blob: 2b963a81c2ada5471bd083a4b5c35d891b36158c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Amlogic SD/eMMC driver for the GX/S905 family SoCs
*
* Copyright (c) 2016 BayLibre, SAS.
* Author: Kevin Hilman <khilman@baylibre.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/interrupt.h>
#include <linux/bitfield.h>
#include <linux/pinctrl/consumer.h>
#define DRIVER_NAME "meson-gx-mmc"
#define SD_EMMC_CLOCK 0x0
#define CLK_DIV_MASK GENMASK(5, 0)
#define CLK_SRC_MASK GENMASK(7, 6)
#define CLK_CORE_PHASE_MASK GENMASK(9, 8)
#define CLK_TX_PHASE_MASK GENMASK(11, 10)
#define CLK_RX_PHASE_MASK GENMASK(13, 12)
#define CLK_PHASE_0 0
#define CLK_PHASE_180 2
#define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
#define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
#define CLK_V2_ALWAYS_ON BIT(24)
#define CLK_V2_IRQ_SDIO_SLEEP BIT(25)
#define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
#define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
#define CLK_V3_ALWAYS_ON BIT(28)
#define CLK_V3_IRQ_SDIO_SLEEP BIT(29)
#define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
#define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
#define CLK_ALWAYS_ON(h) (h->data->always_on)
#define CLK_IRQ_SDIO_SLEEP(h) (h->data->irq_sdio_sleep)
#define SD_EMMC_DELAY 0x4
#define SD_EMMC_ADJUST 0x8
#define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
#define ADJUST_DS_EN BIT(15)
#define ADJUST_ADJ_EN BIT(13)
#define SD_EMMC_DELAY1 0x4
#define SD_EMMC_DELAY2 0x8
#define SD_EMMC_V3_ADJUST 0xc
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define START_DESC_INIT BIT(0)
#define START_DESC_BUSY BIT(1)
#define START_DESC_ADDR_MASK GENMASK(31, 2)
#define SD_EMMC_CFG 0x44
#define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
#define CFG_BUS_WIDTH_1 0x0
#define CFG_BUS_WIDTH_4 0x1
#define CFG_BUS_WIDTH_8 0x2
#define CFG_DDR BIT(2)
#define CFG_BLK_LEN_MASK GENMASK(7, 4)
#define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define CFG_RC_CC_MASK GENMASK(15, 12)
#define CFG_STOP_CLOCK BIT(22)
#define CFG_CLK_ALWAYS_ON BIT(18)
#define CFG_CHK_DS BIT(20)
#define CFG_AUTO_CLK BIT(23)
#define CFG_ERR_ABORT BIT(27)
#define SD_EMMC_STATUS 0x48
#define STATUS_BUSY BIT(31)
#define STATUS_DESC_BUSY BIT(30)
#define STATUS_DATI GENMASK(23, 16)
#define SD_EMMC_IRQ_EN 0x4c
#define IRQ_RXD_ERR_MASK GENMASK(7, 0)
#define IRQ_TXD_ERR BIT(8)
#define IRQ_DESC_ERR BIT(9)
#define IRQ_RESP_ERR BIT(10)
#define IRQ_CRC_ERR \
(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
#define IRQ_RESP_TIMEOUT BIT(11)
#define IRQ_DESC_TIMEOUT BIT(12)
#define IRQ_TIMEOUTS \
(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
#define IRQ_END_OF_CHAIN BIT(13)
#define IRQ_RESP_STATUS BIT(14)
#define IRQ_SDIO BIT(15)
#define IRQ_EN_MASK \
(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN)
#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68
#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD
#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
#define SD_EMMC_PRE_REQ_DONE BIT(0)
#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
#define MUX_CLK_NUM_PARENTS 2
struct meson_mmc_data {
unsigned int tx_delay_mask;
unsigned int rx_delay_mask;
unsigned int always_on;
unsigned int adjust;
unsigned int irq_sdio_sleep;
};
struct sd_emmc_desc {
u32 cmd_cfg;
u32 cmd_arg;
u32 cmd_data;
u32 cmd_resp;
};
struct meson_host {
struct device *dev;
const struct meson_mmc_data *data;
struct mmc_host *mmc;
struct mmc_command *cmd;
