blob: 2455a581fd70cfa21e88db4a5e22c1ffe86e0ceb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Marvell NAND flash controller driver
*
* Copyright (C) 2017 Marvell
* Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
*
*
* This NAND controller driver handles two versions of the hardware,
* one is called NFCv1 and is available on PXA SoCs and the other is
* called NFCv2 and is available on Armada SoCs.
*
* The main visible difference is that NFCv1 only has Hamming ECC
* capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
* is not used with NFCv2.
*
* The ECC layouts are depicted in details in Marvell AN-379, but here
* is a brief description.
*
* When using Hamming, the data is split in 512B chunks (either 1, 2
* or 4) and each chunk will have its own ECC "digest" of 6B at the
* beginning of the OOB area and eventually the remaining free OOB
* bytes (also called "spare" bytes in the driver). This engine
* corrects up to 1 bit per chunk and detects reliably an error if
* there are at most 2 bitflips. Here is the page layout used by the
* controller when Hamming is chosen:
*
* +-------------------------------------------------------------+
* | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
* +-------------------------------------------------------------+
*
* When using the BCH engine, there are N identical (data + free OOB +
* ECC) sections and potentially an extra one to deal with
* configurations where the chosen (data + free OOB + ECC) sizes do
* not align with the page (data + OOB) size. ECC bytes are always
* 30B per ECC chunk. Here is the page layout used by the controller
* when BCH is chosen:
*
* +-----------------------------------------
* | Data 1 | Free OOB bytes 1 | ECC 1 | ...
* +-----------------------------------------
*
* -------------------------------------------
* ... | Data N | Free OOB bytes N | ECC N |
* -------------------------------------------
*
* --------------------------------------------+
* Last Data | Last Free OOB bytes | Last ECC |
* --------------------------------------------+
*
* In both cases, the layout seen by the user is always: all data
* first, then all free OOB bytes and finally all ECC bytes. With BCH,
* ECC bytes are 30B long and are padded with 0xFF to align on 32
* bytes.
*
* The controller has certain limitations that are handled by the
* driver:
* - It can only read 2k at a time. To overcome this limitation, the
* driver issues data cycles on the bus, without issuing new
* CMD + ADDR cycles. The Marvell term is "naked" operations.
* - The ECC strength in BCH mode cannot be tuned. It is fixed 16
* bits. What can be tuned is the ECC block size as long as it
* stays between 512B and 2kiB. It's usually chosen based on the
* chip ECC requirements. For instance, using 2kiB ECC chunks
* provides 4b/512B correctability.
* - The controller will always treat data bytes, free OOB bytes
* and ECC bytes in that order, no matter what the real layout is
* (which is usually all data then all OOB bytes). The
* marvell_nfc_layouts array below contains the currently
* supported layouts.
* - Because of these weird layouts, the Bad Block Markers can be
* located in data section. In this case, the NAND_BBT_NO_OOB_BBM
* option must be set to prevent scanning/writing bad block
* markers.
*/
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/mtd/rawnand.h>
#include <linux/of_platform.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <asm/unaligned.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/pxa-dma.h>
#include <linux/platform_data/mtd-nand-pxa3xx.h>
/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
#define FIFO_DEPTH 8
#define FIFO_REP(x) (x / sizeof(u32))
#define BCH_SEQ_READS (32 / FIFO_DEPTH)
/* NFC does not support transfers of larger chunks at a time */
#define MAX_CHUNK_SIZE 2112
/* NFCv1 cannot read more that 7 bytes of ID */
#define NFCV1_READID_LEN 7
/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
#define POLL_PERIOD 0
#define POLL_TIMEOUT 100000
/* Interrupt maximum wait period in ms */
#define IRQ_TIMEOUT 1000
/* Latency in clock cycles between SoC pins and NFC logic */
#define MIN_RD_DEL_CNT 3
/* Maximum number of contiguous address cycles */
#define MAX_ADDRESS_CYC_NFCV1 5
#define MAX_ADDRESS_CYC_NFCV2 7
/* System control registers/bits to enable the NAND controller on some SoCs */
#define GENCONF_SOC_DEVICE_MUX 0x208
#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
#define GENCONF_CLK_GATING_CTRL 0x220
#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
#define GENCONF_ND_CLK_CTRL 0x700
#define GENCONF_ND_CLK_CTRL_EN BIT(0)
/* NAND controller data flash control register */
#define NDCR 0x00
#define NDCR_ALL_INT GENMASK(11, 0)
#define NDCR_CS1_CMDDM BIT(7)
#define NDCR_CS0_CMDDM BIT(8)
#define NDCR_RDYM BIT(11)
#define NDCR_ND_ARB_EN BIT(12)
#define NDCR_RA_START BIT(15)
#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
#define NDCR_DWIDTH_M BIT(26)
#define NDCR_DWIDTH_C BIT(27)
#define NDCR_ND_RUN BIT(28)
#define NDCR_DMA_EN BIT(29)
#define NDCR_ECC_EN BIT(30)
#define NDCR_SPARE_EN BIT(31)
#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
NDCR_DWIDTH_M | NDCR_DWIDTH_C))
/* NAND interface timing parameter 0 register */
#define NDTR0 0x04
#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
#define NDTR0_SEL_NRE_EDGE BIT(7)
#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
#define NDTR0_SELCNTR BIT(26)
#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
/* NAND interface timing parameter 1 register */
#define NDTR1 0x0C
#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
#define NDTR1_PRESCALE BIT(14)
#define NDTR1_WAIT_MODE BIT(15)
#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
/* NAND controller status register */
#define NDSR 0x14
#define NDSR_WRCMDREQ BIT(0)
#define NDSR_RDDREQ BIT(1)
#define NDSR_WRDREQ BIT(2)
#define NDSR_CORERR BIT(3)
#define NDSR_UNCERR BIT(4)
#define NDSR_CMDD(cs) BIT(8 - cs)
#define NDSR_RDY(rb) BIT(11 + rb)
#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
/* NAND ECC control register */
#define NDECCCTRL 0x28
#define NDECCCTRL_BCH_EN BIT(0)
/* NAND controller data buffer register */
#define NDDB 0x40
/* NAND controller command buffer 0 register */
#define NDCB0 0x48
#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
#define NDCB0_DBC BIT(19)
#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
#define NDCB0_CSEL BIT(24)
#define NDCB0_RDY_BYP BIT(27)
#define NDCB0_LEN_OVRD BIT(28)
#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
/* NAND controller command buffer 1 register */
#define NDCB1 0x4C
#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
#define NDCB1_ADDRS_PAGE(x) (x << 16)
/* NAND controller command buffer 2 register */
#define NDCB2 0x50
#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
/* NAND controller command buffer 3 register */
#define NDCB3 0x54
#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
#define TYPE_READ 0
#define TYPE_WRITE 1
#define TYPE_ERASE 2
#define TYPE_READ_ID 3
#define TYPE_STATUS 4
#define TYPE_RESET 5
#define TYPE_NAKED_CMD 6
#define TYPE_NAKED_ADDR 7
#define TYPE_MASK 7
#define XTYPE_MONOLITHIC_RW 0
#define XTYPE_LAST_NAKED_RW 1
#define XTYPE_FINAL_COMMAND 3
#define XTYPE_READ 4
#define XTYPE_WRITE_DISPATCH 4
#define XTYPE_NAKED_RW 5
#define XTYPE_COMMAND_DISPATCH 6
#define XTYPE_MASK 7
/**
* struct marvell_hw_ecc_layout - layout of Marvell ECC
*
* Marvell ECC engine works differently than the others, in order to limit the
* size of the IP, hardware engineers chose to set a fixed strength at 16 bits
* per subpage, and depending on a the desired strength needed by the NAND chip,
* a particular layout mixing data/spare/ecc is defined, with a possible last
* chunk smaller that the others.
*
* @writesize: Full page size on which the layout applies
* @chunk: Desired ECC chunk size on which the layout applies
* @strength: Desired ECC strength (per chunk size bytes) on which the
* layout applies
* @nchunks: Total number of chunks
* @full_chunk_cnt: Number of full-sized chunks, which is the number of
* repetitions of the pattern:
* (data_bytes + spare_bytes + ecc_bytes).
