the provided record is always inserted. |
| * |
| * It is considered corruption if a merge is requested and not possible. Given |
| * the sparse inode alignment constraints, this should never happen. |
| */ |
| STATIC int |
| xfs_inobt_insert_sprec( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| int btnum, |
| struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ |
| bool merge) /* merge or replace */ |
| { |
| struct xfs_btree_cur *cur; |
| struct xfs_agi *agi = agbp->b_addr; |
| xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
| int error; |
| int i; |
| struct xfs_inobt_rec_incore rec; |
| |
| cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); |
| |
| /* the new record is pre-aligned so we know where to look */ |
| error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); |
| if (error) |
| goto error; |
| /* if nothing there, insert a new record and return */ |
| if (i == 0) { |
| error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, |
| nrec->ir_count, nrec->ir_freecount, |
| nrec->ir_free, &i); |
| if (error) |
| goto error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| |
| goto out; |
| } |
| |
| /* |
| * A record exists at this startino. Merge or replace the record |
| * depending on what we've been asked to do. |
| */ |
| if (merge) { |
| error = xfs_inobt_get_rec(cur, &rec, &i); |
| if (error) |
| goto error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| |
| /* |
| * This should never fail. If we have coexisting records that |
| * cannot merge, something is seriously wrong. |
| */ |
| if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| |
| trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, |
| rec.ir_holemask, nrec->ir_startino, |
| nrec->ir_holemask); |
| |
| /* merge to nrec to output the updated record */ |
| __xfs_inobt_rec_merge(nrec, &rec); |
| |
| trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, |
| nrec->ir_holemask); |
| |
| error = xfs_inobt_rec_check_count(mp, nrec); |
| if (error) |
| goto error; |
| } |
| |
| error = xfs_inobt_update(cur, nrec); |
| if (error) |
| goto error; |
| |
| out: |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| return 0; |
| error: |
| xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Allocate new inodes in the allocation group specified by agbp. |
| * Return 0 for success, else error code. |
| */ |
| STATIC int |
| xfs_ialloc_ag_alloc( |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| int *alloc) |
| { |
| struct xfs_agi *agi; |
| struct xfs_alloc_arg args; |
| xfs_agnumber_t agno; |
| int error; |
| xfs_agino_t newino; /* new first inode's number */ |
| xfs_agino_t newlen; /* new number of inodes */ |
| int isaligned = 0; /* inode allocation at stripe */ |
| /* unit boundary */ |
| /* init. to full chunk */ |
| uint16_t allocmask = (uint16_t) -1; |
| struct xfs_inobt_rec_incore rec; |
| struct xfs_perag *pag; |
| struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); |
| int do_sparse = 0; |
| |
| memset(&args, 0, sizeof(args)); |
| args.tp = tp; |
| args.mp = tp->t_mountp; |
| args.fsbno = NULLFSBLOCK; |
| args.oinfo = XFS_RMAP_OINFO_INODES; |
| |
| #ifdef DEBUG |
| /* randomly do sparse inode allocations */ |
| if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && |
| igeo->ialloc_min_blks < igeo->ialloc_blks) |
| do_sparse = prandom_u32() & 1; |
| #endif |
| |
| /* |
| * Locking will ensure that we don't have two callers in here |
| * at one time. |
| */ |
| newlen = igeo->ialloc_inos; |
| if (igeo->maxicount && |
| percpu_counter_read_positive(&args.mp->m_icount) + newlen > |
| igeo->maxicount) |
| return -ENOSPC; |
| args.minlen = args.maxlen = igeo->ialloc_blks; |
| /* |
| * First try to allocate inodes contiguous with the last-allocated |
| * chunk of inodes. If the filesystem is striped, this will fill |
| * an entire stripe unit with inodes. |
| */ |
| agi = agbp->b_addr; |
| newino = be32_to_cpu(agi->agi_newino); |
| agno = be32_to_cpu(agi->agi_seqno); |
| args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + |
| igeo->ialloc_blks; |
| if (do_sparse) |
| goto sparse_alloc; |
| if (likely(newino != NULLAGINO && |
| (args.agbno < be32_to_cpu(agi->agi_length)))) { |
| args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
| args.type = XFS_ALLOCTYPE_THIS_BNO; |
| args.prod = 1; |
| |
| /* |
| * We need to take into account alignment here to ensure that |
| * we don't modify the free list if we fail to have an exact |
| * block. If we don't have an exact match, and every oher |
| * attempt allocation attempt fails, we'll end up cancelling |
| * a dirty transaction and shutting down. |
| * |
| * For an exact allocation, alignment must be 1, |
| * however we need to take cluster alignment into account when |
| * fixing up the freelist. Use the minalignslop field to |
| * indicate that extra blocks might be required for alignment, |
| * but not to use them in the actual exact allocation. |
| */ |
| args.alignment = 1; |
| args.minalignslop = igeo->cluster_align - 1; |
| |
| /* Allow space for the inode btree to split. */ |
| args.minleft = igeo->inobt_maxlevels - 1; |
| if ((error = xfs_alloc_vextent(&args))) |
| return error; |
| |
| /* |
| * This request might have dirtied the transaction if the AG can |
| * satisfy the request, but the exact block was not available. |
| * If the allocation did fail, subsequent requests will relax |
| * the exact agbno requirement and increase the alignment |
| * instead. It is critical that the total size of the request |
| * (len + alignment + slop) does not increase from this point |
| * on, so reset minalignslop to ensure it is not included in |
| * subsequent requests. |
| */ |
| args.minalignslop = 0; |
| } |
| |
| if (unlikely(args.fsbno == NULLFSBLOCK)) { |
| /* |
| * Set the alignment for the allocation. |
| * If stripe alignment is turned on then align at stripe unit |
| * boundary. |
| * If the cluster size is smaller than a filesystem block |
| * then we're doing I/O for inodes in filesystem block size |
| * pieces, so don't need alignment anyway. |
| */ |
| isaligned = 0; |
| if (igeo->ialloc_align) { |
| ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); |
| args.alignment = args.mp->m_dalign; |
| isaligned = 1; |
| } else |
| args.alignment = igeo->cluster_align; |
| /* |
| * Need to figure out where to allocate the inode blocks. |
| * Ideally they should be spaced out through the a.g. |
| * For now, just allocate blocks up front. |
| */ |
| args.agbno = be32_to_cpu(agi->agi_root); |
| args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
| /* |
| * Allocate a fixed-size extent of inodes. |
| */ |
| args.type = XFS_ALLOCTYPE_NEAR_BNO; |
| args.prod = 1; |
| /* |
| * Allow space for the inode btree to split. |
| */ |
| args.minleft = igeo->inobt_maxlevels - 1; |
| if ((error = xfs_alloc_vextent(&args))) |
| return error; |
| } |
| |
| /* |
| * If stripe alignment is turned on, then try again with cluster |
| * alignment. |
| */ |
| if (isaligned && args.fsbno == NULLFSBLOCK) { |
| args.type = XFS_ALLOCTYPE_NEAR_BNO; |
| args.agbno = be32_to_cpu(agi->agi_root); |
| args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
| args.alignment = igeo->cluster_align; |
| if ((error = xfs_alloc_vextent(&args))) |
| return error; |
| } |
| |
| /* |
| * Finally, try a sparse allocation if the filesystem supports it and |
| * the sparse allocation length is smaller than a full chunk. |
| */ |
| if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && |
| igeo->ialloc_min_blks < igeo->ialloc_blks && |
| args.fsbno == NULLFSBLOCK) { |
| sparse_alloc: |
| args.type = XFS_ALLOCTYPE_NEAR_BNO; |
| args.agbno = be32_to_cpu(agi->agi_root); |
| args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
| args.alignment = args.mp->m_sb.sb_spino_align; |
| args.prod = 1; |
| |
| args.minlen = igeo->ialloc_min_blks; |
| args.maxlen = args.minlen; |
| |
| /* |
| * The inode record will be aligned to full chunk size. We must |
| * prevent sparse allocation from AG boundaries that result in |
| * invalid inode records, such as records that start at agbno 0 |
| * or extend beyond the AG. |
| * |
| * Set min agbno to the first aligned, non-zero agbno and max to |
| * the last aligned agbno that is at least one full chunk from |
| * the end of the AG. |
| */ |
| args.min_agbno = args.mp->m_sb.sb_inoalignmt; |
| args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, |
| args.mp->m_sb.sb_inoalignmt) - |
| igeo->ialloc_blks; |
| |
| error = xfs_alloc_vextent(&args); |
| if (error) |
| return error; |
| |
| newlen = XFS_AGB_TO_AGINO(args.mp, args.len); |
| ASSERT(newlen <= XFS_INODES_PER_CHUNK); |
| allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; |
| } |
| |
| if (args.fsbno == NULLFSBLOCK) { |
| *alloc = 0; |
| return 0; |
| } |
