| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver |
| * |
| * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. |
| * Copyright (C) 2010 ST-Ericsson SA |
| */ |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/device.h> |
| #include <linux/io.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/highmem.h> |
| #include <linux/log2.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/pm.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/sd.h> |
| #include <linux/mmc/slot-gpio.h> |
| #include <linux/amba/bus.h> |
| #include <linux/clk.h> |
| #include <linux/scatterlist.h> |
| #include <linux/of.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/amba/mmci.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/types.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/reset.h> |
| #include <linux/gpio/consumer.h> |
| |
| #include <asm/div64.h> |
| #include <asm/io.h> |
| |
| #include "mmci.h" |
| |
| #define DRIVER_NAME "mmci-pl18x" |
| |
| static void mmci_variant_init(struct mmci_host *host); |
| static void ux500_variant_init(struct mmci_host *host); |
| static void ux500v2_variant_init(struct mmci_host *host); |
| |
| static unsigned int fmax = 515633; |
| |
| static struct variant_data variant_arm = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .datalength_bits = 16, |
| .datactrl_blocksz = 11, |
| .pwrreg_powerup = MCI_PWR_UP, |
| .f_max = 100000000, |
| .reversed_irq_handling = true, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_ROD, |
| .init = mmci_variant_init, |
| }; |
| |
| static struct variant_data variant_arm_extended_fifo = { |
| .fifosize = 128 * 4, |
| .fifohalfsize = 64 * 4, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .datalength_bits = 16, |
| .datactrl_blocksz = 11, |
| .pwrreg_powerup = MCI_PWR_UP, |
| .f_max = 100000000, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_ROD, |
| .init = mmci_variant_init, |
| }; |
| |
| static struct variant_data variant_arm_extended_fifo_hwfc = { |
| .fifosize = 128 * 4, |
| .fifohalfsize = 64 * 4, |
| .clkreg_enable = MCI_ARM_HWFCEN, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .datalength_bits = 16, |
| .datactrl_blocksz = 11, |
| .pwrreg_powerup = MCI_PWR_UP, |
| .f_max = 100000000, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_ROD, |
| .init = mmci_variant_init, |
| }; |
| |
| static struct variant_data variant_u300 = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg_enable = MCI_ST_U300_HWFCEN, |
| .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .datalength_bits = 16, |
| .datactrl_blocksz = 11, |
| .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, |
| .st_sdio = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .f_max = 100000000, |
| .signal_direction = true, |
| .pwrreg_clkgate = true, |
| .pwrreg_nopower = true, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_OD, |
| .init = mmci_variant_init, |
| }; |
| |
| static struct variant_data variant_nomadik = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .datalength_bits = 24, |
| .datactrl_blocksz = 11, |
| .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, |
| .st_sdio = true, |
| .st_clkdiv = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .f_max = 100000000, |
| .signal_direction = true, |
| .pwrreg_clkgate = true, |
| .pwrreg_nopower = true, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_OD, |
| .init = mmci_variant_init, |
| }; |
| |
| static struct variant_data variant_ux500 = { |
| .fifosize = 30 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .clkreg_enable = MCI_ST_UX500_HWFCEN, |
| .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .datalength_bits = 24, |
| .datactrl_blocksz = 11, |
| .datactrl_any_blocksz = true, |
| .dma_power_of_2 = true, |
| .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, |
| .st_sdio = true, |
| .st_clkdiv = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .f_max = 100000000, |
| .signal_direction = true, |
| .pwrreg_clkgate = true, |
| .busy_detect = true, |
| .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, |
| .busy_detect_flag = MCI_ST_CARDBUSY, |
| .busy_detect_mask = MCI_ST_BUSYENDMASK, |
| .pwrreg_nopower = true, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_OD, |
| .init = ux500_variant_init, |
| }; |
| |
| static struct variant_data variant_ux500v2 = { |
| .fifosize = 30 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .clkreg_enable = MCI_ST_UX500_HWFCEN, |
| .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE, |
| .datalength_bits = 24, |
| .datactrl_blocksz = 11, |
| .datactrl_any_blocksz = true, |
| .dma_power_of_2 = true, |
| .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, |
| .st_sdio = true, |
| .st_clkdiv = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .f_max = 100000000, |
| .signal_direction = true, |
| .pwrreg_clkgate = true, |
| .busy_detect = true, |
| .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, |
| .busy_detect_flag = MCI_ST_CARDBUSY, |
| .busy_detect_mask = MCI_ST_BUSYENDMASK, |
| .pwrreg_nopower = true, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_OD, |
| .init = ux500v2_variant_init, |
| }; |
| |
| static struct variant_data variant_stm32 = { |
| .fifosize = 32 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .clkreg_enable = MCI_ST_UX500_HWFCEN, |
| .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .datalength_bits = 24, |
| .datactrl_blocksz = 11, |
| .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, |
| .st_sdio = true, |
| .st_clkdiv = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .f_max = 48000000, |
| .pwrreg_clkgate = true, |
| .pwrreg_nopower = true, |
| .init = mmci_variant_init, |
| }; |
| |
| static struct variant_data variant_stm32_sdmmc = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .f_max = 208000000, |
| .stm32_clkdiv = true, |
| .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, |
| .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, |
| .cmdreg_srsp = MCI_CPSM_STM32_SRSP, |
| .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, |
| .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, |
| .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, |
| .datactrl_first = true, |
| .datacnt_useless = true, |
| .datalength_bits = 25, |
| .datactrl_blocksz = 14, |
| .datactrl_any_blocksz = true, |
| .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, |
| .stm32_idmabsize_mask = GENMASK(12, 5), |
| .busy_timeout = true, |
| .busy_detect = true, |
| .busy_detect_flag = MCI_STM32_BUSYD0, |
| .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, |
| .init = sdmmc_variant_init, |
| }; |
| |
| static struct variant_data variant_stm32_sdmmcv2 = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .f_max = 267000000, |
| .stm32_clkdiv = true, |
| .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, |
| .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, |
| .cmdreg_srsp = MCI_CPSM_STM32_SRSP, |
| .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, |
| .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, |
| .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, |
| .datactrl_first = true, |
| .datacnt_useless = true, |
| .datalength_bits = 25, |
| .datactrl_blocksz = 14, |
| .datactrl_any_blocksz = true, |
| .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, |
| .stm32_idmabsize_mask = GENMASK(16, 5), |
| .dma_lli = true, |
| .busy_timeout = true, |
| .busy_detect = true, |
| .busy_detect_flag = MCI_STM32_BUSYD0, |
| .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, |
| .init = sdmmc_variant_init, |
| }; |
| |
| static struct variant_data variant_qcom = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .clkreg_enable = MCI_QCOM_CLK_FLOWENA | |
| MCI_QCOM_CLK_SELECT_IN_FBCLK, |
| .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, |
| .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, |
| .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, |
| .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, |
| .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, |
| .cmdreg_srsp = MCI_CPSM_RESPONSE, |
| .data_cmd_enable = MCI_CPSM_QCOM_DATCMD, |
| .datalength_bits = 24, |
| .datactrl_blocksz = 11, |