* @data_bytes: Number of data bytes per chunk
* @spare_bytes: Number of spare bytes per chunk
* @ecc_bytes: Number of ecc bytes per chunk
* @last_data_bytes: Number of data bytes in the last chunk
* @last_spare_bytes: Number of spare bytes in the last chunk
* @last_ecc_bytes: Number of ecc bytes in the last chunk
*/
struct marvell_hw_ecc_layout {
/* Constraints */
int writesize;
int chunk;
int strength;
/* Corresponding layout */
int nchunks;
int full_chunk_cnt;
int data_bytes;
int spare_bytes;
int ecc_bytes;
int last_data_bytes;
int last_spare_bytes;
int last_ecc_bytes;
};
#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
{ \
.writesize = ws, \
.chunk = dc, \
.strength = ds, \
.nchunks = nc, \
.full_chunk_cnt = fcc, \
.data_bytes = db, \
.spare_bytes = sb, \
.ecc_bytes = eb, \
.last_data_bytes = ldb, \
.last_spare_bytes = lsb, \
.last_ecc_bytes = leb, \
}
/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
};
/**
* struct marvell_nand_chip_sel - CS line description
*
* The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
* is made by a field in NDCB0 register, and in another field in NDCB2 register.
* The datasheet describes the logic with an error: ADDR5 field is once
* declared at the beginning of NDCB2, and another time at its end. Because the
* ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
* to use the last bit of this field instead of the first ones.
*
* @cs: Wanted CE lane.
* @ndcb0_csel: Value of the NDCB0 register with or without the flag
* selecting the wanted CE lane. This is set once when
* the Device Tree is probed.
* @rb: Ready/Busy pin for the flash chip
*/
struct marvell_nand_chip_sel {
unsigned int cs;
u32 ndcb0_csel;
unsigned int rb;
};
/**
* struct marvell_nand_chip - stores NAND chip device related information
*
* @chip: Base NAND chip structure
* @node: Used to store NAND chips into a list
* @layout: NAND layout when using hardware ECC
* @ndcr: Controller register value for this NAND chip
* @ndtr0: Timing registers 0 value for this NAND chip
* @ndtr1: Timing registers 1 value for this NAND chip
* @addr_cyc: Amount of cycles needed to pass column address
* @selected_die: Current active CS
* @nsels: Number of CS lines required by the NAND chip
* @sels: Array of CS lines descriptions
*/
struct marvell_nand_chip {
struct nand_chip chip;
struct list_head node;
const struct marvell_hw_ecc_layout *layout;
u32 ndcr;
u32 ndtr0;
u32 ndtr1;
int addr_cyc;
int selected_die;
unsigned int nsels;
struct marvell_nand_chip_sel sels[];
};
static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
{
return container_of(chip, struct marvell_nand_chip, chip);
}
static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
*nand)
{
return &nand->sels[nand->selected_die];
}
/**
* struct marvell_nfc_caps - NAND controller capabilities for distinction
* between compatible strings
*
* @max_cs_nb: Number of Chip Select lines available
* @max_rb_nb: Number of Ready/Busy lines available
* @need_system_controller: Indicates if the SoC needs to have access to the
* system controller (ie. to enable the NAND controller)
* @legacy_of_bindings: Indicates if DT parsing must be done using the old
* fashion way
* @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
* BCH error detection and correction algorithm,
* NDCB3 register has been added
* @use_dma: Use dma for data transfers
*/
struct marvell_nfc_caps {
unsigned int max_cs_nb;
unsigned int max_rb_nb;
bool need_system_controller;
bool legacy_of_bindings;
bool is_nfcv2;
bool use_dma;
};
/**
* struct marvell_nfc - stores Marvell NAND controller information
*
* @controller: Base controller structure
* @dev: Parent device (used to print error messages)
* @regs: NAND controller registers
* @core_clk: Core clock
* @reg_clk: Registers clock
* @complete: Completion object to wait for NAND controller events
* @assigned_cs: Bitmask describing already assigned CS lines
* @chips: List containing all the NAND chips attached to
* this NAND controller
* @selected_chip: Currently selected target chip
* @caps: NAND controller capabilities for each compatible string
* @use_dma: Whetner DMA is used
* @dma_chan: DMA channel (NFCv1 only)
* @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
*/
struct marvell_nfc {
struct nand_controller controller;
struct device *dev;
void __iomem *regs;
struct clk *core_clk;
struct clk *reg_clk;
struct completion complete;
unsigned long assigned_cs;
struct list_head chips;
struct nand_chip *selected_chip;
const struct marvell_nfc_caps *caps;
/* DMA (NFCv1 only) */
bool use_dma;
struct dma_chan *dma_chan;
u8 *dma_buf;
};
static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
{
return container_of(ctrl, struct marvell_nfc, controller);
}
/**
* struct marvell_nfc_timings - NAND controller timings expressed in NAND
* Controller clock cycles
*
* @tRP: ND_nRE pulse width
* @tRH: ND_nRE high duration
* @tWP: ND_nWE pulse time
* @tWH: ND_nWE high duration
* @tCS: Enable signal setup time
* @tCH: Enable signal hold time
* @tADL: Address to write data delay
* @tAR: ND_ALE low to ND_nRE low delay
* @tWHR: ND_nWE high to ND_nRE low for status read
* @tRHW: ND_nRE high duration, read to write delay
* @tR: ND_nWE high to ND_nRE low for read
*/
struct marvell_nfc_timings {
/* NDTR0 fields */
unsigned int tRP;
unsigned int tRH;
unsigned int tWP;
unsigned int tWH;
unsigned int tCS;
unsigned int tCH;
unsigned int tADL;
/* NDTR1 fields */
unsigned int tAR;
unsigned int tWHR;
unsigned int tRHW;
unsigned int tR;
};
/**
* TO_CYCLES() - Derives a duration in numbers of clock cycles.
*
* @ps: Duration in pico-seconds
* @period_ns: Clock period in nano-seconds
*
* Convert the duration in nano-seconds, then divide by the period and
* return the number of clock periods.
*/
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
period_ns))
/**
* struct marvell_nfc_op - filled during the parsing of the ->exec_op()
* subop subset of instructions.
*
* @ndcb: Array of values written to NDCBx registers
* @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
* @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
* @rdy_delay_ns: Optional delay after waiting for the RB pin
* @data_delay_ns: Optional delay after the data xfer
* @data_instr_idx: Index of the data instruction in the subop
* @data_instr: Pointer to the data instruction in the subop
*/
struct marvell_nfc_op {
u32 ndcb[4];
unsigned int cle_ale_delay_ns;
unsigned int rdy_timeout_ms;
unsigned int rdy_delay_ns;
unsigned int data_delay_ns;
unsigned int data_instr_idx;
const struct nand_op_instr *data_instr;
};
/*
* Internal helper to conditionnally apply a delay (from the above structure,
* most of the time).
*/
static void cond_delay(unsigned int ns)
{
if (!ns)
return;
if (ns < 10000)
ndelay(ns);
else
udelay(DIV_ROUND_UP(ns, 1000));
}
/*
* The controller has many flags that could generate interrupts, most of them
* are disabled and polling is used. For the very slow signals, using interrupts
* may relax the CPU charge.
*/
static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
{
u32 reg;
/* Writing 1 disables the interrupt */
reg = readl_relaxed(nfc->regs + NDCR);
writel_relaxed(reg | int_mask, nfc->regs + NDCR);
}
static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
{
u32 reg;
/* Writing 0 enables the interrupt */
reg = readl_relaxed(nfc->regs + NDCR);
writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
}
static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
{
u32 reg;
reg = readl_relaxed(nfc->regs + NDSR);
writel_relaxed(int_mask, nfc->regs + NDSR);
return reg & int_mask;
}
static void marvell_nfc_force_byte_access(struct nand_chip *chip,
bool force_8bit)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
u32 ndcr;
/*
* Callers of this function do not verify if the NAND is using a 16-bit
* an 8-bit bus for normal operations, so we need to take care of that
* here by leaving the configuration unchanged if the NAND does not have
* the NAND_BUSWIDTH_16 flag set.
*/
if (!(chip->options & NAND_BUSWIDTH_16))
return;
ndcr = readl_relaxed(nfc->regs + NDCR);
if (force_8bit)
ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
else
ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
writel_relaxed(ndcr, nfc->regs + NDCR);
}
static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
u32 val;
int ret;
/*
* The command is being processed, wait for the ND_RUN bit to be
* cleared by the NFC. If not, we must clear it by hand.
*/
ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
(val & NDCR_ND_RUN) == 0,
POLL_PERIOD, POLL_TIMEOUT);
if (ret) {
dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
nfc->regs + NDCR);
return ret;
}
return 0;
}
/*
* Any time a command has to be sent to the controller, the following sequence
* has to be followed:
* - call marvell_nfc_prepare_cmd()
* -> activate the ND_RUN bit that will kind of 'start a job'
* -> wait the signal indicating the NFC is waiting for a command
* - send the command (cmd and address cycles)
* - enventually send or receive the data
* - call marvell_nfc_end_cmd() with the corresponding flag
* -> wait the flag to be triggered or cancel the job with a timeout
*
* The following helpers are here to factorize the code a bit so that
* specialized functions responsible for executing the actual NAND
* operations do not have to replicate the same code blocks.