void __iomem *regs;
struct clk *mux_clk;
struct clk *mmc_clk;
unsigned long req_rate;
bool ddr;
bool dram_access_quirk;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_clk_gate;
unsigned int bounce_buf_size;
void *bounce_buf;
void __iomem *bounce_iomem_buf;
dma_addr_t bounce_dma_addr;
struct sd_emmc_desc *descs;
dma_addr_t descs_dma_addr;
int irq;
bool vqmmc_enabled;
bool needs_pre_post_req;
spinlock_t lock;
};
#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)
#define CMD_DATA_MASK GENMASK(31, 2)
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
#define CMD_RESP_MASK GENMASK(31, 1)
#define CMD_RESP_SRAM BIT(0)
static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
{
unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
if (!timeout)
return SD_EMMC_CMD_TIMEOUT_DATA;
timeout = roundup_pow_of_two(timeout);
return min(timeout, 32768U); /* max. 2^15 ms */
}
static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
{
if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
return cmd->mrq->cmd;
else if (mmc_op_multi(cmd->opcode) &&
(!cmd->mrq->sbc || cmd->error || cmd->data->error))
return cmd->mrq->stop;
else
return NULL;
}
static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
struct scatterlist *sg;
int i;
/*
* When Controller DMA cannot directly access DDR memory, disable
* support for Chain Mode to directly use the internal SRAM using
* the bounce buffer mode.
*/
if (host->dram_access_quirk)
return;
/* SD_IO_RW_EXTENDED (CMD53) can also use block mode under the hood */
if (data->blocks > 1 || mrq->cmd->opcode == SD_IO_RW_EXTENDED) {
/*
* In block mode DMA descriptor format, "length" field indicates
* number of blocks and there is no way to pass DMA size that
* is not multiple of SDIO block size, making it impossible to
* tie more than one memory buffer with single SDIO block.
* Block mode sg buffer size should be aligned with SDIO block
* size, otherwise chain mode could not be used.
*/
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length % data->blksz) {
dev_warn_once(mmc_dev(mmc),
"unaligned sg len %u blksize %u, disabling descriptor DMA for transfer\n",
sg->length, data->blksz);
return;
}
}
}
for_each_sg(data->sg, sg, data->sg_len, i) {
/* check for 8 byte alignment */
if (sg->offset % 8) {
dev_warn_once(mmc_dev(mmc),
"unaligned sg offset %u, disabling descriptor DMA for transfer\n",
sg->offset);
return;
}
}
data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
}
static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
{
return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
}
static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
{
return data && data->flags & MMC_DATA_READ &&
!meson_mmc_desc_chain_mode(data);
}
static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
if (!data)
return;
meson_mmc_get_transfer_mode(mmc, mrq);
data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
if (!meson_mmc_desc_chain_mode(data))
return;
data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (!data->sg_count)
dev_err(mmc_dev(mmc), "dma_map_sg failed");
}
static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct mmc_data *data = mrq->data;
if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
/*
* Gating the clock on this controller is tricky. It seems the mmc clock
* is also used by the controller. It may crash during some operation if the
* clock is stopped. The safest thing to do, whenever possible, is to keep
* clock running at stop it at the pad using the pinmux.