| .datactrl_any_blocksz = true, |
| .pwrreg_powerup = MCI_PWR_UP, |
| .f_max = 208000000, |
| .explicit_mclk_control = true, |
| .qcom_fifo = true, |
| .qcom_dml = true, |
| .mmcimask1 = true, |
| .irq_pio_mask = MCI_IRQ_PIO_MASK, |
| .start_err = MCI_STARTBITERR, |
| .opendrain = MCI_ROD, |
| .init = qcom_variant_init, |
| }; |
| |
| /* Busy detection for the ST Micro variant */ |
| static int mmci_card_busy(struct mmc_host *mmc) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| unsigned long flags; |
| int busy = 0; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag) |
| busy = 1; |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| return busy; |
| } |
| |
| static void mmci_reg_delay(struct mmci_host *host) |
| { |
| /* |
| * According to the spec, at least three feedback clock cycles |
| * of max 52 MHz must pass between two writes to the MMCICLOCK reg. |
| * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. |
| * Worst delay time during card init is at 100 kHz => 30 us. |
| * Worst delay time when up and running is at 25 MHz => 120 ns. |
| */ |
| if (host->cclk < 25000000) |
| udelay(30); |
| else |
| ndelay(120); |
| } |
| |
| /* |
| * This must be called with host->lock held |
| */ |
| void mmci_write_clkreg(struct mmci_host *host, u32 clk) |
| { |
| if (host->clk_reg != clk) { |
| host->clk_reg = clk; |
| writel(clk, host->base + MMCICLOCK); |
| } |
| } |
| |
| /* |
| * This must be called with host->lock held |
| */ |
| void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) |
| { |
| if (host->pwr_reg != pwr) { |
| host->pwr_reg = pwr; |
| writel(pwr, host->base + MMCIPOWER); |
| } |
| } |
| |
| /* |
| * This must be called with host->lock held |
| */ |
| static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) |
| { |
| /* Keep busy mode in DPSM if enabled */ |
| datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag; |
| |
| if (host->datactrl_reg != datactrl) { |
| host->datactrl_reg = datactrl; |
| writel(datactrl, host->base + MMCIDATACTRL); |
| } |
| } |
| |
| /* |
| * This must be called with host->lock held |
| */ |
| static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) |
| { |
| struct variant_data *variant = host->variant; |
| u32 clk = variant->clkreg; |
| |
| /* Make sure cclk reflects the current calculated clock */ |
| host->cclk = 0; |
| |
| if (desired) { |
| if (variant->explicit_mclk_control) { |
| host->cclk = host->mclk; |
| } else if (desired >= host->mclk) { |
| clk = MCI_CLK_BYPASS; |
| if (variant->st_clkdiv) |
| clk |= MCI_ST_UX500_NEG_EDGE; |
| host->cclk = host->mclk; |
| } else if (variant->st_clkdiv) { |
| /* |
| * DB8500 TRM says f = mclk / (clkdiv + 2) |
| * => clkdiv = (mclk / f) - 2 |
| * Round the divider up so we don't exceed the max |
| * frequency |
| */ |
| clk = DIV_ROUND_UP(host->mclk, desired) - 2; |
| if (clk >= 256) |
| clk = 255; |
| host->cclk = host->mclk / (clk + 2); |
| } else { |
| /* |
| * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) |
| * => clkdiv = mclk / (2 * f) - 1 |
| */ |
| clk = host->mclk / (2 * desired) - 1; |
| if (clk >= 256) |
| clk = 255; |
| host->cclk = host->mclk / (2 * (clk + 1)); |
| } |
| |
| clk |= variant->clkreg_enable; |
| clk |= MCI_CLK_ENABLE; |
| /* This hasn't proven to be worthwhile */ |
| /* clk |= MCI_CLK_PWRSAVE; */ |
| } |
| |
| /* Set actual clock for debug */ |
| host->mmc->actual_clock = host->cclk; |
| |
| if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) |
| clk |= MCI_4BIT_BUS; |
| if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) |
| clk |= variant->clkreg_8bit_bus_enable; |
| |
| if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || |
| host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) |
| clk |= variant->clkreg_neg_edge_enable; |
| |
| mmci_write_clkreg(host, clk); |
| } |
| |
| static void mmci_dma_release(struct mmci_host *host) |
| { |
| if (host->ops && host->ops->dma_release) |
| host->ops->dma_release(host); |
| |
| host->use_dma = false; |
| } |
| |
| static void mmci_dma_setup(struct mmci_host *host) |
| { |
| if (!host->ops || !host->ops->dma_setup) |
| return; |
| |
| if (host->ops->dma_setup(host)) |
| return; |
| |
| /* initialize pre request cookie */ |
| host->next_cookie = 1; |
| |
| host->use_dma = true; |
| } |
| |
| /* |
| * Validate mmc prerequisites |
| */ |
| static int mmci_validate_data(struct mmci_host *host, |
| struct mmc_data *data) |
| { |
| struct variant_data *variant = host->variant; |
| |
| if (!data) |
| return 0; |
| if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) { |
| dev_err(mmc_dev(host->mmc), |
| "unsupported block size (%d bytes)\n", data->blksz); |
| return -EINVAL; |
| } |
| |
| if (host->ops && host->ops->validate_data) |
| return host->ops->validate_data(host, data); |
| |
| return 0; |
| } |
| |
| static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) |
| { |
| int err; |
| |
| if (!host->ops || !host->ops->prep_data) |
| return 0; |
| |
| err = host->ops->prep_data(host, data, next); |
| |
| if (next && !err) |
| data->host_cookie = ++host->next_cookie < 0 ? |
| 1 : host->next_cookie; |
| |
| return err; |
| } |
| |
| static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data, |
| int err) |
| { |
| if (host->ops && host->ops->unprep_data) |
| host->ops->unprep_data(host, data, err); |
| |
| data->host_cookie = 0; |
| } |
| |
| static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) |
| { |
| WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie); |
| |
| if (host->ops && host->ops->get_next_data) |
| host->ops->get_next_data(host, data); |
| } |
| |
| static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl) |
| { |
| struct mmc_data *data = host->data; |
| int ret; |
| |
| if (!host->use_dma) |
| return -EINVAL; |
| |
| ret = mmci_prep_data(host, data, false); |
| if (ret) |
| return ret; |
| |
| if (!host->ops || !host->ops->dma_start) |
| return -EINVAL; |
| |
| /* Okay, go for it. */ |
| dev_vdbg(mmc_dev(host->mmc), |
| "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", |
| data->sg_len, data->blksz, data->blocks, data->flags); |
| |
| ret = host->ops->dma_start(host, &datactrl); |
| if (ret) |
| return ret; |
| |
| /* Trigger the DMA transfer */ |
| mmci_write_datactrlreg(host, datactrl); |
| |
| /* |
| * Let the MMCI say when the data is ended and it's time |
| * to fire next DMA request. When that happens, MMCI will |
| * call mmci_data_end() |
| */ |
| writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, |
| host->base + MMCIMASK0); |
| return 0; |
| } |
| |
| static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) |
| { |
| if (!host->use_dma) |
| return; |
| |
| if (host->ops && host->ops->dma_finalize) |
| host->ops->dma_finalize(host, data); |
| } |
| |
| static void mmci_dma_error(struct mmci_host *host) |
| { |
| if (!host->use_dma) |
| return; |
| |
| if (host->ops && host->ops->dma_error) |
| host->ops->dma_error(host); |
| } |
| |
| static void |
| mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) |
| { |
| writel(0, host->base + MMCICOMMAND); |
| |
| BUG_ON(host->data); |
| |
| host->mrq = NULL; |
| host->cmd = NULL; |
| |
| mmc_request_done(host->mmc, mrq); |
| } |
| |
| static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) |
| { |
| void __iomem *base = host->base; |
| struct variant_data *variant = host->variant; |
| |
| if (host->singleirq) { |
| unsigned int mask0 = readl(base + MMCIMASK0); |
| |
| mask0 &= ~variant->irq_pio_mask; |
| mask0 |= mask; |
| |
| writel(mask0, base + MMCIMASK0); |
| } |
| |
| if (variant->mmcimask1) |
| writel(mask, base + MMCIMASK1); |
| |
| host->mask1_reg = mask; |
| } |
| |
| static void mmci_stop_data(struct mmci_host *host) |
| { |
| mmci_write_datactrlreg(host, 0); |
| mmci_set_mask1(host, 0); |
| host->data = NULL; |
| } |
| |
| static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) |
| { |
| unsigned int flags = SG_MITER_ATOMIC; |
| |
| if (data->flags & MMC_DATA_READ) |
| flags |= SG_MITER_TO_SG; |
| else |
| flags |= SG_MITER_FROM_SG; |
| |
| sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); |
| } |
| |
| static u32 mmci_get_dctrl_cfg(struct mmci_host *host) |
| { |