*/
static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
u32 ndcr, val;
int ret;
/* Poll ND_RUN and clear NDSR before issuing any command */
ret = marvell_nfc_wait_ndrun(chip);
if (ret) {
dev_err(nfc->dev, "Last operation did not succeed\n");
return ret;
}
ndcr = readl_relaxed(nfc->regs + NDCR);
writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
/* Assert ND_RUN bit and wait the NFC to be ready */
writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
val & NDSR_WRCMDREQ,
POLL_PERIOD, POLL_TIMEOUT);
if (ret) {
dev_err(nfc->dev, "Timeout on WRCMDRE\n");
return -ETIMEDOUT;
}
/* Command may be written, clear WRCMDREQ status bit */
writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
return 0;
}
static void marvell_nfc_send_cmd(struct nand_chip *chip,
struct marvell_nfc_op *nfc_op)
{
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
nfc->regs + NDCB0);
writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
/*
* Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
* fields are used (only available on NFCv2).
*/
if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
}
}
static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
const char *label)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
u32 val;
int ret;
ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
val & flag,
POLL_PERIOD, POLL_TIMEOUT);
if (ret) {
dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
label, val);
if (nfc->dma_chan)
dmaengine_terminate_all(nfc->dma_chan);
return ret;
}
/*
* DMA function uses this helper to poll on CMDD bits without wanting
* them to be cleared.
*/
if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
return 0;
writel_relaxed(flag, nfc->regs + NDSR);
return 0;
}
static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
{
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
}
static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
u32 expected_val, unsigned long timeout_ms)
{
unsigned long limit;
u32 st;
limit = jiffies + msecs_to_jiffies(timeout_ms);
do {
st = readl_relaxed(nfc->regs + NDSR);
if (st & NDSR_RDY(1))
st |= NDSR_RDY(0);
if ((st & mask) == expected_val)
return 0;
cpu_relax();
} while (time_after(limit, jiffies));
return -ETIMEDOUT;
}
static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 pending;
int ret;
/* Timeout is expressed in ms */
if (!timeout_ms)
timeout_ms = IRQ_TIMEOUT;
if (mtd->oops_panic_write) {
ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
NDSR_RDY(0),
timeout_ms);
} else {
init_completion(&nfc->complete);
marvell_nfc_enable_int(nfc, NDCR_RDYM);
ret = wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(timeout_ms));
marvell_nfc_disable_int(nfc, NDCR_RDYM);
}
pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
/*
* In case the interrupt was not served in the required time frame,
* check if the ISR was not served or if something went actually wrong.
*/
if (!ret && !pending) {
dev_err(nfc->dev, "Timeout waiting for RB signal\n");
return -ETIMEDOUT;
}
return 0;
}
static void marvell_nfc_select_target(struct nand_chip *chip,
unsigned int die_nr)
{
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
u32 ndcr_generic;
/*
* Reset the NDCR register to a clean state for this particular chip,
* also clear ND_RUN bit.
*/
ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
/* Also reset the interrupt status register */
marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
return;
writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
nfc->selected_chip = chip;
marvell_nand->selected_die = die_nr;
}
static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
{
struct marvell_nfc *nfc = dev_id;
u32 st = readl_relaxed(nfc->regs + NDSR);
u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
/*
* RDY interrupt mask is one bit in NDCR while there are two status
* bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
*/
if (st & NDSR_RDY(1))
st |= NDSR_RDY(0);
if (!(st & ien))
return IRQ_NONE;
marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
complete(&nfc->complete);
return IRQ_HANDLED;
}
/* HW ECC related functions */
static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
u32 ndcr = readl_relaxed(nfc->regs + NDCR);
if (!(ndcr & NDCR_ECC_EN)) {
writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
/*
* When enabling BCH, set threshold to 0 to always know the
* number of corrected bitflips.
*/
if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
}
}
static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
u32 ndcr = readl_relaxed(nfc->regs + NDCR);
if (ndcr & NDCR_ECC_EN) {
writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
writel_relaxed(0, nfc->regs + NDECCCTRL);
}
}
/* DMA related helpers */
static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
{
u32 reg;
reg = readl_relaxed(nfc->regs + NDCR);
writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
}
static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
{
u32 reg;
reg = readl_relaxed(nfc->regs + NDCR);
writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
}
/* Read/write PIO/DMA accessors */
static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
enum dma_data_direction direction,
unsigned int len)
{
unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
struct dma_async_tx_descriptor *tx;
struct scatterlist sg;
dma_cookie_t cookie;
int ret;
marvell_nfc_enable_dma(nfc);
/* Prepare the DMA transfer */
sg_init_one(&sg, nfc->dma_buf, dma_len);
dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
direction == DMA_FROM_DEVICE ?
DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
return -ENXIO;
}
/* Do the task and wait for it to finish */
cookie = dmaengine_submit(tx);
ret = dma_submit_error(cookie);
if (ret)
return -EIO;
dma_async_issue_pending(nfc->dma_chan);
ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
marvell_nfc_disable_dma(nfc);
if (ret) {
dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
dmaengine_terminate_all(nfc->dma_chan);
return -ETIMEDOUT;
}
return 0;
}
static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
unsigned int len)
{
unsigned int last_len = len % FIFO_DEPTH;
unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
int i;
for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
if (last_len) {
u8 tmp_buf[FIFO_DEPTH];
ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
memcpy(in + last_full_offset, tmp_buf, last_len);
}
return 0;
}
static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
unsigned int len)
{
unsigned int last_len = len % FIFO_DEPTH;
unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
int i;
for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
if (last_len) {
u8 tmp_buf[FIFO_DEPTH];
memcpy(tmp_buf, out + last_full_offset, last_len);
iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
}
return 0;
}
static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
u8 *data, int data_len,
u8 *spare, int spare_len,
u8 *ecc, int ecc_len,
unsigned int *max_bitflips)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int bf;
/*
* Blank pages (all 0xFF) that have not been written may be recognized
* as bad if bitflips occur, so whenever an uncorrectable error occurs,
* check if the entire page (with ECC bytes) is actually blank or not.
*/
if (!data)
data_len = 0;
if (!spare)
spare_len = 0;
if (!ecc)
ecc_len = 0;
bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
spare, spare_len, chip->ecc.strength);
if (bf < 0) {
mtd->ecc_stats.failed++;
return;
}
/* Update the stats and max_bitflips */
mtd->ecc_stats.corrected += bf;
*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
}
/*
* Check if a chunk is correct or not according to the hardware ECC engine.
* mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
* mtd->ecc_stats.failure is not, the function will instead return a non-zero
* value indicating that a check on the emptyness of the subpage must be
* performed before actually declaring the subpage as "corrupted".
*/
static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
unsigned int *max_bitflips)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
int bf = 0;
u32 ndsr;
ndsr = readl_relaxed(nfc->regs + NDSR);
/* Check uncorrectable error flag */
if (ndsr & NDSR_UNCERR) {
writel_relaxed(ndsr, nfc->regs + NDSR);
/*
* Do not increment ->ecc_stats.failed now, instead, return a
* non-zero value to indicate that this chunk was apparently
* bad, and it should be check to see if it empty or not. If
* the chunk (with ECC bytes) is not declared empty, the calling
* function must increment the failure count.
*/
return -EBADMSG;
}
/* Check correctable error flag */
if (ndsr & NDSR_CORERR) {
writel_relaxed(ndsr, nfc->regs + NDSR);
if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
bf = NDSR_ERRCNT(ndsr);
else
bf = 1;
}
/* Update the stats and max_bitflips */
mtd->ecc_stats.corrected += bf;
*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
return 0;
}
/* Hamming read helpers */
static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
u8 *data_buf, u8 *oob_buf,
bool raw, int page)
{
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
struct marvell_nfc_op nfc_op = {
.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
NDCB0_DBC |
NDCB0_CMD1(NAND_CMD_READ0) |
NDCB0_CMD2(NAND_CMD_READSTART),
.ndcb[1] = NDCB1_ADDRS_PAGE(page),
.ndcb[2] = NDCB2_ADDR5_PAGE(page),
};
unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
int ret;
/* NFCv2 needs more information about the operation being executed */
if (nfc->caps->is_nfcv2)
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
"RDDREQ while draining FIFO (data/oob)");
if (ret)
return ret;
/*
* Read the page then the OOB area. Unlike what is shown in current
* documentation, spare bytes are protected by the ECC engine, and must
* be at the beginning of the OOB area or running this driver on legacy
* systems will prevent the discovery of the BBM/BBT.
*/
if (nfc->use_dma) {
marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
lt->data_bytes + oob_bytes);
memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
} else {
marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
}
ret = marvell_nfc_wait_cmdd(chip);
return ret;
}
static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
marvell_nfc_select_target(chip, chip->cur_cs);
return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
true, page);
}
static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
int max_bitflips = 0, ret;
u8 *raw_buf;
marvell_nfc_select_target(chip, chip->cur_cs);
marvell_nfc_enable_hw_ecc(chip);
marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
page);
ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
marvell_nfc_disable_hw_ecc(chip);
if (!ret)
return max_bitflips;
/*
* When ECC failures are detected, check if the full page has been
* written or not. Ignore the failure if it is actually empty.