*/
static void meson_mmc_clk_gate(struct meson_host *host)
{
u32 cfg;
if (host->pins_clk_gate) {
pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
} else {
/*
* If the pinmux is not provided - default to the classic and
* unsafe method
*/
cfg = readl(host->regs + SD_EMMC_CFG);
cfg |= CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
}
}
static void meson_mmc_clk_ungate(struct meson_host *host)
{
u32 cfg;
if (host->pins_clk_gate)
pinctrl_select_default_state(host->dev);
/* Make sure the clock is not stopped in the controller */
cfg = readl(host->regs + SD_EMMC_CFG);
cfg &= ~CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
}
static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
bool ddr)
{
struct mmc_host *mmc = host->mmc;
int ret;
u32 cfg;
/* Same request - bail-out */
if (host->ddr == ddr && host->req_rate == rate)
return 0;
/* stop clock */
meson_mmc_clk_gate(host);
host->req_rate = 0;
mmc->actual_clock = 0;
/* return with clock being stopped */
if (!rate)
return 0;
/* Stop the clock during rate change to avoid glitches */
cfg = readl(host->regs + SD_EMMC_CFG);
cfg |= CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
if (ddr) {
/* DDR modes require higher module clock */
rate <<= 1;
cfg |= CFG_DDR;
} else {
cfg &= ~CFG_DDR;
}
writel(cfg, host->regs + SD_EMMC_CFG);
host->ddr = ddr;
ret = clk_set_rate(host->mmc_clk, rate);
if (ret) {
dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
rate, ret);
return ret;
}
host->req_rate = rate;
mmc->actual_clock = clk_get_rate(host->mmc_clk);
/* We should report the real output frequency of the controller */
if (ddr) {
host->req_rate >>= 1;
mmc->actual_clock >>= 1;
}
dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
if (rate != mmc->actual_clock)
dev_dbg(host->dev, "requested rate was %lu\n", rate);
/* (re)start clock */
meson_mmc_clk_ungate(host);
return 0;
}
/*
* The SD/eMMC IP block has an internal mux and divider used for
* generating the MMC clock. Use the clock framework to create and
* manage these clocks.
*/
static int meson_mmc_clk_init(struct meson_host *host)
{
struct clk_init_data init;
struct clk_mux *mux;
struct clk_divider *div;
char clk_name[32];
int i, ret = 0;
const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
const char *clk_parent[1];
u32 clk_reg;
/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
clk_reg = CLK_ALWAYS_ON(host);
clk_reg |= CLK_DIV_MASK;
clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
clk_reg |= CLK_IRQ_SDIO_SLEEP(host);
writel(clk_reg, host->regs + SD_EMMC_CLOCK);
/* get the mux parents */
for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
struct clk *clk;
char name[16];
snprintf(name, sizeof(name), "clkin%d", i);
clk = devm_clk_get(host->dev, name);
if (IS_ERR(clk))
return dev_err_probe(host->dev, PTR_ERR(clk),
"Missing clock %s\n", name);
mux_parent_names[i] = __clk_get_name(clk);
}
/* create the mux */
mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
if (!mux)
return -ENOMEM;
snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
init.name = clk_name;
init.ops = &clk_mux_ops;
init.flags = 0;
init.parent_names = mux_parent_names;
init.num_parents = MUX_CLK_NUM_PARENTS;
mux->reg = host->regs + SD_EMMC_CLOCK;
mux->shift = __ffs(CLK_SRC_MASK);
mux->mask = CLK_SRC_MASK >> mux->shift;
mux->hw.init = &init;
host->mux_clk = devm_clk_register(host->dev, &mux->hw);
if (WARN_ON(IS_ERR(host->mux_clk)))
return PTR_ERR(host->mux_clk);
/* create the divider */
div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
if (!div)
return -ENOMEM;
snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
init.name = clk_name;
init.ops = &clk_divider_ops;
init.flags = CLK_SET_RATE_PARENT;
clk_parent[0] = __clk_get_name(host->mux_clk);
init.parent_names = clk_parent;
init.num_parents = 1;
div->reg = host->regs + SD_EMMC_CLOCK;
div->shift = __ffs(CLK_DIV_MASK);
div->width = __builtin_popcountl(CLK_DIV_MASK);
div->hw.init = &init;
div->flags = CLK_DIVIDER_ONE_BASED;
host->mmc_clk = devm_clk_register(host->dev, &div->hw);
if (WARN_ON(IS_ERR(host->mmc_clk)))
return PTR_ERR(host->mmc_clk);
/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
if (ret)
return ret;
return clk_prepare_enable(host->mmc_clk);
}
static void meson_mmc_disable_resampling(struct meson_host *host)