| ASSERT(args.len == args.minlen); |
| |
| /* |
| * Stamp and write the inode buffers. |
| * |
| * Seed the new inode cluster with a random generation number. This |
| * prevents short-term reuse of generation numbers if a chunk is |
| * freed and then immediately reallocated. We use random numbers |
| * rather than a linear progression to prevent the next generation |
| * number from being easily guessable. |
| */ |
| error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, |
| args.agbno, args.len, prandom_u32()); |
| |
| if (error) |
| return error; |
| /* |
| * Convert the results. |
| */ |
| newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); |
| |
| if (xfs_inobt_issparse(~allocmask)) { |
| /* |
| * We've allocated a sparse chunk. Align the startino and mask. |
| */ |
| xfs_align_sparse_ino(args.mp, &newino, &allocmask); |
| |
| rec.ir_startino = newino; |
| rec.ir_holemask = ~allocmask; |
| rec.ir_count = newlen; |
| rec.ir_freecount = newlen; |
| rec.ir_free = XFS_INOBT_ALL_FREE; |
| |
| /* |
| * Insert the sparse record into the inobt and allow for a merge |
| * if necessary. If a merge does occur, rec is updated to the |
| * merged record. |
| */ |
| error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, |
| &rec, true); |
| if (error == -EFSCORRUPTED) { |
| xfs_alert(args.mp, |
| "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", |
| XFS_AGINO_TO_INO(args.mp, agno, |
| rec.ir_startino), |
| rec.ir_holemask, rec.ir_count); |
| xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); |
| } |
| if (error) |
| return error; |
| |
| /* |
| * We can't merge the part we've just allocated as for the inobt |
| * due to finobt semantics. The original record may or may not |
| * exist independent of whether physical inodes exist in this |
| * sparse chunk. |
| * |
| * We must update the finobt record based on the inobt record. |
| * rec contains the fully merged and up to date inobt record |
| * from the previous call. Set merge false to replace any |
| * existing record with this one. |
| */ |
| if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { |
| error = xfs_inobt_insert_sprec(args.mp, tp, agbp, |
| XFS_BTNUM_FINO, &rec, |
| false); |
| if (error) |
| return error; |
| } |
| } else { |
| /* full chunk - insert new records to both btrees */ |
| error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, |
| XFS_BTNUM_INO); |
| if (error) |
| return error; |
| |
| if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { |
| error = xfs_inobt_insert(args.mp, tp, agbp, newino, |
| newlen, XFS_BTNUM_FINO); |
| if (error) |
| return error; |
| } |
| } |
| |
| /* |
| * Update AGI counts and newino. |
| */ |
| be32_add_cpu(&agi->agi_count, newlen); |
| be32_add_cpu(&agi->agi_freecount, newlen); |
| pag = agbp->b_pag; |
| pag->pagi_freecount += newlen; |
| pag->pagi_count += newlen; |
| agi->agi_newino = cpu_to_be32(newino); |
| |
| /* |
| * Log allocation group header fields |
| */ |
| xfs_ialloc_log_agi(tp, agbp, |
| XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); |
| /* |
| * Modify/log superblock values for inode count and inode free count. |
| */ |
| xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); |
| xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); |
| *alloc = 1; |
| return 0; |
| } |
| |
| STATIC xfs_agnumber_t |
| xfs_ialloc_next_ag( |
| xfs_mount_t *mp) |
| { |
| xfs_agnumber_t agno; |
| |
| spin_lock(&mp->m_agirotor_lock); |
| agno = mp->m_agirotor; |
| if (++mp->m_agirotor >= mp->m_maxagi) |
| mp->m_agirotor = 0; |
| spin_unlock(&mp->m_agirotor_lock); |
| |
| return agno; |
| } |
| |
| /* |
| * Select an allocation group to look for a free inode in, based on the parent |
| * inode and the mode. Return the allocation group buffer. |
| */ |
| STATIC xfs_agnumber_t |
| xfs_ialloc_ag_select( |
| xfs_trans_t *tp, /* transaction pointer */ |
| xfs_ino_t parent, /* parent directory inode number */ |
| umode_t mode) /* bits set to indicate file type */ |
| { |
| xfs_agnumber_t agcount; /* number of ag's in the filesystem */ |
| xfs_agnumber_t agno; /* current ag number */ |
| int flags; /* alloc buffer locking flags */ |
| xfs_extlen_t ineed; /* blocks needed for inode allocation */ |
| xfs_extlen_t longest = 0; /* longest extent available */ |
| xfs_mount_t *mp; /* mount point structure */ |
| int needspace; /* file mode implies space allocated */ |
| xfs_perag_t *pag; /* per allocation group data */ |
| xfs_agnumber_t pagno; /* parent (starting) ag number */ |
| int error; |
| |
| /* |
| * Files of these types need at least one block if length > 0 |
| * (and they won't fit in the inode, but that's hard to figure out). |
| */ |
| needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); |
| mp = tp->t_mountp; |
| agcount = mp->m_maxagi; |
| if (S_ISDIR(mode)) |
| pagno = xfs_ialloc_next_ag(mp); |
| else { |
| pagno = XFS_INO_TO_AGNO(mp, parent); |
| if (pagno >= agcount) |
| pagno = 0; |
| } |
| |
| ASSERT(pagno < agcount); |
| |
| /* |
| * Loop through allocation groups, looking for one with a little |
| * free space in it. Note we don't look for free inodes, exactly. |
| * Instead, we include whether there is a need to allocate inodes |
| * to mean that blocks must be allocated for them, |
| * if none are currently free. |
| */ |
| agno = pagno; |
| flags = XFS_ALLOC_FLAG_TRYLOCK; |
| for (;;) { |
| pag = xfs_perag_get(mp, agno); |
| if (!pag->pagi_inodeok) { |
| xfs_ialloc_next_ag(mp); |
| goto nextag; |
| } |
| |
| if (!pag->pagi_init) { |
| error = xfs_ialloc_pagi_init(mp, tp, agno); |
| if (error) |
| goto nextag; |
| } |
| |
| if (pag->pagi_freecount) { |
| xfs_perag_put(pag); |
| return agno; |
| } |
| |
| if (!pag->pagf_init) { |
| error = xfs_alloc_pagf_init(mp, tp, agno, flags); |
| if (error) |
| goto nextag; |
| } |
| |
| /* |
| * Check that there is enough free space for the file plus a |
| * chunk of inodes if we need to allocate some. If this is the |
| * first pass across the AGs, take into account the potential |
| * space needed for alignment of inode chunks when checking the |
| * longest contiguous free space in the AG - this prevents us |
| * from getting ENOSPC because we have free space larger than |
| * ialloc_blks but alignment constraints prevent us from using |
| * it. |
| * |
| * If we can't find an AG with space for full alignment slack to |
| * be taken into account, we must be near ENOSPC in all AGs. |
| * Hence we don't include alignment for the second pass and so |
| * if we fail allocation due to alignment issues then it is most |
| * likely a real ENOSPC condition. |
| */ |
| ineed = M_IGEO(mp)->ialloc_min_blks; |
| if (flags && ineed > 1) |
| ineed += M_IGEO(mp)->cluster_align; |
| longest = pag->pagf_longest; |
| if (!longest) |
| longest = pag->pagf_flcount > 0; |
| |
| if (pag->pagf_freeblks >= needspace + ineed && |
| longest >= ineed) { |
| xfs_perag_put(pag); |
| return agno; |
| } |
| nextag: |
| xfs_perag_put(pag); |
| /* |
| * No point in iterating over the rest, if we're shutting |
| * down. |
| */ |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return NULLAGNUMBER; |
| agno++; |
| if (agno >= agcount) |
| agno = 0; |
| if (agno == pagno) { |
| if (flags == 0) |
| return NULLAGNUMBER; |
| flags = 0; |
| } |
| } |
| } |
| |
| /* |
| * Try to retrieve the next record to the left/right from the current one. |
| */ |
| STATIC int |
| xfs_ialloc_next_rec( |
| struct xfs_btree_cur *cur, |
| xfs_inobt_rec_incore_t *rec, |
| int *done, |
| int left) |
| { |
| int error; |
| int i; |
| |
| if (left) |
| error = xfs_btree_decrement(cur, 0, &i); |
| else |
| error = xfs_btree_increment(cur, 0, &i); |
| |
| if (error) |
| return error; |
| *done = !i; |
| if (i) { |
| error = xfs_inobt_get_rec(cur, rec, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| } |
| |
| return 0; |
| } |
| |
| STATIC int |
| xfs_ialloc_get_rec( |
| struct xfs_btree_cur *cur, |
| xfs_agino_t agino, |
| xfs_inobt_rec_incore_t *rec, |
| int *done) |
| { |
| int error; |
| int i; |
| |
| error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); |
| if (error) |
| return error; |
| *done = !i; |
| if (i) { |
| error = xfs_inobt_get_rec(cur, rec, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Return the offset of the first free inode in the record. If the inode chunk |
| * is sparsely allocated, we convert the record holemask to inode granularity |
| * and mask off the unallocated regions from the inode free mask. |
| */ |
| STATIC int |
| xfs_inobt_first_free_inode( |
| struct xfs_inobt_rec_incore *rec) |
| { |
| xfs_inofree_t realfree; |
| |
| /* if there are no holes, return the first available offset */ |
| if (!xfs_inobt_issparse(rec->ir_holemask)) |
| return xfs_lowbit64(rec->ir_free); |
| |
| realfree = xfs_inobt_irec_to_allocmask(rec); |