*/
raw_buf = kmalloc(full_sz, GFP_KERNEL);
if (!raw_buf)
return -ENOMEM;
marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
lt->data_bytes, true, page);
marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
&max_bitflips);
kfree(raw_buf);
return max_bitflips;
}
/*
* Spare area in Hamming layouts is not protected by the ECC engine (even if
* it appears before the ECC bytes when reading), the ->read_oob_raw() function
* also stands for ->read_oob().
*/
static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
{
u8 *buf = nand_get_data_buf(chip);
marvell_nfc_select_target(chip, chip->cur_cs);
return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
true, page);
}
/* Hamming write helpers */
static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
const u8 *data_buf,
const u8 *oob_buf, bool raw,
int page)
{
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(nand_get_interface_config(chip));
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
struct marvell_nfc_op nfc_op = {
.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
NDCB0_CMD1(NAND_CMD_SEQIN) |
NDCB0_CMD2(NAND_CMD_PAGEPROG) |
NDCB0_DBC,
.ndcb[1] = NDCB1_ADDRS_PAGE(page),
.ndcb[2] = NDCB2_ADDR5_PAGE(page),
};
unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
int ret;
/* NFCv2 needs more information about the operation being executed */
if (nfc->caps->is_nfcv2)
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
"WRDREQ while loading FIFO (data)");
if (ret)
return ret;
/* Write the page then the OOB area */
if (nfc->use_dma) {
memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
lt->ecc_bytes + lt->spare_bytes);
} else {
marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
}
ret = marvell_nfc_wait_cmdd(chip);
if (ret)
return ret;
ret = marvell_nfc_wait_op(chip,
PSEC_TO_MSEC(sdr->tPROG_max));
return ret;
}
static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
const u8 *buf,
int oob_required, int page)
{
marvell_nfc_select_target(chip, chip->cur_cs);
return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
true, page);
}
static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
const u8 *buf,
int oob_required, int page)
{
int ret;
marvell_nfc_select_target(chip, chip->cur_cs);
marvell_nfc_enable_hw_ecc(chip);
ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
false, page);
marvell_nfc_disable_hw_ecc(chip);
return ret;
}
/*
* Spare area in Hamming layouts is not protected by the ECC engine (even if
* it appears before the ECC bytes when reading), the ->write_oob_raw() function
* also stands for ->write_oob().
*/
static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *buf = nand_get_data_buf(chip);
memset(buf, 0xFF, mtd->writesize);
marvell_nfc_select_target(chip, chip->cur_cs);
return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
true, page);
}
/* BCH read helpers */
static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
u8 *oob = chip->oob_poi;
int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
lt->last_spare_bytes;
int data_len = lt->data_bytes;
int spare_len = lt->spare_bytes;
int ecc_len = lt->ecc_bytes;
int chunk;
marvell_nfc_select_target(chip, chip->cur_cs);
if (oob_required)
memset(chip->oob_poi, 0xFF, mtd->oobsize);
nand_read_page_op(chip, page, 0, NULL, 0);
for (chunk = 0; chunk < lt->nchunks; chunk++) {
/* Update last chunk length */
if (chunk >= lt->full_chunk_cnt) {
data_len = lt->last_data_bytes;
spare_len = lt->last_spare_bytes;
ecc_len = lt->last_ecc_bytes;
}
/* Read data bytes*/
nand_change_read_column_op(chip, chunk * chunk_size,
buf + (lt->data_bytes * chunk),
data_len, false);
/* Read spare bytes */
nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
spare_len, false, false);
/* Read ECC bytes */
nand_read_data_op(chip, oob + ecc_offset +
(ALIGN(lt->ecc_bytes, 32) * chunk),
ecc_len, false, false);
}
return 0;
}
static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
u8 *data, unsigned int data_len,
u8 *spare, unsigned int spare_len,
int page)
{
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
int i, ret;
struct marvell_nfc_op nfc_op = {
.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
NDCB0_LEN_OVRD,
.ndcb[1] = NDCB1_ADDRS_PAGE(page),
.ndcb[2] = NDCB2_ADDR5_PAGE(page),
.ndcb[3] = data_len + spare_len,
};
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return;
if (chunk == 0)
nfc_op.ndcb[0] |= NDCB0_DBC |
NDCB0_CMD1(NAND_CMD_READ0) |
NDCB0_CMD2(NAND_CMD_READSTART);
/*
* Trigger the monolithic read on the first chunk, then naked read on
* intermediate chunks and finally a last naked read on the last chunk.
*/
if (chunk == 0)
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
else if (chunk < lt->nchunks - 1)
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
else
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
marvell_nfc_send_cmd(chip, &nfc_op);
/*
* According to the datasheet, when reading from NDDB
* with BCH enabled, after each 32 bytes reads, we
* have to make sure that the NDSR.RDDREQ bit is set.
*
* Drain the FIFO, 8 32-bit reads at a time, and skip
* the polling on the last read.
*
* Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
*/
for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
"RDDREQ while draining FIFO (data)");
marvell_nfc_xfer_data_in_pio(nfc, data,
FIFO_DEPTH * BCH_SEQ_READS);
data += FIFO_DEPTH * BCH_SEQ_READS;
}
for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
"RDDREQ while draining FIFO (OOB)");
marvell_nfc_xfer_data_in_pio(nfc, spare,
FIFO_DEPTH * BCH_SEQ_READS);
spare += FIFO_DEPTH * BCH_SEQ_READS;
}
}
static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
u8 *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
u8 *data = buf, *spare = chip->oob_poi;
int max_bitflips = 0;
u32 failure_mask = 0;
int chunk, ret;
marvell_nfc_select_target(chip, chip->cur_cs);
/*
* With BCH, OOB is not fully used (and thus not read entirely), not
* expected bytes could show up at the end of the OOB buffer if not
* explicitly erased.
*/
if (oob_required)
memset(chip->oob_poi, 0xFF, mtd->oobsize);
marvell_nfc_enable_hw_ecc(chip);
for (chunk = 0; chunk < lt->nchunks; chunk++) {
/* Update length for the last chunk */
if (chunk >= lt->full_chunk_cnt) {
data_len = lt->last_data_bytes;
spare_len = lt->last_spare_bytes;
}
/* Read the chunk and detect number of bitflips */
marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
spare, spare_len, page);
ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
if (ret)
failure_mask |= BIT(chunk);
data += data_len;
spare += spare_len;
}
marvell_nfc_disable_hw_ecc(chip);
if (!failure_mask)
return max_bitflips;
/*
* Please note that dumping the ECC bytes during a normal read with OOB
* area would add a significant overhead as ECC bytes are "consumed" by
* the controller in normal mode and must be re-read in raw mode. To
* avoid dropping the performances, we prefer not to include them. The
* user should re-read the page in raw mode if ECC bytes are required.
*/
/*
* In case there is any subpage read error, we usually re-read only ECC
* bytes in raw mode and check if the whole page is empty. In this case,
* it is normal that the ECC check failed and we just ignore the error.
*
* However, it has been empirically observed that for some layouts (e.g
* 2k page, 8b strength per 512B chunk), the controller tries to correct
* bits and may create itself bitflips in the erased area. To overcome
* this strange behavior, the whole page is re-read in raw mode, not
* only the ECC bytes.
*/
for (chunk = 0; chunk < lt->nchunks; chunk++) {
int data_off_in_page, spare_off_in_page, ecc_off_in_page;
int data_off, spare_off, ecc_off;
int data_len, spare_len, ecc_len;
/* No failure reported for this chunk, move to the next one */
if (!(failure_mask & BIT(chunk)))
continue;
data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
lt->ecc_bytes);
spare_off_in_page = data_off_in_page +
(chunk < lt->full_chunk_cnt ? lt->data_bytes :
lt->last_data_bytes);
ecc_off_in_page = spare_off_in_page +
(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
lt->last_spare_bytes);
data_off = chunk * lt->data_bytes;
spare_off = chunk * lt->spare_bytes;
ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
lt->last_spare_bytes +
(chunk * (lt->ecc_bytes + 2));
data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
lt->last_data_bytes;
spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
lt->last_spare_bytes;
ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
lt->last_ecc_bytes;
/*
* Only re-read the ECC bytes, unless we are using the 2k/8b
* layout which is buggy in the sense that the ECC engine will
* try to correct data bytes anyway, creating bitflips. In this
* case, re-read the entire page.