{
unsigned int val = readl(host->regs + host->data->adjust);
val &= ~ADJUST_ADJ_EN;
writel(val, host->regs + host->data->adjust);
}
static void meson_mmc_reset_resampling(struct meson_host *host)
{
unsigned int val;
meson_mmc_disable_resampling(host);
val = readl(host->regs + host->data->adjust);
val &= ~ADJUST_ADJ_DELAY_MASK;
writel(val, host->regs + host->data->adjust);
}
static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
{
struct meson_host *host = mmc_priv(mmc);
unsigned int val, dly, max_dly, i;
int ret;
/* Resampling is done using the source clock */
max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
clk_get_rate(host->mmc_clk));
val = readl(host->regs + host->data->adjust);
val |= ADJUST_ADJ_EN;
writel(val, host->regs + host->data->adjust);
if (mmc_doing_retune(mmc))
dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
else
dly = 0;
for (i = 0; i < max_dly; i++) {
val &= ~ADJUST_ADJ_DELAY_MASK;
val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
writel(val, host->regs + host->data->adjust);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret) {
dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
(dly + i) % max_dly);
return 0;
}
}
meson_mmc_reset_resampling(host);
return -EIO;
}
static int meson_mmc_prepare_ios_clock(struct meson_host *host,
struct mmc_ios *ios)
{
bool ddr;
switch (ios->timing) {
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
ddr = true;
break;
default:
ddr = false;
break;
}
return meson_mmc_clk_set(host, ios->clock, ddr);
}
static void meson_mmc_check_resampling(struct meson_host *host,
struct mmc_ios *ios)
{
switch (ios->timing) {
case MMC_TIMING_LEGACY:
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_MMC_DDR52:
meson_mmc_disable_resampling(host);
break;
}
}
static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct meson_host *host = mmc_priv(mmc);
u32 bus_width, val;
int err;
/*
* GPIO regulator, only controls switching between 1v8 and
* 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
*/
switch (ios->power_mode) {
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
}
break;
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
break;
case MMC_POWER_ON:
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
int ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(host->dev,
"failed to enable vqmmc regulator\n");
else
host->vqmmc_enabled = true;
}
break;
}
/* Bus width */
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
bus_width = CFG_BUS_WIDTH_1;
break;
case MMC_BUS_WIDTH_4:
bus_width = CFG_BUS_WIDTH_4;
break;
case MMC_BUS_WIDTH_8:
bus_width = CFG_BUS_WIDTH_8;
break;
default:
dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
ios->bus_width);
bus_width = CFG_BUS_WIDTH_4;
}
val = readl(host->regs + SD_EMMC_CFG);
val &= ~CFG_BUS_WIDTH_MASK;
val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
writel(val, host->regs + SD_EMMC_CFG);
meson_mmc_check_resampling(host, ios);
err = meson_mmc_prepare_ios_clock(host, ios);
if (err)
dev_err(host->dev, "Failed to set clock: %d\n,", err);
dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
}
static void meson_mmc_request_done(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
host->cmd = NULL;
if (host->needs_pre_post_req)
meson_mmc_post_req(mmc, mrq, 0);
mmc_request_done(host->mmc, mrq);
}
static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
{
struct meson_host *host = mmc_priv(mmc);
u32 cfg, blksz_old;
cfg = readl(host->regs + SD_EMMC_CFG);
blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
if (!is_power_of_2(blksz))
dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
blksz = ilog2(blksz);
/* check if block-size matches, if not update */
if (blksz == blksz_old)
return;
dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
blksz_old, blksz);
cfg &= ~CFG_BLK_LEN_MASK;
cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
writel(cfg, host->regs + SD_EMMC_CFG);
}
static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
{
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
*cmd_cfg |= CMD_CFG_RESP_128;
*cmd_cfg |= CMD_CFG_RESP_NUM;
if (!(cmd->flags & MMC_RSP_CRC))
*cmd_cfg |= CMD_CFG_RESP_NOCRC;
if (cmd->flags & MMC_RSP_BUSY)
*cmd_cfg |= CMD_CFG_R1B;
} else {
*cmd_cfg |= CMD_CFG_NO_RESP;
}
}