| return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host); |
| } |
| |
| static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host) |
| { |
| return MCI_DPSM_ENABLE | (host->data->blksz << 16); |
| } |
| |
| static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk) |
| { |
| void __iomem *base = host->base; |
| |
| /* |
| * Before unmasking for the busy end IRQ, confirm that the |
| * command was sent successfully. To keep track of having a |
| * command in-progress, waiting for busy signaling to end, |
| * store the status in host->busy_status. |
| * |
| * Note that, the card may need a couple of clock cycles before |
| * it starts signaling busy on DAT0, hence re-read the |
| * MMCISTATUS register here, to allow the busy bit to be set. |
| * Potentially we may even need to poll the register for a |
| * while, to allow it to be set, but tests indicates that it |
| * isn't needed. |
| */ |
| if (!host->busy_status && !(status & err_msk) && |
| (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) { |
| writel(readl(base + MMCIMASK0) | |
| host->variant->busy_detect_mask, |
| base + MMCIMASK0); |
| |
| host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND); |
| return false; |
| } |
| |
| /* |
| * If there is a command in-progress that has been successfully |
| * sent, then bail out if busy status is set and wait for the |
| * busy end IRQ. |
| * |
| * Note that, the HW triggers an IRQ on both edges while |
| * monitoring DAT0 for busy completion, but there is only one |
| * status bit in MMCISTATUS for the busy state. Therefore |
| * both the start and the end interrupts needs to be cleared, |
| * one after the other. So, clear the busy start IRQ here. |
| */ |
| if (host->busy_status && |
| (status & host->variant->busy_detect_flag)) { |
| writel(host->variant->busy_detect_mask, base + MMCICLEAR); |
| return false; |
| } |
| |
| /* |
| * If there is a command in-progress that has been successfully |
| * sent and the busy bit isn't set, it means we have received |
| * the busy end IRQ. Clear and mask the IRQ, then continue to |
| * process the command. |
| */ |
| if (host->busy_status) { |
| writel(host->variant->busy_detect_mask, base + MMCICLEAR); |
| |
| writel(readl(base + MMCIMASK0) & |
| ~host->variant->busy_detect_mask, base + MMCIMASK0); |
| host->busy_status = 0; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * All the DMA operation mode stuff goes inside this ifdef. |
| * This assumes that you have a generic DMA device interface, |
| * no custom DMA interfaces are supported. |
| */ |
| #ifdef CONFIG_DMA_ENGINE |
| struct mmci_dmae_next { |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *chan; |
| }; |
| |
| struct mmci_dmae_priv { |
| struct dma_chan *cur; |
| struct dma_chan *rx_channel; |
| struct dma_chan *tx_channel; |
| struct dma_async_tx_descriptor *desc_current; |
| struct mmci_dmae_next next_data; |
| }; |
| |
| int mmci_dmae_setup(struct mmci_host *host) |
| { |
| const char *rxname, *txname; |
| struct mmci_dmae_priv *dmae; |
| |
| dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL); |
| if (!dmae) |
| return -ENOMEM; |
| |
| host->dma_priv = dmae; |
| |
| dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx"); |
| if (IS_ERR(dmae->rx_channel)) { |
| int ret = PTR_ERR(dmae->rx_channel); |
| dmae->rx_channel = NULL; |
| return ret; |
| } |
| |
| dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx"); |
| if (IS_ERR(dmae->tx_channel)) { |
| if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER) |
| dev_warn(mmc_dev(host->mmc), |
| "Deferred probe for TX channel ignored\n"); |
| dmae->tx_channel = NULL; |
| } |
| |
| /* |
| * If only an RX channel is specified, the driver will |
| * attempt to use it bidirectionally, however if it |
| * is specified but cannot be located, DMA will be disabled. |
| */ |
| if (dmae->rx_channel && !dmae->tx_channel) |
| dmae->tx_channel = dmae->rx_channel; |
| |
| if (dmae->rx_channel) |
| rxname = dma_chan_name(dmae->rx_channel); |
| else |
| rxname = "none"; |
| |
| if (dmae->tx_channel) |
| txname = dma_chan_name(dmae->tx_channel); |
| else |
| txname = "none"; |
| |
| dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", |
| rxname, txname); |
| |
| /* |
| * Limit the maximum segment size in any SG entry according to |
| * the parameters of the DMA engine device. |
| */ |
| if (dmae->tx_channel) { |
| struct device *dev = dmae->tx_channel->device->dev; |
| unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| |
| if (max_seg_size < host->mmc->max_seg_size) |
| host->mmc->max_seg_size = max_seg_size; |
| } |
| if (dmae->rx_channel) { |
| struct device *dev = dmae->rx_channel->device->dev; |
| unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| |
| if (max_seg_size < host->mmc->max_seg_size) |
| host->mmc->max_seg_size = max_seg_size; |
| } |
| |
| if (!dmae->tx_channel || !dmae->rx_channel) { |
| mmci_dmae_release(host); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This is used in or so inline it |
| * so it can be discarded. |
| */ |
| void mmci_dmae_release(struct mmci_host *host) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| |
| if (dmae->rx_channel) |
| dma_release_channel(dmae->rx_channel); |
| if (dmae->tx_channel) |
| dma_release_channel(dmae->tx_channel); |
| dmae->rx_channel = dmae->tx_channel = NULL; |
| } |
| |
| static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| struct dma_chan *chan; |
| |
| if (data->flags & MMC_DATA_READ) |
| chan = dmae->rx_channel; |
| else |
| chan = dmae->tx_channel; |
| |
| dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, |
| mmc_get_dma_dir(data)); |
| } |
| |
| void mmci_dmae_error(struct mmci_host *host) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| |
| if (!dma_inprogress(host)) |
| return; |
| |
| dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); |
| dmaengine_terminate_all(dmae->cur); |
| host->dma_in_progress = false; |
| dmae->cur = NULL; |
| dmae->desc_current = NULL; |
| host->data->host_cookie = 0; |
| |
| mmci_dma_unmap(host, host->data); |
| } |
| |
| void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| u32 status; |
| int i; |
| |
| if (!dma_inprogress(host)) |
| return; |
| |
| /* Wait up to 1ms for the DMA to complete */ |
| for (i = 0; ; i++) { |
| status = readl(host->base + MMCISTATUS); |
| if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) |
| break; |
| udelay(10); |
| } |
| |
| /* |
| * Check to see whether we still have some data left in the FIFO - |
| * this catches DMA controllers which are unable to monitor the |
| * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- |
| * contiguous buffers. On TX, we'll get a FIFO underrun error. |
| */ |
| if (status & MCI_RXDATAAVLBLMASK) { |
| mmci_dma_error(host); |
| if (!data->error) |
| data->error = -EIO; |
| } else if (!data->host_cookie) { |
| mmci_dma_unmap(host, data); |
| } |
| |
| /* |
| * Use of DMA with scatter-gather is impossible. |
| * Give up with DMA and switch back to PIO mode. |
| */ |
| if (status & MCI_RXDATAAVLBLMASK) { |
| dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); |
| mmci_dma_release(host); |
| } |
| |
| host->dma_in_progress = false; |
| dmae->cur = NULL; |
| dmae->desc_current = NULL; |
| } |
| |
| /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ |
| static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data, |
| struct dma_chan **dma_chan, |
| struct dma_async_tx_descriptor **dma_desc) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| struct variant_data *variant = host->variant; |
| struct dma_slave_config conf = { |
| .src_addr = host->phybase + MMCIFIFO, |
| .dst_addr = host->phybase + MMCIFIFO, |
| .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ |
| .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ |
| .device_fc = false, |
| }; |
| struct dma_chan *chan; |
| struct dma_device *device; |
| struct dma_async_tx_descriptor *desc; |
| int nr_sg; |
| unsigned long flags = DMA_CTRL_ACK; |
| |
| if (data->flags & MMC_DATA_READ) { |
| conf.direction = DMA_DEV_TO_MEM; |
| chan = dmae->rx_channel; |
| } else { |
| conf.direction = DMA_MEM_TO_DEV; |
| chan = dmae->tx_channel; |
| } |
| |