| realfree &= rec->ir_free; |
| |
| return xfs_lowbit64(realfree); |
| } |
| |
| /* |
| * Allocate an inode using the inobt-only algorithm. |
| */ |
| STATIC int |
| xfs_dialloc_ag_inobt( |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_ino_t parent, |
| xfs_ino_t *inop) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_agi *agi = agbp->b_addr; |
| xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
| xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); |
| xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); |
| struct xfs_perag *pag = agbp->b_pag; |
| struct xfs_btree_cur *cur, *tcur; |
| struct xfs_inobt_rec_incore rec, trec; |
| xfs_ino_t ino; |
| int error; |
| int offset; |
| int i, j; |
| int searchdistance = 10; |
| |
| ASSERT(pag->pagi_init); |
| ASSERT(pag->pagi_inodeok); |
| ASSERT(pag->pagi_freecount > 0); |
| |
| restart_pagno: |
| cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
| /* |
| * If pagino is 0 (this is the root inode allocation) use newino. |
| * This must work because we've just allocated some. |
| */ |
| if (!pagino) |
| pagino = be32_to_cpu(agi->agi_newino); |
| |
| error = xfs_check_agi_freecount(cur, agi); |
| if (error) |
| goto error0; |
| |
| /* |
| * If in the same AG as the parent, try to get near the parent. |
| */ |
| if (pagno == agno) { |
| int doneleft; /* done, to the left */ |
| int doneright; /* done, to the right */ |
| |
| error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); |
| if (error) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| |
| error = xfs_inobt_get_rec(cur, &rec, &j); |
| if (error) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, j != 1)) { |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| |
| if (rec.ir_freecount > 0) { |
| /* |
| * Found a free inode in the same chunk |
| * as the parent, done. |
| */ |
| goto alloc_inode; |
| } |
| |
| |
| /* |
| * In the same AG as parent, but parent's chunk is full. |
| */ |
| |
| /* duplicate the cursor, search left & right simultaneously */ |
| error = xfs_btree_dup_cursor(cur, &tcur); |
| if (error) |
| goto error0; |
| |
| /* |
| * Skip to last blocks looked up if same parent inode. |
| */ |
| if (pagino != NULLAGINO && |
| pag->pagl_pagino == pagino && |
| pag->pagl_leftrec != NULLAGINO && |
| pag->pagl_rightrec != NULLAGINO) { |
| error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, |
| &trec, &doneleft); |
| if (error) |
| goto error1; |
| |
| error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, |
| &rec, &doneright); |
| if (error) |
| goto error1; |
| } else { |
| /* search left with tcur, back up 1 record */ |
| error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); |
| if (error) |
| goto error1; |
| |
| /* search right with cur, go forward 1 record. */ |
| error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); |
| if (error) |
| goto error1; |
| } |
| |
| /* |
| * Loop until we find an inode chunk with a free inode. |
| */ |
| while (--searchdistance > 0 && (!doneleft || !doneright)) { |
| int useleft; /* using left inode chunk this time */ |
| |
| /* figure out the closer block if both are valid. */ |
| if (!doneleft && !doneright) { |
| useleft = pagino - |
| (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < |
| rec.ir_startino - pagino; |
| } else { |
| useleft = !doneleft; |
| } |
| |
| /* free inodes to the left? */ |
| if (useleft && trec.ir_freecount) { |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| cur = tcur; |
| |
| pag->pagl_leftrec = trec.ir_startino; |
| pag->pagl_rightrec = rec.ir_startino; |
| pag->pagl_pagino = pagino; |
| rec = trec; |
| goto alloc_inode; |
| } |
| |
| /* free inodes to the right? */ |
| if (!useleft && rec.ir_freecount) { |
| xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); |
| |
| pag->pagl_leftrec = trec.ir_startino; |
| pag->pagl_rightrec = rec.ir_startino; |
| pag->pagl_pagino = pagino; |
| goto alloc_inode; |
| } |
| |
| /* get next record to check */ |
| if (useleft) { |
| error = xfs_ialloc_next_rec(tcur, &trec, |
| &doneleft, 1); |
| } else { |
| error = xfs_ialloc_next_rec(cur, &rec, |
| &doneright, 0); |
| } |
| if (error) |
| goto error1; |
| } |
| |
| if (searchdistance <= 0) { |
| /* |
| * Not in range - save last search |
| * location and allocate a new inode |
| */ |
| xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); |
| pag->pagl_leftrec = trec.ir_startino; |
| pag->pagl_rightrec = rec.ir_startino; |
| pag->pagl_pagino = pagino; |
| |
| } else { |
| /* |
| * We've reached the end of the btree. because |
| * we are only searching a small chunk of the |
| * btree each search, there is obviously free |
| * inodes closer to the parent inode than we |
| * are now. restart the search again. |
| */ |
| pag->pagl_pagino = NULLAGINO; |
| pag->pagl_leftrec = NULLAGINO; |
| pag->pagl_rightrec = NULLAGINO; |
| xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| goto restart_pagno; |
| } |
| } |
| |
| /* |
| * In a different AG from the parent. |
| * See if the most recently allocated block has any free. |
| */ |
| if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { |
| error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
| XFS_LOOKUP_EQ, &i); |
| if (error) |
| goto error0; |
| |
| if (i == 1) { |
| error = xfs_inobt_get_rec(cur, &rec, &j); |
| if (error) |
| goto error0; |
| |
| if (j == 1 && rec.ir_freecount > 0) { |
| /* |
| * The last chunk allocated in the group |
| * still has a free inode. |
| */ |
| goto alloc_inode; |
| } |
| } |
| } |
| |
| /* |
| * None left in the last group, search the whole AG |
| */ |
| error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); |
| if (error) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| |
| for (;;) { |
| error = xfs_inobt_get_rec(cur, &rec, &i); |
| if (error) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| if (rec.ir_freecount > 0) |
| break; |
| error = xfs_btree_increment(cur, 0, &i); |
| if (error) |
| goto error0; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| } |
| |
| alloc_inode: |
| offset = xfs_inobt_first_free_inode(&rec); |
| ASSERT(offset >= 0); |
| ASSERT(offset < XFS_INODES_PER_CHUNK); |
| ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % |
| XFS_INODES_PER_CHUNK) == 0); |
| ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); |
| rec.ir_free &= ~XFS_INOBT_MASK(offset); |
| rec.ir_freecount--; |
| error = xfs_inobt_update(cur, &rec); |
| if (error) |
| goto error0; |
| be32_add_cpu(&agi->agi_freecount, -1); |
| xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
| pag->pagi_freecount--; |
| |
| error = xfs_check_agi_freecount(cur, agi); |
| if (error) |
| goto error0; |
| |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); |
| *inop = ino; |
| return 0; |
| error1: |
| xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); |
| error0: |
| xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Use the free inode btree to allocate an inode based on distance from the |
| * parent. Note that the provided cursor may be deleted and replaced. |
| */ |
| STATIC int |
| xfs_dialloc_ag_finobt_near( |
| xfs_agino_t pagino, |
| struct xfs_btree_cur **ocur, |
| struct xfs_inobt_rec_incore *rec) |
| { |
| struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ |
| struct xfs_btree_cur *rcur; /* right search cursor */ |
| struct xfs_inobt_rec_incore rrec; |
| int error; |
| int i, j; |
| |
| error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); |
| if (error) |
| return error; |
| |
| if (i == 1) { |
| error = xfs_inobt_get_rec(lcur, rec, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| |
| /* |
| * See if we've landed in the parent inode record. The finobt |
| * only tracks chunks with at least one free inode, so record |
| * existence is enough. |
| */ |
| if (pagino >= rec->ir_startino && |
| pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) |
| return 0; |
| } |
| |
| error = xfs_btree_dup_cursor(lcur, &rcur); |
| if (error) |
| return error; |
| |
| error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); |
| if (error) |
| goto error_rcur; |
| if (j == 1) { |
| error = xfs_inobt_get_rec(rcur, &rrec, &j); |
| if (error) |
| goto error_rcur; |
| if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { |
| error = -EFSCORRUPTED; |
| goto error_rcur; |
| } |
| } |
| |
| if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { |
| error = -EFSCORRUPTED; |
| goto error_rcur; |
| } |
| if (i == 1 && j == 1) { |
| /* |
| * Both the left and right records are valid. Choose the closer |
| * inode chunk to the target. |
| */ |
| if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > |
| (rrec.ir_startino - pagino)) { |
| *rec = rrec; |
| xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); |
| *ocur = rcur; |
| } else { |
| xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); |
| } |
| } else if (j == 1) { |
| /* only the right record is valid */ |
| *rec = rrec; |
| xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); |
| *ocur = rcur; |
| } else if (i == 1) { |
| /* only the left record is valid */ |
| xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); |
| } |
| |
| return 0; |
| |
| error_rcur: |
| xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Use the free inode btree to find a free inode based on a newino hint. If |
| * the hint is NULL, find the first free inode in the AG. |
| */ |
| STATIC int |
| xfs_dialloc_ag_finobt_newino( |
| struct xfs_agi *agi, |
| struct xfs_btree_cur *cur, |
| struct xfs_inobt_rec_incore *rec) |
| { |
| int error; |
| int i; |
| |
| if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { |
| error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
| XFS_LOOKUP_EQ, &i); |
| if (error) |
| return error; |
| if (i == 1) { |
| error = xfs_inobt_get_rec(cur, rec, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| return 0; |
| } |
| } |
| |
| /* |
| * Find the first inode available in the AG. |
| */ |
| error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| |
| error = xfs_inobt_get_rec(cur, rec, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| |
| return 0; |
| } |
| |
| /* |
| * Update the inobt based on a modification made to the finobt. Also ensure that |
| * the records from both trees are equivalent post-modification. |
| */ |
| STATIC int |
| xfs_dialloc_ag_update_inobt( |
| struct xfs_btree_cur *cur, /* inobt cursor */ |
| struct xfs_inobt_rec_incore *frec, /* finobt record */ |
| int offset) /* inode offset */ |
| { |
| struct xfs_inobt_rec_incore rec; |
| int error; |
| int i; |
| |
| error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| |
| error = xfs_inobt_get_rec(cur, &rec, &i); |
| if (error) |
| return error; |
| if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
| return -EFSCORRUPTED; |
| ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % |
| XFS_INODES_PER_CHUNK) == 0); |
| |
| rec.ir_free &= ~XFS_INOBT_MASK(offset); |
| rec.ir_freecount--; |
| |
| if (XFS_IS_CORRUPT(cur->bc_mp, |
| rec.ir_free != frec->ir_free || |
| rec.ir_freecount != frec->ir_freecount)) |
| return -EFSCORRUPTED; |
| |
| return xfs_inobt_update(cur, &rec); |
| } |
| |
| /* |
| * Allocate an inode using the free inode btree, if available. Otherwise, fall |
| * back to the inobt search algorithm. |
| * |
| * The caller selected an AG for us, and made sure that free inodes are |
| * available. |
| */ |
| STATIC int |
| xfs_dialloc_ag( |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_ino_t parent, |
| xfs_ino_t *inop) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_agi *agi = agbp->b_addr; |
| xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
| xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); |
| xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); |
| struct xfs_btree_cur *cur; /* finobt cursor */ |
| struct xfs_btree_cur *icur; /* inobt cursor */ |
| struct xfs_inobt_rec_incore rec; |
| xfs_ino_t ino; |
| int error; |
| int offset; |
| int i; |
| |
| if (!xfs_sb_version_hasfinobt(&mp->m_sb)) |
| return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); |
| |
| /* |
| * If pagino is 0 (this is the root inode allocation) use newino. |
| * This must work because we've just allocated some. |
| */ |
| if (!pagino) |
| pagino = be32_to_cpu(agi->agi_newino); |
| |
| cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); |
| |
| error = xfs_check_agi_freecount(cur, agi); |
| if (error) |
| goto error_cur; |
| |
| /* |
| * The search algorithm depends on whether we're in the same AG as the |
| * parent. If so, find the closest available inode to the parent. If |
| * not, consider the agi hint or find the first free inode in the AG. |
| */ |
| if (agno == pagno) |
| error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); |
| else |
| error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); |
| if (error) |
| goto error_cur; |
| |
| offset = xfs_inobt_first_free_inode(&rec); |
| ASSERT(offset >= 0); |
| ASSERT(offset < XFS_INODES_PER_CHUNK); |
| ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % |
| XFS_INODES_PER_CHUNK) == 0); |
| ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); |
| |
| /* |
| * Modify or remove the finobt record. |
| */ |
| rec.ir_free &= ~XFS_INOBT_MASK(offset); |
| rec.ir_freecount--; |
| if (rec.ir_freecount) |
| error = xfs_inobt_update(cur, &rec); |
| else |
| error = xfs_btree_delete(cur, &i); |
| if (error) |
| goto error_cur; |
| |
| /* |
| * The finobt has now been updated appropriately. We haven't updated the |
| * agi and superblock yet, so we can create an inobt cursor and validate |
| * the original freecount. If all is well, make the equivalent update to |
| * the inobt using the finobt record and offset information. |
| */ |
| icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
| |
| error = xfs_check_agi_freecount(icur, agi); |
| if (error) |
| goto error_icur; |
| |
| error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); |
| if (error) |
| goto error_icur; |
| |
| /* |
| * Both trees have now been updated. We must update the perag and |
| * superblock before we can check the freecount for each btree. |
| */ |
| be32_add_cpu(&agi->agi_freecount, -1); |
| xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
| agbp->b_pag->pagi_freecount--; |
| |
| xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); |
| |
| error = xfs_check_agi_freecount(icur, agi); |
| if (error) |
| goto error_icur; |
| error = xfs_check_agi_freecount(cur, agi); |
| if (error) |
| goto error_icur; |
| |
| xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| *inop = ino; |
| return 0; |
| |
| error_icur: |
| xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); |
| error_cur: |
| xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Allocate an inode on disk. |
| * |
| * Mode is used to tell whether the new inode will need space, and whether it |
| * is a directory. |
| * |
| * This function is designed to be called twice if it has to do an allocation |
| * to make more free inodes. On the first call, *IO_agbp should be set to NULL. |
| * If an inode is available without having to performn an allocation, an inode |
| * number is returned. In this case, *IO_agbp is set to NULL. If an allocation |
| * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. |
| * The caller should then commit the current transaction, allocate a |
| * new transaction, and call xfs_dialloc() again, passing in the previous value |
| * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI |
| * buffer is locked across the two calls, the second call is guaranteed to have |
| * a free inode available. |
| * |
| * Once we successfully pick an inode its number is returned and the on-disk |
| * data structures are updated. The inode itself is not read in, since doing so |
| * would break ordering constraints with xfs_reclaim. |
| */ |
| int |
| xfs_dialloc( |
| struct xfs_trans *tp, |
| xfs_ino_t parent, |
| umode_t mode, |
| struct xfs_buf **IO_agbp, |
| xfs_ino_t *inop) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_buf *agbp; |
| xfs_agnumber_t agno; |
| int error; |
| int ialloced; |
| int noroom = 0; |
| xfs_agnumber_t start_agno; |
| struct xfs_perag *pag; |
| struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| int okalloc = 1; |
| |
| if (*IO_agbp) { |
| /* |
| * If the caller passes in a pointer to the AGI buffer, |
| * continue where we left off before. In this case, we |
| * know that the allocation group has free inodes. |
| */ |
| agbp = *IO_agbp; |
| goto out_alloc; |
| } |
| |
| /* |
| * We do not have an agbp, so select an initial allocation |
| * group for inode allocation. |
| */ |
| start_agno = xfs_ialloc_ag_select(tp, parent, mode); |
| if (start_agno == NULLAGNUMBER) { |
| *inop = NULLFSINO; |
| return 0; |
| } |
| |
| /* |
| * If we have already hit the ceiling of inode blocks then clear |
| * okalloc so we scan all available agi structures for a free |
| * inode. |
| * |
| * Read rough value of mp->m_icount by percpu_counter_read_positive, |
| * which will sacrifice the preciseness but improve the performance. |
| */ |
| if (igeo->maxicount && |
| percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos |
| > igeo->maxicount) { |
| noroom = 1; |
| okalloc = 0; |
| } |
| |
| /* |
| * Loop until we find an allocation group that either has free inodes |
| * or in which we can allocate some inodes. Iterate through the |
| * allocation groups upward, wrapping at the end. |
| */ |
| agno = start_agno; |
| for (;;) { |
| pag = xfs_perag_get(mp, agno); |
| if (!pag->pagi_inodeok) { |
| xfs_ialloc_next_ag(mp); |
| goto nextag; |