*/
if (lt->writesize == 2048 && lt->strength == 8) {
nand_change_read_column_op(chip, data_off_in_page,
buf + data_off, data_len,
false);
nand_change_read_column_op(chip, spare_off_in_page,
chip->oob_poi + spare_off, spare_len,
false);
}
nand_change_read_column_op(chip, ecc_off_in_page,
chip->oob_poi + ecc_off, ecc_len,
false);
/* Check the entire chunk (data + spare + ecc) for emptyness */
marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
chip->oob_poi + spare_off, spare_len,
chip->oob_poi + ecc_off, ecc_len,
&max_bitflips);
}
return max_bitflips;
}
static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
{
u8 *buf = nand_get_data_buf(chip);
return chip->ecc.read_page_raw(chip, buf, true, page);
}
static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
{
u8 *buf = nand_get_data_buf(chip);
return chip->ecc.read_page(chip, buf, true, page);
}
/* BCH write helpers */
static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
const u8 *buf,
int oob_required, int page)
{
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
int data_len = lt->data_bytes;
int spare_len = lt->spare_bytes;
int ecc_len = lt->ecc_bytes;
int spare_offset = 0;
int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
lt->last_spare_bytes;
int chunk;
marvell_nfc_select_target(chip, chip->cur_cs);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
for (chunk = 0; chunk < lt->nchunks; chunk++) {
if (chunk >= lt->full_chunk_cnt) {
data_len = lt->last_data_bytes;
spare_len = lt->last_spare_bytes;
ecc_len = lt->last_ecc_bytes;
}
/* Point to the column of the next chunk */
nand_change_write_column_op(chip, chunk * full_chunk_size,
NULL, 0, false);
/* Write the data */
nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
data_len, false);
if (!oob_required)
continue;
/* Write the spare bytes */
if (spare_len)
nand_write_data_op(chip, chip->oob_poi + spare_offset,
spare_len, false);
/* Write the ECC bytes */
if (ecc_len)
nand_write_data_op(chip, chip->oob_poi + ecc_offset,
ecc_len, false);
spare_offset += spare_len;
ecc_offset += ALIGN(ecc_len, 32);
}
return nand_prog_page_end_op(chip);
}
static int
marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
const u8 *data, unsigned int data_len,
const u8 *spare, unsigned int spare_len,
int page)
{
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
u32 xtype;
int ret;
struct marvell_nfc_op nfc_op = {
.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
.ndcb[3] = data_len + spare_len,
};
/*
* First operation dispatches the CMD_SEQIN command, issue the address
* cycles and asks for the first chunk of data.
* All operations in the middle (if any) will issue a naked write and
* also ask for data.
* Last operation (if any) asks for the last chunk of data through a
* last naked write.
*/
if (chunk == 0) {
if (lt->nchunks == 1)
xtype = XTYPE_MONOLITHIC_RW;
else
xtype = XTYPE_WRITE_DISPATCH;
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
NDCB0_CMD1(NAND_CMD_SEQIN);
nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
} else if (chunk < lt->nchunks - 1) {
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
} else {
nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
}
/* Always dispatch the PAGEPROG command on the last chunk */
if (chunk == lt->nchunks - 1)
nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
"WRDREQ while loading FIFO (data)");
if (ret)
return ret;
/* Transfer the contents */
iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
return 0;
}
static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
const u8 *buf,
int oob_required, int page)
{
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(nand_get_interface_config(chip));
struct mtd_info *mtd = nand_to_mtd(chip);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
const u8 *data = buf;
const u8 *spare = chip->oob_poi;
int data_len = lt->data_bytes;
int spare_len = lt->spare_bytes;
int chunk, ret;
marvell_nfc_select_target(chip, chip->cur_cs);
/* Spare data will be written anyway, so clear it to avoid garbage */
if (!oob_required)
memset(chip->oob_poi, 0xFF, mtd->oobsize);
marvell_nfc_enable_hw_ecc(chip);
for (chunk = 0; chunk < lt->nchunks; chunk++) {
if (chunk >= lt->full_chunk_cnt) {
data_len = lt->last_data_bytes;
spare_len = lt->last_spare_bytes;
}
marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
spare, spare_len, page);
data += data_len;
spare += spare_len;
/*
* Waiting only for CMDD or PAGED is not enough, ECC are
* partially written. No flag is set once the operation is
* really finished but the ND_RUN bit is cleared, so wait for it
* before stepping into the next command.
*/
marvell_nfc_wait_ndrun(chip);
}
ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
marvell_nfc_disable_hw_ecc(chip);
if (ret)
return ret;
return 0;
}
static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *buf = nand_get_data_buf(chip);
memset(buf, 0xFF, mtd->writesize);
return chip->ecc.write_page_raw(chip, buf, true, page);
}
static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *buf = nand_get_data_buf(chip);
memset(buf, 0xFF, mtd->writesize);
return chip->ecc.write_page(chip, buf, true, page);
}
/* NAND framework ->exec_op() hooks and related helpers */
static void marvell_nfc_parse_instructions(struct nand_chip *chip,
const struct nand_subop *subop,
struct marvell_nfc_op *nfc_op)
{
const struct nand_op_instr *instr = NULL;
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
bool first_cmd = true;
unsigned int op_id;
int i;
/* Reset the input structure as most of its fields will be OR'ed */
memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
unsigned int offset, naddrs;
const u8 *addrs;
int len;
instr = &subop->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (first_cmd)
nfc_op->ndcb[0] |=
NDCB0_CMD1(instr->ctx.cmd.opcode);
else
nfc_op->ndcb[0] |=
NDCB0_CMD2(instr->ctx.cmd.opcode) |
NDCB0_DBC;
nfc_op->cle_ale_delay_ns = instr->delay_ns;
first_cmd = false;
break;
case NAND_OP_ADDR_INSTR:
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
nfc_op->ndcb[1] |= addrs[i] << (8 * i);
if (naddrs >= 5)
nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
if (naddrs >= 6)
nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
if (naddrs == 7)
nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
nfc_op->cle_ale_delay_ns = instr->delay_ns;
break;
case NAND_OP_DATA_IN_INSTR:
nfc_op->data_instr = instr;
nfc_op->data_instr_idx = op_id;
nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
if (nfc->caps->is_nfcv2) {
nfc_op->ndcb[0] |=
NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
NDCB0_LEN_OVRD;
len = nand_subop_get_data_len(subop, op_id);
nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
}
nfc_op->data_delay_ns = instr->delay_ns;
break;
case NAND_OP_DATA_OUT_INSTR:
nfc_op->data_instr = instr;
nfc_op->data_instr_idx = op_id;
nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
if (nfc->caps->is_nfcv2) {
nfc_op->ndcb[0] |=
NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
NDCB0_LEN_OVRD;
len = nand_subop_get_data_len(subop, op_id);
nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
}
nfc_op->data_delay_ns = instr->delay_ns;
break;
case NAND_OP_WAITRDY_INSTR:
nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
nfc_op->rdy_delay_ns = instr->delay_ns;
break;
}
}
}
static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
const struct nand_subop *subop,
struct marvell_nfc_op *nfc_op)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
const struct nand_op_instr *instr = nfc_op->data_instr;
unsigned int op_id = nfc_op->data_instr_idx;
unsigned int len = nand_subop_get_data_len(subop, op_id);
unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
int ret;
if (instr->ctx.data.force_8bit)
marvell_nfc_force_byte_access(chip, true);
if (reading) {
u8 *in = instr->ctx.data.buf.in + offset;
ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
} else {
const u8 *out = instr->ctx.data.buf.out + offset;
ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
}
if (instr->ctx.data.force_8bit)
marvell_nfc_force_byte_access(chip, false);
return ret;
}
static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct marvell_nfc_op nfc_op;
bool reading;
int ret;
marvell_nfc_parse_instructions(chip, subop, &nfc_op);
reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
"RDDREQ/WRDREQ while draining raw data");
if (ret)
return ret;
cond_delay(nfc_op.cle_ale_delay_ns);
if (reading) {
if (nfc_op.rdy_timeout_ms) {
ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
}
cond_delay(nfc_op.rdy_delay_ns);
}
marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
ret = marvell_nfc_wait_cmdd(chip);
if (ret)
return ret;
cond_delay(nfc_op.data_delay_ns);
if (!reading) {
if (nfc_op.rdy_timeout_ms) {
ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
}
cond_delay(nfc_op.rdy_delay_ns);
}
/*
* NDCR ND_RUN bit should be cleared automatically at the end of each
* operation but experience shows that the behavior is buggy when it
* comes to writes (with LEN_OVRD). Clear it by hand in this case.
*/
if (!reading) {
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
nfc->regs + NDCR);
}
return 0;
}
static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct marvell_nfc_op nfc_op;
int ret;
marvell_nfc_parse_instructions(chip, subop, &nfc_op);
/*
* Naked access are different in that they need to be flagged as naked
* by the controller. Reset the controller registers fields that inform
* on the type and refill them according to the ongoing operation.
