| /* | 
 |  * Copyright © 2008-2015 Intel Corporation | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a | 
 |  * copy of this software and associated documentation files (the "Software"), | 
 |  * to deal in the Software without restriction, including without limitation | 
 |  * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
 |  * and/or sell copies of the Software, and to permit persons to whom the | 
 |  * Software is furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice (including the next | 
 |  * paragraph) shall be included in all copies or substantial portions of the | 
 |  * Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
 |  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
 |  * IN THE SOFTWARE. | 
 |  * | 
 |  * Authors: | 
 |  *    Eric Anholt <eric@anholt.net> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <drm/drmP.h> | 
 | #include <drm/drm_vma_manager.h> | 
 | #include <drm/i915_drm.h> | 
 | #include "i915_drv.h" | 
 | #include "i915_gem_clflush.h" | 
 | #include "i915_vgpu.h" | 
 | #include "i915_trace.h" | 
 | #include "intel_drv.h" | 
 | #include "intel_frontbuffer.h" | 
 | #include "intel_mocs.h" | 
 | #include "intel_workarounds.h" | 
 | #include "i915_gemfs.h" | 
 | #include <linux/dma-fence-array.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/reservation.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/dma-buf.h> | 
 |  | 
 | static void i915_gem_flush_free_objects(struct drm_i915_private *i915); | 
 |  | 
 | static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	if (obj->cache_dirty) | 
 | 		return false; | 
 |  | 
 | 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) | 
 | 		return true; | 
 |  | 
 | 	return obj->pin_global; /* currently in use by HW, keep flushed */ | 
 | } | 
 |  | 
 | static int | 
 | insert_mappable_node(struct i915_ggtt *ggtt, | 
 |                      struct drm_mm_node *node, u32 size) | 
 | { | 
 | 	memset(node, 0, sizeof(*node)); | 
 | 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node, | 
 | 					   size, 0, I915_COLOR_UNEVICTABLE, | 
 | 					   0, ggtt->mappable_end, | 
 | 					   DRM_MM_INSERT_LOW); | 
 | } | 
 |  | 
 | static void | 
 | remove_mappable_node(struct drm_mm_node *node) | 
 | { | 
 | 	drm_mm_remove_node(node); | 
 | } | 
 |  | 
 | /* some bookkeeping */ | 
 | static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, | 
 | 				  u64 size) | 
 | { | 
 | 	spin_lock(&dev_priv->mm.object_stat_lock); | 
 | 	dev_priv->mm.object_count++; | 
 | 	dev_priv->mm.object_memory += size; | 
 | 	spin_unlock(&dev_priv->mm.object_stat_lock); | 
 | } | 
 |  | 
 | static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, | 
 | 				     u64 size) | 
 | { | 
 | 	spin_lock(&dev_priv->mm.object_stat_lock); | 
 | 	dev_priv->mm.object_count--; | 
 | 	dev_priv->mm.object_memory -= size; | 
 | 	spin_unlock(&dev_priv->mm.object_stat_lock); | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_wait_for_error(struct i915_gpu_error *error) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	/* | 
 | 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging | 
 | 	 * userspace. If it takes that long something really bad is going on and | 
 | 	 * we should simply try to bail out and fail as gracefully as possible. | 
 | 	 */ | 
 | 	ret = wait_event_interruptible_timeout(error->reset_queue, | 
 | 					       !i915_reset_backoff(error), | 
 | 					       I915_RESET_TIMEOUT); | 
 | 	if (ret == 0) { | 
 | 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); | 
 | 		return -EIO; | 
 | 	} else if (ret < 0) { | 
 | 		return ret; | 
 | 	} else { | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | int i915_mutex_lock_interruptible(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&dev->struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 __i915_gem_park(struct drm_i915_private *i915) | 
 | { | 
 | 	lockdep_assert_held(&i915->drm.struct_mutex); | 
 | 	GEM_BUG_ON(i915->gt.active_requests); | 
 | 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings)); | 
 |  | 
 | 	if (!i915->gt.awake) | 
 | 		return I915_EPOCH_INVALID; | 
 |  | 
 | 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID); | 
 |  | 
 | 	/* | 
 | 	 * Be paranoid and flush a concurrent interrupt to make sure | 
 | 	 * we don't reactivate any irq tasklets after parking. | 
 | 	 * | 
 | 	 * FIXME: Note that even though we have waited for execlists to be idle, | 
 | 	 * there may still be an in-flight interrupt even though the CSB | 
 | 	 * is now empty. synchronize_irq() makes sure that a residual interrupt | 
 | 	 * is completed before we continue, but it doesn't prevent the HW from | 
 | 	 * raising a spurious interrupt later. To complete the shield we should | 
 | 	 * coordinate disabling the CS irq with flushing the interrupts. | 
 | 	 */ | 
 | 	synchronize_irq(i915->drm.irq); | 
 |  | 
 | 	intel_engines_park(i915); | 
 | 	i915_timelines_park(i915); | 
 |  | 
 | 	i915_pmu_gt_parked(i915); | 
 | 	i915_vma_parked(i915); | 
 |  | 
 | 	i915->gt.awake = false; | 
 |  | 
 | 	if (INTEL_GEN(i915) >= 6) | 
 | 		gen6_rps_idle(i915); | 
 |  | 
 | 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ); | 
 |  | 
 | 	intel_runtime_pm_put(i915); | 
 |  | 
 | 	return i915->gt.epoch; | 
 | } | 
 |  | 
 | void i915_gem_park(struct drm_i915_private *i915) | 
 | { | 
 | 	lockdep_assert_held(&i915->drm.struct_mutex); | 
 | 	GEM_BUG_ON(i915->gt.active_requests); | 
 |  | 
 | 	if (!i915->gt.awake) | 
 | 		return; | 
 |  | 
 | 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */ | 
 | 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100)); | 
 | } | 
 |  | 
 | void i915_gem_unpark(struct drm_i915_private *i915) | 
 | { | 
 | 	lockdep_assert_held(&i915->drm.struct_mutex); | 
 | 	GEM_BUG_ON(!i915->gt.active_requests); | 
 |  | 
 | 	if (i915->gt.awake) | 
 | 		return; | 
 |  | 
 | 	intel_runtime_pm_get_noresume(i915); | 
 |  | 
 | 	/* | 
 | 	 * It seems that the DMC likes to transition between the DC states a lot | 
 | 	 * when there are no connected displays (no active power domains) during | 
 | 	 * command submission. | 
 | 	 * | 
 | 	 * This activity has negative impact on the performance of the chip with | 
 | 	 * huge latencies observed in the interrupt handler and elsewhere. | 
 | 	 * | 
 | 	 * Work around it by grabbing a GT IRQ power domain whilst there is any | 
 | 	 * GT activity, preventing any DC state transitions. | 
 | 	 */ | 
 | 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ); | 
 |  | 
 | 	i915->gt.awake = true; | 
 | 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */ | 
 | 		i915->gt.epoch = 1; | 
 |  | 
 | 	intel_enable_gt_powersave(i915); | 
 | 	i915_update_gfx_val(i915); | 
 | 	if (INTEL_GEN(i915) >= 6) | 
 | 		gen6_rps_busy(i915); | 
 | 	i915_pmu_gt_unparked(i915); | 
 |  | 
 | 	intel_engines_unpark(i915); | 
 |  | 
 | 	i915_queue_hangcheck(i915); | 
 |  | 
 | 	queue_delayed_work(i915->wq, | 
 | 			   &i915->gt.retire_work, | 
 | 			   round_jiffies_up_relative(HZ)); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, | 
 | 			    struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	struct drm_i915_gem_get_aperture *args = data; | 
 | 	struct i915_vma *vma; | 
 | 	u64 pinned; | 
 |  | 
 | 	pinned = ggtt->base.reserved; | 
 | 	mutex_lock(&dev->struct_mutex); | 
 | 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link) | 
 | 		if (i915_vma_is_pinned(vma)) | 
 | 			pinned += vma->node.size; | 
 | 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) | 
 | 		if (i915_vma_is_pinned(vma)) | 
 | 			pinned += vma->node.size; | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 	args->aper_size = ggtt->base.total; | 
 | 	args->aper_available_size = args->aper_size - pinned; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct address_space *mapping = obj->base.filp->f_mapping; | 
 | 	drm_dma_handle_t *phys; | 
 | 	struct sg_table *st; | 
 | 	struct scatterlist *sg; | 
 | 	char *vaddr; | 
 | 	int i; | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Always aligning to the object size, allows a single allocation | 
 | 	 * to handle all possible callers, and given typical object sizes, | 
 | 	 * the alignment of the buddy allocation will naturally match. | 
 | 	 */ | 
 | 	phys = drm_pci_alloc(obj->base.dev, | 
 | 			     roundup_pow_of_two(obj->base.size), | 
 | 			     roundup_pow_of_two(obj->base.size)); | 
 | 	if (!phys) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vaddr = phys->vaddr; | 
 | 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { | 
 | 		struct page *page; | 
 | 		char *src; | 
 |  | 
 | 		page = shmem_read_mapping_page(mapping, i); | 
 | 		if (IS_ERR(page)) { | 
 | 			err = PTR_ERR(page); | 
 | 			goto err_phys; | 
 | 		} | 
 |  | 
 | 		src = kmap_atomic(page); | 
 | 		memcpy(vaddr, src, PAGE_SIZE); | 
 | 		drm_clflush_virt_range(vaddr, PAGE_SIZE); | 
 | 		kunmap_atomic(src); | 
 |  | 
 | 		put_page(page); | 
 | 		vaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	i915_gem_chipset_flush(to_i915(obj->base.dev)); | 
 |  | 
 | 	st = kmalloc(sizeof(*st), GFP_KERNEL); | 
 | 	if (!st) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_phys; | 
 | 	} | 
 |  | 
 | 	if (sg_alloc_table(st, 1, GFP_KERNEL)) { | 
 | 		kfree(st); | 
 | 		err = -ENOMEM; | 
 | 		goto err_phys; | 
 | 	} | 
 |  | 
 | 	sg = st->sgl; | 
 | 	sg->offset = 0; | 
 | 	sg->length = obj->base.size; | 
 |  | 
 | 	sg_dma_address(sg) = phys->busaddr; | 
 | 	sg_dma_len(sg) = obj->base.size; | 
 |  | 
 | 	obj->phys_handle = phys; | 
 |  | 
 | 	__i915_gem_object_set_pages(obj, st, sg->length); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_phys: | 
 | 	drm_pci_free(obj->base.dev, phys); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __start_cpu_write(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	obj->read_domains = I915_GEM_DOMAIN_CPU; | 
 | 	obj->write_domain = I915_GEM_DOMAIN_CPU; | 
 | 	if (cpu_write_needs_clflush(obj)) | 
 | 		obj->cache_dirty = true; | 
 | } | 
 |  | 
 | static void | 
 | __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, | 
 | 				struct sg_table *pages, | 
 | 				bool needs_clflush) | 
 | { | 
 | 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); | 
 |  | 
 | 	if (obj->mm.madv == I915_MADV_DONTNEED) | 
 | 		obj->mm.dirty = false; | 
 |  | 
 | 	if (needs_clflush && | 
 | 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && | 
 | 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) | 
 | 		drm_clflush_sg(pages); | 
 |  | 
 | 	__start_cpu_write(obj); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, | 
 | 			       struct sg_table *pages) | 
 | { | 
 | 	__i915_gem_object_release_shmem(obj, pages, false); | 
 |  | 
 | 	if (obj->mm.dirty) { | 
 | 		struct address_space *mapping = obj->base.filp->f_mapping; | 
 | 		char *vaddr = obj->phys_handle->vaddr; | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { | 
 | 			struct page *page; | 
 | 			char *dst; | 
 |  | 
 | 			page = shmem_read_mapping_page(mapping, i); | 
 | 			if (IS_ERR(page)) | 
 | 				continue; | 
 |  | 
 | 			dst = kmap_atomic(page); | 
 | 			drm_clflush_virt_range(vaddr, PAGE_SIZE); | 
 | 			memcpy(dst, vaddr, PAGE_SIZE); | 
 | 			kunmap_atomic(dst); | 
 |  | 
 | 			set_page_dirty(page); | 
 | 			if (obj->mm.madv == I915_MADV_WILLNEED) | 
 | 				mark_page_accessed(page); | 
 | 			put_page(page); | 
 | 			vaddr += PAGE_SIZE; | 
 | 		} | 
 | 		obj->mm.dirty = false; | 
 | 	} | 
 |  | 
 | 	sg_free_table(pages); | 
 | 	kfree(pages); | 
 |  | 
 | 	drm_pci_free(obj->base.dev, obj->phys_handle); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_release_phys(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | } | 
 |  | 
 | static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { | 
 | 	.get_pages = i915_gem_object_get_pages_phys, | 
 | 	.put_pages = i915_gem_object_put_pages_phys, | 
 | 	.release = i915_gem_object_release_phys, | 
 | }; | 
 |  | 
 | static const struct drm_i915_gem_object_ops i915_gem_object_ops; | 
 |  | 
 | int i915_gem_object_unbind(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct i915_vma *vma; | 
 | 	LIST_HEAD(still_in_list); | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	/* Closed vma are removed from the obj->vma_list - but they may | 
 | 	 * still have an active binding on the object. To remove those we | 
 | 	 * must wait for all rendering to complete to the object (as unbinding | 
 | 	 * must anyway), and retire the requests. | 
 | 	 */ | 
 | 	ret = i915_gem_object_set_to_cpu_domain(obj, false); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	while ((vma = list_first_entry_or_null(&obj->vma_list, | 
 | 					       struct i915_vma, | 
 | 					       obj_link))) { | 
 | 		list_move_tail(&vma->obj_link, &still_in_list); | 
 | 		ret = i915_vma_unbind(vma); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	list_splice(&still_in_list, &obj->vma_list); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static long | 
 | i915_gem_object_wait_fence(struct dma_fence *fence, | 
 | 			   unsigned int flags, | 
 | 			   long timeout, | 
 | 			   struct intel_rps_client *rps_client) | 
 | { | 
 | 	struct i915_request *rq; | 
 |  | 
 | 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); | 
 |  | 
 | 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) | 
 | 		return timeout; | 
 |  | 
 | 	if (!dma_fence_is_i915(fence)) | 
 | 		return dma_fence_wait_timeout(fence, | 
 | 					      flags & I915_WAIT_INTERRUPTIBLE, | 
 | 					      timeout); | 
 |  | 
 | 	rq = to_request(fence); | 
 | 	if (i915_request_completed(rq)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * This client is about to stall waiting for the GPU. In many cases | 
 | 	 * this is undesirable and limits the throughput of the system, as | 
 | 	 * many clients cannot continue processing user input/output whilst | 
 | 	 * blocked. RPS autotuning may take tens of milliseconds to respond | 
 | 	 * to the GPU load and thus incurs additional latency for the client. | 
 | 	 * We can circumvent that by promoting the GPU frequency to maximum | 
 | 	 * before we wait. This makes the GPU throttle up much more quickly | 
 | 	 * (good for benchmarks and user experience, e.g. window animations), | 
 | 	 * but at a cost of spending more power processing the workload | 
 | 	 * (bad for battery). Not all clients even want their results | 
 | 	 * immediately and for them we should just let the GPU select its own | 
 | 	 * frequency to maximise efficiency. To prevent a single client from | 
 | 	 * forcing the clocks too high for the whole system, we only allow | 
 | 	 * each client to waitboost once in a busy period. | 
 | 	 */ | 
 | 	if (rps_client && !i915_request_started(rq)) { | 
 | 		if (INTEL_GEN(rq->i915) >= 6) | 
 | 			gen6_rps_boost(rq, rps_client); | 
 | 	} | 
 |  | 
 | 	timeout = i915_request_wait(rq, flags, timeout); | 
 |  | 
 | out: | 
 | 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq)) | 
 | 		i915_request_retire_upto(rq); | 
 |  | 
 | 	return timeout; | 
 | } | 
 |  | 
 | static long | 
 | i915_gem_object_wait_reservation(struct reservation_object *resv, | 
 | 				 unsigned int flags, | 
 | 				 long timeout, | 
 | 				 struct intel_rps_client *rps_client) | 
 | { | 
 | 	unsigned int seq = __read_seqcount_begin(&resv->seq); | 
 | 	struct dma_fence *excl; | 
 | 	bool prune_fences = false; | 
 |  | 
 | 	if (flags & I915_WAIT_ALL) { | 
 | 		struct dma_fence **shared; | 
 | 		unsigned int count, i; | 
 | 		int ret; | 
 |  | 
 | 		ret = reservation_object_get_fences_rcu(resv, | 
 | 							&excl, &count, &shared); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		for (i = 0; i < count; i++) { | 
 | 			timeout = i915_gem_object_wait_fence(shared[i], | 
 | 							     flags, timeout, | 
 | 							     rps_client); | 
 | 			if (timeout < 0) | 
 | 				break; | 
 |  | 
 | 			dma_fence_put(shared[i]); | 
 | 		} | 
 |  | 
 | 		for (; i < count; i++) | 
 | 			dma_fence_put(shared[i]); | 
 | 		kfree(shared); | 
 |  | 
 | 		/* | 
 | 		 * If both shared fences and an exclusive fence exist, | 
 | 		 * then by construction the shared fences must be later | 
 | 		 * than the exclusive fence. If we successfully wait for | 
 | 		 * all the shared fences, we know that the exclusive fence | 
 | 		 * must all be signaled. If all the shared fences are | 
 | 		 * signaled, we can prune the array and recover the | 
 | 		 * floating references on the fences/requests. | 
 | 		 */ | 
 | 		prune_fences = count && timeout >= 0; | 
 | 	} else { | 
 | 		excl = reservation_object_get_excl_rcu(resv); | 
 | 	} | 
 |  | 
 | 	if (excl && timeout >= 0) | 
 | 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, | 
 | 						     rps_client); | 
 |  | 
 | 	dma_fence_put(excl); | 
 |  | 
 | 	/* | 
 | 	 * Opportunistically prune the fences iff we know they have *all* been | 
 | 	 * signaled and that the reservation object has not been changed (i.e. | 
 | 	 * no new fences have been added). | 
 | 	 */ | 
 | 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { | 
 | 		if (reservation_object_trylock(resv)) { | 
 | 			if (!__read_seqcount_retry(&resv->seq, seq)) | 
 | 				reservation_object_add_excl_fence(resv, NULL); | 
 | 			reservation_object_unlock(resv); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return timeout; | 
 | } | 
 |  | 
 | static void __fence_set_priority(struct dma_fence *fence, | 
 | 				 const struct i915_sched_attr *attr) | 
 | { | 
 | 	struct i915_request *rq; | 
 | 	struct intel_engine_cs *engine; | 
 |  | 
 | 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence)) | 
 | 		return; | 
 |  | 
 | 	rq = to_request(fence); | 
 | 	engine = rq->engine; | 
 |  | 
 | 	local_bh_disable(); | 
 | 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */ | 
 | 	if (engine->schedule) | 
 | 		engine->schedule(rq, attr); | 
 | 	rcu_read_unlock(); | 
 | 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */ | 
 | } | 
 |  | 
 | static void fence_set_priority(struct dma_fence *fence, | 
 | 			       const struct i915_sched_attr *attr) | 
 | { | 
 | 	/* Recurse once into a fence-array */ | 
 | 	if (dma_fence_is_array(fence)) { | 
 | 		struct dma_fence_array *array = to_dma_fence_array(fence); | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < array->num_fences; i++) | 
 | 			__fence_set_priority(array->fences[i], attr); | 
 | 	} else { | 
 | 		__fence_set_priority(fence, attr); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, | 
 | 			      unsigned int flags, | 
 | 			      const struct i915_sched_attr *attr) | 
 | { | 
 | 	struct dma_fence *excl; | 
 |  | 
 | 	if (flags & I915_WAIT_ALL) { | 
 | 		struct dma_fence **shared; | 
 | 		unsigned int count, i; | 
 | 		int ret; | 
 |  | 
 | 		ret = reservation_object_get_fences_rcu(obj->resv, | 
 | 							&excl, &count, &shared); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		for (i = 0; i < count; i++) { | 
 | 			fence_set_priority(shared[i], attr); | 
 | 			dma_fence_put(shared[i]); | 
 | 		} | 
 |  | 
 | 		kfree(shared); | 
 | 	} else { | 
 | 		excl = reservation_object_get_excl_rcu(obj->resv); | 
 | 	} | 
 |  | 
 | 	if (excl) { | 
 | 		fence_set_priority(excl, attr); | 
 | 		dma_fence_put(excl); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * Waits for rendering to the object to be completed | 
 |  * @obj: i915 gem object | 
 |  * @flags: how to wait (under a lock, for all rendering or just for writes etc) | 
 |  * @timeout: how long to wait | 
 |  * @rps_client: client (user process) to charge for any waitboosting | 
 |  */ | 
 | int | 
 | i915_gem_object_wait(struct drm_i915_gem_object *obj, | 
 | 		     unsigned int flags, | 
 | 		     long timeout, | 
 | 		     struct intel_rps_client *rps_client) | 
 | { | 
 | 	might_sleep(); | 
 | #if IS_ENABLED(CONFIG_LOCKDEP) | 
 | 	GEM_BUG_ON(debug_locks && | 
 | 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) != | 
 | 		   !!(flags & I915_WAIT_LOCKED)); | 
 | #endif | 
 | 	GEM_BUG_ON(timeout < 0); | 
 |  | 
 | 	timeout = i915_gem_object_wait_reservation(obj->resv, | 
 | 						   flags, timeout, | 
 | 						   rps_client); | 
 | 	return timeout < 0 ? timeout : 0; | 
 | } | 
 |  | 
 | static struct intel_rps_client *to_rps_client(struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_file_private *fpriv = file->driver_priv; | 
 |  | 
 | 	return &fpriv->rps_client; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, | 
 | 		     struct drm_i915_gem_pwrite *args, | 
 | 		     struct drm_file *file) | 
 | { | 
 | 	void *vaddr = obj->phys_handle->vaddr + args->offset; | 
 | 	char __user *user_data = u64_to_user_ptr(args->data_ptr); | 
 |  | 
 | 	/* We manually control the domain here and pretend that it | 
 | 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite. | 
 | 	 */ | 
 | 	intel_fb_obj_invalidate(obj, ORIGIN_CPU); | 
 | 	if (copy_from_user(vaddr, user_data, args->size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	drm_clflush_virt_range(vaddr, args->size); | 
 | 	i915_gem_chipset_flush(to_i915(obj->base.dev)); | 
 |  | 
 | 	intel_fb_obj_flush(obj, ORIGIN_CPU); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); | 
 | } | 
 |  | 
 | void i915_gem_object_free(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	kmem_cache_free(dev_priv->objects, obj); | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_create(struct drm_file *file, | 
 | 		struct drm_i915_private *dev_priv, | 
 | 		uint64_t size, | 
 | 		uint32_t *handle_p) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 | 	u32 handle; | 
 |  | 
 | 	size = roundup(size, PAGE_SIZE); | 
 | 	if (size == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Allocate the new object */ | 
 | 	obj = i915_gem_object_create(dev_priv, size); | 
 | 	if (IS_ERR(obj)) | 
 | 		return PTR_ERR(obj); | 
 |  | 
 | 	ret = drm_gem_handle_create(file, &obj->base, &handle); | 
 | 	/* drop reference from allocate - handle holds it now */ | 
 | 	i915_gem_object_put(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	*handle_p = handle; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | i915_gem_dumb_create(struct drm_file *file, | 
 | 		     struct drm_device *dev, | 
 | 		     struct drm_mode_create_dumb *args) | 
 | { | 
 | 	/* have to work out size/pitch and return them */ | 
 | 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); | 
 | 	args->size = args->pitch * args->height; | 
 | 	return i915_gem_create(file, to_i915(dev), | 
 | 			       args->size, &args->handle); | 
 | } | 
 |  | 
 | static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	return !(obj->cache_level == I915_CACHE_NONE || | 
 | 		 obj->cache_level == I915_CACHE_WT); | 
 | } | 
 |  | 
 | /** | 
 |  * Creates a new mm object and returns a handle to it. | 
 |  * @dev: drm device pointer | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file pointer | 
 |  */ | 
 | int | 
 | i915_gem_create_ioctl(struct drm_device *dev, void *data, | 
 | 		      struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_i915_gem_create *args = data; | 
 |  | 
 | 	i915_gem_flush_free_objects(dev_priv); | 
 |  | 
 | 	return i915_gem_create(file, dev_priv, | 
 | 			       args->size, &args->handle); | 
 | } | 
 |  | 
 | static inline enum fb_op_origin | 
 | fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) | 
 | { | 
 | 	return (domain == I915_GEM_DOMAIN_GTT ? | 
 | 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU); | 
 | } | 
 |  | 
 | void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* | 
 | 	 * No actual flushing is required for the GTT write domain for reads | 
 | 	 * from the GTT domain. Writes to it "immediately" go to main memory | 
 | 	 * as far as we know, so there's no chipset flush. It also doesn't | 
 | 	 * land in the GPU render cache. | 
 | 	 * | 
 | 	 * However, we do have to enforce the order so that all writes through | 
 | 	 * the GTT land before any writes to the device, such as updates to | 
 | 	 * the GATT itself. | 
 | 	 * | 
 | 	 * We also have to wait a bit for the writes to land from the GTT. | 
 | 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip | 