| /* If there's no DMA channel, fall back to PIO */ |
| if (!chan) |
| return -EINVAL; |
| |
| /* If less than or equal to the fifo size, don't bother with DMA */ |
| if (data->blksz * data->blocks <= variant->fifosize) |
| return -EINVAL; |
| |
| /* |
| * This is necessary to get SDIO working on the Ux500. We do not yet |
| * know if this is a bug in: |
| * - The Ux500 DMA controller (DMA40) |
| * - The MMCI DMA interface on the Ux500 |
| * some power of two blocks (such as 64 bytes) are sent regularly |
| * during SDIO traffic and those work fine so for these we enable DMA |
| * transfers. |
| */ |
| if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz)) |
| return -EINVAL; |
| |
| device = chan->device; |
| nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, |
| mmc_get_dma_dir(data)); |
| if (nr_sg == 0) |
| return -EINVAL; |
| |
| if (host->variant->qcom_dml) |
| flags |= DMA_PREP_INTERRUPT; |
| |
| dmaengine_slave_config(chan, &conf); |
| desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, |
| conf.direction, flags); |
| if (!desc) |
| goto unmap_exit; |
| |
| *dma_chan = chan; |
| *dma_desc = desc; |
| |
| return 0; |
| |
| unmap_exit: |
| dma_unmap_sg(device->dev, data->sg, data->sg_len, |
| mmc_get_dma_dir(data)); |
| return -ENOMEM; |
| } |
| |
| int mmci_dmae_prep_data(struct mmci_host *host, |
| struct mmc_data *data, |
| bool next) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| struct mmci_dmae_next *nd = &dmae->next_data; |
| |
| if (!host->use_dma) |
| return -EINVAL; |
| |
| if (next) |
| return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc); |
| /* Check if next job is already prepared. */ |
| if (dmae->cur && dmae->desc_current) |
| return 0; |
| |
| /* No job were prepared thus do it now. */ |
| return _mmci_dmae_prep_data(host, data, &dmae->cur, |
| &dmae->desc_current); |
| } |
| |
| int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| int ret; |
| |
| host->dma_in_progress = true; |
| ret = dma_submit_error(dmaengine_submit(dmae->desc_current)); |
| if (ret < 0) { |
| host->dma_in_progress = false; |
| return ret; |
| } |
| dma_async_issue_pending(dmae->cur); |
| |
| *datactrl |= MCI_DPSM_DMAENABLE; |
| |
| return 0; |
| } |
| |
| void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data) |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| struct mmci_dmae_next *next = &dmae->next_data; |
| |
| if (!host->use_dma) |
| return; |
| |
| WARN_ON(!data->host_cookie && (next->desc || next->chan)); |
| |
| dmae->desc_current = next->desc; |
| dmae->cur = next->chan; |
| next->desc = NULL; |
| next->chan = NULL; |
| } |
| |
| void mmci_dmae_unprep_data(struct mmci_host *host, |
| struct mmc_data *data, int err) |
| |
| { |
| struct mmci_dmae_priv *dmae = host->dma_priv; |
| |
| if (!host->use_dma) |
| return; |
| |
| mmci_dma_unmap(host, data); |
| |
| if (err) { |
| struct mmci_dmae_next *next = &dmae->next_data; |
| struct dma_chan *chan; |
| if (data->flags & MMC_DATA_READ) |
| chan = dmae->rx_channel; |
| else |
| chan = dmae->tx_channel; |
| dmaengine_terminate_all(chan); |
| |
| if (dmae->desc_current == next->desc) |
| dmae->desc_current = NULL; |
| |
| if (dmae->cur == next->chan) { |
| host->dma_in_progress = false; |
| dmae->cur = NULL; |
| } |
| |
| next->desc = NULL; |
| next->chan = NULL; |
| } |
| } |
| |
| static struct mmci_host_ops mmci_variant_ops = { |
| .prep_data = mmci_dmae_prep_data, |
| .unprep_data = mmci_dmae_unprep_data, |
| .get_datactrl_cfg = mmci_get_dctrl_cfg, |
| .get_next_data = mmci_dmae_get_next_data, |
| .dma_setup = mmci_dmae_setup, |
| .dma_release = mmci_dmae_release, |
| .dma_start = mmci_dmae_start, |
| .dma_finalize = mmci_dmae_finalize, |
| .dma_error = mmci_dmae_error, |
| }; |
| #else |
| static struct mmci_host_ops mmci_variant_ops = { |
| .get_datactrl_cfg = mmci_get_dctrl_cfg, |
| }; |
| #endif |
| |
| static void mmci_variant_init(struct mmci_host *host) |
| { |
| host->ops = &mmci_variant_ops; |
| } |
| |
| static void ux500_variant_init(struct mmci_host *host) |
| { |
| host->ops = &mmci_variant_ops; |
| host->ops->busy_complete = ux500_busy_complete; |
| } |
| |
| static void ux500v2_variant_init(struct mmci_host *host) |
| { |
| host->ops = &mmci_variant_ops; |
| host->ops->busy_complete = ux500_busy_complete; |
| host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg; |
| } |
| |
| static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct mmc_data *data = mrq->data; |
| |
| if (!data) |
| return; |
| |
| WARN_ON(data->host_cookie); |
| |
| if (mmci_validate_data(host, data)) |
| return; |
| |
| mmci_prep_data(host, data, true); |
| } |
| |
| static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, |
| int err) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct mmc_data *data = mrq->data; |
| |
| if (!data || !data->host_cookie) |
| return; |
| |
| mmci_unprep_data(host, data, err); |
| } |
| |
| static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) |
| { |
| struct variant_data *variant = host->variant; |
| unsigned int datactrl, timeout, irqmask; |
| unsigned long long clks; |
| void __iomem *base; |
| |
| dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", |
| data->blksz, data->blocks, data->flags); |
| |
| host->data = data; |
| host->size = data->blksz * data->blocks; |
| data->bytes_xfered = 0; |
| |
| clks = (unsigned long long)data->timeout_ns * host->cclk; |
| do_div(clks, NSEC_PER_SEC); |
| |
| timeout = data->timeout_clks + (unsigned int)clks; |
| |
| base = host->base; |
| writel(timeout, base + MMCIDATATIMER); |
| writel(host->size, base + MMCIDATALENGTH); |
| |
| datactrl = host->ops->get_datactrl_cfg(host); |
| datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0; |
| |
| if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { |
| u32 clk; |
| |
| datactrl |= variant->datactrl_mask_sdio; |
| |
| /* |
| * The ST Micro variant for SDIO small write transfers |
| * needs to have clock H/W flow control disabled, |
| * otherwise the transfer will not start. The threshold |
| * depends on the rate of MCLK. |
| */ |
| if (variant->st_sdio && data->flags & MMC_DATA_WRITE && |
| (host->size < 8 || |
| (host->size <= 8 && host->mclk > 50000000))) |
| clk = host->clk_reg & ~variant->clkreg_enable; |
| else |
| clk = host->clk_reg | variant->clkreg_enable; |
| |
| mmci_write_clkreg(host, clk); |
| } |
| |
| if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || |
| host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) |
| datactrl |= variant->datactrl_mask_ddrmode; |
| |
| /* |
| * Attempt to use DMA operation mode, if this |
| * should fail, fall back to PIO mode |
| */ |
| if (!mmci_dma_start(host, datactrl)) |
| return; |
| |
| /* IRQ mode, map the SG list for CPU reading/writing */ |
| mmci_init_sg(host, data); |
| |
| if (data->flags & MMC_DATA_READ) { |
| irqmask = MCI_RXFIFOHALFFULLMASK; |
| |
| /* |
| * If we have less than the fifo 'half-full' threshold to |
| * transfer, trigger a PIO interrupt as soon as any data |
| * is available. |
| */ |
| if (host->size < variant->fifohalfsize) |
| irqmask |= MCI_RXDATAAVLBLMASK; |
| } else { |
| /* |
| * We don't actually need to include "FIFO empty" here |
| * since its implicit in "FIFO half empty". |
| */ |
| irqmask = MCI_TXFIFOHALFEMPTYMASK; |
| } |
| |
| mmci_write_datactrlreg(host, datactrl); |
| writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); |
| mmci_set_mask1(host, irqmask); |
| } |
| |
| static void |
| mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) |
| { |
| void __iomem *base = host->base; |
| unsigned long long clks; |
| |
| dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", |
| cmd->opcode, cmd->arg, cmd->flags); |
| |
| if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) { |
| writel(0, base + MMCICOMMAND); |
| mmci_reg_delay(host); |
| } |
| |
| if (host->variant->cmdreg_stop && |
| cmd->opcode == MMC_STOP_TRANSMISSION) |
| c |= host->variant->cmdreg_stop; |
| |
| c |= cmd->opcode | host->variant->cmdreg_cpsm_enable; |
| if (cmd->flags & MMC_RSP_PRESENT) { |
| if (cmd->flags & MMC_RSP_136) |
| c |= host->variant->cmdreg_lrsp_crc; |
| else if (cmd->flags & MMC_RSP_CRC) |