*/
nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
NDCB0_CMD_XTYPE(XTYPE_MASK));
switch (subop->instrs[0].type) {
case NAND_OP_CMD_INSTR:
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
break;
case NAND_OP_ADDR_INSTR:
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
break;
case NAND_OP_DATA_IN_INSTR:
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
break;
case NAND_OP_DATA_OUT_INSTR:
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
break;
default:
/* This should never happen */
break;
}
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
if (!nfc_op.data_instr) {
ret = marvell_nfc_wait_cmdd(chip);
cond_delay(nfc_op.cle_ale_delay_ns);
return ret;
}
ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
"RDDREQ/WRDREQ while draining raw data");
if (ret)
return ret;
marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
ret = marvell_nfc_wait_cmdd(chip);
if (ret)
return ret;
/*
* NDCR ND_RUN bit should be cleared automatically at the end of each
* operation but experience shows that the behavior is buggy when it
* comes to writes (with LEN_OVRD). Clear it by hand in this case.
*/
if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
nfc->regs + NDCR);
}
return 0;
}
static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct marvell_nfc_op nfc_op;
int ret;
marvell_nfc_parse_instructions(chip, subop, &nfc_op);
ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
cond_delay(nfc_op.rdy_delay_ns);
return ret;
}
static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct marvell_nfc_op nfc_op;
int ret;
marvell_nfc_parse_instructions(chip, subop, &nfc_op);
nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
"RDDREQ while reading ID");
if (ret)
return ret;
cond_delay(nfc_op.cle_ale_delay_ns);
if (nfc_op.rdy_timeout_ms) {
ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
}
cond_delay(nfc_op.rdy_delay_ns);
marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
ret = marvell_nfc_wait_cmdd(chip);
if (ret)
return ret;
cond_delay(nfc_op.data_delay_ns);
return 0;
}
static int marvell_nfc_read_status_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct marvell_nfc_op nfc_op;
int ret;
marvell_nfc_parse_instructions(chip, subop, &nfc_op);
nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
"RDDREQ while reading status");
if (ret)
return ret;
cond_delay(nfc_op.cle_ale_delay_ns);
if (nfc_op.rdy_timeout_ms) {
ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
}
cond_delay(nfc_op.rdy_delay_ns);
marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
ret = marvell_nfc_wait_cmdd(chip);
if (ret)
return ret;
cond_delay(nfc_op.data_delay_ns);
return 0;
}
static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct marvell_nfc_op nfc_op;
int ret;
marvell_nfc_parse_instructions(chip, subop, &nfc_op);
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_wait_cmdd(chip);
if (ret)
return ret;
cond_delay(nfc_op.cle_ale_delay_ns);
ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
cond_delay(nfc_op.rdy_delay_ns);
return 0;
}
static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct marvell_nfc_op nfc_op;
int ret;
marvell_nfc_parse_instructions(chip, subop, &nfc_op);
nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
ret = marvell_nfc_prepare_cmd(chip);
if (ret)
return ret;
marvell_nfc_send_cmd(chip, &nfc_op);
ret = marvell_nfc_wait_cmdd(chip);
if (ret)
return ret;
cond_delay(nfc_op.cle_ale_delay_ns);
ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
cond_delay(nfc_op.rdy_delay_ns);
return 0;
}
static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
/* Monolithic reads/writes */
NAND_OP_PARSER_PATTERN(
marvell_nfc_monolithic_access_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_monolithic_access_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
/* Naked commands */
NAND_OP_PARSER_PATTERN(
marvell_nfc_naked_access_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_naked_access_exec,
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_naked_access_exec,
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_naked_access_exec,
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_naked_waitrdy_exec,
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
);
static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
/* Naked commands not supported, use a function for each pattern */
NAND_OP_PARSER_PATTERN(
marvell_nfc_read_id_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_erase_cmd_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_read_status_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_reset_cmd_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
marvell_nfc_naked_waitrdy_exec,
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
);
static int marvell_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
if (!check_only)
marvell_nfc_select_target(chip, op->cs);
if (nfc->caps->is_nfcv2)
return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
op, check_only);
else
return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
op, check_only);
}
/*
* Layouts were broken in old pxa3xx_nand driver, these are supposed to be
* usable.
*/
static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
if (section)
return -ERANGE;
oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
lt->last_ecc_bytes;
oobregion->offset = mtd->oobsize - oobregion->length;
return 0;
}
static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
if (section)
return -ERANGE;
/*
* Bootrom looks in bytes 0 & 5 for bad blocks for the
* 4KB page / 4bit BCH combination.
*/
if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
oobregion->offset = 6;
else
oobregion->offset = 2;
oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
lt->last_spare_bytes - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
.ecc = marvell_nand_ooblayout_ecc,
.free = marvell_nand_ooblayout_free,
};
static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
const struct marvell_hw_ecc_layout *l;
int i;
if (!nfc->caps->is_nfcv2 &&
(mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
dev_err(nfc->dev,
"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
return -ENOTSUPP;
}
to_marvell_nand(chip)->layout = NULL;
for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
l = &marvell_nfc_layouts[i];
if (mtd->writesize == l->writesize &&
ecc->size == l->chunk && ecc->strength == l->strength) {
to_marvell_nand(chip)->layout = l;
break;
}
}
if (!to_marvell_nand(chip)->layout ||
(!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
dev_err(nfc->dev,
"ECC strength %d at page size %d is not supported\n",
ecc->strength, mtd->writesize);
return -ENOTSUPP;
}
/* Special care for the layout 2k/8-bit/512B */
if (l->writesize == 2048 && l->strength == 8) {
if (mtd->oobsize < 128) {
dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
return -ENOTSUPP;
} else {
chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
}
}
mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
ecc->steps = l->nchunks;
ecc->size = l->data_bytes;
if (ecc->strength == 1) {
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
ecc->read_oob = ecc->read_oob_raw;
ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
ecc->write_oob = ecc->write_oob_raw;
} else {
chip->ecc.algo = NAND_ECC_ALGO_BCH;
ecc->strength = 16;
ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
}
return 0;
}
static int marvell_nand_ecc_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(&chip->base);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
int ret;
if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
(!ecc->size || !ecc->strength)) {
if (requirements->step_size && requirements->strength) {
ecc->size = requirements->step_size;
ecc->strength = requirements->strength;
} else {
dev_info(nfc->dev,
"No minimum ECC strength, using 1b/512B\n");
ecc->size = 512;
ecc->strength = 1;
}
}
switch (ecc->engine_type) {
case NAND_ECC_ENGINE_TYPE_ON_HOST:
ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
if (ret)
return ret;
break;
case NAND_ECC_ENGINE_TYPE_NONE:
case NAND_ECC_ENGINE_TYPE_SOFT:
case NAND_ECC_ENGINE_TYPE_ON_DIE:
if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
mtd->writesize != SZ_2K) {
dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
mtd->writesize);
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 8,
.len = 6,
.veroffs = 14,
.maxblocks = 8, /* Last 8 blocks in each chip */
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 8,
.len = 6,
.veroffs = 14,
.maxblocks = 8, /* Last 8 blocks in each chip */
.pattern = bbt_mirror_pattern
};
static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
const struct nand_interface_config *conf)
{
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
const struct nand_sdr_timings *sdr;
struct marvell_nfc_timings nfc_tmg;
int read_delay;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
/*
* SDR timings are given in pico-seconds while NFC timings must be
* expressed in NAND controller clock cycles, which is half of the
* frequency of the accessible ECC clock retrieved by clk_get_rate().
* This is not written anywhere in the datasheet but was observed
* with an oscilloscope.
*
* NFC datasheet gives equations from which thoses calculations
* are derived, they tend to be slightly more restrictives than the
* given core timings and may improve the overall speed.
*/
nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
nfc_tmg.tRH = nfc_tmg.tRP;
nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
nfc_tmg.tWH = nfc_tmg.tWP;
nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
/*
* Read delay is the time of propagation from SoC pins to NFC internal
* logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
* EDO mode, an additional delay of tRH must be taken into account so
* the data is sampled on the falling edge instead of the rising edge.
*/
read_delay = sdr->tRC_min >= 30000 ?
MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
/*
* tWHR and tRHW are supposed to be read to write delays (and vice
* versa) but in some cases, ie. when doing a change column, they must
* be greater than that to be sure tCCS delay is respected.
*/
nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
period_ns) - 2;
nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
period_ns);
/*
* NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
* NFCv1: No WAIT_MODE, tR must be maximal.