 | 	 * timing. This issue has only been observed when switching quickly | 
 | 	 * between GTT writes and CPU reads from inside the kernel on recent hw, | 
 | 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC | 
 | 	 * system agents we cannot reproduce this behaviour, until Cannonlake | 
 | 	 * that was!). | 
 | 	 */ | 
 |  | 
 | 	wmb(); | 
 |  | 
 | 	intel_runtime_pm_get(dev_priv); | 
 | 	spin_lock_irq(&dev_priv->uncore.lock); | 
 |  | 
 | 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE)); | 
 |  | 
 | 	spin_unlock_irq(&dev_priv->uncore.lock); | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | } | 
 |  | 
 | static void | 
 | flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	struct i915_vma *vma; | 
 |  | 
 | 	if (!(obj->write_domain & flush_domains)) | 
 | 		return; | 
 |  | 
 | 	switch (obj->write_domain) { | 
 | 	case I915_GEM_DOMAIN_GTT: | 
 | 		i915_gem_flush_ggtt_writes(dev_priv); | 
 |  | 
 | 		intel_fb_obj_flush(obj, | 
 | 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); | 
 |  | 
 | 		for_each_ggtt_vma(vma, obj) { | 
 | 			if (vma->iomap) | 
 | 				continue; | 
 |  | 
 | 			i915_vma_unset_ggtt_write(vma); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case I915_GEM_DOMAIN_CPU: | 
 | 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); | 
 | 		break; | 
 |  | 
 | 	case I915_GEM_DOMAIN_RENDER: | 
 | 		if (gpu_write_needs_clflush(obj)) | 
 | 			obj->cache_dirty = true; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	obj->write_domain = 0; | 
 | } | 
 |  | 
 | static inline int | 
 | __copy_to_user_swizzled(char __user *cpu_vaddr, | 
 | 			const char *gpu_vaddr, int gpu_offset, | 
 | 			int length) | 
 | { | 
 | 	int ret, cpu_offset = 0; | 
 |  | 
 | 	while (length > 0) { | 
 | 		int cacheline_end = ALIGN(gpu_offset + 1, 64); | 
 | 		int this_length = min(cacheline_end - gpu_offset, length); | 
 | 		int swizzled_gpu_offset = gpu_offset ^ 64; | 
 |  | 
 | 		ret = __copy_to_user(cpu_vaddr + cpu_offset, | 
 | 				     gpu_vaddr + swizzled_gpu_offset, | 
 | 				     this_length); | 
 | 		if (ret) | 
 | 			return ret + length; | 
 |  | 
 | 		cpu_offset += this_length; | 
 | 		gpu_offset += this_length; | 
 | 		length -= this_length; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, | 
 | 			  const char __user *cpu_vaddr, | 
 | 			  int length) | 
 | { | 
 | 	int ret, cpu_offset = 0; | 
 |  | 
 | 	while (length > 0) { | 
 | 		int cacheline_end = ALIGN(gpu_offset + 1, 64); | 
 | 		int this_length = min(cacheline_end - gpu_offset, length); | 
 | 		int swizzled_gpu_offset = gpu_offset ^ 64; | 
 |  | 
 | 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, | 
 | 				       cpu_vaddr + cpu_offset, | 
 | 				       this_length); | 
 | 		if (ret) | 
 | 			return ret + length; | 
 |  | 
 | 		cpu_offset += this_length; | 
 | 		gpu_offset += this_length; | 
 | 		length -= this_length; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Pins the specified object's pages and synchronizes the object with | 
 |  * GPU accesses. Sets needs_clflush to non-zero if the caller should | 
 |  * flush the object from the CPU cache. | 
 |  */ | 
 | int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, | 
 | 				    unsigned int *needs_clflush) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	*needs_clflush = 0; | 
 | 	if (!i915_gem_object_has_struct_page(obj)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | | 
 | 				   I915_WAIT_LOCKED, | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_object_pin_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || | 
 | 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) { | 
 | 		ret = i915_gem_object_set_to_cpu_domain(obj, false); | 
 | 		if (ret) | 
 | 			goto err_unpin; | 
 | 		else | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); | 
 |  | 
 | 	/* If we're not in the cpu read domain, set ourself into the gtt | 
 | 	 * read domain and manually flush cachelines (if required). This | 
 | 	 * optimizes for the case when the gpu will dirty the data | 
 | 	 * anyway again before the next pread happens. | 
 | 	 */ | 
 | 	if (!obj->cache_dirty && | 
 | 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU)) | 
 | 		*needs_clflush = CLFLUSH_BEFORE; | 
 |  | 
 | out: | 
 | 	/* return with the pages pinned */ | 
 | 	return 0; | 
 |  | 
 | err_unpin: | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, | 
 | 				     unsigned int *needs_clflush) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	*needs_clflush = 0; | 
 | 	if (!i915_gem_object_has_struct_page(obj)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | | 
 | 				   I915_WAIT_LOCKED | | 
 | 				   I915_WAIT_ALL, | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_object_pin_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || | 
 | 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) { | 
 | 		ret = i915_gem_object_set_to_cpu_domain(obj, true); | 
 | 		if (ret) | 
 | 			goto err_unpin; | 
 | 		else | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); | 
 |  | 
 | 	/* If we're not in the cpu write domain, set ourself into the | 
 | 	 * gtt write domain and manually flush cachelines (as required). | 
 | 	 * This optimizes for the case when the gpu will use the data | 
 | 	 * right away and we therefore have to clflush anyway. | 
 | 	 */ | 
 | 	if (!obj->cache_dirty) { | 
 | 		*needs_clflush |= CLFLUSH_AFTER; | 
 |  | 
 | 		/* | 
 | 		 * Same trick applies to invalidate partially written | 
 | 		 * cachelines read before writing. | 
 | 		 */ | 
 | 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU)) | 
 | 			*needs_clflush |= CLFLUSH_BEFORE; | 
 | 	} | 
 |  | 
 | out: | 
 | 	intel_fb_obj_invalidate(obj, ORIGIN_CPU); | 
 | 	obj->mm.dirty = true; | 
 | 	/* return with the pages pinned */ | 
 | 	return 0; | 
 |  | 
 | err_unpin: | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | shmem_clflush_swizzled_range(char *addr, unsigned long length, | 
 | 			     bool swizzled) | 
 | { | 
 | 	if (unlikely(swizzled)) { | 
 | 		unsigned long start = (unsigned long) addr; | 
 | 		unsigned long end = (unsigned long) addr + length; | 
 |  | 
 | 		/* For swizzling simply ensure that we always flush both | 
 | 		 * channels. Lame, but simple and it works. Swizzled | 
 | 		 * pwrite/pread is far from a hotpath - current userspace | 
 | 		 * doesn't use it at all. */ | 
 | 		start = round_down(start, 128); | 
 | 		end = round_up(end, 128); | 
 |  | 
 | 		drm_clflush_virt_range((void *)start, end - start); | 
 | 	} else { | 
 | 		drm_clflush_virt_range(addr, length); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* Only difference to the fast-path function is that this can handle bit17 | 
 |  * and uses non-atomic copy and kmap functions. */ | 
 | static int | 
 | shmem_pread_slow(struct page *page, int offset, int length, | 
 | 		 char __user *user_data, | 
 | 		 bool page_do_bit17_swizzling, bool needs_clflush) | 
 | { | 
 | 	char *vaddr; | 
 | 	int ret; | 
 |  | 
 | 	vaddr = kmap(page); | 
 | 	if (needs_clflush) | 
 | 		shmem_clflush_swizzled_range(vaddr + offset, length, | 
 | 					     page_do_bit17_swizzling); | 
 |  | 
 | 	if (page_do_bit17_swizzling) | 
 | 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); | 
 | 	else | 
 | 		ret = __copy_to_user(user_data, vaddr + offset, length); | 
 | 	kunmap(page); | 
 |  | 
 | 	return ret ? - EFAULT : 0; | 
 | } | 
 |  | 
 | static int | 
 | shmem_pread(struct page *page, int offset, int length, char __user *user_data, | 
 | 	    bool page_do_bit17_swizzling, bool needs_clflush) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = -ENODEV; | 
 | 	if (!page_do_bit17_swizzling) { | 
 | 		char *vaddr = kmap_atomic(page); | 
 |  | 
 | 		if (needs_clflush) | 
 | 			drm_clflush_virt_range(vaddr + offset, length); | 
 | 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); | 
 | 		kunmap_atomic(vaddr); | 
 | 	} | 
 | 	if (ret == 0) | 
 | 		return 0; | 
 |  | 
 | 	return shmem_pread_slow(page, offset, length, user_data, | 
 | 				page_do_bit17_swizzling, needs_clflush); | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_shmem_pread(struct drm_i915_gem_object *obj, | 
 | 		     struct drm_i915_gem_pread *args) | 
 | { | 
 | 	char __user *user_data; | 
 | 	u64 remain; | 
 | 	unsigned int obj_do_bit17_swizzling; | 
 | 	unsigned int needs_clflush; | 
 | 	unsigned int idx, offset; | 
 | 	int ret; | 
 |  | 
 | 	obj_do_bit17_swizzling = 0; | 
 | 	if (i915_gem_object_needs_bit17_swizzle(obj)) | 
 | 		obj_do_bit17_swizzling = BIT(17); | 
 |  | 
 | 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); | 
 | 	mutex_unlock(&obj->base.dev->struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	remain = args->size; | 
 | 	user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	offset = offset_in_page(args->offset); | 
 | 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { | 
 | 		struct page *page = i915_gem_object_get_page(obj, idx); | 
 | 		int length; | 
 |  | 
 | 		length = remain; | 
 | 		if (offset + length > PAGE_SIZE) | 
 | 			length = PAGE_SIZE - offset; | 
 |  | 
 | 		ret = shmem_pread(page, offset, length, user_data, | 
 | 				  page_to_phys(page) & obj_do_bit17_swizzling, | 
 | 				  needs_clflush); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		remain -= length; | 
 | 		user_data += length; | 
 | 		offset = 0; | 
 | 	} | 
 |  | 
 | 	i915_gem_obj_finish_shmem_access(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool | 
 | gtt_user_read(struct io_mapping *mapping, | 
 | 	      loff_t base, int offset, | 
 | 	      char __user *user_data, int length) | 
 | { | 
 | 	void __iomem *vaddr; | 
 | 	unsigned long unwritten; | 
 |  | 
 | 	/* We can use the cpu mem copy function because this is X86. */ | 
 | 	vaddr = io_mapping_map_atomic_wc(mapping, base); | 
 | 	unwritten = __copy_to_user_inatomic(user_data, | 
 | 					    (void __force *)vaddr + offset, | 
 | 					    length); | 
 | 	io_mapping_unmap_atomic(vaddr); | 
 | 	if (unwritten) { | 
 | 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); | 
 | 		unwritten = copy_to_user(user_data, | 
 | 					 (void __force *)vaddr + offset, | 
 | 					 length); | 
 | 		io_mapping_unmap(vaddr); | 
 | 	} | 
 | 	return unwritten; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_gtt_pread(struct drm_i915_gem_object *obj, | 
 | 		   const struct drm_i915_gem_pread *args) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 | 	struct i915_ggtt *ggtt = &i915->ggtt; | 
 | 	struct drm_mm_node node; | 
 | 	struct i915_vma *vma; | 
 | 	void __user *user_data; | 
 | 	u64 remain, offset; | 
 | 	int ret; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	intel_runtime_pm_get(i915); | 
 | 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, | 
 | 				       PIN_MAPPABLE | | 
 | 				       PIN_NONFAULT | | 
 | 				       PIN_NONBLOCK); | 
 | 	if (!IS_ERR(vma)) { | 
 | 		node.start = i915_ggtt_offset(vma); | 
 | 		node.allocated = false; | 
 | 		ret = i915_vma_put_fence(vma); | 
 | 		if (ret) { | 
 | 			i915_vma_unpin(vma); | 
 | 			vma = ERR_PTR(ret); | 
 | 		} | 
 | 	} | 
 | 	if (IS_ERR(vma)) { | 
 | 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 		GEM_BUG_ON(!node.allocated); | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_set_to_gtt_domain(obj, false); | 
 | 	if (ret) | 
 | 		goto out_unpin; | 
 |  | 
 | 	mutex_unlock(&i915->drm.struct_mutex); | 
 |  | 
 | 	user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	remain = args->size; | 
 | 	offset = args->offset; | 
 |  | 
 | 	while (remain > 0) { | 
 | 		/* Operation in this page | 
 | 		 * | 
 | 		 * page_base = page offset within aperture | 
 | 		 * page_offset = offset within page | 
 | 		 * page_length = bytes to copy for this page | 
 | 		 */ | 
 | 		u32 page_base = node.start; | 
 | 		unsigned page_offset = offset_in_page(offset); | 
 | 		unsigned page_length = PAGE_SIZE - page_offset; | 
 | 		page_length = remain < page_length ? remain : page_length; | 
 | 		if (node.allocated) { | 
 | 			wmb(); | 
 | 			ggtt->base.insert_page(&ggtt->base, | 
 | 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), | 
 | 					       node.start, I915_CACHE_NONE, 0); | 
 | 			wmb(); | 
 | 		} else { | 
 | 			page_base += offset & PAGE_MASK; | 
 | 		} | 
 |  | 
 | 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset, | 
 | 				  user_data, page_length)) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		remain -= page_length; | 
 | 		user_data += page_length; | 
 | 		offset += page_length; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&i915->drm.struct_mutex); | 
 | out_unpin: | 
 | 	if (node.allocated) { | 
 | 		wmb(); | 
 | 		ggtt->base.clear_range(&ggtt->base, | 
 | 				       node.start, node.size); | 
 | 		remove_mappable_node(&node); | 
 | 	} else { | 
 | 		i915_vma_unpin(vma); | 
 | 	} | 
 | out_unlock: | 
 | 	intel_runtime_pm_put(i915); | 
 | 	mutex_unlock(&i915->drm.struct_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Reads data from the object referenced by handle. | 
 |  * @dev: drm device pointer | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file pointer | 
 |  * | 
 |  * On error, the contents of *data are undefined. | 
 |  */ | 
 | int | 
 | i915_gem_pread_ioctl(struct drm_device *dev, void *data, | 
 | 		     struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_pread *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 |  | 
 | 	if (args->size == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, | 
 | 		       u64_to_user_ptr(args->data_ptr), | 
 | 		       args->size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Bounds check source.  */ | 
 | 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trace_i915_gem_object_pread(obj, args->offset, args->size); | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE, | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   to_rps_client(file)); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = i915_gem_object_pin_pages(obj); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = i915_gem_shmem_pread(obj, args); | 
 | 	if (ret == -EFAULT || ret == -ENODEV) | 
 | 		ret = i915_gem_gtt_pread(obj, args); | 
 |  | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | out: | 
 | 	i915_gem_object_put(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* This is the fast write path which cannot handle | 
 |  * page faults in the source data | 
 |  */ | 
 |  | 
 | static inline bool | 
 | ggtt_write(struct io_mapping *mapping, | 
 | 	   loff_t base, int offset, | 
 | 	   char __user *user_data, int length) | 
 | { | 
 | 	void __iomem *vaddr; | 
 | 	unsigned long unwritten; | 
 |  | 
 | 	/* We can use the cpu mem copy function because this is X86. */ | 
 | 	vaddr = io_mapping_map_atomic_wc(mapping, base); | 
 | 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, | 
 | 						      user_data, length); | 
 | 	io_mapping_unmap_atomic(vaddr); | 
 | 	if (unwritten) { | 
 | 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); | 
 | 		unwritten = copy_from_user((void __force *)vaddr + offset, | 
 | 					   user_data, length); | 
 | 		io_mapping_unmap(vaddr); | 
 | 	} | 
 |  | 
 | 	return unwritten; | 
 | } | 
 |  | 
 | /** | 
 |  * This is the fast pwrite path, where we copy the data directly from the | 
 |  * user into the GTT, uncached. | 
 |  * @obj: i915 GEM object | 
 |  * @args: pwrite arguments structure | 
 |  */ | 
 | static int | 
 | i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, | 
 | 			 const struct drm_i915_gem_pwrite *args) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 | 	struct i915_ggtt *ggtt = &i915->ggtt; | 
 | 	struct drm_mm_node node; | 
 | 	struct i915_vma *vma; | 
 | 	u64 remain, offset; | 
 | 	void __user *user_data; | 
 | 	int ret; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (i915_gem_object_has_struct_page(obj)) { | 
 | 		/* | 
 | 		 * Avoid waking the device up if we can fallback, as | 
 | 		 * waking/resuming is very slow (worst-case 10-100 ms | 
 | 		 * depending on PCI sleeps and our own resume time). | 
 | 		 * This easily dwarfs any performance advantage from | 
 | 		 * using the cache bypass of indirect GGTT access. | 
 | 		 */ | 
 | 		if (!intel_runtime_pm_get_if_in_use(i915)) { | 
 | 			ret = -EFAULT; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} else { | 
 | 		/* No backing pages, no fallback, we must force GGTT access */ | 
 | 		intel_runtime_pm_get(i915); | 
 | 	} | 
 |  | 
 | 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, | 
 | 				       PIN_MAPPABLE | | 
 | 				       PIN_NONFAULT | | 
 | 				       PIN_NONBLOCK); | 
 | 	if (!IS_ERR(vma)) { | 
 | 		node.start = i915_ggtt_offset(vma); | 
 | 		node.allocated = false; | 
 | 		ret = i915_vma_put_fence(vma); | 
 | 		if (ret) { | 
 | 			i915_vma_unpin(vma); | 
 | 			vma = ERR_PTR(ret); | 
 | 		} | 
 | 	} | 
 | 	if (IS_ERR(vma)) { | 
 | 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); | 
 | 		if (ret) | 
 | 			goto out_rpm; | 
 | 		GEM_BUG_ON(!node.allocated); | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_set_to_gtt_domain(obj, true); | 
 | 	if (ret) | 
 | 		goto out_unpin; | 
 |  | 
 | 	mutex_unlock(&i915->drm.struct_mutex); | 
 |  | 
 | 	intel_fb_obj_invalidate(obj, ORIGIN_CPU); | 
 |  | 
 | 	user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	offset = args->offset; | 
 | 	remain = args->size; | 
 | 	while (remain) { | 
 | 		/* Operation in this page | 
 | 		 * | 
 | 		 * page_base = page offset within aperture | 
 | 		 * page_offset = offset within page | 
 | 		 * page_length = bytes to copy for this page | 
 | 		 */ | 
 | 		u32 page_base = node.start; | 
 | 		unsigned int page_offset = offset_in_page(offset); | 
 | 		unsigned int page_length = PAGE_SIZE - page_offset; | 
 | 		page_length = remain < page_length ? remain : page_length; | 
 | 		if (node.allocated) { | 
 | 			wmb(); /* flush the write before we modify the GGTT */ | 
 | 			ggtt->base.insert_page(&ggtt->base, | 
 | 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), | 
 | 					       node.start, I915_CACHE_NONE, 0); | 
 | 			wmb(); /* flush modifications to the GGTT (insert_page) */ | 
 | 		} else { | 
 | 			page_base += offset & PAGE_MASK; | 
 | 		} | 
 | 		/* If we get a fault while copying data, then (presumably) our | 
 | 		 * source page isn't available.  Return the error and we'll | 
 | 		 * retry in the slow path. | 
 | 		 * If the object is non-shmem backed, we retry again with the | 
 | 		 * path that handles page fault. | 
 | 		 */ | 
 | 		if (ggtt_write(&ggtt->iomap, page_base, page_offset, | 
 | 			       user_data, page_length)) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		remain -= page_length; | 
 | 		user_data += page_length; | 
 | 		offset += page_length; | 
 | 	} | 
 | 	intel_fb_obj_flush(obj, ORIGIN_CPU); | 
 |  | 
 | 	mutex_lock(&i915->drm.struct_mutex); | 
 | out_unpin: | 
 | 	if (node.allocated) { | 
 | 		wmb(); | 
 | 		ggtt->base.clear_range(&ggtt->base, | 
 | 				       node.start, node.size); | 
 | 		remove_mappable_node(&node); | 
 | 	} else { | 
 | 		i915_vma_unpin(vma); | 
 | 	} | 
 | out_rpm: | 
 | 	intel_runtime_pm_put(i915); | 
 | out_unlock: | 
 | 	mutex_unlock(&i915->drm.struct_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | shmem_pwrite_slow(struct page *page, int offset, int length, | 
 | 		  char __user *user_data, | 
 | 		  bool page_do_bit17_swizzling, | 
 | 		  bool needs_clflush_before, | 
 | 		  bool needs_clflush_after) | 
 | { | 
 | 	char *vaddr; | 
 | 	int ret; | 
 |  | 
 | 	vaddr = kmap(page); | 
 | 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) | 
 | 		shmem_clflush_swizzled_range(vaddr + offset, length, | 
 | 					     page_do_bit17_swizzling); | 
 | 	if (page_do_bit17_swizzling) | 
 | 		ret = __copy_from_user_swizzled(vaddr, offset, user_data, | 
 | 						length); | 
 | 	else | 
 | 		ret = __copy_from_user(vaddr + offset, user_data, length); | 
 | 	if (needs_clflush_after) | 
 | 		shmem_clflush_swizzled_range(vaddr + offset, length, | 
 | 					     page_do_bit17_swizzling); | 
 | 	kunmap(page); | 
 |  | 
 | 	return ret ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /* Per-page copy function for the shmem pwrite fastpath. | 
 |  * Flushes invalid cachelines before writing to the target if | 
 |  * needs_clflush_before is set and flushes out any written cachelines after | 
 |  * writing if needs_clflush is set. | 
 |  */ | 
 | static int | 
 | shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, | 
 | 	     bool page_do_bit17_swizzling, | 
 | 	     bool needs_clflush_before, | 
 | 	     bool needs_clflush_after) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = -ENODEV; | 
 | 	if (!page_do_bit17_swizzling) { | 
 | 		char *vaddr = kmap_atomic(page); | 
 |  | 
 | 		if (needs_clflush_before) | 
 | 			drm_clflush_virt_range(vaddr + offset, len); | 
 | 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); | 
 | 		if (needs_clflush_after) | 
 | 			drm_clflush_virt_range(vaddr + offset, len); | 
 |  | 
 | 		kunmap_atomic(vaddr); | 
 | 	} | 
 | 	if (ret == 0) | 
 | 		return ret; | 
 |  | 
 | 	return shmem_pwrite_slow(page, offset, len, user_data, | 
 | 				 page_do_bit17_swizzling, | 
 | 				 needs_clflush_before, | 
 | 				 needs_clflush_after); | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, | 
 | 		      const struct drm_i915_gem_pwrite *args) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 | 	void __user *user_data; | 
 | 	u64 remain; | 
 | 	unsigned int obj_do_bit17_swizzling; | 
 | 	unsigned int partial_cacheline_write; | 
 | 	unsigned int needs_clflush; | 
 | 	unsigned int offset, idx; | 
 | 	int ret; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); | 
 | 	mutex_unlock(&i915->drm.struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	obj_do_bit17_swizzling = 0; | 
 | 	if (i915_gem_object_needs_bit17_swizzle(obj)) | 
 | 		obj_do_bit17_swizzling = BIT(17); | 
 |  | 
 | 	/* If we don't overwrite a cacheline completely we need to be | 
 | 	 * careful to have up-to-date data by first clflushing. Don't | 
 | 	 * overcomplicate things and flush the entire patch. | 
 | 	 */ | 
 | 	partial_cacheline_write = 0; | 
 | 	if (needs_clflush & CLFLUSH_BEFORE) | 
 | 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; | 
 |  | 
 | 	user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	remain = args->size; | 
 | 	offset = offset_in_page(args->offset); | 
 | 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { | 
 | 		struct page *page = i915_gem_object_get_page(obj, idx); | 
 | 		int length; | 
 |  | 
 | 		length = remain; | 
 | 		if (offset + length > PAGE_SIZE) | 
 | 			length = PAGE_SIZE - offset; | 
 |  | 
 | 		ret = shmem_pwrite(page, offset, length, user_data, | 
 | 				   page_to_phys(page) & obj_do_bit17_swizzling, | 
 | 				   (offset | length) & partial_cacheline_write, | 
 | 				   needs_clflush & CLFLUSH_AFTER); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		remain -= length; | 
 | 		user_data += length; | 
 | 		offset = 0; | 
 | 	} | 
 |  | 
 | 	intel_fb_obj_flush(obj, ORIGIN_CPU); | 
 | 	i915_gem_obj_finish_shmem_access(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Writes data to the object referenced by handle. | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  * | 
 |  * On error, the contents of the buffer that were to be modified are undefined. | 
 |  */ | 
 | int | 
 | i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, | 
 | 		      struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_pwrite *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 |  | 
 | 	if (args->size == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (!access_ok(VERIFY_READ, | 
 | 		       u64_to_user_ptr(args->data_ptr), | 
 | 		       args->size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Bounds check destination. */ | 
 | 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { | 
 | 		ret = -EINVAL; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	trace_i915_gem_object_pwrite(obj, args->offset, args->size); | 
 |  | 
 | 	ret = -ENODEV; | 