| c |= host->variant->cmdreg_srsp_crc; |
| else |
| c |= host->variant->cmdreg_srsp; |
| } |
| |
| if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) { |
| if (!cmd->busy_timeout) |
| cmd->busy_timeout = 10 * MSEC_PER_SEC; |
| |
| if (cmd->busy_timeout > host->mmc->max_busy_timeout) |
| clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk; |
| else |
| clks = (unsigned long long)cmd->busy_timeout * host->cclk; |
| |
| do_div(clks, MSEC_PER_SEC); |
| writel_relaxed(clks, host->base + MMCIDATATIMER); |
| } |
| |
| if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE) |
| host->ops->pre_sig_volt_switch(host); |
| |
| if (/*interrupt*/0) |
| c |= MCI_CPSM_INTERRUPT; |
| |
| if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) |
| c |= host->variant->data_cmd_enable; |
| |
| host->cmd = cmd; |
| |
| writel(cmd->arg, base + MMCIARGUMENT); |
| writel(c, base + MMCICOMMAND); |
| } |
| |
| static void mmci_stop_command(struct mmci_host *host) |
| { |
| host->stop_abort.error = 0; |
| mmci_start_command(host, &host->stop_abort, 0); |
| } |
| |
| static void |
| mmci_data_irq(struct mmci_host *host, struct mmc_data *data, |
| unsigned int status) |
| { |
| unsigned int status_err; |
| |
| /* Make sure we have data to handle */ |
| if (!data) |
| return; |
| |
| /* First check for errors */ |
| status_err = status & (host->variant->start_err | |
| MCI_DATACRCFAIL | MCI_DATATIMEOUT | |
| MCI_TXUNDERRUN | MCI_RXOVERRUN); |
| |
| if (status_err) { |
| u32 remain, success; |
| |
| /* Terminate the DMA transfer */ |
| mmci_dma_error(host); |
| |
| /* |
| * Calculate how far we are into the transfer. Note that |
| * the data counter gives the number of bytes transferred |
| * on the MMC bus, not on the host side. On reads, this |
| * can be as much as a FIFO-worth of data ahead. This |
| * matters for FIFO overruns only. |
| */ |
| if (!host->variant->datacnt_useless) { |
| remain = readl(host->base + MMCIDATACNT); |
| success = data->blksz * data->blocks - remain; |
| } else { |
| success = 0; |
| } |
| |
| dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", |
| status_err, success); |
| if (status_err & MCI_DATACRCFAIL) { |
| /* Last block was not successful */ |
| success -= 1; |
| data->error = -EILSEQ; |
| } else if (status_err & MCI_DATATIMEOUT) { |
| data->error = -ETIMEDOUT; |
| } else if (status_err & MCI_STARTBITERR) { |
| data->error = -ECOMM; |
| } else if (status_err & MCI_TXUNDERRUN) { |
| data->error = -EIO; |
| } else if (status_err & MCI_RXOVERRUN) { |
| if (success > host->variant->fifosize) |
| success -= host->variant->fifosize; |
| else |
| success = 0; |
| data->error = -EIO; |
| } |
| data->bytes_xfered = round_down(success, data->blksz); |
| } |
| |
| if (status & MCI_DATABLOCKEND) |
| dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); |
| |
| if (status & MCI_DATAEND || data->error) { |
| mmci_dma_finalize(host, data); |
| |
| mmci_stop_data(host); |
| |
| if (!data->error) |
| /* The error clause is handled above, success! */ |
| data->bytes_xfered = data->blksz * data->blocks; |
| |
| if (!data->stop) { |
| if (host->variant->cmdreg_stop && data->error) |
| mmci_stop_command(host); |
| else |
| mmci_request_end(host, data->mrq); |
| } else if (host->mrq->sbc && !data->error) { |
| mmci_request_end(host, data->mrq); |
| } else { |
| mmci_start_command(host, data->stop, 0); |
| } |
| } |
| } |
| |
| static void |
| mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, |
| unsigned int status) |
| { |
| u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT; |
| void __iomem *base = host->base; |
| bool sbc, busy_resp; |
| |
| if (!cmd) |
| return; |
| |
| sbc = (cmd == host->mrq->sbc); |
| busy_resp = !!(cmd->flags & MMC_RSP_BUSY); |
| |
| /* |
| * We need to be one of these interrupts to be considered worth |
| * handling. Note that we tag on any latent IRQs postponed |
| * due to waiting for busy status. |
| */ |
| if (host->variant->busy_timeout && busy_resp) |
| err_msk |= MCI_DATATIMEOUT; |
| |
| if (!((status | host->busy_status) & |
| (err_msk | MCI_CMDSENT | MCI_CMDRESPEND))) |
| return; |
| |
| /* Handle busy detection on DAT0 if the variant supports it. */ |
| if (busy_resp && host->variant->busy_detect) |
| if (!host->ops->busy_complete(host, status, err_msk)) |
| return; |
| |
| host->cmd = NULL; |
| |
| if (status & MCI_CMDTIMEOUT) { |
| cmd->error = -ETIMEDOUT; |
| } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { |
| cmd->error = -EILSEQ; |
| } else if (host->variant->busy_timeout && busy_resp && |
| status & MCI_DATATIMEOUT) { |
| cmd->error = -ETIMEDOUT; |
| /* |
| * This will wake up mmci_irq_thread() which will issue |
| * a hardware reset of the MMCI block. |
| */ |
| host->irq_action = IRQ_WAKE_THREAD; |
| } else { |
| cmd->resp[0] = readl(base + MMCIRESPONSE0); |
| cmd->resp[1] = readl(base + MMCIRESPONSE1); |
| cmd->resp[2] = readl(base + MMCIRESPONSE2); |
| cmd->resp[3] = readl(base + MMCIRESPONSE3); |
| } |
| |
| if ((!sbc && !cmd->data) || cmd->error) { |
| if (host->data) { |
| /* Terminate the DMA transfer */ |
| mmci_dma_error(host); |
| |
| mmci_stop_data(host); |
| if (host->variant->cmdreg_stop && cmd->error) { |
| mmci_stop_command(host); |
| return; |
| } |
| } |
| |
| if (host->irq_action != IRQ_WAKE_THREAD) |
| mmci_request_end(host, host->mrq); |
| |
| } else if (sbc) { |
| mmci_start_command(host, host->mrq->cmd, 0); |
| } else if (!host->variant->datactrl_first && |
| !(cmd->data->flags & MMC_DATA_READ)) { |
| mmci_start_data(host, cmd->data); |
| } |
| } |
| |
| static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) |
| { |
| return remain - (readl(host->base + MMCIFIFOCNT) << 2); |
| } |
| |
| static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) |
| { |
| /* |
| * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses |
| * from the fifo range should be used |
| */ |
| if (status & MCI_RXFIFOHALFFULL) |
| return host->variant->fifohalfsize; |
| else if (status & MCI_RXDATAAVLBL) |
| return 4; |
| |
| return 0; |
| } |
| |
| static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) |
| { |
| void __iomem *base = host->base; |
| char *ptr = buffer; |
| u32 status = readl(host->base + MMCISTATUS); |
| int host_remain = host->size; |
| |
| do { |
| int count = host->get_rx_fifocnt(host, status, host_remain); |
| |
| if (count > remain) |
| count = remain; |
| |
| if (count <= 0) |
| break; |
| |
| /* |
| * SDIO especially may want to send something that is |
| * not divisible by 4 (as opposed to card sectors |
| * etc). Therefore make sure to always read the last bytes |
| * while only doing full 32-bit reads towards the FIFO. |
| */ |
| if (unlikely(count & 0x3)) { |
| if (count < 4) { |
| unsigned char buf[4]; |
| ioread32_rep(base + MMCIFIFO, buf, 1); |
| memcpy(ptr, buf, count); |
| } else { |
| ioread32_rep(base + MMCIFIFO, ptr, count >> 2); |
| count &= ~0x3; |
| } |
| } else { |
| ioread32_rep(base + MMCIFIFO, ptr, count >> 2); |
| } |
| |
| ptr += count; |
| remain -= count; |
| host_remain -= count; |
| |
| if (remain == 0) |
| break; |
| |
| status = readl(base + MMCISTATUS); |
| } while (status & MCI_RXDATAAVLBL); |
| |
| return ptr - buffer; |
| } |
| |
| static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) |
| { |
| struct variant_data *variant = host->variant; |
| void __iomem *base = host->base; |
| char *ptr = buffer; |
| |
| do { |
| unsigned int count, maxcnt; |
| |
| maxcnt = status & MCI_TXFIFOEMPTY ? |
| variant->fifosize : variant->fifohalfsize; |
| count = min(remain, maxcnt); |
| |
| /* |
| * SDIO especially may want to send something that is |
| * not divisible by 4 (as opposed to card sectors |
| * etc), and the FIFO only accept full 32-bit writes. |
| * So compensate by adding +3 on the count, a single |
| * byte become a 32bit write, 7 bytes will be two |
| * 32bit writes etc. |
| */ |
| iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); |
| |
| ptr += count; |
| remain -= count; |
| |
| if (remain == 0) |
| break; |
| |
| status = readl(base + MMCISTATUS); |
| } while (status & MCI_TXFIFOHALFEMPTY); |
| |
| return ptr - buffer; |
| } |
| |
| /* |
| * PIO data transfer IRQ handler. |