*/
if (nfc->caps->is_nfcv2) {
nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
} else {
nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
period_ns);
if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
nfc_tmg.tR = nfc_tmg.tCH - 3;
else
nfc_tmg.tR = 0;
}
if (chipnr < 0)
return 0;
marvell_nand->ndtr0 =
NDTR0_TRP(nfc_tmg.tRP) |
NDTR0_TRH(nfc_tmg.tRH) |
NDTR0_ETRP(nfc_tmg.tRP) |
NDTR0_TWP(nfc_tmg.tWP) |
NDTR0_TWH(nfc_tmg.tWH) |
NDTR0_TCS(nfc_tmg.tCS) |
NDTR0_TCH(nfc_tmg.tCH);
marvell_nand->ndtr1 =
NDTR1_TAR(nfc_tmg.tAR) |
NDTR1_TWHR(nfc_tmg.tWHR) |
NDTR1_TR(nfc_tmg.tR);
if (nfc->caps->is_nfcv2) {
marvell_nand->ndtr0 |=
NDTR0_RD_CNT_DEL(read_delay) |
NDTR0_SELCNTR |
NDTR0_TADL(nfc_tmg.tADL);
marvell_nand->ndtr1 |=
NDTR1_TRHW(nfc_tmg.tRHW) |
NDTR1_WAIT_MODE;
}
return 0;
}
static int marvell_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
int ret;
if (pdata && pdata->flash_bbt)
chip->bbt_options |= NAND_BBT_USE_FLASH;
if (chip->bbt_options & NAND_BBT_USE_FLASH) {
/*
* We'll use a bad block table stored in-flash and don't
* allow writing the bad block marker to the flash.
*/
chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
}
/* Save the chip-specific fields of NDCR */
marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
if (chip->options & NAND_BUSWIDTH_16)
marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
/*
* On small page NANDs, only one cycle is needed to pass the
* column address.
*/
if (mtd->writesize <= 512) {
marvell_nand->addr_cyc = 1;
} else {
marvell_nand->addr_cyc = 2;
marvell_nand->ndcr |= NDCR_RA_START;
}
/*
* Now add the number of cycles needed to pass the row
* address.
*
* Addressing a chip using CS 2 or 3 should also need the third row
* cycle but due to inconsistance in the documentation and lack of
* hardware to test this situation, this case is not supported.
*/
if (chip->options & NAND_ROW_ADDR_3)
marvell_nand->addr_cyc += 3;
else
marvell_nand->addr_cyc += 2;
if (pdata) {
chip->ecc.size = pdata->ecc_step_size;
chip->ecc.strength = pdata->ecc_strength;
}
ret = marvell_nand_ecc_init(mtd, &chip->ecc);
if (ret) {
dev_err(nfc->dev, "ECC init failed: %d\n", ret);
return ret;
}
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
/*
* Subpage write not available with hardware ECC, prohibit also
* subpage read as in userspace subpage access would still be
* allowed and subpage write, if used, would lead to numerous
* uncorrectable ECC errors.
*/
chip->options |= NAND_NO_SUBPAGE_WRITE;
}
if (pdata || nfc->caps->legacy_of_bindings) {
/*
* We keep the MTD name unchanged to avoid breaking platforms
* where the MTD cmdline parser is used and the bootloader
* has not been updated to use the new naming scheme.
*/
mtd->name = "pxa3xx_nand-0";
} else if (!mtd->name) {
/*
* If the new bindings are used and the bootloader has not been
* updated to pass a new mtdparts parameter on the cmdline, you
* should define the following property in your NAND node, ie:
*
* label = "main-storage";
*
* This way, mtd->name will be set by the core when
* nand_set_flash_node() is called.
*/
mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
"%s:nand.%d", dev_name(nfc->dev),
marvell_nand->sels[0].cs);
if (!mtd->name) {
dev_err(nfc->dev, "Failed to allocate mtd->name\n");
return -ENOMEM;
}
}
return 0;
}
static const struct nand_controller_ops marvell_nand_controller_ops = {
.attach_chip = marvell_nand_attach_chip,
.exec_op = marvell_nfc_exec_op,
.setup_interface = marvell_nfc_setup_interface,
};
static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
struct device_node *np)
{
struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
struct marvell_nand_chip *marvell_nand;
struct mtd_info *mtd;
struct nand_chip *chip;
int nsels, ret, i;
u32 cs, rb;
/*
* The legacy "num-cs" property indicates the number of CS on the only
* chip connected to the controller (legacy bindings does not support
* more than one chip). The CS and RB pins are always the #0.
*
* When not using legacy bindings, a couple of "reg" and "nand-rb"
* properties must be filled. For each chip, expressed as a subnode,
* "reg" points to the CS lines and "nand-rb" to the RB line.
*/
if (pdata || nfc->caps->legacy_of_bindings) {
nsels = 1;
} else {
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
if (nsels <= 0) {
dev_err(dev, "missing/invalid reg property\n");
return -EINVAL;
}
}
/* Alloc the nand chip structure */
marvell_nand = devm_kzalloc(dev,
struct_size(marvell_nand, sels, nsels),
GFP_KERNEL);
if (!marvell_nand) {
dev_err(dev, "could not allocate chip structure\n");
return -ENOMEM;
}
marvell_nand->nsels = nsels;
marvell_nand->selected_die = -1;
for (i = 0; i < nsels; i++) {
if (pdata || nfc->caps->legacy_of_bindings) {
/*
* Legacy bindings use the CS lines in natural
* order (0, 1, ...)
*/
cs = i;
} else {
/* Retrieve CS id */
ret = of_property_read_u32_index(np, "reg", i, &cs);
if (ret) {
dev_err(dev, "could not retrieve reg property: %d\n",
ret);
return ret;
}
}
if (cs >= nfc->caps->max_cs_nb) {
dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
cs, nfc->caps->max_cs_nb);
return -EINVAL;
}
if (test_and_set_bit(cs, &nfc->assigned_cs)) {
dev_err(dev, "CS %d already assigned\n", cs);
return -EINVAL;
}
/*
* The cs variable represents the chip select id, which must be
* converted in bit fields for NDCB0 and NDCB2 to select the
* right chip. Unfortunately, due to a lack of information on
* the subject and incoherent documentation, the user should not
* use CS1 and CS3 at all as asserting them is not supported in
* a reliable way (due to multiplexing inside ADDR5 field).
*/
marvell_nand->sels[i].cs = cs;
switch (cs) {
case 0:
case 2:
marvell_nand->sels[i].ndcb0_csel = 0;
break;
case 1:
case 3:
marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
break;
default:
return -EINVAL;
}
/* Retrieve RB id */
if (pdata || nfc->caps->legacy_of_bindings) {
/* Legacy bindings always use RB #0 */
rb = 0;
} else {
ret = of_property_read_u32_index(np, "nand-rb", i,
&rb);
if (ret) {
dev_err(dev,
"could not retrieve RB property: %d\n",
ret);
return ret;
}
}
if (rb >= nfc->caps->max_rb_nb) {
dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
rb, nfc->caps->max_rb_nb);
return -EINVAL;
}
marvell_nand->sels[i].rb = rb;
}
chip = &marvell_nand->chip;
chip->controller = &nfc->controller;
nand_set_flash_node(chip, np);
if (!of_property_read_bool(np, "marvell,nand-keep-config"))
chip->options |= NAND_KEEP_TIMINGS;
mtd = nand_to_mtd(chip);
mtd->dev.parent = dev;
/*
* Save a reference value for timing registers before
* ->setup_interface() is called.
*/
marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
chip->options |= NAND_BUSWIDTH_AUTO;
ret = nand_scan(chip, marvell_nand->nsels);
if (ret) {
dev_err(dev, "could not scan the nand chip\n");
return ret;
}
if (pdata)
/* Legacy bindings support only one chip */
ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
else
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(dev, "failed to register mtd device: %d\n", ret);
nand_cleanup(chip);
return ret;
}
list_add_tail(&marvell_nand->node, &nfc->chips);
return 0;
}
static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
{
struct marvell_nand_chip *entry, *temp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
chip = &entry->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&entry->node);
}
}
static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
{
struct device_node *np = dev->of_node;
struct device_node *nand_np;
int max_cs = nfc->caps->max_cs_nb;
int nchips;
int ret;
if (!np)
nchips = 1;
else
nchips = of_get_child_count(np);
if (nchips > max_cs) {
dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
max_cs);
return -EINVAL;
}
/*
* Legacy bindings do not use child nodes to exhibit NAND chip
* properties and layout. Instead, NAND properties are mixed with the
* controller ones, and partitions are defined as direct subnodes of the
* NAND controller node.