 | 	if (obj->ops->pwrite) | 
 | 		ret = obj->ops->pwrite(obj, args); | 
 | 	if (ret != -ENODEV) | 
 | 		goto err; | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | | 
 | 				   I915_WAIT_ALL, | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   to_rps_client(file)); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = i915_gem_object_pin_pages(obj); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	/* We can only do the GTT pwrite on untiled buffers, as otherwise | 
 | 	 * it would end up going through the fenced access, and we'll get | 
 | 	 * different detiling behavior between reading and writing. | 
 | 	 * pread/pwrite currently are reading and writing from the CPU | 
 | 	 * perspective, requiring manual detiling by the client. | 
 | 	 */ | 
 | 	if (!i915_gem_object_has_struct_page(obj) || | 
 | 	    cpu_write_needs_clflush(obj)) | 
 | 		/* Note that the gtt paths might fail with non-page-backed user | 
 | 		 * pointers (e.g. gtt mappings when moving data between | 
 | 		 * textures). Fallback to the shmem path in that case. | 
 | 		 */ | 
 | 		ret = i915_gem_gtt_pwrite_fast(obj, args); | 
 |  | 
 | 	if (ret == -EFAULT || ret == -ENOSPC) { | 
 | 		if (obj->phys_handle) | 
 | 			ret = i915_gem_phys_pwrite(obj, args, file); | 
 | 		else | 
 | 			ret = i915_gem_shmem_pwrite(obj, args); | 
 | 	} | 
 |  | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | err: | 
 | 	i915_gem_object_put(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *i915; | 
 | 	struct list_head *list; | 
 | 	struct i915_vma *vma; | 
 |  | 
 | 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); | 
 |  | 
 | 	for_each_ggtt_vma(vma, obj) { | 
 | 		if (i915_vma_is_active(vma)) | 
 | 			continue; | 
 |  | 
 | 		if (!drm_mm_node_allocated(&vma->node)) | 
 | 			continue; | 
 |  | 
 | 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list); | 
 | 	} | 
 |  | 
 | 	i915 = to_i915(obj->base.dev); | 
 | 	spin_lock(&i915->mm.obj_lock); | 
 | 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; | 
 | 	list_move_tail(&obj->mm.link, list); | 
 | 	spin_unlock(&i915->mm.obj_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * Called when user space prepares to use an object with the CPU, either | 
 |  * through the mmap ioctl's mapping or a GTT mapping. | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  */ | 
 | int | 
 | i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, | 
 | 			  struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_set_domain *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	uint32_t read_domains = args->read_domains; | 
 | 	uint32_t write_domain = args->write_domain; | 
 | 	int err; | 
 |  | 
 | 	/* Only handle setting domains to types used by the CPU. */ | 
 | 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Having something in the write domain implies it's in the read | 
 | 	 * domain, and only that read domain.  Enforce that in the request. | 
 | 	 */ | 
 | 	if (write_domain != 0 && read_domains != write_domain) | 
 | 		return -EINVAL; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Try to flush the object off the GPU without holding the lock. | 
 | 	 * We will repeat the flush holding the lock in the normal manner | 
 | 	 * to catch cases where we are gazumped. | 
 | 	 */ | 
 | 	err = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | | 
 | 				   (write_domain ? I915_WAIT_ALL : 0), | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   to_rps_client(file)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Proxy objects do not control access to the backing storage, ergo | 
 | 	 * they cannot be used as a means to manipulate the cache domain | 
 | 	 * tracking for that backing storage. The proxy object is always | 
 | 	 * considered to be outside of any cache domain. | 
 | 	 */ | 
 | 	if (i915_gem_object_is_proxy(obj)) { | 
 | 		err = -ENXIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Flush and acquire obj->pages so that we are coherent through | 
 | 	 * direct access in memory with previous cached writes through | 
 | 	 * shmemfs and that our cache domain tracking remains valid. | 
 | 	 * For example, if the obj->filp was moved to swap without us | 
 | 	 * being notified and releasing the pages, we would mistakenly | 
 | 	 * continue to assume that the obj remained out of the CPU cached | 
 | 	 * domain. | 
 | 	 */ | 
 | 	err = i915_gem_object_pin_pages(obj); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = i915_mutex_lock_interruptible(dev); | 
 | 	if (err) | 
 | 		goto out_unpin; | 
 |  | 
 | 	if (read_domains & I915_GEM_DOMAIN_WC) | 
 | 		err = i915_gem_object_set_to_wc_domain(obj, write_domain); | 
 | 	else if (read_domains & I915_GEM_DOMAIN_GTT) | 
 | 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain); | 
 | 	else | 
 | 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain); | 
 |  | 
 | 	/* And bump the LRU for this access */ | 
 | 	i915_gem_object_bump_inactive_ggtt(obj); | 
 |  | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 	if (write_domain != 0) | 
 | 		intel_fb_obj_invalidate(obj, | 
 | 					fb_write_origin(obj, write_domain)); | 
 |  | 
 | out_unpin: | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | out: | 
 | 	i915_gem_object_put(obj); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * Called when user space has done writes to this buffer | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  */ | 
 | int | 
 | i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, | 
 | 			 struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_sw_finish *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * Proxy objects are barred from CPU access, so there is no | 
 | 	 * need to ban sw_finish as it is a nop. | 
 | 	 */ | 
 |  | 
 | 	/* Pinned buffers may be scanout, so flush the cache */ | 
 | 	i915_gem_object_flush_if_display(obj); | 
 | 	i915_gem_object_put(obj); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address | 
 |  *			 it is mapped to. | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  * | 
 |  * While the mapping holds a reference on the contents of the object, it doesn't | 
 |  * imply a ref on the object itself. | 
 |  * | 
 |  * IMPORTANT: | 
 |  * | 
 |  * DRM driver writers who look a this function as an example for how to do GEM | 
 |  * mmap support, please don't implement mmap support like here. The modern way | 
 |  * to implement DRM mmap support is with an mmap offset ioctl (like | 
 |  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. | 
 |  * That way debug tooling like valgrind will understand what's going on, hiding | 
 |  * the mmap call in a driver private ioctl will break that. The i915 driver only | 
 |  * does cpu mmaps this way because we didn't know better. | 
 |  */ | 
 | int | 
 | i915_gem_mmap_ioctl(struct drm_device *dev, void *data, | 
 | 		    struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_mmap *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (args->flags & ~(I915_MMAP_WC)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* prime objects have no backing filp to GEM mmap | 
 | 	 * pages from. | 
 | 	 */ | 
 | 	if (!obj->base.filp) { | 
 | 		i915_gem_object_put(obj); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	addr = vm_mmap(obj->base.filp, 0, args->size, | 
 | 		       PROT_READ | PROT_WRITE, MAP_SHARED, | 
 | 		       args->offset); | 
 | 	if (args->flags & I915_MMAP_WC) { | 
 | 		struct mm_struct *mm = current->mm; | 
 | 		struct vm_area_struct *vma; | 
 |  | 
 | 		if (down_write_killable(&mm->mmap_sem)) { | 
 | 			i915_gem_object_put(obj); | 
 | 			return -EINTR; | 
 | 		} | 
 | 		vma = find_vma(mm, addr); | 
 | 		if (vma) | 
 | 			vma->vm_page_prot = | 
 | 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); | 
 | 		else | 
 | 			addr = -ENOMEM; | 
 | 		up_write(&mm->mmap_sem); | 
 |  | 
 | 		/* This may race, but that's ok, it only gets set */ | 
 | 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); | 
 | 	} | 
 | 	i915_gem_object_put(obj); | 
 | 	if (IS_ERR((void *)addr)) | 
 | 		return addr; | 
 |  | 
 | 	args->addr_ptr = (uint64_t) addr; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps | 
 |  * | 
 |  * A history of the GTT mmap interface: | 
 |  * | 
 |  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to | 
 |  *     aligned and suitable for fencing, and still fit into the available | 
 |  *     mappable space left by the pinned display objects. A classic problem | 
 |  *     we called the page-fault-of-doom where we would ping-pong between | 
 |  *     two objects that could not fit inside the GTT and so the memcpy | 
 |  *     would page one object in at the expense of the other between every | 
 |  *     single byte. | 
 |  * | 
 |  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none | 
 |  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the | 
 |  *     object is too large for the available space (or simply too large | 
 |  *     for the mappable aperture!), a view is created instead and faulted | 
 |  *     into userspace. (This view is aligned and sized appropriately for | 
 |  *     fenced access.) | 
 |  * | 
 |  * 2 - Recognise WC as a separate cache domain so that we can flush the | 
 |  *     delayed writes via GTT before performing direct access via WC. | 
 |  * | 
 |  * Restrictions: | 
 |  * | 
 |  *  * snoopable objects cannot be accessed via the GTT. It can cause machine | 
 |  *    hangs on some architectures, corruption on others. An attempt to service | 
 |  *    a GTT page fault from a snoopable object will generate a SIGBUS. | 
 |  * | 
 |  *  * the object must be able to fit into RAM (physical memory, though no | 
 |  *    limited to the mappable aperture). | 
 |  * | 
 |  * | 
 |  * Caveats: | 
 |  * | 
 |  *  * a new GTT page fault will synchronize rendering from the GPU and flush | 
 |  *    all data to system memory. Subsequent access will not be synchronized. | 
 |  * | 
 |  *  * all mappings are revoked on runtime device suspend. | 
 |  * | 
 |  *  * there are only 8, 16 or 32 fence registers to share between all users | 
 |  *    (older machines require fence register for display and blitter access | 
 |  *    as well). Contention of the fence registers will cause the previous users | 
 |  *    to be unmapped and any new access will generate new page faults. | 
 |  * | 
 |  *  * running out of memory while servicing a fault may generate a SIGBUS, | 
 |  *    rather than the expected SIGSEGV. | 
 |  */ | 
 | int i915_gem_mmap_gtt_version(void) | 
 | { | 
 | 	return 2; | 
 | } | 
 |  | 
 | static inline struct i915_ggtt_view | 
 | compute_partial_view(struct drm_i915_gem_object *obj, | 
 | 		     pgoff_t page_offset, | 
 | 		     unsigned int chunk) | 
 | { | 
 | 	struct i915_ggtt_view view; | 
 |  | 
 | 	if (i915_gem_object_is_tiled(obj)) | 
 | 		chunk = roundup(chunk, tile_row_pages(obj)); | 
 |  | 
 | 	view.type = I915_GGTT_VIEW_PARTIAL; | 
 | 	view.partial.offset = rounddown(page_offset, chunk); | 
 | 	view.partial.size = | 
 | 		min_t(unsigned int, chunk, | 
 | 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset); | 
 |  | 
 | 	/* If the partial covers the entire object, just create a normal VMA. */ | 
 | 	if (chunk >= obj->base.size >> PAGE_SHIFT) | 
 | 		view.type = I915_GGTT_VIEW_NORMAL; | 
 |  | 
 | 	return view; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_fault - fault a page into the GTT | 
 |  * @vmf: fault info | 
 |  * | 
 |  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped | 
 |  * from userspace.  The fault handler takes care of binding the object to | 
 |  * the GTT (if needed), allocating and programming a fence register (again, | 
 |  * only if needed based on whether the old reg is still valid or the object | 
 |  * is tiled) and inserting a new PTE into the faulting process. | 
 |  * | 
 |  * Note that the faulting process may involve evicting existing objects | 
 |  * from the GTT and/or fence registers to make room.  So performance may | 
 |  * suffer if the GTT working set is large or there are few fence registers | 
 |  * left. | 
 |  * | 
 |  * The current feature set supported by i915_gem_fault() and thus GTT mmaps | 
 |  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). | 
 |  */ | 
 | int i915_gem_fault(struct vm_fault *vmf) | 
 | { | 
 | #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ | 
 | 	struct vm_area_struct *area = vmf->vma; | 
 | 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); | 
 | 	struct drm_device *dev = obj->base.dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE); | 
 | 	struct i915_vma *vma; | 
 | 	pgoff_t page_offset; | 
 | 	int ret; | 
 |  | 
 | 	/* We don't use vmf->pgoff since that has the fake offset */ | 
 | 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; | 
 |  | 
 | 	trace_i915_gem_object_fault(obj, page_offset, true, write); | 
 |  | 
 | 	/* Try to flush the object off the GPU first without holding the lock. | 
 | 	 * Upon acquiring the lock, we will perform our sanity checks and then | 
 | 	 * repeat the flush holding the lock in the normal manner to catch cases | 
 | 	 * where we are gazumped. | 
 | 	 */ | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE, | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   NULL); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = i915_gem_object_pin_pages(obj); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	intel_runtime_pm_get(dev_priv); | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		goto err_rpm; | 
 |  | 
 | 	/* Access to snoopable pages through the GTT is incoherent. */ | 
 | 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { | 
 | 		ret = -EFAULT; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Now pin it into the GTT as needed */ | 
 | 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, | 
 | 				       PIN_MAPPABLE | | 
 | 				       PIN_NONBLOCK | | 
 | 				       PIN_NONFAULT); | 
 | 	if (IS_ERR(vma)) { | 
 | 		/* Use a partial view if it is bigger than available space */ | 
 | 		struct i915_ggtt_view view = | 
 | 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); | 
 | 		unsigned int flags; | 
 |  | 
 | 		flags = PIN_MAPPABLE; | 
 | 		if (view.type == I915_GGTT_VIEW_NORMAL) | 
 | 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */ | 
 |  | 
 | 		/* | 
 | 		 * Userspace is now writing through an untracked VMA, abandon | 
 | 		 * all hope that the hardware is able to track future writes. | 
 | 		 */ | 
 | 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU; | 
 |  | 
 | 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags); | 
 | 		if (IS_ERR(vma) && !view.type) { | 
 | 			flags = PIN_MAPPABLE; | 
 | 			view.type = I915_GGTT_VIEW_PARTIAL; | 
 | 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags); | 
 | 		} | 
 | 	} | 
 | 	if (IS_ERR(vma)) { | 
 | 		ret = PTR_ERR(vma); | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_set_to_gtt_domain(obj, write); | 
 | 	if (ret) | 
 | 		goto err_unpin; | 
 |  | 
 | 	ret = i915_vma_pin_fence(vma); | 
 | 	if (ret) | 
 | 		goto err_unpin; | 
 |  | 
 | 	/* Finally, remap it using the new GTT offset */ | 
 | 	ret = remap_io_mapping(area, | 
 | 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), | 
 | 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT, | 
 | 			       min_t(u64, vma->size, area->vm_end - area->vm_start), | 
 | 			       &ggtt->iomap); | 
 | 	if (ret) | 
 | 		goto err_fence; | 
 |  | 
 | 	/* Mark as being mmapped into userspace for later revocation */ | 
 | 	assert_rpm_wakelock_held(dev_priv); | 
 | 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) | 
 | 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); | 
 | 	GEM_BUG_ON(!obj->userfault_count); | 
 |  | 
 | 	i915_vma_set_ggtt_write(vma); | 
 |  | 
 | err_fence: | 
 | 	i915_vma_unpin_fence(vma); | 
 | err_unpin: | 
 | 	__i915_vma_unpin(vma); | 
 | err_unlock: | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | err_rpm: | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | err: | 
 | 	switch (ret) { | 
 | 	case -EIO: | 
 | 		/* | 
 | 		 * We eat errors when the gpu is terminally wedged to avoid | 
 | 		 * userspace unduly crashing (gl has no provisions for mmaps to | 
 | 		 * fail). But any other -EIO isn't ours (e.g. swap in failure) | 
 | 		 * and so needs to be reported. | 
 | 		 */ | 
 | 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) { | 
 | 			ret = VM_FAULT_SIGBUS; | 
 | 			break; | 
 | 		} | 
 | 	case -EAGAIN: | 
 | 		/* | 
 | 		 * EAGAIN means the gpu is hung and we'll wait for the error | 
 | 		 * handler to reset everything when re-faulting in | 
 | 		 * i915_mutex_lock_interruptible. | 
 | 		 */ | 
 | 	case 0: | 
 | 	case -ERESTARTSYS: | 
 | 	case -EINTR: | 
 | 	case -EBUSY: | 
 | 		/* | 
 | 		 * EBUSY is ok: this just means that another thread | 
 | 		 * already did the job. | 
 | 		 */ | 
 | 		ret = VM_FAULT_NOPAGE; | 
 | 		break; | 
 | 	case -ENOMEM: | 
 | 		ret = VM_FAULT_OOM; | 
 | 		break; | 
 | 	case -ENOSPC: | 
 | 	case -EFAULT: | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct i915_vma *vma; | 
 |  | 
 | 	GEM_BUG_ON(!obj->userfault_count); | 
 |  | 
 | 	obj->userfault_count = 0; | 
 | 	list_del(&obj->userfault_link); | 
 | 	drm_vma_node_unmap(&obj->base.vma_node, | 
 | 			   obj->base.dev->anon_inode->i_mapping); | 
 |  | 
 | 	for_each_ggtt_vma(vma, obj) | 
 | 		i915_vma_unset_userfault(vma); | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_release_mmap - remove physical page mappings | 
 |  * @obj: obj in question | 
 |  * | 
 |  * Preserve the reservation of the mmapping with the DRM core code, but | 
 |  * relinquish ownership of the pages back to the system. | 
 |  * | 
 |  * It is vital that we remove the page mapping if we have mapped a tiled | 
 |  * object through the GTT and then lose the fence register due to | 
 |  * resource pressure. Similarly if the object has been moved out of the | 
 |  * aperture, than pages mapped into userspace must be revoked. Removing the | 
 |  * mapping will then trigger a page fault on the next user access, allowing | 
 |  * fixup by i915_gem_fault(). | 
 |  */ | 
 | void | 
 | i915_gem_release_mmap(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 |  | 
 | 	/* Serialisation between user GTT access and our code depends upon | 
 | 	 * revoking the CPU's PTE whilst the mutex is held. The next user | 
 | 	 * pagefault then has to wait until we release the mutex. | 
 | 	 * | 
 | 	 * Note that RPM complicates somewhat by adding an additional | 
 | 	 * requirement that operations to the GGTT be made holding the RPM | 
 | 	 * wakeref. | 
 | 	 */ | 
 | 	lockdep_assert_held(&i915->drm.struct_mutex); | 
 | 	intel_runtime_pm_get(i915); | 
 |  | 
 | 	if (!obj->userfault_count) | 
 | 		goto out; | 
 |  | 
 | 	__i915_gem_object_release_mmap(obj); | 
 |  | 
 | 	/* Ensure that the CPU's PTE are revoked and there are not outstanding | 
 | 	 * memory transactions from userspace before we return. The TLB | 
 | 	 * flushing implied above by changing the PTE above *should* be | 
 | 	 * sufficient, an extra barrier here just provides us with a bit | 
 | 	 * of paranoid documentation about our requirement to serialise | 
 | 	 * memory writes before touching registers / GSM. | 
 | 	 */ | 
 | 	wmb(); | 
 |  | 
 | out: | 
 | 	intel_runtime_pm_put(i915); | 
 | } | 
 |  | 
 | void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_i915_gem_object *obj, *on; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Only called during RPM suspend. All users of the userfault_list | 
 | 	 * must be holding an RPM wakeref to ensure that this can not | 
 | 	 * run concurrently with themselves (and use the struct_mutex for | 
 | 	 * protection between themselves). | 
 | 	 */ | 
 |  | 
 | 	list_for_each_entry_safe(obj, on, | 
 | 				 &dev_priv->mm.userfault_list, userfault_link) | 
 | 		__i915_gem_object_release_mmap(obj); | 
 |  | 
 | 	/* The fence will be lost when the device powers down. If any were | 
 | 	 * in use by hardware (i.e. they are pinned), we should not be powering | 
 | 	 * down! All other fences will be reacquired by the user upon waking. | 
 | 	 */ | 
 | 	for (i = 0; i < dev_priv->num_fence_regs; i++) { | 
 | 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; | 
 |  | 
 | 		/* Ideally we want to assert that the fence register is not | 
 | 		 * live at this point (i.e. that no piece of code will be | 
 | 		 * trying to write through fence + GTT, as that both violates | 
 | 		 * our tracking of activity and associated locking/barriers, | 
 | 		 * but also is illegal given that the hw is powered down). | 
 | 		 * | 
 | 		 * Previously we used reg->pin_count as a "liveness" indicator. | 
 | 		 * That is not sufficient, and we need a more fine-grained | 
 | 		 * tool if we want to have a sanity check here. | 
 | 		 */ | 
 |  | 
 | 		if (!reg->vma) | 
 | 			continue; | 
 |  | 
 | 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); | 
 | 		reg->dirty = true; | 
 | 	} | 
 | } | 
 |  | 
 | static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	int err; | 
 |  | 
 | 	err = drm_gem_create_mmap_offset(&obj->base); | 
 | 	if (likely(!err)) | 
 | 		return 0; | 
 |  | 
 | 	/* Attempt to reap some mmap space from dead objects */ | 
 | 	do { | 
 | 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); | 
 | 		if (err) | 
 | 			break; | 
 |  | 
 | 		i915_gem_drain_freed_objects(dev_priv); | 
 | 		err = drm_gem_create_mmap_offset(&obj->base); | 
 | 		if (!err) | 
 | 			break; | 
 |  | 
 | 	} while (flush_delayed_work(&dev_priv->gt.retire_work)); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	drm_gem_free_mmap_offset(&obj->base); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_mmap_gtt(struct drm_file *file, | 
 | 		  struct drm_device *dev, | 
 | 		  uint32_t handle, | 
 | 		  uint64_t *offset) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	ret = i915_gem_object_create_mmap_offset(obj); | 
 | 	if (ret == 0) | 
 | 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node); | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing | 
 |  * @dev: DRM device | 
 |  * @data: GTT mapping ioctl data | 
 |  * @file: GEM object info | 
 |  * | 
 |  * Simply returns the fake offset to userspace so it can mmap it. | 
 |  * The mmap call will end up in drm_gem_mmap(), which will set things | 
 |  * up so we can get faults in the handler above. | 
 |  * | 
 |  * The fault handler will take care of binding the object into the GTT | 
 |  * (since it may have been evicted to make room for something), allocating | 
 |  * a fence register, and mapping the appropriate aperture address into | 
 |  * userspace. | 
 |  */ | 
 | int | 
 | i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, | 
 | 			struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_mmap_gtt *args = data; | 
 |  | 
 | 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); | 
 | } | 
 |  | 
 | /* Immediately discard the backing storage */ | 
 | static void | 
 | i915_gem_object_truncate(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	i915_gem_object_free_mmap_offset(obj); | 
 |  | 
 | 	if (obj->base.filp == NULL) | 
 | 		return; | 
 |  | 
 | 	/* Our goal here is to return as much of the memory as | 
 | 	 * is possible back to the system as we are called from OOM. | 
 | 	 * To do this we must instruct the shmfs to drop all of its | 
 | 	 * backing pages, *now*. | 
 | 	 */ | 
 | 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); | 
 | 	obj->mm.madv = __I915_MADV_PURGED; | 
 | 	obj->mm.pages = ERR_PTR(-EFAULT); | 
 | } | 
 |  | 
 | /* Try to discard unwanted pages */ | 
 | void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	lockdep_assert_held(&obj->mm.lock); | 
 | 	GEM_BUG_ON(i915_gem_object_has_pages(obj)); | 
 |  | 
 | 	switch (obj->mm.madv) { | 
 | 	case I915_MADV_DONTNEED: | 
 | 		i915_gem_object_truncate(obj); | 
 | 	case __I915_MADV_PURGED: | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (obj->base.filp == NULL) | 
 | 		return; | 
 |  | 
 | 	mapping = obj->base.filp->f_mapping, | 