| */ |
| static irqreturn_t mmci_pio_irq(int irq, void *dev_id) |
| { |
| struct mmci_host *host = dev_id; |
| struct sg_mapping_iter *sg_miter = &host->sg_miter; |
| struct variant_data *variant = host->variant; |
| void __iomem *base = host->base; |
| u32 status; |
| |
| status = readl(base + MMCISTATUS); |
| |
| dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); |
| |
| do { |
| unsigned int remain, len; |
| char *buffer; |
| |
| /* |
| * For write, we only need to test the half-empty flag |
| * here - if the FIFO is completely empty, then by |
| * definition it is more than half empty. |
| * |
| * For read, check for data available. |
| */ |
| if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) |
| break; |
| |
| if (!sg_miter_next(sg_miter)) |
| break; |
| |
| buffer = sg_miter->addr; |
| remain = sg_miter->length; |
| |
| len = 0; |
| if (status & MCI_RXACTIVE) |
| len = mmci_pio_read(host, buffer, remain); |
| if (status & MCI_TXACTIVE) |
| len = mmci_pio_write(host, buffer, remain, status); |
| |
| sg_miter->consumed = len; |
| |
| host->size -= len; |
| remain -= len; |
| |
| if (remain) |
| break; |
| |
| status = readl(base + MMCISTATUS); |
| } while (1); |
| |
| sg_miter_stop(sg_miter); |
| |
| /* |
| * If we have less than the fifo 'half-full' threshold to transfer, |
| * trigger a PIO interrupt as soon as any data is available. |
| */ |
| if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) |
| mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); |
| |
| /* |
| * If we run out of data, disable the data IRQs; this |
| * prevents a race where the FIFO becomes empty before |
| * the chip itself has disabled the data path, and |
| * stops us racing with our data end IRQ. |
| */ |
| if (host->size == 0) { |
| mmci_set_mask1(host, 0); |
| writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Handle completion of command and data transfers. |
| */ |
| static irqreturn_t mmci_irq(int irq, void *dev_id) |
| { |
| struct mmci_host *host = dev_id; |
| u32 status; |
| |
| spin_lock(&host->lock); |
| host->irq_action = IRQ_HANDLED; |
| |
| do { |
| status = readl(host->base + MMCISTATUS); |
| if (!status) |
| break; |
| |
| if (host->singleirq) { |
| if (status & host->mask1_reg) |
| mmci_pio_irq(irq, dev_id); |
| |
| status &= ~host->variant->irq_pio_mask; |
| } |
| |
| /* |
| * Busy detection is managed by mmci_cmd_irq(), including to |
| * clear the corresponding IRQ. |
| */ |
| status &= readl(host->base + MMCIMASK0); |
| if (host->variant->busy_detect) |
| writel(status & ~host->variant->busy_detect_mask, |
| host->base + MMCICLEAR); |
| else |
| writel(status, host->base + MMCICLEAR); |
| |
| dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); |
| |
| if (host->variant->reversed_irq_handling) { |
| mmci_data_irq(host, host->data, status); |
| mmci_cmd_irq(host, host->cmd, status); |
| } else { |
| mmci_cmd_irq(host, host->cmd, status); |
| mmci_data_irq(host, host->data, status); |
| } |
| |
| /* |
| * Busy detection has been handled by mmci_cmd_irq() above. |
| * Clear the status bit to prevent polling in IRQ context. |
| */ |
| if (host->variant->busy_detect_flag) |
| status &= ~host->variant->busy_detect_flag; |
| |
| } while (status); |
| |
| spin_unlock(&host->lock); |
| |
| return host->irq_action; |
| } |
| |
| /* |
| * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW. |
| * |
| * A reset is needed for some variants, where a datatimeout for a R1B request |
| * causes the DPSM to stay busy (non-functional). |
| */ |
| static irqreturn_t mmci_irq_thread(int irq, void *dev_id) |
| { |
| struct mmci_host *host = dev_id; |
| unsigned long flags; |
| |
| if (host->rst) { |
| reset_control_assert(host->rst); |
| udelay(2); |
| reset_control_deassert(host->rst); |
| } |
| |
| spin_lock_irqsave(&host->lock, flags); |
| writel(host->clk_reg, host->base + MMCICLOCK); |
| writel(host->pwr_reg, host->base + MMCIPOWER); |
| writel(MCI_IRQENABLE | host->variant->start_err, |
| host->base + MMCIMASK0); |
| |
| host->irq_action = IRQ_HANDLED; |
| mmci_request_end(host, host->mrq); |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| return host->irq_action; |
| } |
| |
| static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| unsigned long flags; |
| |
| WARN_ON(host->mrq != NULL); |
| |
| mrq->cmd->error = mmci_validate_data(host, mrq->data); |
| if (mrq->cmd->error) { |
| mmc_request_done(mmc, mrq); |
| return; |
| } |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| host->mrq = mrq; |
| |
| if (mrq->data) |
| mmci_get_next_data(host, mrq->data); |
| |
| if (mrq->data && |
| (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ)) |
| mmci_start_data(host, mrq->data); |
| |
| if (mrq->sbc) |
| mmci_start_command(host, mrq->sbc, 0); |
| else |
| mmci_start_command(host, mrq->cmd, 0); |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| static void mmci_set_max_busy_timeout(struct mmc_host *mmc) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| u32 max_busy_timeout = 0; |
| |
| if (!host->variant->busy_detect) |
| return; |
| |
| if (host->variant->busy_timeout && mmc->actual_clock) |
| max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC); |
| |
| mmc->max_busy_timeout = max_busy_timeout; |
| } |
| |
| static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct variant_data *variant = host->variant; |
| u32 pwr = 0; |
| unsigned long flags; |
| int ret; |
| |
| switch (ios->power_mode) { |
| case MMC_POWER_OFF: |
| if (!IS_ERR(mmc->supply.vmmc)) |
| mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); |
| |
| if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { |
| regulator_disable(mmc->supply.vqmmc); |
| host->vqmmc_enabled = false; |
| } |
| |
| break; |
| case MMC_POWER_UP: |
| if (!IS_ERR(mmc->supply.vmmc)) |
| mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); |
| |
| /* |
| * The ST Micro variant doesn't have the PL180s MCI_PWR_UP |
| * and instead uses MCI_PWR_ON so apply whatever value is |
| * configured in the variant data. |
| */ |
| pwr |= variant->pwrreg_powerup; |
| |
| break; |
| case MMC_POWER_ON: |
| if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { |
| ret = regulator_enable(mmc->supply.vqmmc); |
| if (ret < 0) |
| dev_err(mmc_dev(mmc), |
| "failed to enable vqmmc regulator\n"); |
| else |
| host->vqmmc_enabled = true; |
| } |
| |
| pwr |= MCI_PWR_ON; |
| break; |
| } |
| |
| if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { |
| /* |
| * The ST Micro variant has some additional bits |
| * indicating signal direction for the signals in |
| * the SD/MMC bus and feedback-clock usage. |
| */ |
| pwr |= host->pwr_reg_add; |
| |
| if (ios->bus_width == MMC_BUS_WIDTH_4) |
| pwr &= ~MCI_ST_DATA74DIREN; |
| else if (ios->bus_width == MMC_BUS_WIDTH_1) |
| pwr &= (~MCI_ST_DATA74DIREN & |
| ~MCI_ST_DATA31DIREN & |
| ~MCI_ST_DATA2DIREN); |
| } |
| |
| if (variant->opendrain) { |
| if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) |
| pwr |= variant->opendrain; |
| } else { |
| /* |
| * If the variant cannot configure the pads by its own, then we |
| * expect the pinctrl to be able to do that for us |
| */ |
| if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) |
| pinctrl_select_state(host->pinctrl, host->pins_opendrain); |
| else |
| pinctrl_select_default_state(mmc_dev(mmc)); |
| } |
| |
| /* |
| * If clock = 0 and the variant requires the MMCIPOWER to be used for |
| * gating the clock, the MCI_PWR_ON bit is cleared. |
| */ |
| if (!ios->clock && variant->pwrreg_clkgate) |
| pwr &= ~MCI_PWR_ON; |
| |
| if (host->variant->explicit_mclk_control && |
| ios->clock != host->clock_cache) { |
| ret = clk_set_rate(host->clk, ios->clock); |
| if (ret < 0) |
| dev_err(mmc_dev(host->mmc), |
| "Error setting clock rate (%d)\n", ret); |
| else |
| host->mclk = clk_get_rate(host->clk); |
| } |
| host->clock_cache = ios->clock; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| if (host->ops && host->ops->set_clkreg) |
| host->ops->set_clkreg(host, ios->clock); |
| else |
| mmci_set_clkreg(host, ios->clock); |
| |
| mmci_set_max_busy_timeout(mmc); |
| |
| if (host->ops && host->ops->set_pwrreg) |
| host->ops->set_pwrreg(host, pwr); |