static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
{
struct meson_host *host = mmc_priv(mmc);
struct sd_emmc_desc *desc = host->descs;
struct mmc_data *data = host->cmd->data;
struct scatterlist *sg;
u32 start;
int i;
if (data->flags & MMC_DATA_WRITE)
cmd_cfg |= CMD_CFG_DATA_WR;
if (data->blocks > 1) {
cmd_cfg |= CMD_CFG_BLOCK_MODE;
meson_mmc_set_blksz(mmc, data->blksz);
}
for_each_sg(data->sg, sg, data->sg_count, i) {
unsigned int len = sg_dma_len(sg);
if (data->blocks > 1)
len /= data->blksz;
desc[i].cmd_cfg = cmd_cfg;
desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
if (i > 0)
desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
desc[i].cmd_arg = host->cmd->arg;
desc[i].cmd_resp = 0;
desc[i].cmd_data = sg_dma_address(sg);
}
desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
dma_wmb(); /* ensure descriptor is written before kicked */
start = host->descs_dma_addr | START_DESC_BUSY;
writel(start, host->regs + SD_EMMC_START);
}
/* local sg copy for dram_access_quirk */
static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data,
size_t buflen, bool to_buffer)
{
unsigned int sg_flags = SG_MITER_ATOMIC;
struct scatterlist *sgl = data->sg;
unsigned int nents = data->sg_len;
struct sg_mapping_iter miter;
unsigned int offset = 0;
if (to_buffer)
sg_flags |= SG_MITER_FROM_SG;
else
sg_flags |= SG_MITER_TO_SG;
sg_miter_start(&miter, sgl, nents, sg_flags);
while ((offset < buflen) && sg_miter_next(&miter)) {
unsigned int buf_offset = 0;
unsigned int len, left;
u32 *buf = miter.addr;
len = min(miter.length, buflen - offset);
left = len;
if (to_buffer) {
do {
writel(*buf++, host->bounce_iomem_buf + offset + buf_offset);
buf_offset += 4;
left -= 4;
} while (left);
} else {
do {
*buf++ = readl(host->bounce_iomem_buf + offset + buf_offset);
buf_offset += 4;
left -= 4;
} while (left);
}
offset += len;
}
sg_miter_stop(&miter);
}
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct meson_host *host = mmc_priv(mmc);
struct mmc_data *data = cmd->data;
u32 cmd_cfg = 0, cmd_data = 0;
unsigned int xfer_bytes = 0;
/* Setup descriptors */
dma_rmb();
host->cmd = cmd;
cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
meson_mmc_set_response_bits(cmd, &cmd_cfg);
/* data? */
if (data) {
data->bytes_xfered = 0;
cmd_cfg |= CMD_CFG_DATA_IO;
cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
ilog2(meson_mmc_get_timeout_msecs(data)));
if (meson_mmc_desc_chain_mode(data)) {
meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
return;
}
if (data->blocks > 1) {
cmd_cfg |= CMD_CFG_BLOCK_MODE;
cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
data->blocks);
meson_mmc_set_blksz(mmc, data->blksz);
} else {
cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
}
xfer_bytes = data->blksz * data->blocks;
if (data->flags & MMC_DATA_WRITE) {
cmd_cfg |= CMD_CFG_DATA_WR;
WARN_ON(xfer_bytes > host->bounce_buf_size);
if (host->dram_access_quirk)
meson_mmc_copy_buffer(host, data, xfer_bytes, true);
else
sg_copy_to_buffer(data->sg, data->sg_len,
host->bounce_buf, xfer_bytes);
dma_wmb();
}
cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
} else {
cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
ilog2(SD_EMMC_CMD_TIMEOUT));
}
/* Last descriptor */
cmd_cfg |= CMD_CFG_END_OF_CHAIN;
writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
writel(0, host->regs + SD_EMMC_CMD_RSP);
wmb(); /* ensure descriptor is written before kicked */
writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
}
static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data)
{
struct scatterlist *sg;
int i;
/* Reject request if any element offset or size is not 32bit aligned */
for_each_sg(data->sg, sg, data->sg_len, i) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
!IS_ALIGNED(sg->length, sizeof(u32))) {
dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n",
data->sg->offset, data->sg->length);
return -EINVAL;
}
}
return 0;
}
static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
host->needs_pre_post_req = mrq->data &&
!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
/*
* The memory at the end of the controller used as bounce buffer for
* the dram_access_quirk only accepts 32bit read/write access,
* check the aligment and length of the data before starting the request.