*/
if (nfc->caps->legacy_of_bindings) {
ret = marvell_nand_chip_init(dev, nfc, np);
return ret;
}
for_each_child_of_node(np, nand_np) {
ret = marvell_nand_chip_init(dev, nfc, nand_np);
if (ret) {
of_node_put(nand_np);
goto cleanup_chips;
}
}
return 0;
cleanup_chips:
marvell_nand_chips_cleanup(nfc);
return ret;
}
static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
{
struct platform_device *pdev = container_of(nfc->dev,
struct platform_device,
dev);
struct dma_slave_config config = {};
struct resource *r;
int ret;
if (!IS_ENABLED(CONFIG_PXA_DMA)) {
dev_warn(nfc->dev,
"DMA not enabled in configuration\n");
return -ENOTSUPP;
}
ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
nfc->dma_chan = dma_request_chan(nfc->dev, "data");
if (IS_ERR(nfc->dma_chan)) {
ret = PTR_ERR(nfc->dma_chan);
nfc->dma_chan = NULL;
return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
ret = -ENXIO;
goto release_channel;
}
config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.src_addr = r->start + NDDB;
config.dst_addr = r->start + NDDB;
config.src_maxburst = 32;
config.dst_maxburst = 32;
ret = dmaengine_slave_config(nfc->dma_chan, &config);
if (ret < 0) {
dev_err(nfc->dev, "Failed to configure DMA channel\n");
goto release_channel;
}
/*
* DMA must act on length multiple of 32 and this length may be
* bigger than the destination buffer. Use this buffer instead
* for DMA transfers and then copy the desired amount of data to
* the provided buffer.
*/
nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
if (!nfc->dma_buf) {
ret = -ENOMEM;
goto release_channel;
}
nfc->use_dma = true;
return 0;
release_channel:
dma_release_channel(nfc->dma_chan);
nfc->dma_chan = NULL;
return ret;
}
static void marvell_nfc_reset(struct marvell_nfc *nfc)
{
/*
* ECC operations and interruptions are only enabled when specifically
* needed. ECC shall not be activated in the early stages (fails probe).
* Arbiter flag, even if marked as "reserved", must be set (empirical).
* SPARE_EN bit must always be set or ECC bytes will not be at the same
* offset in the read page and this will fail the protection.
*/
writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
writel_relaxed(0, nfc->regs + NDECCCTRL);
}
static int marvell_nfc_init(struct marvell_nfc *nfc)
{
struct device_node *np = nfc->dev->of_node;
/*
* Some SoCs like A7k/A8k need to enable manually the NAND
* controller, gated clocks and reset bits to avoid being bootloader
* dependent. This is done through the use of the System Functions
* registers.
*/
if (nfc->caps->need_system_controller) {
struct regmap *sysctrl_base =
syscon_regmap_lookup_by_phandle(np,
"marvell,system-controller");
if (IS_ERR(sysctrl_base))
return PTR_ERR(sysctrl_base);
regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
GENCONF_SOC_DEVICE_MUX_NFC_EN |
GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
GENCONF_CLK_GATING_CTRL_ND_GATE,
GENCONF_CLK_GATING_CTRL_ND_GATE);
regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
GENCONF_ND_CLK_CTRL_EN,
GENCONF_ND_CLK_CTRL_EN);
}
/* Configure the DMA if appropriate */
if (!nfc->caps->is_nfcv2)
marvell_nfc_init_dma(nfc);
marvell_nfc_reset(nfc);
return 0;
}
static int marvell_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct marvell_nfc *nfc;
int ret;
int irq;
nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = dev;
nand_controller_init(&nfc->controller);
nfc->controller.ops = &marvell_nand_controller_ops;
INIT_LIST_HEAD(&nfc->chips);
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
nfc->core_clk = devm_clk_get(&pdev->dev, "core");
/* Managed the legacy case (when the first clock was not named) */
if (nfc->core_clk == ERR_PTR(-ENOENT))
nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(nfc->core_clk))
return PTR_ERR(nfc->core_clk);
ret = clk_prepare_enable(nfc->core_clk);
if (ret)
return ret;
nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
if (IS_ERR(nfc->reg_clk)) {
if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
ret = PTR_ERR(nfc->reg_clk);
goto unprepare_core_clk;
}
nfc->reg_clk = NULL;
}
ret = clk_prepare_enable(nfc->reg_clk);
if (ret)
goto unprepare_core_clk;
marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
ret = devm_request_irq(dev, irq, marvell_nfc_isr,
0, "marvell-nfc", nfc);
if (ret)
goto unprepare_reg_clk;
/* Get NAND controller capabilities */
if (pdev->id_entry)
nfc->caps = (void *)pdev->id_entry->driver_data;
else
nfc->caps = of_device_get_match_data(&pdev->dev);
if (!nfc->caps) {
dev_err(dev, "Could not retrieve NFC caps\n");
ret = -EINVAL;
goto unprepare_reg_clk;
}
/* Init the controller and then probe the chips */
ret = marvell_nfc_init(nfc);
if (ret)
goto unprepare_reg_clk;
platform_set_drvdata(pdev, nfc);
ret = marvell_nand_chips_init(dev, nfc);
if (ret)
goto release_dma;
return 0;
release_dma:
if (nfc->use_dma)
dma_release_channel(nfc->dma_chan);
unprepare_reg_clk:
clk_disable_unprepare(nfc->reg_clk);
unprepare_core_clk:
clk_disable_unprepare(nfc->core_clk);
return ret;
}
static int marvell_nfc_remove(struct platform_device *pdev)
{
struct marvell_nfc *nfc = platform_get_drvdata(pdev);
marvell_nand_chips_cleanup(nfc);
if (nfc->use_dma) {
dmaengine_terminate_all(nfc->dma_chan);
dma_release_channel(nfc->dma_chan);
}
clk_disable_unprepare(nfc->reg_clk);
clk_disable_unprepare(nfc->core_clk);
return 0;
}
static int __maybe_unused marvell_nfc_suspend(struct device *dev)
{
struct marvell_nfc *nfc = dev_get_drvdata(dev);
struct marvell_nand_chip *chip;
list_for_each_entry(chip, &nfc->chips, node)
marvell_nfc_wait_ndrun(&chip->chip);
clk_disable_unprepare(nfc->reg_clk);
clk_disable_unprepare(nfc->core_clk);
return 0;
}
static int __maybe_unused marvell_nfc_resume(struct device *dev)
{
struct marvell_nfc *nfc = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(nfc->core_clk);
if (ret < 0)
return ret;
ret = clk_prepare_enable(nfc->reg_clk);
if (ret < 0) {
clk_disable_unprepare(nfc->core_clk);
return ret;
}
/*
* Reset nfc->selected_chip so the next command will cause the timing
* registers to be restored in marvell_nfc_select_target().
*/
nfc->selected_chip = NULL;
/* Reset registers that have lost their contents */
marvell_nfc_reset(nfc);
return 0;
}
static const struct dev_pm_ops marvell_nfc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
};
static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
.max_cs_nb = 4,
.max_rb_nb = 2,
.need_system_controller = true,
.is_nfcv2 = true,
};
static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
.max_cs_nb = 4,
.max_rb_nb = 2,
.is_nfcv2 = true,
};
static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
.max_cs_nb = 2,
.max_rb_nb = 1,
.use_dma = true,
};
static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
.max_cs_nb = 4,
.max_rb_nb = 2,
.need_system_controller = true,
.legacy_of_bindings = true,
.is_nfcv2 = true,
};
static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
.max_cs_nb = 4,
.max_rb_nb = 2,
.legacy_of_bindings = true,
.is_nfcv2 = true,
};
static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
.max_cs_nb = 2,
.max_rb_nb = 1,
.legacy_of_bindings = true,
.use_dma = true,
};
static const struct platform_device_id marvell_nfc_platform_ids[] = {
{
.name = "pxa3xx-nand",
.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
static const struct of_device_id marvell_nfc_of_ids[] = {
{
.compatible = "marvell,armada-8k-nand-controller",
.data = &marvell_armada_8k_nfc_caps,
},
{
.compatible = "marvell,armada370-nand-controller",
.data = &marvell_armada370_nfc_caps,
},
{
.compatible = "marvell,pxa3xx-nand-controller",
.data = &marvell_pxa3xx_nfc_caps,
},
/* Support for old/deprecated bindings: */
{
.compatible = "marvell,armada-8k-nand",
.data = &marvell_armada_8k_nfc_legacy_caps,
},
{
.compatible = "marvell,armada370-nand",
.data = &marvell_armada370_nfc_legacy_caps,
},
{
.compatible = "marvell,pxa3xx-nand",
.data = &marvell_pxa3xx_nfc_legacy_caps,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
static struct platform_driver marvell_nfc_driver = {
.driver = {
.name = "marvell-nfc",
.of_match_table = marvell_nfc_of_ids,
.pm = &marvell_nfc_pm_ops,
},
.id_table = marvell_nfc_platform_ids,
.probe = marvell_nfc_probe,
.remove = marvell_nfc_remove,
};
module_platform_driver(marvell_nfc_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Marvell NAND controller driver");