| else |
| mmci_write_pwrreg(host, pwr); |
| |
| mmci_reg_delay(host); |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| static int mmci_get_cd(struct mmc_host *mmc) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct mmci_platform_data *plat = host->plat; |
| unsigned int status = mmc_gpio_get_cd(mmc); |
| |
| if (status == -ENOSYS) { |
| if (!plat->status) |
| return 1; /* Assume always present */ |
| |
| status = plat->status(mmc_dev(host->mmc)); |
| } |
| return status; |
| } |
| |
| static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| int ret; |
| |
| ret = mmc_regulator_set_vqmmc(mmc, ios); |
| |
| if (!ret && host->ops && host->ops->post_sig_volt_switch) |
| ret = host->ops->post_sig_volt_switch(host, ios); |
| else if (ret) |
| ret = 0; |
| |
| if (ret < 0) |
| dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); |
| |
| return ret; |
| } |
| |
| static struct mmc_host_ops mmci_ops = { |
| .request = mmci_request, |
| .pre_req = mmci_pre_request, |
| .post_req = mmci_post_request, |
| .set_ios = mmci_set_ios, |
| .get_ro = mmc_gpio_get_ro, |
| .get_cd = mmci_get_cd, |
| .start_signal_voltage_switch = mmci_sig_volt_switch, |
| }; |
| |
| static void mmci_probe_level_translator(struct mmc_host *mmc) |
| { |
| struct device *dev = mmc_dev(mmc); |
| struct mmci_host *host = mmc_priv(mmc); |
| struct gpio_desc *cmd_gpio; |
| struct gpio_desc *ck_gpio; |
| struct gpio_desc *ckin_gpio; |
| int clk_hi, clk_lo; |
| |
| /* |
| * Assume the level translator is present if st,use-ckin is set. |
| * This is to cater for DTs which do not implement this test. |
| */ |
| host->clk_reg_add |= MCI_STM32_CLK_SELCKIN; |
| |
| cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH); |
| if (IS_ERR(cmd_gpio)) |
| goto exit_cmd; |
| |
| ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH); |
| if (IS_ERR(ck_gpio)) |
| goto exit_ck; |
| |
| ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN); |
| if (IS_ERR(ckin_gpio)) |
| goto exit_ckin; |
| |
| /* All GPIOs are valid, test whether level translator works */ |
| |
| /* Sample CKIN */ |
| clk_hi = !!gpiod_get_value(ckin_gpio); |
| |
| /* Set CK low */ |
| gpiod_set_value(ck_gpio, 0); |
| |
| /* Sample CKIN */ |
| clk_lo = !!gpiod_get_value(ckin_gpio); |
| |
| /* Tristate all */ |
| gpiod_direction_input(cmd_gpio); |
| gpiod_direction_input(ck_gpio); |
| |
| /* Level translator is present if CK signal is propagated to CKIN */ |
| if (!clk_hi || clk_lo) { |
| host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN; |
| dev_warn(dev, |
| "Level translator inoperable, CK signal not detected on CKIN, disabling.\n"); |
| } |
| |
| gpiod_put(ckin_gpio); |
| |
| exit_ckin: |
| gpiod_put(ck_gpio); |
| exit_ck: |
| gpiod_put(cmd_gpio); |
| exit_cmd: |
| pinctrl_select_default_state(dev); |
| } |
| |
| static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| int ret = mmc_of_parse(mmc); |
| |
| if (ret) |
| return ret; |
| |
| if (of_get_property(np, "st,sig-dir-dat0", NULL)) |
| host->pwr_reg_add |= MCI_ST_DATA0DIREN; |
| if (of_get_property(np, "st,sig-dir-dat2", NULL)) |
| host->pwr_reg_add |= MCI_ST_DATA2DIREN; |
| if (of_get_property(np, "st,sig-dir-dat31", NULL)) |
| host->pwr_reg_add |= MCI_ST_DATA31DIREN; |
| if (of_get_property(np, "st,sig-dir-dat74", NULL)) |
| host->pwr_reg_add |= MCI_ST_DATA74DIREN; |
| if (of_get_property(np, "st,sig-dir-cmd", NULL)) |
| host->pwr_reg_add |= MCI_ST_CMDDIREN; |
| if (of_get_property(np, "st,sig-pin-fbclk", NULL)) |
| host->pwr_reg_add |= MCI_ST_FBCLKEN; |
| if (of_get_property(np, "st,sig-dir", NULL)) |
| host->pwr_reg_add |= MCI_STM32_DIRPOL; |
| if (of_get_property(np, "st,neg-edge", NULL)) |
| host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE; |
| if (of_get_property(np, "st,use-ckin", NULL)) |
| mmci_probe_level_translator(mmc); |
| |
| if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) |
| mmc->caps |= MMC_CAP_MMC_HIGHSPEED; |
| if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) |
| mmc->caps |= MMC_CAP_SD_HIGHSPEED; |
| |
| return 0; |
| } |
| |
| static int mmci_probe(struct amba_device *dev, |
| const struct amba_id *id) |
| { |
| struct mmci_platform_data *plat = dev->dev.platform_data; |
| struct device_node *np = dev->dev.of_node; |
| struct variant_data *variant = id->data; |
| struct mmci_host *host; |
| struct mmc_host *mmc; |
| int ret; |
| |
| /* Must have platform data or Device Tree. */ |
| if (!plat && !np) { |
| dev_err(&dev->dev, "No plat data or DT found\n"); |
| return -EINVAL; |
| } |
| |
| if (!plat) { |
| plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); |
| if (!plat) |
| return -ENOMEM; |
| } |
| |
| mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); |
| if (!mmc) |
| return -ENOMEM; |
| |
| host = mmc_priv(mmc); |
| host->mmc = mmc; |
| host->mmc_ops = &mmci_ops; |
| mmc->ops = &mmci_ops; |
| |
| ret = mmci_of_parse(np, mmc); |
| if (ret) |
| goto host_free; |
| |
| /* |
| * Some variant (STM32) doesn't have opendrain bit, nevertheless |
| * pins can be set accordingly using pinctrl |
| */ |
| if (!variant->opendrain) { |
| host->pinctrl = devm_pinctrl_get(&dev->dev); |
| if (IS_ERR(host->pinctrl)) { |
| dev_err(&dev->dev, "failed to get pinctrl"); |
| ret = PTR_ERR(host->pinctrl); |
| goto host_free; |
| } |
| |
| host->pins_opendrain = pinctrl_lookup_state(host->pinctrl, |
| MMCI_PINCTRL_STATE_OPENDRAIN); |
| if (IS_ERR(host->pins_opendrain)) { |
| dev_err(mmc_dev(mmc), "Can't select opendrain pins\n"); |
| ret = PTR_ERR(host->pins_opendrain); |
| goto host_free; |
| } |
| } |
| |
| host->hw_designer = amba_manf(dev); |
| host->hw_revision = amba_rev(dev); |
| dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); |
| dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); |
| |
| host->clk = devm_clk_get(&dev->dev, NULL); |
| if (IS_ERR(host->clk)) { |
| ret = PTR_ERR(host->clk); |
| goto host_free; |
| } |
| |
| ret = clk_prepare_enable(host->clk); |
| if (ret) |
| goto host_free; |
| |
| if (variant->qcom_fifo) |
| host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; |
| else |
| host->get_rx_fifocnt = mmci_get_rx_fifocnt; |
| |
| host->plat = plat; |
| host->variant = variant; |
| host->mclk = clk_get_rate(host->clk); |
| /* |
| * According to the spec, mclk is max 100 MHz, |
| * so we try to adjust the clock down to this, |
| * (if possible). |
| */ |
| if (host->mclk > variant->f_max) { |
| ret = clk_set_rate(host->clk, variant->f_max); |
| if (ret < 0) |
| goto clk_disable; |
| host->mclk = clk_get_rate(host->clk); |
| dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", |
| host->mclk); |
| } |
| |
| host->phybase = dev->res.start; |
| host->base = devm_ioremap_resource(&dev->dev, &dev->res); |
| if (IS_ERR(host->base)) { |
| ret = PTR_ERR(host->base); |
| goto clk_disable; |
| } |
| |
| if (variant->init) |
| variant->init(host); |
| |
| /* |
| * The ARM and ST versions of the block have slightly different |
| * clock divider equations which means that the minimum divider |
| * differs too. |
| * on Qualcomm like controllers get the nearest minimum clock to 100Khz |
| */ |
| if (variant->st_clkdiv) |
| mmc->f_min = DIV_ROUND_UP(host->mclk, 257); |
| else if (variant->stm32_clkdiv) |
| mmc->f_min = DIV_ROUND_UP(host->mclk, 2046); |
| else if (variant->explicit_mclk_control) |
| mmc->f_min = clk_round_rate(host->clk, 100000); |
| else |
| mmc->f_min = DIV_ROUND_UP(host->mclk, 512); |
| /* |
| * If no maximum operating frequency is supplied, fall back to use |
| * the module parameter, which has a (low) default value in case it |
| * is not specified. Either value must not exceed the clock rate into |
| * the block, of course. |
| */ |
| if (mmc->f_max) |
| mmc->f_max = variant->explicit_mclk_control ? |
| min(variant->f_max, mmc->f_max) : |
| min(host->mclk, mmc->f_max); |
| else |
| mmc->f_max = variant->explicit_mclk_control ? |
| fmax : min(host->mclk, fmax); |
| |
| |
| dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); |
| |
| host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL); |
| if (IS_ERR(host->rst)) { |
| ret = PTR_ERR(host->rst); |
| goto clk_disable; |
| } |
| ret = reset_control_deassert(host->rst); |