*/
if (host->dram_access_quirk && mrq->data) {
mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data);
if (mrq->cmd->error) {
mmc_request_done(mmc, mrq);
return;
}
}
if (host->needs_pre_post_req) {
meson_mmc_get_transfer_mode(mmc, mrq);
if (!meson_mmc_desc_chain_mode(mrq->data))
host->needs_pre_post_req = false;
}
if (host->needs_pre_post_req)
meson_mmc_pre_req(mmc, mrq);
/* Stop execution */
writel(0, host->regs + SD_EMMC_START);
meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
}
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct meson_host *host = mmc_priv(mmc);
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
} else if (cmd->flags & MMC_RSP_PRESENT) {
cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
}
}
static void __meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct meson_host *host = mmc_priv(mmc);
u32 reg_irqen = IRQ_EN_MASK;
if (enable)
reg_irqen |= IRQ_SDIO;
writel(reg_irqen, host->regs + SD_EMMC_IRQ_EN);
}
static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
struct meson_host *host = dev_id;
struct mmc_command *cmd;
u32 status, raw_status, irq_mask = IRQ_EN_MASK;
irqreturn_t ret = IRQ_NONE;
if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
irq_mask |= IRQ_SDIO;
raw_status = readl(host->regs + SD_EMMC_STATUS);
status = raw_status & irq_mask;
if (!status) {
dev_dbg(host->dev,
"Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
irq_mask, raw_status);
return IRQ_NONE;
}
if (WARN_ON(!host))
return IRQ_NONE;
/* ack all raised interrupts */
writel(status, host->regs + SD_EMMC_STATUS);
cmd = host->cmd;
if (status & IRQ_SDIO) {
spin_lock(&host->lock);
__meson_mmc_enable_sdio_irq(host->mmc, 0);
sdio_signal_irq(host->mmc);
spin_unlock(&host->lock);
status &= ~IRQ_SDIO;
if (!status)
return IRQ_HANDLED;
}
if (WARN_ON(!cmd))
return IRQ_NONE;
cmd->error = 0;
if (status & IRQ_CRC_ERR) {
dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
cmd->error = -EILSEQ;
ret = IRQ_WAKE_THREAD;
goto out;
}
if (status & IRQ_TIMEOUTS) {
dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
cmd->error = -ETIMEDOUT;
ret = IRQ_WAKE_THREAD;
goto out;
}
meson_mmc_read_resp(host->mmc, cmd);
if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
struct mmc_data *data = cmd->data;
if (data && !cmd->error)
data->bytes_xfered = data->blksz * data->blocks;
if (meson_mmc_bounce_buf_read(data) ||
meson_mmc_get_next_command(cmd))
ret = IRQ_WAKE_THREAD;
else
ret = IRQ_HANDLED;
}
out:
if (cmd->error) {
/* Stop desc in case of errors */
u32 start = readl(host->regs + SD_EMMC_START);
start &= ~START_DESC_BUSY;
writel(start, host->regs + SD_EMMC_START);
}
if (ret == IRQ_HANDLED)
meson_mmc_request_done(host->mmc, cmd->mrq);
return ret;
}
static int meson_mmc_wait_desc_stop(struct meson_host *host)
{
u32 status;
/*
* It may sometimes take a while for it to actually halt. Here, we
* are giving it 5ms to comply
*
* If we don't confirm the descriptor is stopped, it might raise new
* IRQs after we have called mmc_request_done() which is bad.