| } |
| |
| if (!pag->pagi_init) { |
| error = xfs_ialloc_pagi_init(mp, tp, agno); |
| if (error) |
| goto out_error; |
| } |
| |
| /* |
| * Do a first racy fast path check if this AG is usable. |
| */ |
| if (!pag->pagi_freecount && !okalloc) |
| goto nextag; |
| |
| /* |
| * Then read in the AGI buffer and recheck with the AGI buffer |
| * lock held. |
| */ |
| error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); |
| if (error) |
| goto out_error; |
| |
| if (pag->pagi_freecount) { |
| xfs_perag_put(pag); |
| goto out_alloc; |
| } |
| |
| if (!okalloc) |
| goto nextag_relse_buffer; |
| |
| |
| error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); |
| if (error) { |
| xfs_trans_brelse(tp, agbp); |
| |
| if (error != -ENOSPC) |
| goto out_error; |
| |
| xfs_perag_put(pag); |
| *inop = NULLFSINO; |
| return 0; |
| } |
| |
| if (ialloced) { |
| /* |
| * We successfully allocated some inodes, return |
| * the current context to the caller so that it |
| * can commit the current transaction and call |
| * us again where we left off. |
| */ |
| ASSERT(pag->pagi_freecount > 0); |
| xfs_perag_put(pag); |
| |
| *IO_agbp = agbp; |
| *inop = NULLFSINO; |
| return 0; |
| } |
| |
| nextag_relse_buffer: |
| xfs_trans_brelse(tp, agbp); |
| nextag: |
| xfs_perag_put(pag); |
| if (++agno == mp->m_sb.sb_agcount) |
| agno = 0; |
| if (agno == start_agno) { |
| *inop = NULLFSINO; |
| return noroom ? -ENOSPC : 0; |
| } |
| } |
| |
| out_alloc: |
| *IO_agbp = NULL; |
| return xfs_dialloc_ag(tp, agbp, parent, inop); |
| out_error: |
| xfs_perag_put(pag); |
| return error; |
| } |
| |
| /* |
| * Free the blocks of an inode chunk. We must consider that the inode chunk |
| * might be sparse and only free the regions that are allocated as part of the |
| * chunk. |
| */ |
| STATIC void |
| xfs_difree_inode_chunk( |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| struct xfs_inobt_rec_incore *rec) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, |
| rec->ir_startino); |
| int startidx, endidx; |
| int nextbit; |
| xfs_agblock_t agbno; |
| int contigblk; |
| DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); |
| |
| if (!xfs_inobt_issparse(rec->ir_holemask)) { |
| /* not sparse, calculate extent info directly */ |
| xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), |
| M_IGEO(mp)->ialloc_blks, |
| &XFS_RMAP_OINFO_INODES); |
| return; |
| } |
| |
| /* holemask is only 16-bits (fits in an unsigned long) */ |
| ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); |
| holemask[0] = rec->ir_holemask; |
| |
| /* |
| * Find contiguous ranges of zeroes (i.e., allocated regions) in the |
| * holemask and convert the start/end index of each range to an extent. |
| * We start with the start and end index both pointing at the first 0 in |
| * the mask. |
| */ |
| startidx = endidx = find_first_zero_bit(holemask, |
| XFS_INOBT_HOLEMASK_BITS); |
| nextbit = startidx + 1; |
| while (startidx < XFS_INOBT_HOLEMASK_BITS) { |
| nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, |
| nextbit); |
| /* |
| * If the next zero bit is contiguous, update the end index of |
| * the current range and continue. |
| */ |
| if (nextbit != XFS_INOBT_HOLEMASK_BITS && |
| nextbit == endidx + 1) { |
| endidx = nextbit; |
| goto next; |
| } |
| |
| /* |
| * nextbit is not contiguous with the current end index. Convert |
| * the current start/end to an extent and add it to the free |
| * list. |
| */ |
| agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / |
| mp->m_sb.sb_inopblock; |
| contigblk = ((endidx - startidx + 1) * |
| XFS_INODES_PER_HOLEMASK_BIT) / |
| mp->m_sb.sb_inopblock; |
| |
| ASSERT(agbno % mp->m_sb.sb_spino_align == 0); |
| ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); |
| xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno), |
| contigblk, &XFS_RMAP_OINFO_INODES); |
| |
| /* reset range to current bit and carry on... */ |
| startidx = endidx = nextbit; |
| |
| next: |
| nextbit++; |
| } |
| } |
| |
| STATIC int |
| xfs_difree_inobt( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_agino_t agino, |
| struct xfs_icluster *xic, |
| struct xfs_inobt_rec_incore *orec) |
| { |
| struct xfs_agi *agi = agbp->b_addr; |
| xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
| struct xfs_btree_cur *cur; |
| struct xfs_inobt_rec_incore rec; |
| int ilen; |
| int error; |
| int i; |
| int off; |
| |
| ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
| ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); |
| |
| /* |
| * Initialize the cursor. |
| */ |
| cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
| |
| error = xfs_check_agi_freecount(cur, agi); |
| if (error) |
| goto error0; |
| |
| /* |
| * Look for the entry describing this inode. |
| */ |
| if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { |
| xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", |
| __func__, error); |
| goto error0; |
| } |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| error = xfs_inobt_get_rec(cur, &rec, &i); |
| if (error) { |
| xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", |
| __func__, error); |
| goto error0; |
| } |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error0; |
| } |
| /* |
| * Get the offset in the inode chunk. |
| */ |
| off = agino - rec.ir_startino; |
| ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); |
| ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); |
| /* |
| * Mark the inode free & increment the count. |
| */ |
| rec.ir_free |= XFS_INOBT_MASK(off); |
| rec.ir_freecount++; |
| |
| /* |
| * When an inode chunk is free, it becomes eligible for removal. Don't |
| * remove the chunk if the block size is large enough for multiple inode |
| * chunks (that might not be free). |
| */ |
| if (!(mp->m_flags & XFS_MOUNT_IKEEP) && |
| rec.ir_free == XFS_INOBT_ALL_FREE && |
| mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { |
| struct xfs_perag *pag = agbp->b_pag; |
| |
| xic->deleted = true; |
| xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); |
| xic->alloc = xfs_inobt_irec_to_allocmask(&rec); |
| |
| /* |
| * Remove the inode cluster from the AGI B+Tree, adjust the |
| * AGI and Superblock inode counts, and mark the disk space |
| * to be freed when the transaction is committed. |
| */ |
| ilen = rec.ir_freecount; |
| be32_add_cpu(&agi->agi_count, -ilen); |
| be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); |
| xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); |
| pag->pagi_freecount -= ilen - 1; |
| pag->pagi_count -= ilen; |
| xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); |
| xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); |
| |
| if ((error = xfs_btree_delete(cur, &i))) { |
| xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", |
| __func__, error); |
| goto error0; |
| } |
| |
| xfs_difree_inode_chunk(tp, agno, &rec); |
| } else { |
| xic->deleted = false; |
| |
| error = xfs_inobt_update(cur, &rec); |
| if (error) { |
| xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", |
| __func__, error); |
| goto error0; |
| } |
| |
| /* |
| * Change the inode free counts and log the ag/sb changes. |
| */ |
| be32_add_cpu(&agi->agi_freecount, 1); |
| xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
| agbp->b_pag->pagi_freecount++; |
| xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); |
| } |
| |
| error = xfs_check_agi_freecount(cur, agi); |
| if (error) |
| goto error0; |
| |
| *orec = rec; |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| return 0; |
| |
| error0: |
| xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Free an inode in the free inode btree. |
| */ |
| STATIC int |
| xfs_difree_finobt( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_buf *agbp, |
| xfs_agino_t agino, |
| struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ |
| { |
| struct xfs_agi *agi = agbp->b_addr; |
| xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
| struct xfs_btree_cur *cur; |
| struct xfs_inobt_rec_incore rec; |
| int offset = agino - ibtrec->ir_startino; |
| int error; |
| int i; |
| |
| cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); |
| |
| error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); |
| if (error) |
| goto error; |
| if (i == 0) { |
| /* |
| * If the record does not exist in the finobt, we must have just |
| * freed an inode in a previously fully allocated chunk. If not, |
| * something is out of sync. |
| */ |
| if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| |
| error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, |
| ibtrec->ir_count, |
| ibtrec->ir_freecount, |
| ibtrec->ir_free, &i); |
| if (error) |
| goto error; |
| ASSERT(i == 1); |
| |
| goto out; |
| } |
| |
| /* |
| * Read and update the existing record. We could just copy the ibtrec |