 | 	invalidate_mapping_pages(mapping, 0, (loff_t)-1); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, | 
 | 			      struct sg_table *pages) | 
 | { | 
 | 	struct sgt_iter sgt_iter; | 
 | 	struct page *page; | 
 |  | 
 | 	__i915_gem_object_release_shmem(obj, pages, true); | 
 |  | 
 | 	i915_gem_gtt_finish_pages(obj, pages); | 
 |  | 
 | 	if (i915_gem_object_needs_bit17_swizzle(obj)) | 
 | 		i915_gem_object_save_bit_17_swizzle(obj, pages); | 
 |  | 
 | 	for_each_sgt_page(page, sgt_iter, pages) { | 
 | 		if (obj->mm.dirty) | 
 | 			set_page_dirty(page); | 
 |  | 
 | 		if (obj->mm.madv == I915_MADV_WILLNEED) | 
 | 			mark_page_accessed(page); | 
 |  | 
 | 		put_page(page); | 
 | 	} | 
 | 	obj->mm.dirty = false; | 
 |  | 
 | 	sg_free_table(pages); | 
 | 	kfree(pages); | 
 | } | 
 |  | 
 | static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void __rcu **slot; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) | 
 | 		radix_tree_delete(&obj->mm.get_page.radix, iter.index); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, | 
 | 				 enum i915_mm_subclass subclass) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 | 	struct sg_table *pages; | 
 |  | 
 | 	if (i915_gem_object_has_pinned_pages(obj)) | 
 | 		return; | 
 |  | 
 | 	GEM_BUG_ON(obj->bind_count); | 
 | 	if (!i915_gem_object_has_pages(obj)) | 
 | 		return; | 
 |  | 
 | 	/* May be called by shrinker from within get_pages() (on another bo) */ | 
 | 	mutex_lock_nested(&obj->mm.lock, subclass); | 
 | 	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) | 
 | 		goto unlock; | 
 |  | 
 | 	/* ->put_pages might need to allocate memory for the bit17 swizzle | 
 | 	 * array, hence protect them from being reaped by removing them from gtt | 
 | 	 * lists early. */ | 
 | 	pages = fetch_and_zero(&obj->mm.pages); | 
 | 	GEM_BUG_ON(!pages); | 
 |  | 
 | 	spin_lock(&i915->mm.obj_lock); | 
 | 	list_del(&obj->mm.link); | 
 | 	spin_unlock(&i915->mm.obj_lock); | 
 |  | 
 | 	if (obj->mm.mapping) { | 
 | 		void *ptr; | 
 |  | 
 | 		ptr = page_mask_bits(obj->mm.mapping); | 
 | 		if (is_vmalloc_addr(ptr)) | 
 | 			vunmap(ptr); | 
 | 		else | 
 | 			kunmap(kmap_to_page(ptr)); | 
 |  | 
 | 		obj->mm.mapping = NULL; | 
 | 	} | 
 |  | 
 | 	__i915_gem_object_reset_page_iter(obj); | 
 |  | 
 | 	if (!IS_ERR(pages)) | 
 | 		obj->ops->put_pages(obj, pages); | 
 |  | 
 | 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&obj->mm.lock); | 
 | } | 
 |  | 
 | static bool i915_sg_trim(struct sg_table *orig_st) | 
 | { | 
 | 	struct sg_table new_st; | 
 | 	struct scatterlist *sg, *new_sg; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (orig_st->nents == orig_st->orig_nents) | 
 | 		return false; | 
 |  | 
 | 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) | 
 | 		return false; | 
 |  | 
 | 	new_sg = new_st.sgl; | 
 | 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { | 
 | 		sg_set_page(new_sg, sg_page(sg), sg->length, 0); | 
 | 		/* called before being DMA mapped, no need to copy sg->dma_* */ | 
 | 		new_sg = sg_next(new_sg); | 
 | 	} | 
 | 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ | 
 |  | 
 | 	sg_free_table(orig_st); | 
 |  | 
 | 	*orig_st = new_st; | 
 | 	return true; | 
 | } | 
 |  | 
 | static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	const unsigned long page_count = obj->base.size / PAGE_SIZE; | 
 | 	unsigned long i; | 
 | 	struct address_space *mapping; | 
 | 	struct sg_table *st; | 
 | 	struct scatterlist *sg; | 
 | 	struct sgt_iter sgt_iter; | 
 | 	struct page *page; | 
 | 	unsigned long last_pfn = 0;	/* suppress gcc warning */ | 
 | 	unsigned int max_segment = i915_sg_segment_size(); | 
 | 	unsigned int sg_page_sizes; | 
 | 	gfp_t noreclaim; | 
 | 	int ret; | 
 |  | 
 | 	/* Assert that the object is not currently in any GPU domain. As it | 
 | 	 * wasn't in the GTT, there shouldn't be any way it could have been in | 
 | 	 * a GPU cache | 
 | 	 */ | 
 | 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); | 
 | 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); | 
 |  | 
 | 	st = kmalloc(sizeof(*st), GFP_KERNEL); | 
 | 	if (st == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | rebuild_st: | 
 | 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) { | 
 | 		kfree(st); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Get the list of pages out of our struct file.  They'll be pinned | 
 | 	 * at this point until we release them. | 
 | 	 * | 
 | 	 * Fail silently without starting the shrinker | 
 | 	 */ | 
 | 	mapping = obj->base.filp->f_mapping; | 
 | 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); | 
 | 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN; | 
 |  | 
 | 	sg = st->sgl; | 
 | 	st->nents = 0; | 
 | 	sg_page_sizes = 0; | 
 | 	for (i = 0; i < page_count; i++) { | 
 | 		const unsigned int shrink[] = { | 
 | 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, | 
 | 			0, | 
 | 		}, *s = shrink; | 
 | 		gfp_t gfp = noreclaim; | 
 |  | 
 | 		do { | 
 | 			page = shmem_read_mapping_page_gfp(mapping, i, gfp); | 
 | 			if (likely(!IS_ERR(page))) | 
 | 				break; | 
 |  | 
 | 			if (!*s) { | 
 | 				ret = PTR_ERR(page); | 
 | 				goto err_sg; | 
 | 			} | 
 |  | 
 | 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++); | 
 | 			cond_resched(); | 
 |  | 
 | 			/* We've tried hard to allocate the memory by reaping | 
 | 			 * our own buffer, now let the real VM do its job and | 
 | 			 * go down in flames if truly OOM. | 
 | 			 * | 
 | 			 * However, since graphics tend to be disposable, | 
 | 			 * defer the oom here by reporting the ENOMEM back | 
 | 			 * to userspace. | 
 | 			 */ | 
 | 			if (!*s) { | 
 | 				/* reclaim and warn, but no oom */ | 
 | 				gfp = mapping_gfp_mask(mapping); | 
 |  | 
 | 				/* Our bo are always dirty and so we require | 
 | 				 * kswapd to reclaim our pages (direct reclaim | 
 | 				 * does not effectively begin pageout of our | 
 | 				 * buffers on its own). However, direct reclaim | 
 | 				 * only waits for kswapd when under allocation | 
 | 				 * congestion. So as a result __GFP_RECLAIM is | 
 | 				 * unreliable and fails to actually reclaim our | 
 | 				 * dirty pages -- unless you try over and over | 
 | 				 * again with !__GFP_NORETRY. However, we still | 
 | 				 * want to fail this allocation rather than | 
 | 				 * trigger the out-of-memory killer and for | 
 | 				 * this we want __GFP_RETRY_MAYFAIL. | 
 | 				 */ | 
 | 				gfp |= __GFP_RETRY_MAYFAIL; | 
 | 			} | 
 | 		} while (1); | 
 |  | 
 | 		if (!i || | 
 | 		    sg->length >= max_segment || | 
 | 		    page_to_pfn(page) != last_pfn + 1) { | 
 | 			if (i) { | 
 | 				sg_page_sizes |= sg->length; | 
 | 				sg = sg_next(sg); | 
 | 			} | 
 | 			st->nents++; | 
 | 			sg_set_page(sg, page, PAGE_SIZE, 0); | 
 | 		} else { | 
 | 			sg->length += PAGE_SIZE; | 
 | 		} | 
 | 		last_pfn = page_to_pfn(page); | 
 |  | 
 | 		/* Check that the i965g/gm workaround works. */ | 
 | 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); | 
 | 	} | 
 | 	if (sg) { /* loop terminated early; short sg table */ | 
 | 		sg_page_sizes |= sg->length; | 
 | 		sg_mark_end(sg); | 
 | 	} | 
 |  | 
 | 	/* Trim unused sg entries to avoid wasting memory. */ | 
 | 	i915_sg_trim(st); | 
 |  | 
 | 	ret = i915_gem_gtt_prepare_pages(obj, st); | 
 | 	if (ret) { | 
 | 		/* DMA remapping failed? One possible cause is that | 
 | 		 * it could not reserve enough large entries, asking | 
 | 		 * for PAGE_SIZE chunks instead may be helpful. | 
 | 		 */ | 
 | 		if (max_segment > PAGE_SIZE) { | 
 | 			for_each_sgt_page(page, sgt_iter, st) | 
 | 				put_page(page); | 
 | 			sg_free_table(st); | 
 |  | 
 | 			max_segment = PAGE_SIZE; | 
 | 			goto rebuild_st; | 
 | 		} else { | 
 | 			dev_warn(&dev_priv->drm.pdev->dev, | 
 | 				 "Failed to DMA remap %lu pages\n", | 
 | 				 page_count); | 
 | 			goto err_pages; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (i915_gem_object_needs_bit17_swizzle(obj)) | 
 | 		i915_gem_object_do_bit_17_swizzle(obj, st); | 
 |  | 
 | 	__i915_gem_object_set_pages(obj, st, sg_page_sizes); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_sg: | 
 | 	sg_mark_end(sg); | 
 | err_pages: | 
 | 	for_each_sgt_page(page, sgt_iter, st) | 
 | 		put_page(page); | 
 | 	sg_free_table(st); | 
 | 	kfree(st); | 
 |  | 
 | 	/* shmemfs first checks if there is enough memory to allocate the page | 
 | 	 * and reports ENOSPC should there be insufficient, along with the usual | 
 | 	 * ENOMEM for a genuine allocation failure. | 
 | 	 * | 
 | 	 * We use ENOSPC in our driver to mean that we have run out of aperture | 
 | 	 * space and so want to translate the error from shmemfs back to our | 
 | 	 * usual understanding of ENOMEM. | 
 | 	 */ | 
 | 	if (ret == -ENOSPC) | 
 | 		ret = -ENOMEM; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, | 
 | 				 struct sg_table *pages, | 
 | 				 unsigned int sg_page_sizes) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 | 	unsigned long supported = INTEL_INFO(i915)->page_sizes; | 
 | 	int i; | 
 |  | 
 | 	lockdep_assert_held(&obj->mm.lock); | 
 |  | 
 | 	obj->mm.get_page.sg_pos = pages->sgl; | 
 | 	obj->mm.get_page.sg_idx = 0; | 
 |  | 
 | 	obj->mm.pages = pages; | 
 |  | 
 | 	if (i915_gem_object_is_tiled(obj) && | 
 | 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { | 
 | 		GEM_BUG_ON(obj->mm.quirked); | 
 | 		__i915_gem_object_pin_pages(obj); | 
 | 		obj->mm.quirked = true; | 
 | 	} | 
 |  | 
 | 	GEM_BUG_ON(!sg_page_sizes); | 
 | 	obj->mm.page_sizes.phys = sg_page_sizes; | 
 |  | 
 | 	/* | 
 | 	 * Calculate the supported page-sizes which fit into the given | 
 | 	 * sg_page_sizes. This will give us the page-sizes which we may be able | 
 | 	 * to use opportunistically when later inserting into the GTT. For | 
 | 	 * example if phys=2G, then in theory we should be able to use 1G, 2M, | 
 | 	 * 64K or 4K pages, although in practice this will depend on a number of | 
 | 	 * other factors. | 
 | 	 */ | 
 | 	obj->mm.page_sizes.sg = 0; | 
 | 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { | 
 | 		if (obj->mm.page_sizes.phys & ~0u << i) | 
 | 			obj->mm.page_sizes.sg |= BIT(i); | 
 | 	} | 
 | 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); | 
 |  | 
 | 	spin_lock(&i915->mm.obj_lock); | 
 | 	list_add(&obj->mm.link, &i915->mm.unbound_list); | 
 | 	spin_unlock(&i915->mm.obj_lock); | 
 | } | 
 |  | 
 | static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { | 
 | 		DRM_DEBUG("Attempting to obtain a purgeable object\n"); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	err = obj->ops->get_pages(obj); | 
 | 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Ensure that the associated pages are gathered from the backing storage | 
 |  * and pinned into our object. i915_gem_object_pin_pages() may be called | 
 |  * multiple times before they are released by a single call to | 
 |  * i915_gem_object_unpin_pages() - once the pages are no longer referenced | 
 |  * either as a result of memory pressure (reaping pages under the shrinker) | 
 |  * or as the object is itself released. | 
 |  */ | 
 | int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = mutex_lock_interruptible(&obj->mm.lock); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (unlikely(!i915_gem_object_has_pages(obj))) { | 
 | 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); | 
 |  | 
 | 		err = ____i915_gem_object_get_pages(obj); | 
 | 		if (err) | 
 | 			goto unlock; | 
 |  | 
 | 		smp_mb__before_atomic(); | 
 | 	} | 
 | 	atomic_inc(&obj->mm.pages_pin_count); | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&obj->mm.lock); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* The 'mapping' part of i915_gem_object_pin_map() below */ | 
 | static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, | 
 | 				 enum i915_map_type type) | 
 | { | 
 | 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT; | 
 | 	struct sg_table *sgt = obj->mm.pages; | 
 | 	struct sgt_iter sgt_iter; | 
 | 	struct page *page; | 
 | 	struct page *stack_pages[32]; | 
 | 	struct page **pages = stack_pages; | 
 | 	unsigned long i = 0; | 
 | 	pgprot_t pgprot; | 
 | 	void *addr; | 
 |  | 
 | 	/* A single page can always be kmapped */ | 
 | 	if (n_pages == 1 && type == I915_MAP_WB) | 
 | 		return kmap(sg_page(sgt->sgl)); | 
 |  | 
 | 	if (n_pages > ARRAY_SIZE(stack_pages)) { | 
 | 		/* Too big for stack -- allocate temporary array instead */ | 
 | 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); | 
 | 		if (!pages) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	for_each_sgt_page(page, sgt_iter, sgt) | 
 | 		pages[i++] = page; | 
 |  | 
 | 	/* Check that we have the expected number of pages */ | 
 | 	GEM_BUG_ON(i != n_pages); | 
 |  | 
 | 	switch (type) { | 
 | 	default: | 
 | 		MISSING_CASE(type); | 
 | 		/* fallthrough to use PAGE_KERNEL anyway */ | 
 | 	case I915_MAP_WB: | 
 | 		pgprot = PAGE_KERNEL; | 
 | 		break; | 
 | 	case I915_MAP_WC: | 
 | 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO); | 
 | 		break; | 
 | 	} | 
 | 	addr = vmap(pages, n_pages, 0, pgprot); | 
 |  | 
 | 	if (pages != stack_pages) | 
 | 		kvfree(pages); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | /* get, pin, and map the pages of the object into kernel space */ | 
 | void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, | 
 | 			      enum i915_map_type type) | 
 | { | 
 | 	enum i915_map_type has_type; | 
 | 	bool pinned; | 
 | 	void *ptr; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(!i915_gem_object_has_struct_page(obj))) | 
 | 		return ERR_PTR(-ENXIO); | 
 |  | 
 | 	ret = mutex_lock_interruptible(&obj->mm.lock); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	pinned = !(type & I915_MAP_OVERRIDE); | 
 | 	type &= ~I915_MAP_OVERRIDE; | 
 |  | 
 | 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { | 
 | 		if (unlikely(!i915_gem_object_has_pages(obj))) { | 
 | 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); | 
 |  | 
 | 			ret = ____i915_gem_object_get_pages(obj); | 
 | 			if (ret) | 
 | 				goto err_unlock; | 
 |  | 
 | 			smp_mb__before_atomic(); | 
 | 		} | 
 | 		atomic_inc(&obj->mm.pages_pin_count); | 
 | 		pinned = false; | 
 | 	} | 
 | 	GEM_BUG_ON(!i915_gem_object_has_pages(obj)); | 
 |  | 
 | 	ptr = page_unpack_bits(obj->mm.mapping, &has_type); | 
 | 	if (ptr && has_type != type) { | 
 | 		if (pinned) { | 
 | 			ret = -EBUSY; | 
 | 			goto err_unpin; | 
 | 		} | 
 |  | 
 | 		if (is_vmalloc_addr(ptr)) | 
 | 			vunmap(ptr); | 
 | 		else | 
 | 			kunmap(kmap_to_page(ptr)); | 
 |  | 
 | 		ptr = obj->mm.mapping = NULL; | 
 | 	} | 
 |  | 
 | 	if (!ptr) { | 
 | 		ptr = i915_gem_object_map(obj, type); | 
 | 		if (!ptr) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err_unpin; | 
 | 		} | 
 |  | 
 | 		obj->mm.mapping = page_pack_bits(ptr, type); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&obj->mm.lock); | 
 | 	return ptr; | 
 |  | 
 | err_unpin: | 
 | 	atomic_dec(&obj->mm.pages_pin_count); | 
 | err_unlock: | 
 | 	ptr = ERR_PTR(ret); | 
 | 	goto out_unlock; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, | 
 | 			   const struct drm_i915_gem_pwrite *arg) | 
 | { | 
 | 	struct address_space *mapping = obj->base.filp->f_mapping; | 
 | 	char __user *user_data = u64_to_user_ptr(arg->data_ptr); | 
 | 	u64 remain, offset; | 
 | 	unsigned int pg; | 
 |  | 
 | 	/* Before we instantiate/pin the backing store for our use, we | 
 | 	 * can prepopulate the shmemfs filp efficiently using a write into | 
 | 	 * the pagecache. We avoid the penalty of instantiating all the | 
 | 	 * pages, important if the user is just writing to a few and never | 
 | 	 * uses the object on the GPU, and using a direct write into shmemfs | 
 | 	 * allows it to avoid the cost of retrieving a page (either swapin | 
 | 	 * or clearing-before-use) before it is overwritten. | 
 | 	 */ | 
 | 	if (i915_gem_object_has_pages(obj)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (obj->mm.madv != I915_MADV_WILLNEED) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Before the pages are instantiated the object is treated as being | 
 | 	 * in the CPU domain. The pages will be clflushed as required before | 
 | 	 * use, and we can freely write into the pages directly. If userspace | 
 | 	 * races pwrite with any other operation; corruption will ensue - | 
 | 	 * that is userspace's prerogative! | 
 | 	 */ | 
 |  | 
 | 	remain = arg->size; | 
 | 	offset = arg->offset; | 
 | 	pg = offset_in_page(offset); | 
 |  | 
 | 	do { | 
 | 		unsigned int len, unwritten; | 
 | 		struct page *page; | 
 | 		void *data, *vaddr; | 
 | 		int err; | 
 |  | 
 | 		len = PAGE_SIZE - pg; | 
 | 		if (len > remain) | 
 | 			len = remain; | 
 |  | 
 | 		err = pagecache_write_begin(obj->base.filp, mapping, | 
 | 					    offset, len, 0, | 
 | 					    &page, &data); | 
 | 		if (err < 0) | 
 | 			return err; | 
 |  | 
 | 		vaddr = kmap(page); | 
 | 		unwritten = copy_from_user(vaddr + pg, user_data, len); | 
 | 		kunmap(page); | 
 |  | 
 | 		err = pagecache_write_end(obj->base.filp, mapping, | 
 | 					  offset, len, len - unwritten, | 
 | 					  page, data); | 
 | 		if (err < 0) | 
 | 			return err; | 
 |  | 
 | 		if (unwritten) | 
 | 			return -EFAULT; | 
 |  | 
 | 		remain -= len; | 
 | 		user_data += len; | 
 | 		offset += len; | 
 | 		pg = 0; | 
 | 	} while (remain); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv, | 
 | 					const struct i915_gem_context *ctx) | 
 | { | 
 | 	unsigned int score; | 
 | 	unsigned long prev_hang; | 
 |  | 
 | 	if (i915_gem_context_is_banned(ctx)) | 
 | 		score = I915_CLIENT_SCORE_CONTEXT_BAN; | 
 | 	else | 
 | 		score = 0; | 
 |  | 
 | 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies); | 
 | 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) | 
 | 		score += I915_CLIENT_SCORE_HANG_FAST; | 
 |  | 
 | 	if (score) { | 
 | 		atomic_add(score, &file_priv->ban_score); | 
 |  | 
 | 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n", | 
 | 				 ctx->name, score, | 
 | 				 atomic_read(&file_priv->ban_score)); | 
 | 	} | 
 | } | 
 |  | 
 | static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) | 
 | { | 
 | 	unsigned int score; | 
 | 	bool banned, bannable; | 
 |  | 
 | 	atomic_inc(&ctx->guilty_count); | 
 |  | 
 | 	bannable = i915_gem_context_is_bannable(ctx); | 
 | 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score); | 
 | 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD; | 
 |  | 
 | 	DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, ban %s\n", | 
 | 			 ctx->name, atomic_read(&ctx->guilty_count), | 
 | 			 score, yesno(banned && bannable)); | 
 |  | 
 | 	/* Cool contexts don't accumulate client ban score */ | 
 | 	if (!bannable) | 
 | 		return; | 
 |  | 
 | 	if (banned) | 
 | 		i915_gem_context_set_banned(ctx); | 
 |  | 
 | 	if (!IS_ERR_OR_NULL(ctx->file_priv)) | 
 | 		i915_gem_client_mark_guilty(ctx->file_priv, ctx); | 
 | } | 
 |  | 
 | static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) | 
 | { | 
 | 	atomic_inc(&ctx->active_count); | 
 | } | 
 |  | 
 | struct i915_request * | 
 | i915_gem_find_active_request(struct intel_engine_cs *engine) | 
 | { | 
 | 	struct i915_request *request, *active = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * We are called by the error capture, reset and to dump engine | 
 | 	 * state at random points in time. In particular, note that neither is | 
 | 	 * crucially ordered with an interrupt. After a hang, the GPU is dead | 
 | 	 * and we assume that no more writes can happen (we waited long enough | 
 | 	 * for all writes that were in transaction to be flushed) - adding an | 
 | 	 * extra delay for a recent interrupt is pointless. Hence, we do | 
 | 	 * not need an engine->irq_seqno_barrier() before the seqno reads. | 
 | 	 * At all other times, we must assume the GPU is still running, but | 
 | 	 * we only care about the snapshot of this moment. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&engine->timeline.lock, flags); | 
 | 	list_for_each_entry(request, &engine->timeline.requests, link) { | 
 | 		if (__i915_request_completed(request, request->global_seqno)) | 
 | 			continue; | 
 |  | 
 | 		active = request; | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&engine->timeline.lock, flags); | 
 |  | 
 | 	return active; | 
 | } | 
 |  | 
 | /* | 
 |  * Ensure irq handler finishes, and not run again. | 
 |  * Also return the active request so that we only search for it once. | 
 |  */ | 
 | struct i915_request * | 
 | i915_gem_reset_prepare_engine(struct intel_engine_cs *engine) | 
 | { | 
 | 	struct i915_request *request = NULL; | 
 |  | 
 | 	/* | 
 | 	 * During the reset sequence, we must prevent the engine from | 
 | 	 * entering RC6. As the context state is undefined until we restart | 
 | 	 * the engine, if it does enter RC6 during the reset, the state | 
 | 	 * written to the powercontext is undefined and so we may lose | 
 | 	 * GPU state upon resume, i.e. fail to restart after a reset. | 
 | 	 */ | 
 | 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL); | 
 |  | 
 | 	/* | 
 | 	 * Prevent the signaler thread from updating the request | 
 | 	 * state (by calling dma_fence_signal) as we are processing | 
 | 	 * the reset. The write from the GPU of the seqno is | 
 | 	 * asynchronous and the signaler thread may see a different | 
 | 	 * value to us and declare the request complete, even though | 
 | 	 * the reset routine have picked that request as the active | 
 | 	 * (incomplete) request. This conflict is not handled | 
 | 	 * gracefully! | 
 | 	 */ | 
 | 	kthread_park(engine->breadcrumbs.signaler); | 
 |  | 
 | 	/* | 
 | 	 * Prevent request submission to the hardware until we have | 
 | 	 * completed the reset in i915_gem_reset_finish(). If a request | 
 | 	 * is completed by one engine, it may then queue a request | 
 | 	 * to a second via its execlists->tasklet *just* as we are | 
 | 	 * calling engine->init_hw() and also writing the ELSP. | 
 | 	 * Turning off the execlists->tasklet until the reset is over | 
 | 	 * prevents the race. | 
 | 	 * | 
 | 	 * Note that this needs to be a single atomic operation on the | 
 | 	 * tasklet (flush existing tasks, prevent new tasks) to prevent | 
 | 	 * a race between reset and set-wedged. It is not, so we do the best | 
 | 	 * we can atm and make sure we don't lock the machine up in the more | 
 | 	 * common case of recursively being called from set-wedged from inside | 
 | 	 * i915_reset. | 
 | 	 */ | 
 | 	if (!atomic_read(&engine->execlists.tasklet.count)) | 
 | 		tasklet_kill(&engine->execlists.tasklet); | 
 | 	tasklet_disable(&engine->execlists.tasklet); | 
 |  | 
 | 	/* | 
 | 	 * We're using worker to queue preemption requests from the tasklet in | 
 | 	 * GuC submission mode. | 
 | 	 * Even though tasklet was disabled, we may still have a worker queued. | 
 | 	 * Let's make sure that all workers scheduled before disabling the | 
 | 	 * tasklet are completed before continuing with the reset. | 
 | 	 */ | 
 | 	if (engine->i915->guc.preempt_wq) | 
 | 		flush_workqueue(engine->i915->guc.preempt_wq); | 
 |  | 
 | 	if (engine->irq_seqno_barrier) | 
 | 		engine->irq_seqno_barrier(engine); | 
 |  | 
 | 	request = i915_gem_find_active_request(engine); | 
 | 	if (request && request->fence.error == -EIO) | 
 | 		request = ERR_PTR(-EIO); /* Previous reset failed! */ | 
 |  | 
 | 	return request; | 
 | } | 
 |  | 
 | int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	struct i915_request *request; | 
 | 	enum intel_engine_id id; | 
 | 	int err = 0; | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) { | 
 | 		request = i915_gem_reset_prepare_engine(engine); | 
 | 		if (IS_ERR(request)) { | 
 | 			err = PTR_ERR(request); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		engine->hangcheck.active_request = request; | 
 | 	} | 
 |  | 
 | 	i915_gem_revoke_fences(dev_priv); | 
 | 	intel_uc_sanitize(dev_priv); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void skip_request(struct i915_request *request) | 
 | { | 