*/
return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
!(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
100, 5000);
}
static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
struct meson_host *host = dev_id;
struct mmc_command *next_cmd, *cmd = host->cmd;
struct mmc_data *data;
unsigned int xfer_bytes;
if (WARN_ON(!cmd))
return IRQ_NONE;
if (cmd->error) {
meson_mmc_wait_desc_stop(host);
meson_mmc_request_done(host->mmc, cmd->mrq);
return IRQ_HANDLED;
}
data = cmd->data;
if (meson_mmc_bounce_buf_read(data)) {
xfer_bytes = data->blksz * data->blocks;
WARN_ON(xfer_bytes > host->bounce_buf_size);
if (host->dram_access_quirk)
meson_mmc_copy_buffer(host, data, xfer_bytes, false);
else
sg_copy_from_buffer(data->sg, data->sg_len,
host->bounce_buf, xfer_bytes);
}
next_cmd = meson_mmc_get_next_command(cmd);
if (next_cmd)
meson_mmc_start_cmd(host->mmc, next_cmd);
else
meson_mmc_request_done(host->mmc, cmd->mrq);
return IRQ_HANDLED;
}
static void meson_mmc_cfg_init(struct meson_host *host)
{
u32 cfg = 0;
cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
/* abort chain on R/W errors */
cfg |= CFG_ERR_ABORT;
writel(cfg, host->regs + SD_EMMC_CFG);
}
static int meson_mmc_card_busy(struct mmc_host *mmc)
{
struct meson_host *host = mmc_priv(mmc);
u32 regval;
regval = readl(host->regs + SD_EMMC_STATUS);
/* We are only interrested in lines 0 to 3, so mask the other ones */
return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
}
static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
int ret;
/* vqmmc regulator is available */
if (!IS_ERR(mmc->supply.vqmmc)) {
/*
* The usual amlogic setup uses a GPIO to switch from one
* regulator to the other. While the voltage ramp up is
* pretty fast, care must be taken when switching from 3.3v
* to 1.8v. Please make sure the regulator framework is aware
* of your own regulator constraints
*/
ret = mmc_regulator_set_vqmmc(mmc, ios);
return ret < 0 ? ret : 0;
}
/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return 0;
return -EINVAL;
}
static void meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct meson_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
__meson_mmc_enable_sdio_irq(mmc, enable);
spin_unlock_irqrestore(&host->lock, flags);
}
static void meson_mmc_ack_sdio_irq(struct mmc_host *mmc)
{
meson_mmc_enable_sdio_irq(mmc, 1);
}
static const struct mmc_host_ops meson_mmc_ops = {
.request = meson_mmc_request,
.set_ios = meson_mmc_set_ios,
.get_cd = mmc_gpio_get_cd,
.pre_req = meson_mmc_pre_req,
.post_req = meson_mmc_post_req,
.execute_tuning = meson_mmc_resampling_tuning,
.card_busy = meson_mmc_card_busy,
.start_signal_voltage_switch = meson_mmc_voltage_switch,
.enable_sdio_irq = meson_mmc_enable_sdio_irq,
.ack_sdio_irq = meson_mmc_ack_sdio_irq,
};
static int meson_mmc_probe(struct platform_device *pdev)
{
struct resource *res;
struct meson_host *host;
struct mmc_host *mmc;
struct clk *core_clk;
int cd_irq, ret;
mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct meson_host));
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, host);
/* The G12A SDIO Controller needs an SRAM bounce buffer */
host->dram_access_quirk = device_property_read_bool(&pdev->dev,
"amlogic,dram-access-quirk");
/* Get regulators and the supported OCR mask */
host->vqmmc_enabled = false;
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
ret = mmc_of_parse(mmc);
if (ret)
return dev_err_probe(&pdev->dev, ret, "error parsing DT\n");
mmc->caps |= MMC_CAP_CMD23;
if (mmc->caps & MMC_CAP_SDIO_IRQ)
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
host->data = of_device_get_match_data(&pdev->dev);
if (!host->data)
return -EINVAL;
ret = device_reset_optional(&pdev->dev);
if (ret)
return dev_err_probe(&pdev->dev, ret, "device reset failed\n");
host->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(host->regs))
return PTR_ERR(host->regs);