| * across here, but that would defeat the purpose of having redundant |
| * metadata. By making the modifications independently, we can catch |
| * corruptions that we wouldn't see if we just copied from one record |
| * to another. |
| */ |
| error = xfs_inobt_get_rec(cur, &rec, &i); |
| if (error) |
| goto error; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| |
| rec.ir_free |= XFS_INOBT_MASK(offset); |
| rec.ir_freecount++; |
| |
| if (XFS_IS_CORRUPT(mp, |
| rec.ir_free != ibtrec->ir_free || |
| rec.ir_freecount != ibtrec->ir_freecount)) { |
| error = -EFSCORRUPTED; |
| goto error; |
| } |
| |
| /* |
| * The content of inobt records should always match between the inobt |
| * and finobt. The lifecycle of records in the finobt is different from |
| * the inobt in that the finobt only tracks records with at least one |
| * free inode. Hence, if all of the inodes are free and we aren't |
| * keeping inode chunks permanently on disk, remove the record. |
| * Otherwise, update the record with the new information. |
| * |
| * Note that we currently can't free chunks when the block size is large |
| * enough for multiple chunks. Leave the finobt record to remain in sync |
| * with the inobt. |
| */ |
| if (rec.ir_free == XFS_INOBT_ALL_FREE && |
| mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && |
| !(mp->m_flags & XFS_MOUNT_IKEEP)) { |
| error = xfs_btree_delete(cur, &i); |
| if (error) |
| goto error; |
| ASSERT(i == 1); |
| } else { |
| error = xfs_inobt_update(cur, &rec); |
| if (error) |
| goto error; |
| } |
| |
| out: |
| error = xfs_check_agi_freecount(cur, agi); |
| if (error) |
| goto error; |
| |
| xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
| return 0; |
| |
| error: |
| xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Free disk inode. Carefully avoids touching the incore inode, all |
| * manipulations incore are the caller's responsibility. |
| * The on-disk inode is not changed by this operation, only the |
| * btree (free inode mask) is changed. |
| */ |
| int |
| xfs_difree( |
| struct xfs_trans *tp, /* transaction pointer */ |
| xfs_ino_t inode, /* inode to be freed */ |
| struct xfs_icluster *xic) /* cluster info if deleted */ |
| { |
| /* REFERENCED */ |
| xfs_agblock_t agbno; /* block number containing inode */ |
| struct xfs_buf *agbp; /* buffer for allocation group header */ |
| xfs_agino_t agino; /* allocation group inode number */ |
| xfs_agnumber_t agno; /* allocation group number */ |
| int error; /* error return value */ |
| struct xfs_mount *mp; /* mount structure for filesystem */ |
| struct xfs_inobt_rec_incore rec;/* btree record */ |
| |
| mp = tp->t_mountp; |
| |
| /* |
| * Break up inode number into its components. |
| */ |
| agno = XFS_INO_TO_AGNO(mp, inode); |
| if (agno >= mp->m_sb.sb_agcount) { |
| xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", |
| __func__, agno, mp->m_sb.sb_agcount); |
| ASSERT(0); |
| return -EINVAL; |
| } |
| agino = XFS_INO_TO_AGINO(mp, inode); |
| if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { |
| xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", |
| __func__, (unsigned long long)inode, |
| (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); |
| ASSERT(0); |
| return -EINVAL; |
| } |
| agbno = XFS_AGINO_TO_AGBNO(mp, agino); |
| if (agbno >= mp->m_sb.sb_agblocks) { |
| xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", |
| __func__, agbno, mp->m_sb.sb_agblocks); |
| ASSERT(0); |
| return -EINVAL; |
| } |
| /* |
| * Get the allocation group header. |
| */ |
| error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); |
| if (error) { |
| xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", |
| __func__, error); |
| return error; |
| } |
| |
| /* |
| * Fix up the inode allocation btree. |
| */ |
| error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec); |
| if (error) |
| goto error0; |
| |
| /* |
| * Fix up the free inode btree. |
| */ |
| if (xfs_sb_version_hasfinobt(&mp->m_sb)) { |
| error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); |
| if (error) |
| goto error0; |
| } |
| |
| return 0; |
| |
| error0: |
| return error; |
| } |
| |
| STATIC int |
| xfs_imap_lookup( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| xfs_agino_t agino, |
| xfs_agblock_t agbno, |
| xfs_agblock_t *chunk_agbno, |
| xfs_agblock_t *offset_agbno, |
| int flags) |
| { |
| struct xfs_inobt_rec_incore rec; |
| struct xfs_btree_cur *cur; |
| struct xfs_buf *agbp; |
| int error; |
| int i; |
| |
| error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); |
| if (error) { |
| xfs_alert(mp, |
| "%s: xfs_ialloc_read_agi() returned error %d, agno %d", |
| __func__, error, agno); |
| return error; |
| } |
| |
| /* |
| * Lookup the inode record for the given agino. If the record cannot be |
| * found, then it's an invalid inode number and we should abort. Once |
| * we have a record, we need to ensure it contains the inode number |
| * we are looking up. |
| */ |
| cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
| error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); |
| if (!error) { |
| if (i) |
| error = xfs_inobt_get_rec(cur, &rec, &i); |
| if (!error && i == 0) |
| error = -EINVAL; |
| } |
| |
| xfs_trans_brelse(tp, agbp); |
| xfs_btree_del_cursor(cur, error); |
| if (error) |
| return error; |
| |
| /* check that the returned record contains the required inode */ |
| if (rec.ir_startino > agino || |
| rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) |
| return -EINVAL; |
| |
| /* for untrusted inodes check it is allocated first */ |
| if ((flags & XFS_IGET_UNTRUSTED) && |
| (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) |
| return -EINVAL; |
| |
| *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); |
| *offset_agbno = agbno - *chunk_agbno; |
| return 0; |
| } |
| |
| /* |
| * Return the location of the inode in imap, for mapping it into a buffer. |
| */ |
| int |
| xfs_imap( |
| xfs_mount_t *mp, /* file system mount structure */ |
| xfs_trans_t *tp, /* transaction pointer */ |
| xfs_ino_t ino, /* inode to locate */ |
| struct xfs_imap *imap, /* location map structure */ |
| uint flags) /* flags for inode btree lookup */ |
| { |
| xfs_agblock_t agbno; /* block number of inode in the alloc group */ |
| xfs_agino_t agino; /* inode number within alloc group */ |
| xfs_agnumber_t agno; /* allocation group number */ |
| xfs_agblock_t chunk_agbno; /* first block in inode chunk */ |
| xfs_agblock_t cluster_agbno; /* first block in inode cluster */ |
| int error; /* error code */ |
| int offset; /* index of inode in its buffer */ |
| xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ |
| |
| ASSERT(ino != NULLFSINO); |
| |
| /* |
| * Split up the inode number into its parts. |
| */ |
| agno = XFS_INO_TO_AGNO(mp, ino); |
| agino = XFS_INO_TO_AGINO(mp, ino); |
| agbno = XFS_AGINO_TO_AGBNO(mp, agino); |
| if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || |
| ino != XFS_AGINO_TO_INO(mp, agno, agino)) { |
| #ifdef DEBUG |
| /* |
| * Don't output diagnostic information for untrusted inodes |
| * as they can be invalid without implying corruption. |
| */ |
| if (flags & XFS_IGET_UNTRUSTED) |
| return -EINVAL; |
| if (agno >= mp->m_sb.sb_agcount) { |
| xfs_alert(mp, |
| "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", |
| __func__, agno, mp->m_sb.sb_agcount); |
| } |
| if (agbno >= mp->m_sb.sb_agblocks) { |
| xfs_alert(mp, |
| "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", |
| __func__, (unsigned long long)agbno, |
| (unsigned long)mp->m_sb.sb_agblocks); |
| } |
| if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { |
| xfs_alert(mp, |
| "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", |
| __func__, ino, |
| XFS_AGINO_TO_INO(mp, agno, agino)); |
| } |
| xfs_stack_trace(); |
| #endif /* DEBUG */ |
| return -EINVAL; |
| } |
| |
| /* |
| * For bulkstat and handle lookups, we have an untrusted inode number |
| * that we have to verify is valid. We cannot do this just by reading |
| * the inode buffer as it may have been unlinked and removed leaving |
| * inodes in stale state on disk. Hence we have to do a btree lookup |
| * in all cases where an untrusted inode number is passed. |
| */ |
| if (flags & XFS_IGET_UNTRUSTED) { |
| error = xfs_imap_lookup(mp, tp, agno, agino, agbno, |
| &chunk_agbno, &offset_agbno, flags); |
| if (error) |
| return error; |
| goto out_map; |
| } |
| |
| /* |
| * If the inode cluster size is the same as the blocksize or |
| * smaller we get to the buffer by simple arithmetics. |
| */ |
| if (M_IGEO(mp)->blocks_per_cluster == 1) { |
| offset = XFS_INO_TO_OFFSET(mp, ino); |
| ASSERT(offset < mp->m_sb.sb_inopblock); |
| |
| imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); |