 | 	void *vaddr = request->ring->vaddr; | 
 | 	u32 head; | 
 |  | 
 | 	/* As this request likely depends on state from the lost | 
 | 	 * context, clear out all the user operations leaving the | 
 | 	 * breadcrumb at the end (so we get the fence notifications). | 
 | 	 */ | 
 | 	head = request->head; | 
 | 	if (request->postfix < head) { | 
 | 		memset(vaddr + head, 0, request->ring->size - head); | 
 | 		head = 0; | 
 | 	} | 
 | 	memset(vaddr + head, 0, request->postfix - head); | 
 |  | 
 | 	dma_fence_set_error(&request->fence, -EIO); | 
 | } | 
 |  | 
 | static void engine_skip_context(struct i915_request *request) | 
 | { | 
 | 	struct intel_engine_cs *engine = request->engine; | 
 | 	struct i915_gem_context *hung_ctx = request->ctx; | 
 | 	struct i915_timeline *timeline = request->timeline; | 
 | 	unsigned long flags; | 
 |  | 
 | 	GEM_BUG_ON(timeline == &engine->timeline); | 
 |  | 
 | 	spin_lock_irqsave(&engine->timeline.lock, flags); | 
 | 	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	list_for_each_entry_continue(request, &engine->timeline.requests, link) | 
 | 		if (request->ctx == hung_ctx) | 
 | 			skip_request(request); | 
 |  | 
 | 	list_for_each_entry(request, &timeline->requests, link) | 
 | 		skip_request(request); | 
 |  | 
 | 	spin_unlock(&timeline->lock); | 
 | 	spin_unlock_irqrestore(&engine->timeline.lock, flags); | 
 | } | 
 |  | 
 | /* Returns the request if it was guilty of the hang */ | 
 | static struct i915_request * | 
 | i915_gem_reset_request(struct intel_engine_cs *engine, | 
 | 		       struct i915_request *request, | 
 | 		       bool stalled) | 
 | { | 
 | 	/* The guilty request will get skipped on a hung engine. | 
 | 	 * | 
 | 	 * Users of client default contexts do not rely on logical | 
 | 	 * state preserved between batches so it is safe to execute | 
 | 	 * queued requests following the hang. Non default contexts | 
 | 	 * rely on preserved state, so skipping a batch loses the | 
 | 	 * evolution of the state and it needs to be considered corrupted. | 
 | 	 * Executing more queued batches on top of corrupted state is | 
 | 	 * risky. But we take the risk by trying to advance through | 
 | 	 * the queued requests in order to make the client behaviour | 
 | 	 * more predictable around resets, by not throwing away random | 
 | 	 * amount of batches it has prepared for execution. Sophisticated | 
 | 	 * clients can use gem_reset_stats_ioctl and dma fence status | 
 | 	 * (exported via sync_file info ioctl on explicit fences) to observe | 
 | 	 * when it loses the context state and should rebuild accordingly. | 
 | 	 * | 
 | 	 * The context ban, and ultimately the client ban, mechanism are safety | 
 | 	 * valves if client submission ends up resulting in nothing more than | 
 | 	 * subsequent hangs. | 
 | 	 */ | 
 |  | 
 | 	if (i915_request_completed(request)) { | 
 | 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n", | 
 | 			  engine->name, request->global_seqno, | 
 | 			  request->fence.context, request->fence.seqno, | 
 | 			  intel_engine_get_seqno(engine)); | 
 | 		stalled = false; | 
 | 	} | 
 |  | 
 | 	if (stalled) { | 
 | 		i915_gem_context_mark_guilty(request->ctx); | 
 | 		skip_request(request); | 
 |  | 
 | 		/* If this context is now banned, skip all pending requests. */ | 
 | 		if (i915_gem_context_is_banned(request->ctx)) | 
 | 			engine_skip_context(request); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Since this is not the hung engine, it may have advanced | 
 | 		 * since the hang declaration. Double check by refinding | 
 | 		 * the active request at the time of the reset. | 
 | 		 */ | 
 | 		request = i915_gem_find_active_request(engine); | 
 | 		if (request) { | 
 | 			i915_gem_context_mark_innocent(request->ctx); | 
 | 			dma_fence_set_error(&request->fence, -EAGAIN); | 
 |  | 
 | 			/* Rewind the engine to replay the incomplete rq */ | 
 | 			spin_lock_irq(&engine->timeline.lock); | 
 | 			request = list_prev_entry(request, link); | 
 | 			if (&request->link == &engine->timeline.requests) | 
 | 				request = NULL; | 
 | 			spin_unlock_irq(&engine->timeline.lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return request; | 
 | } | 
 |  | 
 | void i915_gem_reset_engine(struct intel_engine_cs *engine, | 
 | 			   struct i915_request *request, | 
 | 			   bool stalled) | 
 | { | 
 | 	/* | 
 | 	 * Make sure this write is visible before we re-enable the interrupt | 
 | 	 * handlers on another CPU, as tasklet_enable() resolves to just | 
 | 	 * a compiler barrier which is insufficient for our purpose here. | 
 | 	 */ | 
 | 	smp_store_mb(engine->irq_posted, 0); | 
 |  | 
 | 	if (request) | 
 | 		request = i915_gem_reset_request(engine, request, stalled); | 
 |  | 
 | 	if (request) { | 
 | 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", | 
 | 				 engine->name, request->global_seqno); | 
 | 	} | 
 |  | 
 | 	/* Setup the CS to resume from the breadcrumb of the hung request */ | 
 | 	engine->reset_hw(engine, request); | 
 | } | 
 |  | 
 | void i915_gem_reset(struct drm_i915_private *dev_priv, | 
 | 		    unsigned int stalled_mask) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	lockdep_assert_held(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	i915_retire_requests(dev_priv); | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) { | 
 | 		struct i915_gem_context *ctx; | 
 |  | 
 | 		i915_gem_reset_engine(engine, | 
 | 				      engine->hangcheck.active_request, | 
 | 				      stalled_mask & ENGINE_MASK(id)); | 
 | 		ctx = fetch_and_zero(&engine->last_retired_context); | 
 | 		if (ctx) | 
 | 			intel_context_unpin(ctx, engine); | 
 |  | 
 | 		/* | 
 | 		 * Ostensibily, we always want a context loaded for powersaving, | 
 | 		 * so if the engine is idle after the reset, send a request | 
 | 		 * to load our scratch kernel_context. | 
 | 		 * | 
 | 		 * More mysteriously, if we leave the engine idle after a reset, | 
 | 		 * the next userspace batch may hang, with what appears to be | 
 | 		 * an incoherent read by the CS (presumably stale TLB). An | 
 | 		 * empty request appears sufficient to paper over the glitch. | 
 | 		 */ | 
 | 		if (intel_engine_is_idle(engine)) { | 
 | 			struct i915_request *rq; | 
 |  | 
 | 			rq = i915_request_alloc(engine, | 
 | 						dev_priv->kernel_context); | 
 | 			if (!IS_ERR(rq)) | 
 | 				__i915_request_add(rq, false); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i915_gem_restore_fences(dev_priv); | 
 | } | 
 |  | 
 | void i915_gem_reset_finish_engine(struct intel_engine_cs *engine) | 
 | { | 
 | 	tasklet_enable(&engine->execlists.tasklet); | 
 | 	kthread_unpark(engine->breadcrumbs.signaler); | 
 |  | 
 | 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL); | 
 | } | 
 |  | 
 | void i915_gem_reset_finish(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	lockdep_assert_held(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) { | 
 | 		engine->hangcheck.active_request = NULL; | 
 | 		i915_gem_reset_finish_engine(engine); | 
 | 	} | 
 | } | 
 |  | 
 | static void nop_submit_request(struct i915_request *request) | 
 | { | 
 | 	GEM_TRACE("%s fence %llx:%d -> -EIO\n", | 
 | 		  request->engine->name, | 
 | 		  request->fence.context, request->fence.seqno); | 
 | 	dma_fence_set_error(&request->fence, -EIO); | 
 |  | 
 | 	i915_request_submit(request); | 
 | } | 
 |  | 
 | static void nop_complete_submit_request(struct i915_request *request) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	GEM_TRACE("%s fence %llx:%d -> -EIO\n", | 
 | 		  request->engine->name, | 
 | 		  request->fence.context, request->fence.seqno); | 
 | 	dma_fence_set_error(&request->fence, -EIO); | 
 |  | 
 | 	spin_lock_irqsave(&request->engine->timeline.lock, flags); | 
 | 	__i915_request_submit(request); | 
 | 	intel_engine_init_global_seqno(request->engine, request->global_seqno); | 
 | 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags); | 
 | } | 
 |  | 
 | void i915_gem_set_wedged(struct drm_i915_private *i915) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	GEM_TRACE("start\n"); | 
 |  | 
 | 	if (GEM_SHOW_DEBUG()) { | 
 | 		struct drm_printer p = drm_debug_printer(__func__); | 
 |  | 
 | 		for_each_engine(engine, i915, id) | 
 | 			intel_engine_dump(engine, &p, "%s\n", engine->name); | 
 | 	} | 
 |  | 
 | 	set_bit(I915_WEDGED, &i915->gpu_error.flags); | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	/* | 
 | 	 * First, stop submission to hw, but do not yet complete requests by | 
 | 	 * rolling the global seqno forward (since this would complete requests | 
 | 	 * for which we haven't set the fence error to EIO yet). | 
 | 	 */ | 
 | 	for_each_engine(engine, i915, id) { | 
 | 		i915_gem_reset_prepare_engine(engine); | 
 |  | 
 | 		engine->submit_request = nop_submit_request; | 
 | 		engine->schedule = NULL; | 
 | 	} | 
 | 	i915->caps.scheduler = 0; | 
 |  | 
 | 	/* Even if the GPU reset fails, it should still stop the engines */ | 
 | 	intel_gpu_reset(i915, ALL_ENGINES); | 
 |  | 
 | 	/* | 
 | 	 * Make sure no one is running the old callback before we proceed with | 
 | 	 * cancelling requests and resetting the completion tracking. Otherwise | 
 | 	 * we might submit a request to the hardware which never completes. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	for_each_engine(engine, i915, id) { | 
 | 		/* Mark all executing requests as skipped */ | 
 | 		engine->cancel_requests(engine); | 
 |  | 
 | 		/* | 
 | 		 * Only once we've force-cancelled all in-flight requests can we | 
 | 		 * start to complete all requests. | 
 | 		 */ | 
 | 		engine->submit_request = nop_complete_submit_request; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure no request can slip through without getting completed by | 
 | 	 * either this call here to intel_engine_init_global_seqno, or the one | 
 | 	 * in nop_complete_submit_request. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	for_each_engine(engine, i915, id) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* | 
 | 		 * Mark all pending requests as complete so that any concurrent | 
 | 		 * (lockless) lookup doesn't try and wait upon the request as we | 
 | 		 * reset it. | 
 | 		 */ | 
 | 		spin_lock_irqsave(&engine->timeline.lock, flags); | 
 | 		intel_engine_init_global_seqno(engine, | 
 | 					       intel_engine_last_submit(engine)); | 
 | 		spin_unlock_irqrestore(&engine->timeline.lock, flags); | 
 |  | 
 | 		i915_gem_reset_finish_engine(engine); | 
 | 	} | 
 |  | 
 | 	GEM_TRACE("end\n"); | 
 |  | 
 | 	wake_up_all(&i915->gpu_error.reset_queue); | 
 | } | 
 |  | 
 | bool i915_gem_unset_wedged(struct drm_i915_private *i915) | 
 | { | 
 | 	struct i915_timeline *tl; | 
 |  | 
 | 	lockdep_assert_held(&i915->drm.struct_mutex); | 
 | 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) | 
 | 		return true; | 
 |  | 
 | 	GEM_TRACE("start\n"); | 
 |  | 
 | 	/* | 
 | 	 * Before unwedging, make sure that all pending operations | 
 | 	 * are flushed and errored out - we may have requests waiting upon | 
 | 	 * third party fences. We marked all inflight requests as EIO, and | 
 | 	 * every execbuf since returned EIO, for consistency we want all | 
 | 	 * the currently pending requests to also be marked as EIO, which | 
 | 	 * is done inside our nop_submit_request - and so we must wait. | 
 | 	 * | 
 | 	 * No more can be submitted until we reset the wedged bit. | 
 | 	 */ | 
 | 	list_for_each_entry(tl, &i915->gt.timelines, link) { | 
 | 		struct i915_request *rq; | 
 |  | 
 | 		rq = i915_gem_active_peek(&tl->last_request, | 
 | 					  &i915->drm.struct_mutex); | 
 | 		if (!rq) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We can't use our normal waiter as we want to | 
 | 		 * avoid recursively trying to handle the current | 
 | 		 * reset. The basic dma_fence_default_wait() installs | 
 | 		 * a callback for dma_fence_signal(), which is | 
 | 		 * triggered by our nop handler (indirectly, the | 
 | 		 * callback enables the signaler thread which is | 
 | 		 * woken by the nop_submit_request() advancing the seqno | 
 | 		 * and when the seqno passes the fence, the signaler | 
 | 		 * then signals the fence waking us up). | 
 | 		 */ | 
 | 		if (dma_fence_default_wait(&rq->fence, true, | 
 | 					   MAX_SCHEDULE_TIMEOUT) < 0) | 
 | 			return false; | 
 | 	} | 
 | 	i915_retire_requests(i915); | 
 | 	GEM_BUG_ON(i915->gt.active_requests); | 
 |  | 
 | 	/* | 
 | 	 * Undo nop_submit_request. We prevent all new i915 requests from | 
 | 	 * being queued (by disallowing execbuf whilst wedged) so having | 
 | 	 * waited for all active requests above, we know the system is idle | 
 | 	 * and do not have to worry about a thread being inside | 
 | 	 * engine->submit_request() as we swap over. So unlike installing | 
 | 	 * the nop_submit_request on reset, we can do this from normal | 
 | 	 * context and do not require stop_machine(). | 
 | 	 */ | 
 | 	intel_engines_reset_default_submission(i915); | 
 | 	i915_gem_contexts_lost(i915); | 
 |  | 
 | 	GEM_TRACE("end\n"); | 
 |  | 
 | 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ | 
 | 	clear_bit(I915_WEDGED, &i915->gpu_error.flags); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_retire_work_handler(struct work_struct *work) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = | 
 | 		container_of(work, typeof(*dev_priv), gt.retire_work.work); | 
 | 	struct drm_device *dev = &dev_priv->drm; | 
 |  | 
 | 	/* Come back later if the device is busy... */ | 
 | 	if (mutex_trylock(&dev->struct_mutex)) { | 
 | 		i915_retire_requests(dev_priv); | 
 | 		mutex_unlock(&dev->struct_mutex); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Keep the retire handler running until we are finally idle. | 
 | 	 * We do not need to do this test under locking as in the worst-case | 
 | 	 * we queue the retire worker once too often. | 
 | 	 */ | 
 | 	if (READ_ONCE(dev_priv->gt.awake)) | 
 | 		queue_delayed_work(dev_priv->wq, | 
 | 				   &dev_priv->gt.retire_work, | 
 | 				   round_jiffies_up_relative(HZ)); | 
 | } | 
 |  | 
 | static void shrink_caches(struct drm_i915_private *i915) | 
 | { | 
 | 	/* | 
 | 	 * kmem_cache_shrink() discards empty slabs and reorders partially | 
 | 	 * filled slabs to prioritise allocating from the mostly full slabs, | 
 | 	 * with the aim of reducing fragmentation. | 
 | 	 */ | 
 | 	kmem_cache_shrink(i915->priorities); | 
 | 	kmem_cache_shrink(i915->dependencies); | 
 | 	kmem_cache_shrink(i915->requests); | 
 | 	kmem_cache_shrink(i915->luts); | 
 | 	kmem_cache_shrink(i915->vmas); | 
 | 	kmem_cache_shrink(i915->objects); | 
 | } | 
 |  | 
 | struct sleep_rcu_work { | 
 | 	union { | 
 | 		struct rcu_head rcu; | 
 | 		struct work_struct work; | 
 | 	}; | 
 | 	struct drm_i915_private *i915; | 
 | 	unsigned int epoch; | 
 | }; | 
 |  | 
 | static inline bool | 
 | same_epoch(struct drm_i915_private *i915, unsigned int epoch) | 
 | { | 
 | 	/* | 
 | 	 * There is a small chance that the epoch wrapped since we started | 
 | 	 * sleeping. If we assume that epoch is at least a u32, then it will | 
 | 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years. | 
 | 	 */ | 
 | 	return epoch == READ_ONCE(i915->gt.epoch); | 
 | } | 
 |  | 
 | static void __sleep_work(struct work_struct *work) | 
 | { | 
 | 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work); | 
 | 	struct drm_i915_private *i915 = s->i915; | 
 | 	unsigned int epoch = s->epoch; | 
 |  | 
 | 	kfree(s); | 
 | 	if (same_epoch(i915, epoch)) | 
 | 		shrink_caches(i915); | 
 | } | 
 |  | 
 | static void __sleep_rcu(struct rcu_head *rcu) | 
 | { | 
 | 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu); | 
 | 	struct drm_i915_private *i915 = s->i915; | 
 |  | 
 | 	if (same_epoch(i915, s->epoch)) { | 
 | 		INIT_WORK(&s->work, __sleep_work); | 
 | 		queue_work(i915->wq, &s->work); | 
 | 	} else { | 
 | 		kfree(s); | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool | 
 | new_requests_since_last_retire(const struct drm_i915_private *i915) | 
 | { | 
 | 	return (READ_ONCE(i915->gt.active_requests) || | 
 | 		work_pending(&i915->gt.idle_work.work)); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_idle_work_handler(struct work_struct *work) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = | 
 | 		container_of(work, typeof(*dev_priv), gt.idle_work.work); | 
 | 	unsigned int epoch = I915_EPOCH_INVALID; | 
 | 	bool rearm_hangcheck; | 
 |  | 
 | 	if (!READ_ONCE(dev_priv->gt.awake)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Wait for last execlists context complete, but bail out in case a | 
 | 	 * new request is submitted. As we don't trust the hardware, we | 
 | 	 * continue on if the wait times out. This is necessary to allow | 
 | 	 * the machine to suspend even if the hardware dies, and we will | 
 | 	 * try to recover in resume (after depriving the hardware of power, | 
 | 	 * it may be in a better mmod). | 
 | 	 */ | 
 | 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return, | 
 | 		   intel_engines_are_idle(dev_priv), | 
 | 		   I915_IDLE_ENGINES_TIMEOUT * 1000, | 
 | 		   10, 500); | 
 |  | 
 | 	rearm_hangcheck = | 
 | 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); | 
 |  | 
 | 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) { | 
 | 		/* Currently busy, come back later */ | 
 | 		mod_delayed_work(dev_priv->wq, | 
 | 				 &dev_priv->gt.idle_work, | 
 | 				 msecs_to_jiffies(50)); | 
 | 		goto out_rearm; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * New request retired after this work handler started, extend active | 
 | 	 * period until next instance of the work. | 
 | 	 */ | 
 | 	if (new_requests_since_last_retire(dev_priv)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	epoch = __i915_gem_park(dev_priv); | 
 |  | 
 | 	rearm_hangcheck = false; | 
 | out_unlock: | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | out_rearm: | 
 | 	if (rearm_hangcheck) { | 
 | 		GEM_BUG_ON(!dev_priv->gt.awake); | 
 | 		i915_queue_hangcheck(dev_priv); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When we are idle, it is an opportune time to reap our caches. | 
 | 	 * However, we have many objects that utilise RCU and the ordered | 
 | 	 * i915->wq that this work is executing on. To try and flush any | 
 | 	 * pending frees now we are idle, we first wait for an RCU grace | 
 | 	 * period, and then queue a task (that will run last on the wq) to | 
 | 	 * shrink and re-optimize the caches. | 
 | 	 */ | 
 | 	if (same_epoch(dev_priv, epoch)) { | 
 | 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL); | 
 | 		if (s) { | 
 | 			s->i915 = dev_priv; | 
 | 			s->epoch = epoch; | 
 | 			call_rcu(&s->rcu, __sleep_rcu); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(gem->dev); | 
 | 	struct drm_i915_gem_object *obj = to_intel_bo(gem); | 
 | 	struct drm_i915_file_private *fpriv = file->driver_priv; | 
 | 	struct i915_lut_handle *lut, *ln; | 
 |  | 
 | 	mutex_lock(&i915->drm.struct_mutex); | 
 |  | 
 | 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { | 
 | 		struct i915_gem_context *ctx = lut->ctx; | 
 | 		struct i915_vma *vma; | 
 |  | 
 | 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF)); | 
 | 		if (ctx->file_priv != fpriv) | 
 | 			continue; | 
 |  | 
 | 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle); | 
 | 		GEM_BUG_ON(vma->obj != obj); | 
 |  | 
 | 		/* We allow the process to have multiple handles to the same | 
 | 		 * vma, in the same fd namespace, by virtue of flink/open. | 
 | 		 */ | 
 | 		GEM_BUG_ON(!vma->open_count); | 
 | 		if (!--vma->open_count && !i915_vma_is_ggtt(vma)) | 
 | 			i915_vma_close(vma); | 
 |  | 
 | 		list_del(&lut->obj_link); | 
 | 		list_del(&lut->ctx_link); | 
 |  | 
 | 		kmem_cache_free(i915->luts, lut); | 
 | 		__i915_gem_object_release_unless_active(obj); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&i915->drm.struct_mutex); | 
 | } | 
 |  | 
 | static unsigned long to_wait_timeout(s64 timeout_ns) | 
 | { | 
 | 	if (timeout_ns < 0) | 
 | 		return MAX_SCHEDULE_TIMEOUT; | 
 |  | 
 | 	if (timeout_ns == 0) | 
 | 		return 0; | 
 |  | 
 | 	return nsecs_to_jiffies_timeout(timeout_ns); | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT | 
 |  * @dev: drm device pointer | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file pointer | 
 |  * | 
 |  * Returns 0 if successful, else an error is returned with the remaining time in | 
 |  * the timeout parameter. | 
 |  *  -ETIME: object is still busy after timeout | 
 |  *  -ERESTARTSYS: signal interrupted the wait | 
 |  *  -ENONENT: object doesn't exist | 
 |  * Also possible, but rare: | 
 |  *  -EAGAIN: incomplete, restart syscall | 
 |  *  -ENOMEM: damn | 
 |  *  -ENODEV: Internal IRQ fail | 
 |  *  -E?: The add request failed | 
 |  * | 
 |  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any | 
 |  * non-zero timeout parameter the wait ioctl will wait for the given number of | 
 |  * nanoseconds on an object becoming unbusy. Since the wait itself does so | 
 |  * without holding struct_mutex the object may become re-busied before this | 
 |  * function completes. A similar but shorter * race condition exists in the busy | 
 |  * ioctl | 
 |  */ | 
 | int | 
 | i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_wait *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	ktime_t start; | 
 | 	long ret; | 
 |  | 
 | 	if (args->flags != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->bo_handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	start = ktime_get(); | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, | 
 | 				   to_wait_timeout(args->timeout_ns), | 
 | 				   to_rps_client(file)); | 
 |  | 
 | 	if (args->timeout_ns > 0) { | 
 | 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); | 
 | 		if (args->timeout_ns < 0) | 
 | 			args->timeout_ns = 0; | 
 |  | 
 | 		/* | 
 | 		 * Apparently ktime isn't accurate enough and occasionally has a | 
 | 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch | 
 | 		 * things up to make the test happy. We allow up to 1 jiffy. | 
 | 		 * | 
 | 		 * This is a regression from the timespec->ktime conversion. | 
 | 		 */ | 
 | 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) | 
 | 			args->timeout_ns = 0; | 
 |  | 
 | 		/* Asked to wait beyond the jiffie/scheduler precision? */ | 
 | 		if (ret == -ETIME && args->timeout_ns) | 
 | 			ret = -EAGAIN; | 
 | 	} | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags) | 
 | { | 
 | 	return i915_gem_active_wait(&tl->last_request, flags); | 
 | } | 
 |  | 
 | static int wait_for_engines(struct drm_i915_private *i915) | 
 | { | 
 | 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) { | 
 | 		dev_err(i915->drm.dev, | 
 | 			"Failed to idle engines, declaring wedged!\n"); | 
 | 		GEM_TRACE_DUMP(); | 
 | 		i915_gem_set_wedged(i915); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) | 
 | { | 
 | 	/* If the device is asleep, we have no requests outstanding */ | 
 | 	if (!READ_ONCE(i915->gt.awake)) | 
 | 		return 0; | 
 |  | 
 | 	if (flags & I915_WAIT_LOCKED) { | 
 | 		struct i915_timeline *tl; | 
 | 		int err; | 
 |  | 
 | 		lockdep_assert_held(&i915->drm.struct_mutex); | 
 |  | 
 | 		list_for_each_entry(tl, &i915->gt.timelines, link) { | 
 | 			err = wait_for_timeline(tl, flags); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		i915_retire_requests(i915); | 
 |  | 
 | 		return wait_for_engines(i915); | 
 | 	} else { | 
 | 		struct intel_engine_cs *engine; | 
 | 		enum intel_engine_id id; | 
 | 		int err; | 
 |  | 
 | 		for_each_engine(engine, i915, id) { | 
 | 			err = wait_for_timeline(&engine->timeline, flags); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	/* | 
 | 	 * We manually flush the CPU domain so that we can override and | 
 | 	 * force the flush for the display, and perform it asyncrhonously. | 
 | 	 */ | 
 | 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); | 
 | 	if (obj->cache_dirty) | 
 | 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); | 
 | 	obj->write_domain = 0; | 
 | } | 
 |  | 