host->irq = platform_get_irq(pdev, 0);
if (host->irq <= 0)
return -EINVAL;
cd_irq = platform_get_irq_optional(pdev, 1);
mmc_gpio_set_cd_irq(mmc, cd_irq);
host->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(host->pinctrl))
return PTR_ERR(host->pinctrl);
host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
"clk-gate");
if (IS_ERR(host->pins_clk_gate)) {
dev_warn(&pdev->dev,
"can't get clk-gate pinctrl, using clk_stop bit\n");
host->pins_clk_gate = NULL;
}
core_clk = devm_clk_get_enabled(&pdev->dev, "core");
if (IS_ERR(core_clk))
return PTR_ERR(core_clk);
ret = meson_mmc_clk_init(host);
if (ret)
return ret;
/* set config to sane default */
meson_mmc_cfg_init(host);
/* Stop execution */
writel(0, host->regs + SD_EMMC_START);
/* clear, ack and enable interrupts */
writel(0, host->regs + SD_EMMC_IRQ_EN);
writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
ret = request_threaded_irq(host->irq, meson_mmc_irq,
meson_mmc_irq_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), host);
if (ret)
goto err_init_clk;
spin_lock_init(&host->lock);
if (host->dram_access_quirk) {
/* Limit segments to 1 due to low available sram memory */
mmc->max_segs = 1;
/* Limit to the available sram memory */
mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
mmc->max_blk_size;
} else {
mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
sizeof(struct sd_emmc_desc);
}
mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
mmc->max_seg_size = mmc->max_req_size;
/*
* At the moment, we don't know how to reliably enable HS400.
* From the different datasheets, it is not even clear if this mode
* is officially supported by any of the SoCs
*/
mmc->caps2 &= ~MMC_CAP2_HS400;
if (host->dram_access_quirk) {
/*
* The MMC Controller embeds 1,5KiB of internal SRAM
* that can be used to be used as bounce buffer.
* In the case of the G12A SDIO controller, use these
* instead of the DDR memory
*/
host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
} else {
/* data bounce buffer */
host->bounce_buf_size = mmc->max_req_size;
host->bounce_buf =
dmam_alloc_coherent(host->dev, host->bounce_buf_size,
&host->bounce_dma_addr, GFP_KERNEL);
if (host->bounce_buf == NULL) {
dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
ret = -ENOMEM;
goto err_free_irq;
}
}
host->descs = dmam_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
&host->descs_dma_addr, GFP_KERNEL);
if (!host->descs) {
dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
ret = -ENOMEM;
goto err_free_irq;
}
mmc->ops = &meson_mmc_ops;
ret = mmc_add_host(mmc);
if (ret)
goto err_free_irq;
return 0;
err_free_irq:
free_irq(host->irq, host);
err_init_clk:
clk_disable_unprepare(host->mmc_clk);
return ret;
}
static int meson_mmc_remove(struct platform_device *pdev)
{
struct meson_host *host = dev_get_drvdata(&pdev->dev);
mmc_remove_host(host->mmc);
/* disable interrupts */
writel(0, host->regs + SD_EMMC_IRQ_EN);
free_irq(host->irq, host);
clk_disable_unprepare(host->mmc_clk);
return 0;
}
static const struct meson_mmc_data meson_gx_data = {
.tx_delay_mask = CLK_V2_TX_DELAY_MASK,
.rx_delay_mask = CLK_V2_RX_DELAY_MASK,
.always_on = CLK_V2_ALWAYS_ON,
.adjust = SD_EMMC_ADJUST,
.irq_sdio_sleep = CLK_V2_IRQ_SDIO_SLEEP,
};
static const struct meson_mmc_data meson_axg_data = {
.tx_delay_mask = CLK_V3_TX_DELAY_MASK,
.rx_delay_mask = CLK_V3_RX_DELAY_MASK,
.always_on = CLK_V3_ALWAYS_ON,
.adjust = SD_EMMC_V3_ADJUST,
.irq_sdio_sleep = CLK_V3_IRQ_SDIO_SLEEP,
};
static const struct of_device_id meson_mmc_of_match[] = {
{ .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
static struct platform_driver meson_mmc_driver = {
.probe = meson_mmc_probe,
.remove = meson_mmc_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = meson_mmc_of_match,
},
};
module_platform_driver(meson_mmc_driver);
MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");