| imap->im_len = XFS_FSB_TO_BB(mp, 1); |
| imap->im_boffset = (unsigned short)(offset << |
| mp->m_sb.sb_inodelog); |
| return 0; |
| } |
| |
| /* |
| * If the inode chunks are aligned then use simple maths to |
| * find the location. Otherwise we have to do a btree |
| * lookup to find the location. |
| */ |
| if (M_IGEO(mp)->inoalign_mask) { |
| offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; |
| chunk_agbno = agbno - offset_agbno; |
| } else { |
| error = xfs_imap_lookup(mp, tp, agno, agino, agbno, |
| &chunk_agbno, &offset_agbno, flags); |
| if (error) |
| return error; |
| } |
| |
| out_map: |
| ASSERT(agbno >= chunk_agbno); |
| cluster_agbno = chunk_agbno + |
| ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * |
| M_IGEO(mp)->blocks_per_cluster); |
| offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + |
| XFS_INO_TO_OFFSET(mp, ino); |
| |
| imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); |
| imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); |
| imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); |
| |
| /* |
| * If the inode number maps to a block outside the bounds |
| * of the file system then return NULL rather than calling |
| * read_buf and panicing when we get an error from the |
| * driver. |
| */ |
| if ((imap->im_blkno + imap->im_len) > |
| XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { |
| xfs_alert(mp, |
| "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", |
| __func__, (unsigned long long) imap->im_blkno, |
| (unsigned long long) imap->im_len, |
| XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Log specified fields for the ag hdr (inode section). The growth of the agi |
| * structure over time requires that we interpret the buffer as two logical |
| * regions delineated by the end of the unlinked list. This is due to the size |
| * of the hash table and its location in the middle of the agi. |
| * |
| * For example, a request to log a field before agi_unlinked and a field after |
| * agi_unlinked could cause us to log the entire hash table and use an excessive |
| * amount of log space. To avoid this behavior, log the region up through |
| * agi_unlinked in one call and the region after agi_unlinked through the end of |
| * the structure in another. |
| */ |
| void |
| xfs_ialloc_log_agi( |
| xfs_trans_t *tp, /* transaction pointer */ |
| xfs_buf_t *bp, /* allocation group header buffer */ |
| int fields) /* bitmask of fields to log */ |
| { |
| int first; /* first byte number */ |
| int last; /* last byte number */ |
| static const short offsets[] = { /* field starting offsets */ |
| /* keep in sync with bit definitions */ |
| offsetof(xfs_agi_t, agi_magicnum), |
| offsetof(xfs_agi_t, agi_versionnum), |
| offsetof(xfs_agi_t, agi_seqno), |
| offsetof(xfs_agi_t, agi_length), |
| offsetof(xfs_agi_t, agi_count), |
| offsetof(xfs_agi_t, agi_root), |
| offsetof(xfs_agi_t, agi_level), |
| offsetof(xfs_agi_t, agi_freecount), |
| offsetof(xfs_agi_t, agi_newino), |
| offsetof(xfs_agi_t, agi_dirino), |
| offsetof(xfs_agi_t, agi_unlinked), |
| offsetof(xfs_agi_t, agi_free_root), |
| offsetof(xfs_agi_t, agi_free_level), |
| sizeof(xfs_agi_t) |
| }; |
| #ifdef DEBUG |
| struct xfs_agi *agi = bp->b_addr; |
| |
| ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
| #endif |
| |
| /* |
| * Compute byte offsets for the first and last fields in the first |
| * region and log the agi buffer. This only logs up through |
| * agi_unlinked. |
| */ |
| if (fields & XFS_AGI_ALL_BITS_R1) { |
| xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, |
| &first, &last); |
| xfs_trans_log_buf(tp, bp, first, last); |
| } |
| |
| /* |
| * Mask off the bits in the first region and calculate the first and |
| * last field offsets for any bits in the second region. |
| */ |
| fields &= ~XFS_AGI_ALL_BITS_R1; |
| if (fields) { |
| xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, |
| &first, &last); |
| xfs_trans_log_buf(tp, bp, first, last); |
| } |
| } |
| |
| static xfs_failaddr_t |
| xfs_agi_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_agi *agi = bp->b_addr; |
| int i; |
| |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) |
| return __this_address; |
| if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) |
| return __this_address; |
| } |
| |
| /* |
| * Validate the magic number of the agi block. |
| */ |
| if (!xfs_verify_magic(bp, agi->agi_magicnum)) |
| return __this_address; |
| if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) |
| return __this_address; |
| |
| if (be32_to_cpu(agi->agi_level) < 1 || |
| be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) |
| return __this_address; |
| |
| if (xfs_sb_version_hasfinobt(&mp->m_sb) && |
| (be32_to_cpu(agi->agi_free_level) < 1 || |
| be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) |
| return __this_address; |
| |
| /* |
| * during growfs operations, the perag is not fully initialised, |
| * so we can't use it for any useful checking. growfs ensures we can't |
| * use it by using uncached buffers that don't have the perag attached |
| * so we can detect and avoid this problem. |
| */ |
| if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) |
| return __this_address; |
| |
| for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { |
| if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) |
| continue; |
| if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) |
| return __this_address; |
| } |
| |
| return NULL; |
| } |
| |
| static void |
| xfs_agi_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| xfs_failaddr_t fa; |
| |
| if (xfs_sb_version_hascrc(&mp->m_sb) && |
| !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) |
| xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
| else { |
| fa = xfs_agi_verify(bp); |
| if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| } |
| |
| static void |
| xfs_agi_write_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_buf_log_item *bip = bp->b_log_item; |
| struct xfs_agi *agi = bp->b_addr; |
| xfs_failaddr_t fa; |
| |
| fa = xfs_agi_verify(bp); |
| if (fa) { |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| return; |
| } |
| |
| if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| return; |
| |
| if (bip) |
| agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); |
| xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); |
| } |
| |
| const struct xfs_buf_ops xfs_agi_buf_ops = { |
| .name = "xfs_agi", |
| .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, |
| .verify_read = xfs_agi_read_verify, |
| .verify_write = xfs_agi_write_verify, |
| .verify_struct = xfs_agi_verify, |
| }; |
| |
| /* |
| * Read in the allocation group header (inode allocation section) |
| */ |
| int |
| xfs_read_agi( |
| struct xfs_mount *mp, /* file system mount structure */ |
| struct xfs_trans *tp, /* transaction pointer */ |
| xfs_agnumber_t agno, /* allocation group number */ |
| struct xfs_buf **bpp) /* allocation group hdr buf */ |
| { |
| int error; |
| |
| trace_xfs_read_agi(mp, agno); |
| |
| ASSERT(agno != NULLAGNUMBER); |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, |
| XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), |
| XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); |
| if (error) |
| return error; |
| if (tp) |
| xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); |
| |
| xfs_buf_set_ref(*bpp, XFS_AGI_REF); |
| return 0; |
| } |
| |
| int |
| xfs_ialloc_read_agi( |
| struct xfs_mount *mp, /* file system mount structure */ |
| struct xfs_trans *tp, /* transaction pointer */ |
| xfs_agnumber_t agno, /* allocation group number */ |
| struct xfs_buf **bpp) /* allocation group hdr buf */ |
| { |
| struct xfs_agi *agi; /* allocation group header */ |
| struct xfs_perag *pag; /* per allocation group data */ |
| int error; |
| |
| trace_xfs_ialloc_read_agi(mp, agno); |
| |
| error = xfs_read_agi(mp, tp, agno, bpp); |
| if (error) |
| return error; |
| |
| agi = (*bpp)->b_addr; |
| pag = (*bpp)->b_pag; |
| if (!pag->pagi_init) { |
| pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); |
| pag->pagi_count = be32_to_cpu(agi->agi_count); |
| pag->pagi_init = 1; |
| } |
| |
| /* |
| * It's possible for these to be out of sync if |
| * we are in the middle of a forced shutdown. |
| */ |
| ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || |
| XFS_FORCED_SHUTDOWN(mp)); |
| return 0; |
| } |
| |
| /* |
| * Read in the agi to initialise the per-ag data in the mount structure |
| */ |
| int |
| xfs_ialloc_pagi_init( |
| xfs_mount_t *mp, /* file system mount structure */ |
| xfs_trans_t *tp, /* transaction pointer */ |
| xfs_agnumber_t agno) /* allocation group number */ |
| { |
| xfs_buf_t *bp = NULL; |
| int error; |
| |
| error = xfs_ialloc_read_agi(mp, tp, agno, &bp); |
| if (error) |