 | void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	if (!READ_ONCE(obj->pin_global)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&obj->base.dev->struct_mutex); | 
 | 	__i915_gem_object_flush_for_display(obj); | 
 | 	mutex_unlock(&obj->base.dev->struct_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * Moves a single object to the WC read, and possibly write domain. | 
 |  * @obj: object to act on | 
 |  * @write: ask for write access or read only | 
 |  * | 
 |  * This function returns when the move is complete, including waiting on | 
 |  * flushes to occur. | 
 |  */ | 
 | int | 
 | i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | | 
 | 				   I915_WAIT_LOCKED | | 
 | 				   (write ? I915_WAIT_ALL : 0), | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (obj->write_domain == I915_GEM_DOMAIN_WC) | 
 | 		return 0; | 
 |  | 
 | 	/* Flush and acquire obj->pages so that we are coherent through | 
 | 	 * direct access in memory with previous cached writes through | 
 | 	 * shmemfs and that our cache domain tracking remains valid. | 
 | 	 * For example, if the obj->filp was moved to swap without us | 
 | 	 * being notified and releasing the pages, we would mistakenly | 
 | 	 * continue to assume that the obj remained out of the CPU cached | 
 | 	 * domain. | 
 | 	 */ | 
 | 	ret = i915_gem_object_pin_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); | 
 |  | 
 | 	/* Serialise direct access to this object with the barriers for | 
 | 	 * coherent writes from the GPU, by effectively invalidating the | 
 | 	 * WC domain upon first access. | 
 | 	 */ | 
 | 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0) | 
 | 		mb(); | 
 |  | 
 | 	/* It should now be out of any other write domains, and we can update | 
 | 	 * the domain values for our changes. | 
 | 	 */ | 
 | 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0); | 
 | 	obj->read_domains |= I915_GEM_DOMAIN_WC; | 
 | 	if (write) { | 
 | 		obj->read_domains = I915_GEM_DOMAIN_WC; | 
 | 		obj->write_domain = I915_GEM_DOMAIN_WC; | 
 | 		obj->mm.dirty = true; | 
 | 	} | 
 |  | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * Moves a single object to the GTT read, and possibly write domain. | 
 |  * @obj: object to act on | 
 |  * @write: ask for write access or read only | 
 |  * | 
 |  * This function returns when the move is complete, including waiting on | 
 |  * flushes to occur. | 
 |  */ | 
 | int | 
 | i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | | 
 | 				   I915_WAIT_LOCKED | | 
 | 				   (write ? I915_WAIT_ALL : 0), | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (obj->write_domain == I915_GEM_DOMAIN_GTT) | 
 | 		return 0; | 
 |  | 
 | 	/* Flush and acquire obj->pages so that we are coherent through | 
 | 	 * direct access in memory with previous cached writes through | 
 | 	 * shmemfs and that our cache domain tracking remains valid. | 
 | 	 * For example, if the obj->filp was moved to swap without us | 
 | 	 * being notified and releasing the pages, we would mistakenly | 
 | 	 * continue to assume that the obj remained out of the CPU cached | 
 | 	 * domain. | 
 | 	 */ | 
 | 	ret = i915_gem_object_pin_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); | 
 |  | 
 | 	/* Serialise direct access to this object with the barriers for | 
 | 	 * coherent writes from the GPU, by effectively invalidating the | 
 | 	 * GTT domain upon first access. | 
 | 	 */ | 
 | 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0) | 
 | 		mb(); | 
 |  | 
 | 	/* It should now be out of any other write domains, and we can update | 
 | 	 * the domain values for our changes. | 
 | 	 */ | 
 | 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); | 
 | 	obj->read_domains |= I915_GEM_DOMAIN_GTT; | 
 | 	if (write) { | 
 | 		obj->read_domains = I915_GEM_DOMAIN_GTT; | 
 | 		obj->write_domain = I915_GEM_DOMAIN_GTT; | 
 | 		obj->mm.dirty = true; | 
 | 	} | 
 |  | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * Changes the cache-level of an object across all VMA. | 
 |  * @obj: object to act on | 
 |  * @cache_level: new cache level to set for the object | 
 |  * | 
 |  * After this function returns, the object will be in the new cache-level | 
 |  * across all GTT and the contents of the backing storage will be coherent, | 
 |  * with respect to the new cache-level. In order to keep the backing storage | 
 |  * coherent for all users, we only allow a single cache level to be set | 
 |  * globally on the object and prevent it from being changed whilst the | 
 |  * hardware is reading from the object. That is if the object is currently | 
 |  * on the scanout it will be set to uncached (or equivalent display | 
 |  * cache coherency) and all non-MOCS GPU access will also be uncached so | 
 |  * that all direct access to the scanout remains coherent. | 
 |  */ | 
 | int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, | 
 | 				    enum i915_cache_level cache_level) | 
 | { | 
 | 	struct i915_vma *vma; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	if (obj->cache_level == cache_level) | 
 | 		return 0; | 
 |  | 
 | 	/* Inspect the list of currently bound VMA and unbind any that would | 
 | 	 * be invalid given the new cache-level. This is principally to | 
 | 	 * catch the issue of the CS prefetch crossing page boundaries and | 
 | 	 * reading an invalid PTE on older architectures. | 
 | 	 */ | 
 | restart: | 
 | 	list_for_each_entry(vma, &obj->vma_list, obj_link) { | 
 | 		if (!drm_mm_node_allocated(&vma->node)) | 
 | 			continue; | 
 |  | 
 | 		if (i915_vma_is_pinned(vma)) { | 
 | 			DRM_DEBUG("can not change the cache level of pinned objects\n"); | 
 | 			return -EBUSY; | 
 | 		} | 
 |  | 
 | 		if (!i915_vma_is_closed(vma) && | 
 | 		    i915_gem_valid_gtt_space(vma, cache_level)) | 
 | 			continue; | 
 |  | 
 | 		ret = i915_vma_unbind(vma); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		/* As unbinding may affect other elements in the | 
 | 		 * obj->vma_list (due to side-effects from retiring | 
 | 		 * an active vma), play safe and restart the iterator. | 
 | 		 */ | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	/* We can reuse the existing drm_mm nodes but need to change the | 
 | 	 * cache-level on the PTE. We could simply unbind them all and | 
 | 	 * rebind with the correct cache-level on next use. However since | 
 | 	 * we already have a valid slot, dma mapping, pages etc, we may as | 
 | 	 * rewrite the PTE in the belief that doing so tramples upon less | 
 | 	 * state and so involves less work. | 
 | 	 */ | 
 | 	if (obj->bind_count) { | 
 | 		/* Before we change the PTE, the GPU must not be accessing it. | 
 | 		 * If we wait upon the object, we know that all the bound | 
 | 		 * VMA are no longer active. | 
 | 		 */ | 
 | 		ret = i915_gem_object_wait(obj, | 
 | 					   I915_WAIT_INTERRUPTIBLE | | 
 | 					   I915_WAIT_LOCKED | | 
 | 					   I915_WAIT_ALL, | 
 | 					   MAX_SCHEDULE_TIMEOUT, | 
 | 					   NULL); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (!HAS_LLC(to_i915(obj->base.dev)) && | 
 | 		    cache_level != I915_CACHE_NONE) { | 
 | 			/* Access to snoopable pages through the GTT is | 
 | 			 * incoherent and on some machines causes a hard | 
 | 			 * lockup. Relinquish the CPU mmaping to force | 
 | 			 * userspace to refault in the pages and we can | 
 | 			 * then double check if the GTT mapping is still | 
 | 			 * valid for that pointer access. | 
 | 			 */ | 
 | 			i915_gem_release_mmap(obj); | 
 |  | 
 | 			/* As we no longer need a fence for GTT access, | 
 | 			 * we can relinquish it now (and so prevent having | 
 | 			 * to steal a fence from someone else on the next | 
 | 			 * fence request). Note GPU activity would have | 
 | 			 * dropped the fence as all snoopable access is | 
 | 			 * supposed to be linear. | 
 | 			 */ | 
 | 			for_each_ggtt_vma(vma, obj) { | 
 | 				ret = i915_vma_put_fence(vma); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 			} | 
 | 		} else { | 
 | 			/* We either have incoherent backing store and | 
 | 			 * so no GTT access or the architecture is fully | 
 | 			 * coherent. In such cases, existing GTT mmaps | 
 | 			 * ignore the cache bit in the PTE and we can | 
 | 			 * rewrite it without confusing the GPU or having | 
 | 			 * to force userspace to fault back in its mmaps. | 
 | 			 */ | 
 | 		} | 
 |  | 
 | 		list_for_each_entry(vma, &obj->vma_list, obj_link) { | 
 | 			if (!drm_mm_node_allocated(&vma->node)) | 
 | 				continue; | 
 |  | 
 | 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(vma, &obj->vma_list, obj_link) | 
 | 		vma->node.color = cache_level; | 
 | 	i915_gem_object_set_cache_coherency(obj, cache_level); | 
 | 	obj->cache_dirty = true; /* Always invalidate stale cachelines */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, | 
 | 			       struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_caching *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int err = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	obj = i915_gem_object_lookup_rcu(file, args->handle); | 
 | 	if (!obj) { | 
 | 		err = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	switch (obj->cache_level) { | 
 | 	case I915_CACHE_LLC: | 
 | 	case I915_CACHE_L3_LLC: | 
 | 		args->caching = I915_CACHING_CACHED; | 
 | 		break; | 
 |  | 
 | 	case I915_CACHE_WT: | 
 | 		args->caching = I915_CACHING_DISPLAY; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		args->caching = I915_CACHING_NONE; | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return err; | 
 | } | 
 |  | 
 | int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, | 
 | 			       struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(dev); | 
 | 	struct drm_i915_gem_caching *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	enum i915_cache_level level; | 
 | 	int ret = 0; | 
 |  | 
 | 	switch (args->caching) { | 
 | 	case I915_CACHING_NONE: | 
 | 		level = I915_CACHE_NONE; | 
 | 		break; | 
 | 	case I915_CACHING_CACHED: | 
 | 		/* | 
 | 		 * Due to a HW issue on BXT A stepping, GPU stores via a | 
 | 		 * snooped mapping may leave stale data in a corresponding CPU | 
 | 		 * cacheline, whereas normally such cachelines would get | 
 | 		 * invalidated. | 
 | 		 */ | 
 | 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) | 
 | 			return -ENODEV; | 
 |  | 
 | 		level = I915_CACHE_LLC; | 
 | 		break; | 
 | 	case I915_CACHING_DISPLAY: | 
 | 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * The caching mode of proxy object is handled by its generator, and | 
 | 	 * not allowed to be changed by userspace. | 
 | 	 */ | 
 | 	if (i915_gem_object_is_proxy(obj)) { | 
 | 		ret = -ENXIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (obj->cache_level == level) | 
 | 		goto out; | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE, | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   to_rps_client(file)); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = i915_gem_object_set_cache_level(obj, level); | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | out: | 
 | 	i915_gem_object_put(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from | 
 |  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined | 
 |  * (for pageflips). We only flush the caches while preparing the buffer for | 
 |  * display, the callers are responsible for frontbuffer flush. | 
 |  */ | 
 | struct i915_vma * | 
 | i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, | 
 | 				     u32 alignment, | 
 | 				     const struct i915_ggtt_view *view, | 
 | 				     unsigned int flags) | 
 | { | 
 | 	struct i915_vma *vma; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	/* Mark the global pin early so that we account for the | 
 | 	 * display coherency whilst setting up the cache domains. | 
 | 	 */ | 
 | 	obj->pin_global++; | 
 |  | 
 | 	/* The display engine is not coherent with the LLC cache on gen6.  As | 
 | 	 * a result, we make sure that the pinning that is about to occur is | 
 | 	 * done with uncached PTEs. This is lowest common denominator for all | 
 | 	 * chipsets. | 
 | 	 * | 
 | 	 * However for gen6+, we could do better by using the GFDT bit instead | 
 | 	 * of uncaching, which would allow us to flush all the LLC-cached data | 
 | 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL. | 
 | 	 */ | 
 | 	ret = i915_gem_object_set_cache_level(obj, | 
 | 					      HAS_WT(to_i915(obj->base.dev)) ? | 
 | 					      I915_CACHE_WT : I915_CACHE_NONE); | 
 | 	if (ret) { | 
 | 		vma = ERR_PTR(ret); | 
 | 		goto err_unpin_global; | 
 | 	} | 
 |  | 
 | 	/* As the user may map the buffer once pinned in the display plane | 
 | 	 * (e.g. libkms for the bootup splash), we have to ensure that we | 
 | 	 * always use map_and_fenceable for all scanout buffers. However, | 
 | 	 * it may simply be too big to fit into mappable, in which case | 
 | 	 * put it anyway and hope that userspace can cope (but always first | 
 | 	 * try to preserve the existing ABI). | 
 | 	 */ | 
 | 	vma = ERR_PTR(-ENOSPC); | 
 | 	if ((flags & PIN_MAPPABLE) == 0 && | 
 | 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) | 
 | 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, | 
 | 					       flags | | 
 | 					       PIN_MAPPABLE | | 
 | 					       PIN_NONBLOCK); | 
 | 	if (IS_ERR(vma)) | 
 | 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); | 
 | 	if (IS_ERR(vma)) | 
 | 		goto err_unpin_global; | 
 |  | 
 | 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment); | 
 |  | 
 | 	__i915_gem_object_flush_for_display(obj); | 
 |  | 
 | 	/* It should now be out of any other write domains, and we can update | 
 | 	 * the domain values for our changes. | 
 | 	 */ | 
 | 	obj->read_domains |= I915_GEM_DOMAIN_GTT; | 
 |  | 
 | 	return vma; | 
 |  | 
 | err_unpin_global: | 
 | 	obj->pin_global--; | 
 | 	return vma; | 
 | } | 
 |  | 
 | void | 
 | i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) | 
 | { | 
 | 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); | 
 |  | 
 | 	if (WARN_ON(vma->obj->pin_global == 0)) | 
 | 		return; | 
 |  | 
 | 	if (--vma->obj->pin_global == 0) | 
 | 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT; | 
 |  | 
 | 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */ | 
 | 	i915_gem_object_bump_inactive_ggtt(vma->obj); | 
 |  | 
 | 	i915_vma_unpin(vma); | 
 | } | 
 |  | 
 | /** | 
 |  * Moves a single object to the CPU read, and possibly write domain. | 
 |  * @obj: object to act on | 
 |  * @write: requesting write or read-only access | 
 |  * | 
 |  * This function returns when the move is complete, including waiting on | 
 |  * flushes to occur. | 
 |  */ | 
 | int | 
 | i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	ret = i915_gem_object_wait(obj, | 
 | 				   I915_WAIT_INTERRUPTIBLE | | 
 | 				   I915_WAIT_LOCKED | | 
 | 				   (write ? I915_WAIT_ALL : 0), | 
 | 				   MAX_SCHEDULE_TIMEOUT, | 
 | 				   NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); | 
 |  | 
 | 	/* Flush the CPU cache if it's still invalid. */ | 
 | 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { | 
 | 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); | 
 | 		obj->read_domains |= I915_GEM_DOMAIN_CPU; | 
 | 	} | 
 |  | 
 | 	/* It should now be out of any other write domains, and we can update | 
 | 	 * the domain values for our changes. | 
 | 	 */ | 
 | 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU); | 
 |  | 
 | 	/* If we're writing through the CPU, then the GPU read domains will | 
 | 	 * need to be invalidated at next use. | 
 | 	 */ | 
 | 	if (write) | 
 | 		__start_cpu_write(obj); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Throttle our rendering by waiting until the ring has completed our requests | 
 |  * emitted over 20 msec ago. | 
 |  * | 
 |  * Note that if we were to use the current jiffies each time around the loop, | 
 |  * we wouldn't escape the function with any frames outstanding if the time to | 
 |  * render a frame was over 20ms. | 
 |  * | 
 |  * This should get us reasonable parallelism between CPU and GPU but also | 
 |  * relatively low latency when blocking on a particular request to finish. | 
 |  */ | 
 | static int | 
 | i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_i915_file_private *file_priv = file->driver_priv; | 
 | 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; | 
 | 	struct i915_request *request, *target = NULL; | 
 | 	long ret; | 
 |  | 
 | 	/* ABI: return -EIO if already wedged */ | 
 | 	if (i915_terminally_wedged(&dev_priv->gpu_error)) | 
 | 		return -EIO; | 
 |  | 
 | 	spin_lock(&file_priv->mm.lock); | 
 | 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) { | 
 | 		if (time_after_eq(request->emitted_jiffies, recent_enough)) | 
 | 			break; | 
 |  | 
 | 		if (target) { | 
 | 			list_del(&target->client_link); | 
 | 			target->file_priv = NULL; | 
 | 		} | 
 |  | 
 | 		target = request; | 
 | 	} | 
 | 	if (target) | 
 | 		i915_request_get(target); | 
 | 	spin_unlock(&file_priv->mm.lock); | 
 |  | 
 | 	if (target == NULL) | 
 | 		return 0; | 
 |  | 
 | 	ret = i915_request_wait(target, | 
 | 				I915_WAIT_INTERRUPTIBLE, | 
 | 				MAX_SCHEDULE_TIMEOUT); | 
 | 	i915_request_put(target); | 
 |  | 
 | 	return ret < 0 ? ret : 0; | 
 | } | 
 |  | 
 | struct i915_vma * | 
 | i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, | 
 | 			 const struct i915_ggtt_view *view, | 
 | 			 u64 size, | 
 | 			 u64 alignment, | 
 | 			 u64 flags) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	struct i915_address_space *vm = &dev_priv->ggtt.base; | 
 | 	struct i915_vma *vma; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	if (flags & PIN_MAPPABLE && | 
 | 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) { | 
 | 		/* If the required space is larger than the available | 
 | 		 * aperture, we will not able to find a slot for the | 
 | 		 * object and unbinding the object now will be in | 
 | 		 * vain. Worse, doing so may cause us to ping-pong | 
 | 		 * the object in and out of the Global GTT and | 
 | 		 * waste a lot of cycles under the mutex. | 
 | 		 */ | 
 | 		if (obj->base.size > dev_priv->ggtt.mappable_end) | 
 | 			return ERR_PTR(-E2BIG); | 
 |  | 
 | 		/* If NONBLOCK is set the caller is optimistically | 
 | 		 * trying to cache the full object within the mappable | 
 | 		 * aperture, and *must* have a fallback in place for | 
 | 		 * situations where we cannot bind the object. We | 
 | 		 * can be a little more lax here and use the fallback | 
 | 		 * more often to avoid costly migrations of ourselves | 
 | 		 * and other objects within the aperture. | 
 | 		 * | 
 | 		 * Half-the-aperture is used as a simple heuristic. | 
 | 		 * More interesting would to do search for a free | 
 | 		 * block prior to making the commitment to unbind. | 
 | 		 * That caters for the self-harm case, and with a | 
 | 		 * little more heuristics (e.g. NOFAULT, NOEVICT) | 
 | 		 * we could try to minimise harm to others. | 
 | 		 */ | 
 | 		if (flags & PIN_NONBLOCK && | 
 | 		    obj->base.size > dev_priv->ggtt.mappable_end / 2) | 
 | 			return ERR_PTR(-ENOSPC); | 
 | 	} | 
 |  | 
 | 	vma = i915_vma_instance(obj, vm, view); | 
 | 	if (unlikely(IS_ERR(vma))) | 
 | 		return vma; | 
 |  | 
 | 	if (i915_vma_misplaced(vma, size, alignment, flags)) { | 
 | 		if (flags & PIN_NONBLOCK) { | 
 | 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) | 
 | 				return ERR_PTR(-ENOSPC); | 
 |  | 
 | 			if (flags & PIN_MAPPABLE && | 
 | 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2) | 
 | 				return ERR_PTR(-ENOSPC); | 
 | 		} | 
 |  | 
 | 		WARN(i915_vma_is_pinned(vma), | 
 | 		     "bo is already pinned in ggtt with incorrect alignment:" | 
 | 		     " offset=%08x, req.alignment=%llx," | 
 | 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", | 
 | 		     i915_ggtt_offset(vma), alignment, | 
 | 		     !!(flags & PIN_MAPPABLE), | 
 | 		     i915_vma_is_map_and_fenceable(vma)); | 
 | 		ret = i915_vma_unbind(vma); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	return vma; | 
 | } | 
 |  | 
 | static __always_inline unsigned int __busy_read_flag(unsigned int id) | 
 | { | 
 | 	/* Note that we could alias engines in the execbuf API, but | 
 | 	 * that would be very unwise as it prevents userspace from | 
 | 	 * fine control over engine selection. Ahem. | 
 | 	 * | 
 | 	 * This should be something like EXEC_MAX_ENGINE instead of | 
 | 	 * I915_NUM_ENGINES. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(I915_NUM_ENGINES > 16); | 
 | 	return 0x10000 << id; | 
 | } | 
 |  | 
 | static __always_inline unsigned int __busy_write_id(unsigned int id) | 
 | { | 
 | 	/* The uABI guarantees an active writer is also amongst the read | 
 | 	 * engines. This would be true if we accessed the activity tracking | 
 | 	 * under the lock, but as we perform the lookup of the object and | 
 | 	 * its activity locklessly we can not guarantee that the last_write | 
 | 	 * being active implies that we have set the same engine flag from | 
 | 	 * last_read - hence we always set both read and write busy for | 
 | 	 * last_write. | 
 | 	 */ | 
 | 	return id | __busy_read_flag(id); | 
 | } | 
 |  | 
 | static __always_inline unsigned int | 
 | __busy_set_if_active(const struct dma_fence *fence, | 
 | 		     unsigned int (*flag)(unsigned int id)) | 
 | { | 
 | 	struct i915_request *rq; | 
 |  | 
 | 	/* We have to check the current hw status of the fence as the uABI | 
 | 	 * guarantees forward progress. We could rely on the idle worker | 
 | 	 * to eventually flush us, but to minimise latency just ask the | 
 | 	 * hardware. | 
 | 	 * | 
 | 	 * Note we only report on the status of native fences. | 
 | 	 */ | 
 | 	if (!dma_fence_is_i915(fence)) | 
 | 		return 0; | 
 |  | 
 | 	/* opencode to_request() in order to avoid const warnings */ | 
 | 	rq = container_of(fence, struct i915_request, fence); | 
 | 	if (i915_request_completed(rq)) | 
 | 		return 0; | 
 |  | 
 | 	return flag(rq->engine->uabi_id); | 
 | } | 
 |  | 
 | static __always_inline unsigned int | 
 | busy_check_reader(const struct dma_fence *fence) | 
 | { | 
 | 	return __busy_set_if_active(fence, __busy_read_flag); | 
 | } | 
 |  | 
 | static __always_inline unsigned int | 
 | busy_check_writer(const struct dma_fence *fence) | 
 | { | 
 | 	if (!fence) | 
 | 		return 0; | 
 |  | 
 | 	return __busy_set_if_active(fence, __busy_write_id); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_busy_ioctl(struct drm_device *dev, void *data, | 
 | 		    struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_busy *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	struct reservation_object_list *list; | 
 | 	unsigned int seq; | 
 | 	int err; | 
 |  | 
 | 	err = -ENOENT; | 
 | 	rcu_read_lock(); | 
 | 	obj = i915_gem_object_lookup_rcu(file, args->handle); | 
 | 	if (!obj) | 
 | 		goto out; | 
 |  | 
 | 	/* A discrepancy here is that we do not report the status of | 
 | 	 * non-i915 fences, i.e. even though we may report the object as idle, | 
 | 	 * a call to set-domain may still stall waiting for foreign rendering. | 
 | 	 * This also means that wait-ioctl may report an object as busy, | 
 | 	 * where busy-ioctl considers it idle. | 
 | 	 * | 
 | 	 * We trade the ability to warn of foreign fences to report on which | 
 | 	 * i915 engines are active for the object. | 
 | 	 * | 
 | 	 * Alternatively, we can trade that extra information on read/write | 
 | 	 * activity with | 
 | 	 *	args->busy = | 
 | 	 *		!reservation_object_test_signaled_rcu(obj->resv, true); | 
 | 	 * to report the overall busyness. This is what the wait-ioctl does. | 
 | 	 * | 
 | 	 */ | 
 | retry: | 
 | 	seq = raw_read_seqcount(&obj->resv->seq); | 
 |  | 
 | 	/* Translate the exclusive fence to the READ *and* WRITE engine */ | 
 | 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); | 
 |  | 
 | 	/* Translate shared fences to READ set of engines */ | 
 | 	list = rcu_dereference(obj->resv->fence); | 
 | 	if (list) { | 