| if (ret) |
| dev_err(mmc_dev(mmc), "failed to de-assert reset\n"); |
| |
| /* Get regulators and the supported OCR mask */ |
| ret = mmc_regulator_get_supply(mmc); |
| if (ret) |
| goto clk_disable; |
| |
| if (!mmc->ocr_avail) |
| mmc->ocr_avail = plat->ocr_mask; |
| else if (plat->ocr_mask) |
| dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); |
| |
| /* We support these capabilities. */ |
| mmc->caps |= MMC_CAP_CMD23; |
| |
| /* |
| * Enable busy detection. |
| */ |
| if (variant->busy_detect) { |
| mmci_ops.card_busy = mmci_card_busy; |
| /* |
| * Not all variants have a flag to enable busy detection |
| * in the DPSM, but if they do, set it here. |
| */ |
| if (variant->busy_dpsm_flag) |
| mmci_write_datactrlreg(host, |
| host->variant->busy_dpsm_flag); |
| mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; |
| } |
| |
| /* Variants with mandatory busy timeout in HW needs R1B responses. */ |
| if (variant->busy_timeout) |
| mmc->caps |= MMC_CAP_NEED_RSP_BUSY; |
| |
| /* Prepare a CMD12 - needed to clear the DPSM on some variants. */ |
| host->stop_abort.opcode = MMC_STOP_TRANSMISSION; |
| host->stop_abort.arg = 0; |
| host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC; |
| |
| /* We support these PM capabilities. */ |
| mmc->pm_caps |= MMC_PM_KEEP_POWER; |
| |
| /* |
| * We can do SGIO |
| */ |
| mmc->max_segs = NR_SG; |
| |
| /* |
| * Since only a certain number of bits are valid in the data length |
| * register, we must ensure that we don't exceed 2^num-1 bytes in a |
| * single request. |
| */ |
| mmc->max_req_size = (1 << variant->datalength_bits) - 1; |
| |
| /* |
| * Set the maximum segment size. Since we aren't doing DMA |
| * (yet) we are only limited by the data length register. |
| */ |
| mmc->max_seg_size = mmc->max_req_size; |
| |
| /* |
| * Block size can be up to 2048 bytes, but must be a power of two. |
| */ |
| mmc->max_blk_size = 1 << variant->datactrl_blocksz; |
| |
| /* |
| * Limit the number of blocks transferred so that we don't overflow |
| * the maximum request size. |
| */ |
| mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz; |
| |
| spin_lock_init(&host->lock); |
| |
| writel(0, host->base + MMCIMASK0); |
| |
| if (variant->mmcimask1) |
| writel(0, host->base + MMCIMASK1); |
| |
| writel(0xfff, host->base + MMCICLEAR); |
| |
| /* |
| * If: |
| * - not using DT but using a descriptor table, or |
| * - using a table of descriptors ALONGSIDE DT, or |
| * look up these descriptors named "cd" and "wp" right here, fail |
| * silently of these do not exist |
| */ |
| if (!np) { |
| ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0); |
| if (ret == -EPROBE_DEFER) |
| goto clk_disable; |
| |
| ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0); |
| if (ret == -EPROBE_DEFER) |
| goto clk_disable; |
| } |
| |
| ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq, |
| mmci_irq_thread, IRQF_SHARED, |
| DRIVER_NAME " (cmd)", host); |
| if (ret) |
| goto clk_disable; |
| |
| if (!dev->irq[1]) |
| host->singleirq = true; |
| else { |
| ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, |
| IRQF_SHARED, DRIVER_NAME " (pio)", host); |
| if (ret) |
| goto clk_disable; |
| } |
| |
| writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0); |
| |
| amba_set_drvdata(dev, mmc); |
| |
| dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", |
| mmc_hostname(mmc), amba_part(dev), amba_manf(dev), |
| amba_rev(dev), (unsigned long long)dev->res.start, |
| dev->irq[0], dev->irq[1]); |
| |
| mmci_dma_setup(host); |
| |
| pm_runtime_set_autosuspend_delay(&dev->dev, 50); |
| pm_runtime_use_autosuspend(&dev->dev); |
| |
| mmc_add_host(mmc); |
| |
| pm_runtime_put(&dev->dev); |
| return 0; |
| |
| clk_disable: |
| clk_disable_unprepare(host->clk); |
| host_free: |
| mmc_free_host(mmc); |
| return ret; |
| } |
| |
| static void mmci_remove(struct amba_device *dev) |
| { |
| struct mmc_host *mmc = amba_get_drvdata(dev); |
| |
| if (mmc) { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct variant_data *variant = host->variant; |
| |
| /* |
| * Undo pm_runtime_put() in probe. We use the _sync |
| * version here so that we can access the primecell. |
| */ |
| pm_runtime_get_sync(&dev->dev); |
| |
| mmc_remove_host(mmc); |
| |
| writel(0, host->base + MMCIMASK0); |
| |
| if (variant->mmcimask1) |
| writel(0, host->base + MMCIMASK1); |
| |
| writel(0, host->base + MMCICOMMAND); |
| writel(0, host->base + MMCIDATACTRL); |
| |
| mmci_dma_release(host); |
| clk_disable_unprepare(host->clk); |
| mmc_free_host(mmc); |
| } |
| } |
| |
| #ifdef CONFIG_PM |
| static void mmci_save(struct mmci_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| writel(0, host->base + MMCIMASK0); |
| if (host->variant->pwrreg_nopower) { |
| writel(0, host->base + MMCIDATACTRL); |
| writel(0, host->base + MMCIPOWER); |
| writel(0, host->base + MMCICLOCK); |
| } |
| mmci_reg_delay(host); |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| static void mmci_restore(struct mmci_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| if (host->variant->pwrreg_nopower) { |
| writel(host->clk_reg, host->base + MMCICLOCK); |
| writel(host->datactrl_reg, host->base + MMCIDATACTRL); |
| writel(host->pwr_reg, host->base + MMCIPOWER); |
| } |
| writel(MCI_IRQENABLE | host->variant->start_err, |
| host->base + MMCIMASK0); |
| mmci_reg_delay(host); |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| static int mmci_runtime_suspend(struct device *dev) |
| { |
| struct amba_device *adev = to_amba_device(dev); |
| struct mmc_host *mmc = amba_get_drvdata(adev); |
| |
| if (mmc) { |
| struct mmci_host *host = mmc_priv(mmc); |
| pinctrl_pm_select_sleep_state(dev); |
| mmci_save(host); |
| clk_disable_unprepare(host->clk); |
| } |
| |
| return 0; |
| } |
| |
| static int mmci_runtime_resume(struct device *dev) |
| { |
| struct amba_device *adev = to_amba_device(dev); |
| struct mmc_host *mmc = amba_get_drvdata(adev); |
| |
| if (mmc) { |
| struct mmci_host *host = mmc_priv(mmc); |
| clk_prepare_enable(host->clk); |
| mmci_restore(host); |
| pinctrl_select_default_state(dev); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static const struct dev_pm_ops mmci_dev_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, |
| pm_runtime_force_resume) |
| SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) |
| }; |
| |
| static const struct amba_id mmci_ids[] = { |
| { |
| .id = 0x00041180, |
| .mask = 0xff0fffff, |
| .data = &variant_arm, |
| }, |
| { |
| .id = 0x01041180, |
| .mask = 0xff0fffff, |
| .data = &variant_arm_extended_fifo, |
| }, |
| { |
| .id = 0x02041180, |
| .mask = 0xff0fffff, |
| .data = &variant_arm_extended_fifo_hwfc, |
| }, |
| { |
| .id = 0x00041181, |
| .mask = 0x000fffff, |
| .data = &variant_arm, |
| }, |
| /* ST Micro variants */ |
| { |
| .id = 0x00180180, |
| .mask = 0x00ffffff, |
| .data = &variant_u300, |
| }, |
| { |
| .id = 0x10180180, |
| .mask = 0xf0ffffff, |
| .data = &variant_nomadik, |
| }, |
| { |
| .id = 0x00280180, |
| .mask = 0x00ffffff, |
| .data = &variant_nomadik, |
| }, |
| { |
| .id = 0x00480180, |
| .mask = 0xf0ffffff, |
| .data = &variant_ux500, |
| }, |
| { |
| .id = 0x10480180, |
| .mask = 0xf0ffffff, |
| .data = &variant_ux500v2, |
| }, |
| { |
| .id = 0x00880180, |
| .mask = 0x00ffffff, |
| .data = &variant_stm32, |
| }, |
| { |
| .id = 0x10153180, |
| .mask = 0xf0ffffff, |
| .data = &variant_stm32_sdmmc, |
| }, |
| { |
| .id = 0x00253180, |
| .mask = 0xf0ffffff, |
| .data = &variant_stm32_sdmmcv2, |
| }, |
| { |
| .id = 0x20253180, |
| .mask = 0xf0ffffff, |
| .data = &variant_stm32_sdmmcv2, |
| }, |
| /* Qualcomm variants */ |
| { |
| .id = 0x00051180, |
| .mask = 0x000fffff, |
| .data = &variant_qcom, |
| }, |
| { 0, 0 }, |
| }; |
| |
| MODULE_DEVICE_TABLE(amba, mmci_ids); |
| |
| static struct amba_driver mmci_driver = { |
| .drv = { |
| .name = DRIVER_NAME, |
| .pm = &mmci_dev_pm_ops, |
| }, |
| .probe = mmci_probe, |
| .remove = mmci_remove, |
| .id_table = mmci_ids, |
| }; |
| |
| module_amba_driver(mmci_driver); |
| |
| module_param(fmax, uint, 0444); |
| |
| MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); |
| MODULE_LICENSE("GPL"); |