| return error; |
| if (bp) |
| xfs_trans_brelse(tp, bp); |
| return 0; |
| } |
| |
| /* Is there an inode record covering a given range of inode numbers? */ |
| int |
| xfs_ialloc_has_inode_record( |
| struct xfs_btree_cur *cur, |
| xfs_agino_t low, |
| xfs_agino_t high, |
| bool *exists) |
| { |
| struct xfs_inobt_rec_incore irec; |
| xfs_agino_t agino; |
| uint16_t holemask; |
| int has_record; |
| int i; |
| int error; |
| |
| *exists = false; |
| error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); |
| while (error == 0 && has_record) { |
| error = xfs_inobt_get_rec(cur, &irec, &has_record); |
| if (error || irec.ir_startino > high) |
| break; |
| |
| agino = irec.ir_startino; |
| holemask = irec.ir_holemask; |
| for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, |
| i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { |
| if (holemask & 1) |
| continue; |
| if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && |
| agino <= high) { |
| *exists = true; |
| return 0; |
| } |
| } |
| |
| error = xfs_btree_increment(cur, 0, &has_record); |
| } |
| return error; |
| } |
| |
| /* Is there an inode record covering a given extent? */ |
| int |
| xfs_ialloc_has_inodes_at_extent( |
| struct xfs_btree_cur *cur, |
| xfs_agblock_t bno, |
| xfs_extlen_t len, |
| bool *exists) |
| { |
| xfs_agino_t low; |
| xfs_agino_t high; |
| |
| low = XFS_AGB_TO_AGINO(cur->bc_mp, bno); |
| high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; |
| |
| return xfs_ialloc_has_inode_record(cur, low, high, exists); |
| } |
| |
| struct xfs_ialloc_count_inodes { |
| xfs_agino_t count; |
| xfs_agino_t freecount; |
| }; |
| |
| /* Record inode counts across all inobt records. */ |
| STATIC int |
| xfs_ialloc_count_inodes_rec( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_rec *rec, |
| void *priv) |
| { |
| struct xfs_inobt_rec_incore irec; |
| struct xfs_ialloc_count_inodes *ci = priv; |
| |
| xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); |
| ci->count += irec.ir_count; |
| ci->freecount += irec.ir_freecount; |
| |
| return 0; |
| } |
| |
| /* Count allocated and free inodes under an inobt. */ |
| int |
| xfs_ialloc_count_inodes( |
| struct xfs_btree_cur *cur, |
| xfs_agino_t *count, |
| xfs_agino_t *freecount) |
| { |
| struct xfs_ialloc_count_inodes ci = {0}; |
| int error; |
| |
| ASSERT(cur->bc_btnum == XFS_BTNUM_INO); |
| error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); |
| if (error) |
| return error; |
| |
| *count = ci.count; |
| *freecount = ci.freecount; |
| return 0; |
| } |
| |
| /* |
| * Initialize inode-related geometry information. |
| * |
| * Compute the inode btree min and max levels and set maxicount. |
| * |
| * Set the inode cluster size. This may still be overridden by the file |
| * system block size if it is larger than the chosen cluster size. |
| * |
| * For v5 filesystems, scale the cluster size with the inode size to keep a |
| * constant ratio of inode per cluster buffer, but only if mkfs has set the |
| * inode alignment value appropriately for larger cluster sizes. |
| * |
| * Then compute the inode cluster alignment information. |
| */ |
| void |
| xfs_ialloc_setup_geometry( |
| struct xfs_mount *mp) |
| { |
| struct xfs_sb *sbp = &mp->m_sb; |
| struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| uint64_t icount; |
| uint inodes; |
| |
| /* Compute inode btree geometry. */ |
| igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; |
| igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); |
| igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); |
| igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; |
| igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; |
| |
| igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, |
| sbp->sb_inopblock); |
| igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; |
| |
| if (sbp->sb_spino_align) |
| igeo->ialloc_min_blks = sbp->sb_spino_align; |
| else |
| igeo->ialloc_min_blks = igeo->ialloc_blks; |
| |
| /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ |
| inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; |
| igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, |
| inodes); |
| |
| /* |
| * Set the maximum inode count for this filesystem, being careful not |
| * to use obviously garbage sb_inopblog/sb_inopblock values. Regular |
| * users should never get here due to failing sb verification, but |
| * certain users (xfs_db) need to be usable even with corrupt metadata. |
| */ |
| if (sbp->sb_imax_pct && igeo->ialloc_blks) { |
| /* |
| * Make sure the maximum inode count is a multiple |
| * of the units we allocate inodes in. |
| */ |
| icount = sbp->sb_dblocks * sbp->sb_imax_pct; |
| do_div(icount, 100); |
| do_div(icount, igeo->ialloc_blks); |
| igeo->maxicount = XFS_FSB_TO_INO(mp, |
| icount * igeo->ialloc_blks); |
| } else { |
| igeo->maxicount = 0; |
| } |
| |
| /* |
| * Compute the desired size of an inode cluster buffer size, which |
| * starts at 8K and (on v5 filesystems) scales up with larger inode |
| * sizes. |
| * |
| * Preserve the desired inode cluster size because the sparse inodes |
| * feature uses that desired size (not the actual size) to compute the |
| * sparse inode alignment. The mount code validates this value, so we |
| * cannot change the behavior. |
| */ |
| igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; |
| if (xfs_sb_version_has_v3inode(&mp->m_sb)) { |
| int new_size = igeo->inode_cluster_size_raw; |
| |
| new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; |
| if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) |
| igeo->inode_cluster_size_raw = new_size; |
| } |
| |
| /* Calculate inode cluster ratios. */ |
| if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) |
| igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, |
| igeo->inode_cluster_size_raw); |
| else |
| igeo->blocks_per_cluster = 1; |
| igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); |
| igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); |
| |
| /* Calculate inode cluster alignment. */ |
| if (xfs_sb_version_hasalign(&mp->m_sb) && |
| mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) |
| igeo->cluster_align = mp->m_sb.sb_inoalignmt; |
| else |
| igeo->cluster_align = 1; |
| igeo->inoalign_mask = igeo->cluster_align - 1; |
| igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); |
| |
| /* |
| * If we are using stripe alignment, check whether |
| * the stripe unit is a multiple of the inode alignment |
| */ |
| if (mp->m_dalign && igeo->inoalign_mask && |
| !(mp->m_dalign & igeo->inoalign_mask)) |
| igeo->ialloc_align = mp->m_dalign; |
| else |
| igeo->ialloc_align = 0; |
| } |
| |
| /* Compute the location of the root directory inode that is laid out by mkfs. */ |
| xfs_ino_t |
| xfs_ialloc_calc_rootino( |
| struct xfs_mount *mp, |
| int sunit) |
| { |
| struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| xfs_agblock_t first_bno; |
| |
| /* |
| * Pre-calculate the geometry of AG 0. We know what it looks like |
| * because libxfs knows how to create allocation groups now. |
| * |
| * first_bno is the first block in which mkfs could possibly have |
| * allocated the root directory inode, once we factor in the metadata |
| * that mkfs formats before it. Namely, the four AG headers... |
| */ |
| first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); |
| |
| /* ...the two free space btree roots... */ |
| first_bno += 2; |
| |
| /* ...the inode btree root... */ |
| first_bno += 1; |
| |
| /* ...the initial AGFL... */ |
| first_bno += xfs_alloc_min_freelist(mp, NULL); |
| |
| /* ...the free inode btree root... */ |
| if (xfs_sb_version_hasfinobt(&mp->m_sb)) |
| first_bno++; |
| |
| /* ...the reverse mapping btree root... */ |
| if (xfs_sb_version_hasrmapbt(&mp->m_sb)) |
| first_bno++; |
| |
| /* ...the reference count btree... */ |
| if (xfs_sb_version_hasreflink(&mp->m_sb)) |
| first_bno++; |
| |
| /* |
| * ...and the log, if it is allocated in the first allocation group. |
| * |
| * This can happen with filesystems that only have a single |
| * allocation group, or very odd geometries created by old mkfs |
| * versions on very small filesystems. |
| */ |
| if (mp->m_sb.sb_logstart && |
| XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0) |
| first_bno += mp->m_sb.sb_logblocks; |
| |
| /* |
| * Now round first_bno up to whatever allocation alignment is given |
| * by the filesystem or was passed in. |
| */ |
| if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0) |
| first_bno = roundup(first_bno, sunit); |
| else if (xfs_sb_version_hasalign(&mp->m_sb) && |
| mp->m_sb.sb_inoalignmt > 1) |
| first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); |
| |
| return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); |
| } |