 | 		unsigned int shared_count = list->shared_count, i; | 
 |  | 
 | 		for (i = 0; i < shared_count; ++i) { | 
 | 			struct dma_fence *fence = | 
 | 				rcu_dereference(list->shared[i]); | 
 |  | 
 | 			args->busy |= busy_check_reader(fence); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) | 
 | 		goto retry; | 
 |  | 
 | 	err = 0; | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return err; | 
 | } | 
 |  | 
 | int | 
 | i915_gem_throttle_ioctl(struct drm_device *dev, void *data, | 
 | 			struct drm_file *file_priv) | 
 | { | 
 | 	return i915_gem_ring_throttle(dev, file_priv); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_madvise_ioctl(struct drm_device *dev, void *data, | 
 | 		       struct drm_file *file_priv) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_i915_gem_madvise *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int err; | 
 |  | 
 | 	switch (args->madv) { | 
 | 	case I915_MADV_DONTNEED: | 
 | 	case I915_MADV_WILLNEED: | 
 | 	    break; | 
 | 	default: | 
 | 	    return -EINVAL; | 
 | 	} | 
 |  | 
 | 	obj = i915_gem_object_lookup(file_priv, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	err = mutex_lock_interruptible(&obj->mm.lock); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (i915_gem_object_has_pages(obj) && | 
 | 	    i915_gem_object_is_tiled(obj) && | 
 | 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { | 
 | 		if (obj->mm.madv == I915_MADV_WILLNEED) { | 
 | 			GEM_BUG_ON(!obj->mm.quirked); | 
 | 			__i915_gem_object_unpin_pages(obj); | 
 | 			obj->mm.quirked = false; | 
 | 		} | 
 | 		if (args->madv == I915_MADV_WILLNEED) { | 
 | 			GEM_BUG_ON(obj->mm.quirked); | 
 | 			__i915_gem_object_pin_pages(obj); | 
 | 			obj->mm.quirked = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (obj->mm.madv != __I915_MADV_PURGED) | 
 | 		obj->mm.madv = args->madv; | 
 |  | 
 | 	/* if the object is no longer attached, discard its backing storage */ | 
 | 	if (obj->mm.madv == I915_MADV_DONTNEED && | 
 | 	    !i915_gem_object_has_pages(obj)) | 
 | 		i915_gem_object_truncate(obj); | 
 |  | 
 | 	args->retained = obj->mm.madv != __I915_MADV_PURGED; | 
 | 	mutex_unlock(&obj->mm.lock); | 
 |  | 
 | out: | 
 | 	i915_gem_object_put(obj); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void | 
 | frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = | 
 | 		container_of(active, typeof(*obj), frontbuffer_write); | 
 |  | 
 | 	intel_fb_obj_flush(obj, ORIGIN_CS); | 
 | } | 
 |  | 
 | void i915_gem_object_init(struct drm_i915_gem_object *obj, | 
 | 			  const struct drm_i915_gem_object_ops *ops) | 
 | { | 
 | 	mutex_init(&obj->mm.lock); | 
 |  | 
 | 	INIT_LIST_HEAD(&obj->vma_list); | 
 | 	INIT_LIST_HEAD(&obj->lut_list); | 
 | 	INIT_LIST_HEAD(&obj->batch_pool_link); | 
 |  | 
 | 	obj->ops = ops; | 
 |  | 
 | 	reservation_object_init(&obj->__builtin_resv); | 
 | 	obj->resv = &obj->__builtin_resv; | 
 |  | 
 | 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT; | 
 | 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire); | 
 |  | 
 | 	obj->mm.madv = I915_MADV_WILLNEED; | 
 | 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); | 
 | 	mutex_init(&obj->mm.get_page.lock); | 
 |  | 
 | 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); | 
 | } | 
 |  | 
 | static const struct drm_i915_gem_object_ops i915_gem_object_ops = { | 
 | 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | | 
 | 		 I915_GEM_OBJECT_IS_SHRINKABLE, | 
 |  | 
 | 	.get_pages = i915_gem_object_get_pages_gtt, | 
 | 	.put_pages = i915_gem_object_put_pages_gtt, | 
 |  | 
 | 	.pwrite = i915_gem_object_pwrite_gtt, | 
 | }; | 
 |  | 
 | static int i915_gem_object_create_shmem(struct drm_device *dev, | 
 | 					struct drm_gem_object *obj, | 
 | 					size_t size) | 
 | { | 
 | 	struct drm_i915_private *i915 = to_i915(dev); | 
 | 	unsigned long flags = VM_NORESERVE; | 
 | 	struct file *filp; | 
 |  | 
 | 	drm_gem_private_object_init(dev, obj, size); | 
 |  | 
 | 	if (i915->mm.gemfs) | 
 | 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, | 
 | 						 flags); | 
 | 	else | 
 | 		filp = shmem_file_setup("i915", size, flags); | 
 |  | 
 | 	if (IS_ERR(filp)) | 
 | 		return PTR_ERR(filp); | 
 |  | 
 | 	obj->filp = filp; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct drm_i915_gem_object * | 
 | i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	struct address_space *mapping; | 
 | 	unsigned int cache_level; | 
 | 	gfp_t mask; | 
 | 	int ret; | 
 |  | 
 | 	/* There is a prevalence of the assumption that we fit the object's | 
 | 	 * page count inside a 32bit _signed_ variable. Let's document this and | 
 | 	 * catch if we ever need to fix it. In the meantime, if you do spot | 
 | 	 * such a local variable, please consider fixing! | 
 | 	 */ | 
 | 	if (size >> PAGE_SHIFT > INT_MAX) | 
 | 		return ERR_PTR(-E2BIG); | 
 |  | 
 | 	if (overflows_type(size, obj->base.size)) | 
 | 		return ERR_PTR(-E2BIG); | 
 |  | 
 | 	obj = i915_gem_object_alloc(dev_priv); | 
 | 	if (obj == NULL) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; | 
 | 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { | 
 | 		/* 965gm cannot relocate objects above 4GiB. */ | 
 | 		mask &= ~__GFP_HIGHMEM; | 
 | 		mask |= __GFP_DMA32; | 
 | 	} | 
 |  | 
 | 	mapping = obj->base.filp->f_mapping; | 
 | 	mapping_set_gfp_mask(mapping, mask); | 
 | 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); | 
 |  | 
 | 	i915_gem_object_init(obj, &i915_gem_object_ops); | 
 |  | 
 | 	obj->write_domain = I915_GEM_DOMAIN_CPU; | 
 | 	obj->read_domains = I915_GEM_DOMAIN_CPU; | 
 |  | 
 | 	if (HAS_LLC(dev_priv)) | 
 | 		/* On some devices, we can have the GPU use the LLC (the CPU | 
 | 		 * cache) for about a 10% performance improvement | 
 | 		 * compared to uncached.  Graphics requests other than | 
 | 		 * display scanout are coherent with the CPU in | 
 | 		 * accessing this cache.  This means in this mode we | 
 | 		 * don't need to clflush on the CPU side, and on the | 
 | 		 * GPU side we only need to flush internal caches to | 
 | 		 * get data visible to the CPU. | 
 | 		 * | 
 | 		 * However, we maintain the display planes as UC, and so | 
 | 		 * need to rebind when first used as such. | 
 | 		 */ | 
 | 		cache_level = I915_CACHE_LLC; | 
 | 	else | 
 | 		cache_level = I915_CACHE_NONE; | 
 |  | 
 | 	i915_gem_object_set_cache_coherency(obj, cache_level); | 
 |  | 
 | 	trace_i915_gem_object_create(obj); | 
 |  | 
 | 	return obj; | 
 |  | 
 | fail: | 
 | 	i915_gem_object_free(obj); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static bool discard_backing_storage(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	/* If we are the last user of the backing storage (be it shmemfs | 
 | 	 * pages or stolen etc), we know that the pages are going to be | 
 | 	 * immediately released. In this case, we can then skip copying | 
 | 	 * back the contents from the GPU. | 
 | 	 */ | 
 |  | 
 | 	if (obj->mm.madv != I915_MADV_WILLNEED) | 
 | 		return false; | 
 |  | 
 | 	if (obj->base.filp == NULL) | 
 | 		return true; | 
 |  | 
 | 	/* At first glance, this looks racy, but then again so would be | 
 | 	 * userspace racing mmap against close. However, the first external | 
 | 	 * reference to the filp can only be obtained through the | 
 | 	 * i915_gem_mmap_ioctl() which safeguards us against the user | 
 | 	 * acquiring such a reference whilst we are in the middle of | 
 | 	 * freeing the object. | 
 | 	 */ | 
 | 	return atomic_long_read(&obj->base.filp->f_count) == 1; | 
 | } | 
 |  | 
 | static void __i915_gem_free_objects(struct drm_i915_private *i915, | 
 | 				    struct llist_node *freed) | 
 | { | 
 | 	struct drm_i915_gem_object *obj, *on; | 
 |  | 
 | 	intel_runtime_pm_get(i915); | 
 | 	llist_for_each_entry_safe(obj, on, freed, freed) { | 
 | 		struct i915_vma *vma, *vn; | 
 |  | 
 | 		trace_i915_gem_object_destroy(obj); | 
 |  | 
 | 		mutex_lock(&i915->drm.struct_mutex); | 
 |  | 
 | 		GEM_BUG_ON(i915_gem_object_is_active(obj)); | 
 | 		list_for_each_entry_safe(vma, vn, | 
 | 					 &obj->vma_list, obj_link) { | 
 | 			GEM_BUG_ON(i915_vma_is_active(vma)); | 
 | 			vma->flags &= ~I915_VMA_PIN_MASK; | 
 | 			i915_vma_destroy(vma); | 
 | 		} | 
 | 		GEM_BUG_ON(!list_empty(&obj->vma_list)); | 
 | 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); | 
 |  | 
 | 		/* This serializes freeing with the shrinker. Since the free | 
 | 		 * is delayed, first by RCU then by the workqueue, we want the | 
 | 		 * shrinker to be able to free pages of unreferenced objects, | 
 | 		 * or else we may oom whilst there are plenty of deferred | 
 | 		 * freed objects. | 
 | 		 */ | 
 | 		if (i915_gem_object_has_pages(obj)) { | 
 | 			spin_lock(&i915->mm.obj_lock); | 
 | 			list_del_init(&obj->mm.link); | 
 | 			spin_unlock(&i915->mm.obj_lock); | 
 | 		} | 
 |  | 
 | 		mutex_unlock(&i915->drm.struct_mutex); | 
 |  | 
 | 		GEM_BUG_ON(obj->bind_count); | 
 | 		GEM_BUG_ON(obj->userfault_count); | 
 | 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); | 
 | 		GEM_BUG_ON(!list_empty(&obj->lut_list)); | 
 |  | 
 | 		if (obj->ops->release) | 
 | 			obj->ops->release(obj); | 
 |  | 
 | 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) | 
 | 			atomic_set(&obj->mm.pages_pin_count, 0); | 
 | 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL); | 
 | 		GEM_BUG_ON(i915_gem_object_has_pages(obj)); | 
 |  | 
 | 		if (obj->base.import_attach) | 
 | 			drm_prime_gem_destroy(&obj->base, NULL); | 
 |  | 
 | 		reservation_object_fini(&obj->__builtin_resv); | 
 | 		drm_gem_object_release(&obj->base); | 
 | 		i915_gem_info_remove_obj(i915, obj->base.size); | 
 |  | 
 | 		kfree(obj->bit_17); | 
 | 		i915_gem_object_free(obj); | 
 |  | 
 | 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count)); | 
 | 		atomic_dec(&i915->mm.free_count); | 
 |  | 
 | 		if (on) | 
 | 			cond_resched(); | 
 | 	} | 
 | 	intel_runtime_pm_put(i915); | 
 | } | 
 |  | 
 | static void i915_gem_flush_free_objects(struct drm_i915_private *i915) | 
 | { | 
 | 	struct llist_node *freed; | 
 |  | 
 | 	/* Free the oldest, most stale object to keep the free_list short */ | 
 | 	freed = NULL; | 
 | 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */ | 
 | 		/* Only one consumer of llist_del_first() allowed */ | 
 | 		spin_lock(&i915->mm.free_lock); | 
 | 		freed = llist_del_first(&i915->mm.free_list); | 
 | 		spin_unlock(&i915->mm.free_lock); | 
 | 	} | 
 | 	if (unlikely(freed)) { | 
 | 		freed->next = NULL; | 
 | 		__i915_gem_free_objects(i915, freed); | 
 | 	} | 
 | } | 
 |  | 
 | static void __i915_gem_free_work(struct work_struct *work) | 
 | { | 
 | 	struct drm_i915_private *i915 = | 
 | 		container_of(work, struct drm_i915_private, mm.free_work); | 
 | 	struct llist_node *freed; | 
 |  | 
 | 	/* | 
 | 	 * All file-owned VMA should have been released by this point through | 
 | 	 * i915_gem_close_object(), or earlier by i915_gem_context_close(). | 
 | 	 * However, the object may also be bound into the global GTT (e.g. | 
 | 	 * older GPUs without per-process support, or for direct access through | 
 | 	 * the GTT either for the user or for scanout). Those VMA still need to | 
 | 	 * unbound now. | 
 | 	 */ | 
 |  | 
 | 	spin_lock(&i915->mm.free_lock); | 
 | 	while ((freed = llist_del_all(&i915->mm.free_list))) { | 
 | 		spin_unlock(&i915->mm.free_lock); | 
 |  | 
 | 		__i915_gem_free_objects(i915, freed); | 
 | 		if (need_resched()) | 
 | 			return; | 
 |  | 
 | 		spin_lock(&i915->mm.free_lock); | 
 | 	} | 
 | 	spin_unlock(&i915->mm.free_lock); | 
 | } | 
 |  | 
 | static void __i915_gem_free_object_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = | 
 | 		container_of(head, typeof(*obj), rcu); | 
 | 	struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 |  | 
 | 	/* | 
 | 	 * Since we require blocking on struct_mutex to unbind the freed | 
 | 	 * object from the GPU before releasing resources back to the | 
 | 	 * system, we can not do that directly from the RCU callback (which may | 
 | 	 * be a softirq context), but must instead then defer that work onto a | 
 | 	 * kthread. We use the RCU callback rather than move the freed object | 
 | 	 * directly onto the work queue so that we can mix between using the | 
 | 	 * worker and performing frees directly from subsequent allocations for | 
 | 	 * crude but effective memory throttling. | 
 | 	 */ | 
 | 	if (llist_add(&obj->freed, &i915->mm.free_list)) | 
 | 		queue_work(i915->wq, &i915->mm.free_work); | 
 | } | 
 |  | 
 | void i915_gem_free_object(struct drm_gem_object *gem_obj) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); | 
 |  | 
 | 	if (obj->mm.quirked) | 
 | 		__i915_gem_object_unpin_pages(obj); | 
 |  | 
 | 	if (discard_backing_storage(obj)) | 
 | 		obj->mm.madv = I915_MADV_DONTNEED; | 
 |  | 
 | 	/* | 
 | 	 * Before we free the object, make sure any pure RCU-only | 
 | 	 * read-side critical sections are complete, e.g. | 
 | 	 * i915_gem_busy_ioctl(). For the corresponding synchronized | 
 | 	 * lookup see i915_gem_object_lookup_rcu(). | 
 | 	 */ | 
 | 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count); | 
 | 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu); | 
 | } | 
 |  | 
 | void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	if (!i915_gem_object_has_active_reference(obj) && | 
 | 	    i915_gem_object_is_active(obj)) | 
 | 		i915_gem_object_set_active_reference(obj); | 
 | 	else | 
 | 		i915_gem_object_put(obj); | 
 | } | 
 |  | 
 | static void assert_kernel_context_is_current(struct drm_i915_private *i915) | 
 | { | 
 | 	struct i915_gem_context *kernel_context = i915->kernel_context; | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	for_each_engine(engine, i915, id) { | 
 | 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request)); | 
 | 		GEM_BUG_ON(engine->last_retired_context != kernel_context); | 
 | 	} | 
 | } | 
 |  | 
 | void i915_gem_sanitize(struct drm_i915_private *i915) | 
 | { | 
 | 	if (i915_terminally_wedged(&i915->gpu_error)) { | 
 | 		mutex_lock(&i915->drm.struct_mutex); | 
 | 		i915_gem_unset_wedged(i915); | 
 | 		mutex_unlock(&i915->drm.struct_mutex); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we inherit context state from the BIOS or earlier occupants | 
 | 	 * of the GPU, the GPU may be in an inconsistent state when we | 
 | 	 * try to take over. The only way to remove the earlier state | 
 | 	 * is by resetting. However, resetting on earlier gen is tricky as | 
 | 	 * it may impact the display and we are uncertain about the stability | 
 | 	 * of the reset, so this could be applied to even earlier gen. | 
 | 	 */ | 
 | 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915)) | 
 | 		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES)); | 
 | } | 
 |  | 
 | int i915_gem_suspend(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_device *dev = &dev_priv->drm; | 
 | 	int ret; | 
 |  | 
 | 	intel_runtime_pm_get(dev_priv); | 
 | 	intel_suspend_gt_powersave(dev_priv); | 
 |  | 
 | 	mutex_lock(&dev->struct_mutex); | 
 |  | 
 | 	/* We have to flush all the executing contexts to main memory so | 
 | 	 * that they can saved in the hibernation image. To ensure the last | 
 | 	 * context image is coherent, we have to switch away from it. That | 
 | 	 * leaves the dev_priv->kernel_context still active when | 
 | 	 * we actually suspend, and its image in memory may not match the GPU | 
 | 	 * state. Fortunately, the kernel_context is disposable and we do | 
 | 	 * not rely on its state. | 
 | 	 */ | 
 | 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) { | 
 | 		ret = i915_gem_switch_to_kernel_context(dev_priv); | 
 | 		if (ret) | 
 | 			goto err_unlock; | 
 |  | 
 | 		ret = i915_gem_wait_for_idle(dev_priv, | 
 | 					     I915_WAIT_INTERRUPTIBLE | | 
 | 					     I915_WAIT_LOCKED); | 
 | 		if (ret && ret != -EIO) | 
 | 			goto err_unlock; | 
 |  | 
 | 		assert_kernel_context_is_current(dev_priv); | 
 | 	} | 
 | 	i915_gem_contexts_lost(dev_priv); | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 	intel_uc_suspend(dev_priv); | 
 |  | 
 | 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); | 
 | 	cancel_delayed_work_sync(&dev_priv->gt.retire_work); | 
 |  | 
 | 	/* As the idle_work is rearming if it detects a race, play safe and | 
 | 	 * repeat the flush until it is definitely idle. | 
 | 	 */ | 
 | 	drain_delayed_work(&dev_priv->gt.idle_work); | 
 |  | 
 | 	/* Assert that we sucessfully flushed all the work and | 
 | 	 * reset the GPU back to its idle, low power state. | 
 | 	 */ | 
 | 	WARN_ON(dev_priv->gt.awake); | 
 | 	if (WARN_ON(!intel_engines_are_idle(dev_priv))) | 
 | 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */ | 
 |  | 
 | 	/* | 
 | 	 * Neither the BIOS, ourselves or any other kernel | 
 | 	 * expects the system to be in execlists mode on startup, | 
 | 	 * so we need to reset the GPU back to legacy mode. And the only | 
 | 	 * known way to disable logical contexts is through a GPU reset. | 
 | 	 * | 
 | 	 * So in order to leave the system in a known default configuration, | 
 | 	 * always reset the GPU upon unload and suspend. Afterwards we then | 
 | 	 * clean up the GEM state tracking, flushing off the requests and | 
 | 	 * leaving the system in a known idle state. | 
 | 	 * | 
 | 	 * Note that is of the upmost importance that the GPU is idle and | 
 | 	 * all stray writes are flushed *before* we dismantle the backing | 
 | 	 * storage for the pinned objects. | 
 | 	 * | 
 | 	 * However, since we are uncertain that resetting the GPU on older | 
 | 	 * machines is a good idea, we don't - just in case it leaves the | 
 | 	 * machine in an unusable condition. | 
 | 	 */ | 
 | 	intel_uc_sanitize(dev_priv); | 
 | 	i915_gem_sanitize(dev_priv); | 
 |  | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | 	return 0; | 
 |  | 
 | err_unlock: | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void i915_gem_resume(struct drm_i915_private *i915) | 
 | { | 
 | 	WARN_ON(i915->gt.awake); | 
 |  | 
 | 	mutex_lock(&i915->drm.struct_mutex); | 
 | 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL); | 
 |  | 
 | 	i915_gem_restore_gtt_mappings(i915); | 
 | 	i915_gem_restore_fences(i915); | 
 |  | 
 | 	/* | 
 | 	 * As we didn't flush the kernel context before suspend, we cannot | 
 | 	 * guarantee that the context image is complete. So let's just reset | 
 | 	 * it and start again. | 
 | 	 */ | 
 | 	i915->gt.resume(i915); | 
 |  | 
 | 	if (i915_gem_init_hw(i915)) | 
 | 		goto err_wedged; | 
 |  | 
 | 	intel_uc_resume(i915); | 
 |  | 
 | 	/* Always reload a context for powersaving. */ | 
 | 	if (i915_gem_switch_to_kernel_context(i915)) | 
 | 		goto err_wedged; | 
 |  | 
 | out_unlock: | 
 | 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL); | 
 | 	mutex_unlock(&i915->drm.struct_mutex); | 
 | 	return; | 
 |  | 
 | err_wedged: | 
 | 	if (!i915_terminally_wedged(&i915->gpu_error)) { | 
 | 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n"); | 
 | 		i915_gem_set_wedged(i915); | 
 | 	} | 
 | 	goto out_unlock; | 
 | } | 
 |  | 
 | void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) < 5 || | 
 | 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) | 
 | 		return; | 
 |  | 
 | 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | | 
 | 				 DISP_TILE_SURFACE_SWIZZLING); | 
 |  | 
 | 	if (IS_GEN5(dev_priv)) | 
 | 		return; | 
 |  | 
 | 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); | 
 | 	if (IS_GEN6(dev_priv)) | 
 | 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); | 
 | 	else if (IS_GEN7(dev_priv)) | 
 | 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); | 
 | 	else if (IS_GEN8(dev_priv)) | 
 | 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); | 
 | 	else | 
 | 		BUG(); | 
 | } | 
 |  | 
 | static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) | 
 | { | 
 | 	I915_WRITE(RING_CTL(base), 0); | 
 | 	I915_WRITE(RING_HEAD(base), 0); | 
 | 	I915_WRITE(RING_TAIL(base), 0); | 
 | 	I915_WRITE(RING_START(base), 0); | 
 | } | 
 |  | 
 | static void init_unused_rings(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (IS_I830(dev_priv)) { | 
 | 		init_unused_ring(dev_priv, PRB1_BASE); | 
 | 		init_unused_ring(dev_priv, SRB0_BASE); | 
 | 		init_unused_ring(dev_priv, SRB1_BASE); | 
 | 		init_unused_ring(dev_priv, SRB2_BASE); | 
 | 		init_unused_ring(dev_priv, SRB3_BASE); | 
 | 	} else if (IS_GEN2(dev_priv)) { | 
 | 		init_unused_ring(dev_priv, SRB0_BASE); | 
 | 		init_unused_ring(dev_priv, SRB1_BASE); | 
 | 	} else if (IS_GEN3(dev_priv)) { | 
 | 		init_unused_ring(dev_priv, PRB1_BASE); | 
 | 		init_unused_ring(dev_priv, PRB2_BASE); | 
 | 	} | 
 | } | 
 |  | 
 | static int __i915_gem_restart_engines(void *data) | 
 | { | 
 | 	struct drm_i915_private *i915 = data; | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 | 	int err; | 
 |  | 
 | 	for_each_engine(engine, i915, id) { | 
 | 		err = engine->init_hw(engine); | 
 | 		if (err) { | 
 | 			DRM_ERROR("Failed to restart %s (%d)\n", | 
 | 				  engine->name, err); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_init_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	dev_priv->gt.last_init_time = ktime_get(); | 
 |  | 
 | 	/* Double layer security blanket, see i915_gem_init() */ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) | 
 | 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); | 
 |  | 
 | 	if (IS_HASWELL(dev_priv)) | 
 | 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? | 
 | 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); | 
 |  | 
 | 	if (HAS_PCH_NOP(dev_priv)) { | 
 | 		if (IS_IVYBRIDGE(dev_priv)) { | 
 | 			u32 temp = I915_READ(GEN7_MSG_CTL); | 
 | 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); | 
 | 			I915_WRITE(GEN7_MSG_CTL, temp); | 
 | 		} else if (INTEL_GEN(dev_priv) >= 7) { | 
 | 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); | 
 | 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE; | 
 | 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	intel_gt_workarounds_apply(dev_priv); | 
 |  | 
 | 	i915_gem_init_swizzling(dev_priv); | 
 |  | 
 | 	/* | 
 | 	 * At least 830 can leave some of the unused rings | 
 | 	 * "active" (ie. head != tail) after resume which | 
 | 	 * will prevent c3 entry. Makes sure all unused rings | 
 | 	 * are totally idle. | 
 | 	 */ | 
 | 	init_unused_rings(dev_priv); | 
 |  | 
 | 	BUG_ON(!dev_priv->kernel_context); | 
 | 	if (i915_terminally_wedged(&dev_priv->gpu_error)) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = i915_ppgtt_init_hw(dev_priv); | 
 | 	if (ret) { | 
 | 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = intel_wopcm_init_hw(&dev_priv->wopcm); | 
 | 	if (ret) { | 
 | 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* We can't enable contexts until all firmware is loaded */ | 
 | 	ret = intel_uc_init_hw(dev_priv); | 
 | 	if (ret) { | 
 | 		DRM_ERROR("Enabling uc failed (%d)\n", ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	intel_mocs_init_l3cc_table(dev_priv); | 
 |  | 
 | 	/* Only when the HW is re-initialised, can we replay the requests */ | 
 | 	ret = __i915_gem_restart_engines(dev_priv); | 
 | out: | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __intel_engines_record_defaults(struct drm_i915_private *i915) | 
 | { | 
 | 	struct i915_gem_context *ctx; | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * As we reset the gpu during very early sanitisation, the current | 
 | 	 * register state on the GPU should reflect its defaults values. | 
 | 	 * We load a context onto the hw (with restore-inhibit), then switch | 
 | 	 * over to a second context to save that default register state. We | 
 | 	 * can then prime every new context with that state so they all start | 
 | 	 * from the same default HW values. | 
 | 	 */ | 
 |  | 
 | 	ctx = i915_gem_context_create_kernel(i915, 0); | 
 | 	if (IS_ERR(ctx)) | 
 | 		return PTR_ERR(ctx); | 
 |  | 
 | 	for_each_engine(engine, i915, id) { | 
 | 		struct i915_request *rq; | 
 |  | 
 | 		rq = i915_request_alloc(engine, ctx); | 
 | 		if (IS_ERR(rq)) { | 
 | 			err = PTR_ERR(rq); | 
 | 			goto out_ctx; | 
 | 		} | 
 |  | 
 | 		err = 0; | 
 | 		if (engine->init_context) | 
 | 			err = engine->init_context(rq); | 
 |  | 
 | 		__i915_request_add(rq, true); | 
 | 		if (err) | 
 | 			goto err_active; | 
 | 	} | 
 |  | 
 | 	err = i915_gem_switch_to_kernel_context(i915); | 
 | 	if (err) | 
 | 		goto err_active; | 
 |  | 
 | 	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED); | 
 | 	if (err) | 
 | 		goto err_active; | 
 |  | 
 | 	assert_kernel_context_is_current(i915); | 
 |  | 
 | 	for_each_engine(engine, i915, id) { | 
 | 		struct i915_vma *state; | 
 |  | 
 | 		state = to_intel_context(ctx, engine)->state; | 
 | 		if (!state) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * As we will hold a reference to the logical state, it will | 
 | 		 * not be torn down with the context, and importantly the | 
 | 		 * object will hold onto its vma (making it possible for a | 
 | 		 * stray GTT write to corrupt our defaults). Unmap the vma | 
 | 		 * from the GTT to prevent such accidents and reclaim the | 
 | 		 * space. | 
 | 		 */ | 
 | 		err = i915_vma_unbind(state); | 
 | 		if (err) | 
 | 			goto err_active; | 
 |  | 
 | 		err = i915_gem_object_set_to_cpu_domain(state->obj, false); | 
 | 		if (err) | 
 | 			goto err_active; | 
 |  | 
 | 		engine->default_state = i915_gem_object_get(state->obj); | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { | 
 | 		unsigned int found = intel_engines_has_context_isolation(i915); | 
 |  | 
 | 		/* | 
 | 		 * Make sure that classes with multiple engine instances all | 
 | 		 * share the same basic configuration. | 
 | 		 */ | 
 | 		for_each_engine(engine, i915, id) { | 
 | 			unsigned int bit = BIT(engine->uabi_class); | 
 | 			unsigned int expected = engine->default_state ? bit : 0; | 
 |  | 
 | 			if ((found & bit) != expected) { | 
 | 				DRM_ERROR("mismatching default context state for class %d on engine %s\n", | 
 | 					  engine->uabi_class, engine->name); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | out_ctx: | 
 | 	i915_gem_context_set_closed(ctx); | 
 | 	i915_gem_context_put(ctx); | 
 | 	return err; | 
 |  | 
 | err_active: | 
 | 	/* | 
 | 	 * If we have to abandon now, we expect the engines to be idle | 
 | 	 * and ready to be torn-down. First try to flush any remaining | 
 | 	 * request, ensure we are pointing at the kernel context and | 
 | 	 * then remove it. | 
 | 	 */ | 
 | 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915))) | 
 | 		goto out_ctx; | 
 |  | 
 | 	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED))) | 
 | 		goto out_ctx; | 
 |  | 
 | 	i915_gem_contexts_lost(i915); | 
 | 	goto out_ctx; | 
 | } | 
 |  | 
 | int i915_gem_init(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * We need to fallback to 4K pages since gvt gtt handling doesn't | 
 | 	 * support huge page entries - we will need to check either hypervisor | 
 | 	 * mm can support huge guest page or just do emulation in gvt. | 
 | 	 */ | 
 | 	if (intel_vgpu_active(dev_priv)) | 
 | 		mkwrite_device_info(dev_priv)->page_sizes = | 
 | 			I915_GTT_PAGE_SIZE_4K; | 
 |  | 
 | 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); | 
 |  | 
 | 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { | 
 | 		dev_priv->gt.resume = intel_lr_context_resume; | 
 | 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; | 
 | 	} else { | 
 | 		dev_priv->gt.resume = intel_legacy_submission_resume; | 
 | 		dev_priv->gt.cleanup_engine = intel_engine_cleanup; | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_init_userptr(dev_priv); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = intel_wopcm_init(&dev_priv->wopcm); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = intel_uc_init_misc(dev_priv); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* This is just a security blanket to placate dragons. | 
 | 	 * On some systems, we very sporadically observe that the first TLBs | 
 | 	 * used by the CS may be stale, despite us poking the TLB reset. If | 
 | 	 * we hold the forcewake during initialisation these problems | 
 | 	 * just magically go away. | 
 | 	 */ | 
 | 	mutex_lock(&dev_priv->drm.struct_mutex); | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	ret = i915_gem_init_ggtt(dev_priv); | 
 | 	if (ret) { | 
 | 		GEM_BUG_ON(ret == -EIO); | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_contexts_init(dev_priv); | 
 | 	if (ret) { | 
 | 		GEM_BUG_ON(ret == -EIO); | 
 | 		goto err_ggtt; | 
 | 	} | 
 |  | 
 | 	ret = intel_engines_init(dev_priv); | 
 | 	if (ret) { | 
 | 		GEM_BUG_ON(ret == -EIO); | 
 | 		goto err_context; | 
 | 	} | 
 |  | 
 | 	intel_init_gt_powersave(dev_priv); | 
 |  | 
 | 	ret = intel_uc_init(dev_priv); | 
 | 	if (ret) | 
 | 		goto err_pm; | 
 |  | 
 | 	ret = i915_gem_init_hw(dev_priv); | 
 | 	if (ret) | 
 | 		goto err_uc_init; | 
 |  | 
 | 	/* | 
 | 	 * Despite its name intel_init_clock_gating applies both display | 
 | 	 * clock gating workarounds; GT mmio workarounds and the occasional | 
 | 	 * GT power context workaround. Worse, sometimes it includes a context | 
 | 	 * register workaround which we need to apply before we record the | 
 | 	 * default HW state for all contexts. | 
 | 	 * | 
 | 	 * FIXME: break up the workarounds and apply them at the right time! | 
 | 	 */ | 
 | 	intel_init_clock_gating(dev_priv); | 
 |  | 
 | 	ret = __intel_engines_record_defaults(dev_priv); | 
 | 	if (ret) | 
 | 		goto err_init_hw; | 
 |  | 
 | 	if (i915_inject_load_failure()) { | 
 | 		ret = -ENODEV; | 
 | 		goto err_init_hw; | 
 | 	} | 
 |  | 
 | 	if (i915_inject_load_failure()) { | 
 | 		ret = -EIO; | 
 | 		goto err_init_hw; | 
 | 	} | 
 |  | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	return 0; | 
 |  | 
 | 	/* | 
 | 	 * Unwinding is complicated by that we want to handle -EIO to mean | 
 | 	 * disable GPU submission but keep KMS alive. We want to mark the | 
 | 	 * HW as irrevisibly wedged, but keep enough state around that the | 
 | 	 * driver doesn't explode during runtime. | 
 | 	 */ | 
 | err_init_hw: | 
 | 	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED); | 
 | 	i915_gem_contexts_lost(dev_priv); | 
 | 	intel_uc_fini_hw(dev_priv); | 
 | err_uc_init: | 
 | 	intel_uc_fini(dev_priv); | 
 | err_pm: | 
 | 	if (ret != -EIO) { | 
 | 		intel_cleanup_gt_powersave(dev_priv); | 
 | 		i915_gem_cleanup_engines(dev_priv); | 
 | 	} | 
 | err_context: | 
 | 	if (ret != -EIO) | 
 | 		i915_gem_contexts_fini(dev_priv); | 
 | err_ggtt: | 
 | err_unlock: | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	intel_uc_fini_misc(dev_priv); | 
 |  | 
 | 	if (ret != -EIO) | 
 | 		i915_gem_cleanup_userptr(dev_priv); | 
 |  | 
 | 	if (ret == -EIO) { | 
 | 		/* | 
 | 		 * Allow engine initialisation to fail by marking the GPU as | 
 | 		 * wedged. But we only want to do this where the GPU is angry, | 
 | 		 * for all other failure, such as an allocation failure, bail. | 
 | 		 */ | 
 | 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) { | 
 | 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); | 
 | 			i915_gem_set_wedged(dev_priv); | 
 | 		} | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	i915_gem_drain_freed_objects(dev_priv); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void i915_gem_init_mmio(struct drm_i915_private *i915) | 
 | { | 
 | 	i915_gem_sanitize(i915); | 
 | } | 
 |  | 
 | void | 
 | i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) | 
 | 		dev_priv->gt.cleanup_engine(engine); | 
 | } | 
 |  | 
 | void | 
 | i915_gem_load_init_fences(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) && | 
 | 	    !IS_CHERRYVIEW(dev_priv)) | 
 | 		dev_priv->num_fence_regs = 32; | 
 | 	else if (INTEL_GEN(dev_priv) >= 4 || | 
 | 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || | 
 | 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) | 
 | 		dev_priv->num_fence_regs = 16; | 
 | 	else | 
 | 		dev_priv->num_fence_regs = 8; | 
 |  | 
 | 	if (intel_vgpu_active(dev_priv)) | 
 | 		dev_priv->num_fence_regs = | 
 | 				I915_READ(vgtif_reg(avail_rs.fence_num)); | 
 |  | 
 | 	/* Initialize fence registers to zero */ | 
 | 	for (i = 0; i < dev_priv->num_fence_regs; i++) { | 
 | 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; | 
 |  | 
 | 		fence->i915 = dev_priv; | 
 | 		fence->id = i; | 
 | 		list_add_tail(&fence->link, &dev_priv->mm.fence_list); | 
 | 	} | 
 | 	i915_gem_restore_fences(dev_priv); | 
 |  | 
 | 	i915_gem_detect_bit_6_swizzle(dev_priv); | 
 | } | 
 |  | 
 | static void i915_gem_init__mm(struct drm_i915_private *i915) | 
 | { | 
 | 	spin_lock_init(&i915->mm.object_stat_lock); | 
 | 	spin_lock_init(&i915->mm.obj_lock); | 
 | 	spin_lock_init(&i915->mm.free_lock); | 
 |  | 
 | 	init_llist_head(&i915->mm.free_list); | 
 |  | 
 | 	INIT_LIST_HEAD(&i915->mm.unbound_list); | 
 | 	INIT_LIST_HEAD(&i915->mm.bound_list); | 
 | 	INIT_LIST_HEAD(&i915->mm.fence_list); | 
 | 	INIT_LIST_HEAD(&i915->mm.userfault_list); | 
 |  | 
 | 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); | 
 | } | 
 |  | 
 | int i915_gem_init_early(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); | 
 | 	if (!dev_priv->objects) | 
 | 		goto err_out; | 
 |  | 
 | 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); | 
 | 	if (!dev_priv->vmas) | 
 | 		goto err_objects; | 
 |  | 
 | 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); | 
 | 	if (!dev_priv->luts) | 
 | 		goto err_vmas; | 
 |  | 
 | 	dev_priv->requests = KMEM_CACHE(i915_request, | 
 | 					SLAB_HWCACHE_ALIGN | | 
 | 					SLAB_RECLAIM_ACCOUNT | | 
 | 					SLAB_TYPESAFE_BY_RCU); | 
 | 	if (!dev_priv->requests) | 
 | 		goto err_luts; | 
 |  | 
 | 	dev_priv->dependencies = KMEM_CACHE(i915_dependency, | 
 | 					    SLAB_HWCACHE_ALIGN | | 
 | 					    SLAB_RECLAIM_ACCOUNT); | 
 | 	if (!dev_priv->dependencies) | 
 | 		goto err_requests; | 
 |  | 
 | 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); | 
 | 	if (!dev_priv->priorities) | 
 | 		goto err_dependencies; | 
 |  | 
 | 	INIT_LIST_HEAD(&dev_priv->gt.timelines); | 
 | 	INIT_LIST_HEAD(&dev_priv->gt.active_rings); | 
 | 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma); | 
 |  | 
 | 	i915_gem_init__mm(dev_priv); | 
 |  | 
 | 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work, | 
 | 			  i915_gem_retire_work_handler); | 
 | 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work, | 
 | 			  i915_gem_idle_work_handler); | 
 | 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue); | 
 | 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue); | 
 |  | 
 | 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); | 
 |  | 
 | 	spin_lock_init(&dev_priv->fb_tracking.lock); | 
 |  | 
 | 	err = i915_gemfs_init(dev_priv); | 
 | 	if (err) | 
 | 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_dependencies: | 
 | 	kmem_cache_destroy(dev_priv->dependencies); | 
 | err_requests: | 
 | 	kmem_cache_destroy(dev_priv->requests); | 
 | err_luts: | 
 | 	kmem_cache_destroy(dev_priv->luts); | 
 | err_vmas: | 
 | 	kmem_cache_destroy(dev_priv->vmas); | 
 | err_objects: | 
 | 	kmem_cache_destroy(dev_priv->objects); | 
 | err_out: | 
 | 	return err; | 
 | } | 
 |  | 
 | void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	i915_gem_drain_freed_objects(dev_priv); | 
 | 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); | 
 | 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); | 
 | 	WARN_ON(dev_priv->mm.object_count); | 
 | 	WARN_ON(!list_empty(&dev_priv->gt.timelines)); | 
 |  | 
 | 	kmem_cache_destroy(dev_priv->priorities); | 
 | 	kmem_cache_destroy(dev_priv->dependencies); | 
 | 	kmem_cache_destroy(dev_priv->requests); | 
 | 	kmem_cache_destroy(dev_priv->luts); | 
 | 	kmem_cache_destroy(dev_priv->vmas); | 
 | 	kmem_cache_destroy(dev_priv->objects); | 
 |  | 
 | 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ | 
 | 	rcu_barrier(); | 
 |  | 
 | 	i915_gemfs_fini(dev_priv); | 
 | } | 
 |  | 
 | int i915_gem_freeze(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* Discard all purgeable objects, let userspace recover those as | 
 | 	 * required after resuming. | 
 | 	 */ | 
 | 	i915_gem_shrink_all(dev_priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_freeze_late(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	struct list_head *phases[] = { | 
 | 		&dev_priv->mm.unbound_list, | 
 | 		&dev_priv->mm.bound_list, | 
 | 		NULL | 
 | 	}, **p; | 
 |  | 
 | 	/* Called just before we write the hibernation image. | 
 | 	 * | 
 | 	 * We need to update the domain tracking to reflect that the CPU | 
 | 	 * will be accessing all the pages to create and restore from the | 
 | 	 * hibernation, and so upon restoration those pages will be in the | 
 | 	 * CPU domain. | 
 | 	 * | 
 | 	 * To make sure the hibernation image contains the latest state, | 
 | 	 * we update that state just before writing out the image. | 
 | 	 * | 
 | 	 * To try and reduce the hibernation image, we manually shrink | 
 | 	 * the objects as well, see i915_gem_freeze() | 
 | 	 */ | 
 |  | 
 | 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND); | 
 | 	i915_gem_drain_freed_objects(dev_priv); | 
 |  | 
 | 	spin_lock(&dev_priv->mm.obj_lock); | 
 | 	for (p = phases; *p; p++) { | 
 | 		list_for_each_entry(obj, *p, mm.link) | 
 | 			__start_cpu_write(obj); | 
 | 	} | 
 | 	spin_unlock(&dev_priv->mm.obj_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void i915_gem_release(struct drm_device *dev, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_file_private *file_priv = file->driver_priv; | 
 | 	struct i915_request *request; | 
 |  | 
 | 	/* Clean up our request list when the client is going away, so that | 
 | 	 * later retire_requests won't dereference our soon-to-be-gone | 
 | 	 * file_priv. | 
 | 	 */ | 
 | 	spin_lock(&file_priv->mm.lock); | 
 | 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) | 
 | 		request->file_priv = NULL; | 
 | 	spin_unlock(&file_priv->mm.lock); | 
 | } | 
 |  | 
 | int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_file_private *file_priv; | 
 | 	int ret; | 
 |  | 
 | 	DRM_DEBUG("\n"); | 
 |  | 
 | 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); | 
 | 	if (!file_priv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	file->driver_priv = file_priv; | 
 | 	file_priv->dev_priv = i915; | 
 | 	file_priv->file = file; | 
 |  | 
 | 	spin_lock_init(&file_priv->mm.lock); | 
 | 	INIT_LIST_HEAD(&file_priv->mm.request_list); | 
 |  | 
 | 	file_priv->bsd_engine = -1; | 
 | 	file_priv->hang_timestamp = jiffies; | 
 |  | 
 | 	ret = i915_gem_context_open(i915, file); | 
 | 	if (ret) | 
 | 		kfree(file_priv); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_track_fb - update frontbuffer tracking | 
 |  * @old: current GEM buffer for the frontbuffer slots | 
 |  * @new: new GEM buffer for the frontbuffer slots | 
 |  * @frontbuffer_bits: bitmask of frontbuffer slots | 
 |  * | 
 |  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them | 
 |  * from @old and setting them in @new. Both @old and @new can be NULL. | 
 |  */ | 
 | void i915_gem_track_fb(struct drm_i915_gem_object *old, | 
 | 		       struct drm_i915_gem_object *new, | 
 | 		       unsigned frontbuffer_bits) | 
 | { | 
 | 	/* Control of individual bits within the mask are guarded by | 
 | 	 * the owning plane->mutex, i.e. we can never see concurrent | 
 | 	 * manipulation of individual bits. But since the bitfield as a whole | 
 | 	 * is updated using RMW, we need to use atomics in order to update | 
 | 	 * the bits. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > | 
 | 		     sizeof(atomic_t) * BITS_PER_BYTE); | 
 |  | 
 | 	if (old) { | 
 | 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); | 
 | 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); | 
 | 	} | 
 |  | 
 | 	if (new) { | 
 | 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); | 
 | 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits); | 
 | 	} | 
 | } | 
 |  | 
 | /* Allocate a new GEM object and fill it with the supplied data */ | 
 | struct drm_i915_gem_object * | 
 | i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, | 
 | 			         const void *data, size_t size) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	struct file *file; | 
 | 	size_t offset; | 
 | 	int err; | 
 |  | 
 | 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); | 
 | 	if (IS_ERR(obj)) | 
 | 		return obj; | 
 |  | 
 | 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); | 
 |  | 
 | 	file = obj->base.filp; | 
 | 	offset = 0; | 
 | 	do { | 
 | 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE); | 
 | 		struct page *page; | 
 | 		void *pgdata, *vaddr; | 
 |  | 
 | 		err = pagecache_write_begin(file, file->f_mapping, | 
 | 					    offset, len, 0, | 
 | 					    &page, &pgdata); | 
 | 		if (err < 0) | 
 | 			goto fail; | 
 |  | 
 | 		vaddr = kmap(page); | 
 | 		memcpy(vaddr, data, len); | 
 | 		kunmap(page); | 
 |  | 
 | 		err = pagecache_write_end(file, file->f_mapping, | 
 | 					  offset, len, len, | 
 | 					  page, pgdata); | 
 | 		if (err < 0) | 
 | 			goto fail; | 
 |  | 
 | 		size -= len; | 
 | 		data += len; | 
 | 		offset += len; | 
 | 	} while (size); | 
 |  | 
 | 	return obj; | 
 |  | 
 | fail: | 
 | 	i915_gem_object_put(obj); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | struct scatterlist * | 
 | i915_gem_object_get_sg(struct drm_i915_gem_object *obj, | 
 | 		       unsigned int n, | 
 | 		       unsigned int *offset) | 
 | { | 
 | 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page; | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int idx, count; | 
 |  | 
 | 	might_sleep(); | 
 | 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); | 
 | 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); | 
 |  | 
 | 	/* As we iterate forward through the sg, we record each entry in a | 
 | 	 * radixtree for quick repeated (backwards) lookups. If we have seen | 
 | 	 * this index previously, we will have an entry for it. | 
 | 	 * | 
 | 	 * Initial lookup is O(N), but this is amortized to O(1) for | 
 | 	 * sequential page access (where each new request is consecutive | 
 | 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)), | 
 | 	 * i.e. O(1) with a large constant! | 
 | 	 */ | 
 | 	if (n < READ_ONCE(iter->sg_idx)) | 
 | 		goto lookup; | 
 |  | 
 | 	mutex_lock(&iter->lock); | 
 |  | 
 | 	/* We prefer to reuse the last sg so that repeated lookup of this | 
 | 	 * (or the subsequent) sg are fast - comparing against the last | 
 | 	 * sg is faster than going through the radixtree. | 
 | 	 */ | 
 |  | 
 | 	sg = iter->sg_pos; | 
 | 	idx = iter->sg_idx; | 
 | 	count = __sg_page_count(sg); | 
 |  | 
 | 	while (idx + count <= n) { | 
 | 		unsigned long exception, i; | 
 | 		int ret; | 
 |  | 
 | 		/* If we cannot allocate and insert this entry, or the | 
 | 		 * individual pages from this range, cancel updating the | 
 | 		 * sg_idx so that on this lookup we are forced to linearly | 
 | 		 * scan onwards, but on future lookups we will try the | 
 | 		 * insertion again (in which case we need to be careful of | 
 | 		 * the error return reporting that we have already inserted | 
 | 		 * this index). | 
 | 		 */ | 
 | 		ret = radix_tree_insert(&iter->radix, idx, sg); | 
 | 		if (ret && ret != -EEXIST) | 
 | 			goto scan; | 
 |  | 
 | 		exception = | 
 | 			RADIX_TREE_EXCEPTIONAL_ENTRY | | 
 | 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT; | 
 | 		for (i = 1; i < count; i++) { | 
 | 			ret = radix_tree_insert(&iter->radix, idx + i, | 
 | 						(void *)exception); | 
 | 			if (ret && ret != -EEXIST) | 
 | 				goto scan; | 
 | 		} | 
 |  | 
 | 		idx += count; | 
 | 		sg = ____sg_next(sg); | 
 | 		count = __sg_page_count(sg); | 
 | 	} | 
 |  | 
 | scan: | 
 | 	iter->sg_pos = sg; | 
 | 	iter->sg_idx = idx; | 
 |  | 
 | 	mutex_unlock(&iter->lock); | 
 |  | 
 | 	if (unlikely(n < idx)) /* insertion completed by another thread */ | 
 | 		goto lookup; | 
 |  | 
 | 	/* In case we failed to insert the entry into the radixtree, we need | 
 | 	 * to look beyond the current sg. | 
 | 	 */ | 
 | 	while (idx + count <= n) { | 
 | 		idx += count; | 
 | 		sg = ____sg_next(sg); | 
 | 		count = __sg_page_count(sg); | 
 | 	} | 
 |  | 
 | 	*offset = n - idx; | 
 | 	return sg; | 
 |  | 
 | lookup: | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	sg = radix_tree_lookup(&iter->radix, n); | 
 | 	GEM_BUG_ON(!sg); | 
 |  | 
 | 	/* If this index is in the middle of multi-page sg entry, | 
 | 	 * the radixtree will contain an exceptional entry that points | 
 | 	 * to the start of that range. We will return the pointer to | 
 | 	 * the base page and the offset of this page within the | 
 | 	 * sg entry's range. | 
 | 	 */ | 
 | 	*offset = 0; | 
 | 	if (unlikely(radix_tree_exception(sg))) { | 
 | 		unsigned long base = | 
 | 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; | 
 |  | 
 | 		sg = radix_tree_lookup(&iter->radix, base); | 
 | 		GEM_BUG_ON(!sg); | 
 |  | 
 | 		*offset = n - base; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return sg; | 
 | } | 
 |  | 
 | struct page * | 
 | i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int offset; | 
 |  | 
 | 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); | 
 |  | 
 | 	sg = i915_gem_object_get_sg(obj, n, &offset); | 
 | 	return nth_page(sg_page(sg), offset); | 
 | } | 
 |  | 
 | /* Like i915_gem_object_get_page(), but mark the returned page dirty */ | 
 | struct page * | 
 | i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, | 
 | 			       unsigned int n) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = i915_gem_object_get_page(obj, n); | 
 | 	if (!obj->mm.dirty) | 
 | 		set_page_dirty(page); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | dma_addr_t | 
 | i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, | 
 | 				unsigned long n) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int offset; | 
 |  | 
 | 	sg = i915_gem_object_get_sg(obj, n, &offset); | 
 | 	return sg_dma_address(sg) + (offset << PAGE_SHIFT); | 
 | } | 
 |  | 
 | int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) | 
 | { | 
 | 	struct sg_table *pages; | 
 | 	int err; | 
 |  | 
 | 	if (align > obj->base.size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (obj->ops == &i915_gem_phys_ops) | 
 | 		return 0; | 
 |  | 
 | 	if (obj->ops != &i915_gem_object_ops) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = i915_gem_object_unbind(obj); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	mutex_lock(&obj->mm.lock); | 
 |  | 
 | 	if (obj->mm.madv != I915_MADV_WILLNEED) { | 
 | 		err = -EFAULT; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	if (obj->mm.quirked) { | 
 | 		err = -EFAULT; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	if (obj->mm.mapping) { | 
 | 		err = -EBUSY; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	pages = fetch_and_zero(&obj->mm.pages); | 
 | 	if (pages) { | 
 | 		struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 |  | 
 | 		__i915_gem_object_reset_page_iter(obj); | 
 |  | 
 | 		spin_lock(&i915->mm.obj_lock); | 
 | 		list_del(&obj->mm.link); | 
 | 		spin_unlock(&i915->mm.obj_lock); | 
 | 	} | 
 |  | 
 | 	obj->ops = &i915_gem_phys_ops; | 
 |  | 
 | 	err = ____i915_gem_object_get_pages(obj); | 
 | 	if (err) | 
 | 		goto err_xfer; | 
 |  | 
 | 	/* Perma-pin (until release) the physical set of pages */ | 
 | 	__i915_gem_object_pin_pages(obj); | 
 |  | 
 | 	if (!IS_ERR_OR_NULL(pages)) | 
 | 		i915_gem_object_ops.put_pages(obj, pages); | 
 | 	mutex_unlock(&obj->mm.lock); | 
 | 	return 0; | 
 |  | 
 | err_xfer: | 
 | 	obj->ops = &i915_gem_object_ops; | 
 | 	obj->mm.pages = pages; | 
 | err_unlock: | 
 | 	mutex_unlock(&obj->mm.lock); | 
 | 	return err; | 
 | } | 
 |  | 
 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) | 
 | #include "selftests/scatterlist.c" | 
 | #include "selftests/mock_gem_device.c" | 
 | #include "selftests/huge_gem_object.c" | 
 | #include "selftests/huge_pages.c" | 
 | #include "selftests/i915_gem_object.c" | 
 | #include "selftests/i915_gem_coherency.c" | 
 | #endif |