blob: 395040346d0f4df8cf8def0810828e2e88313daf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013, Sony Mobile Communications AB.
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/driver.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/firmware/qcom/qcom_scm.h>
#include <linux/reboot.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/pinctrl/machine.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/pinctrl/pinconf.h>
#include <linux/pinctrl/pinmux.h>
#include <linux/soc/qcom/irq.h>
#include "../core.h"
#include "../pinconf.h"
#include "../pinctrl-utils.h"
#include "pinctrl-msm.h"
#define MAX_NR_GPIO 300
#define MAX_NR_TILES 4
#define PS_HOLD_OFFSET 0x820
/**
* struct msm_pinctrl - state for a pinctrl-msm device
* @dev: device handle.
* @pctrl: pinctrl handle.
* @chip: gpiochip handle.
* @desc: pin controller descriptor
* @restart_nb: restart notifier block.
* @irq: parent irq for the TLMM irq_chip.
* @intr_target_use_scm: route irq to application cpu using scm calls
* @lock: Spinlock to protect register resources as well
* as msm_pinctrl data structures.
* @enabled_irqs: Bitmap of currently enabled irqs.
* @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge
* detection.
* @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller
* @disabled_for_mux: These IRQs were disabled because we muxed away.
* @ever_gpio: This bit is set the first time we mux a pin to gpio_func.
* @soc: Reference to soc_data of platform specific data.
* @regs: Base addresses for the TLMM tiles.
* @phys_base: Physical base address
*/
struct msm_pinctrl {
struct device *dev;
struct pinctrl_dev *pctrl;
struct gpio_chip chip;
struct pinctrl_desc desc;
struct notifier_block restart_nb;
int irq;
bool intr_target_use_scm;
raw_spinlock_t lock;
DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO);
DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO);
DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO);
DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO);
DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO);
const struct msm_pinctrl_soc_data *soc;
void __iomem *regs[MAX_NR_TILES];
u32 phys_base[MAX_NR_TILES];
};
#define MSM_ACCESSOR(name) \
static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \
const struct msm_pingroup *g) \
{ \
return readl(pctrl->regs[g->tile] + g->name##_reg); \
} \
static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \
const struct msm_pingroup *g) \
{ \
writel(val, pctrl->regs[g->tile] + g->name##_reg); \
}
MSM_ACCESSOR(ctl)
MSM_ACCESSOR(io)
MSM_ACCESSOR(intr_cfg)
MSM_ACCESSOR(intr_status)
MSM_ACCESSOR(intr_target)
static void msm_ack_intr_status(struct msm_pinctrl *pctrl,
const struct msm_pingroup *g)
{
u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0;
msm_writel_intr_status(val, pctrl, g);
}
static int msm_get_groups_count(struct pinctrl_dev *pctldev)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->ngroups;
}
static const char *msm_get_group_name(struct pinctrl_dev *pctldev,
unsigned group)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->groups[group].grp.name;
}
static int msm_get_group_pins(struct pinctrl_dev *pctldev,
unsigned group,
const unsigned **pins,
unsigned *num_pins)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
*pins = pctrl->soc->groups[group].grp.pins;
*num_pins = pctrl->soc->groups[group].grp.npins;
return 0;
}
static const struct pinctrl_ops msm_pinctrl_ops = {
.get_groups_count = msm_get_groups_count,
.get_group_name = msm_get_group_name,
.get_group_pins = msm_get_group_pins,
.dt_node_to_map = pinconf_generic_dt_node_to_map_group,
.dt_free_map = pinctrl_utils_free_map,
};
static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
struct gpio_chip *chip = &pctrl->chip;
return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL;
}
static int msm_get_functions_count(struct pinctrl_dev *pctldev)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->nfunctions;
}
static const char *msm_get_function_name(struct pinctrl_dev *pctldev,
unsigned function)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
return pctrl->soc->functions[function].name;
}
static int msm_get_function_groups(struct pinctrl_dev *pctldev,
unsigned function,
const char * const **groups,
unsigned * const num_groups)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
*groups = pctrl->soc->functions[function].groups;
*num_groups = pctrl->soc->functions[function].ngroups;
return 0;
}
static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev,
unsigned function,
unsigned group)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
struct gpio_chip *gc = &pctrl->chip;
unsigned int irq = irq_find_mapping(gc->irq.domain, group);
struct irq_data *d = irq_get_irq_data(irq);
unsigned int gpio_func = pctrl->soc->gpio_func;
unsigned int egpio_func = pctrl->soc->egpio_func;
const struct msm_pingroup *g;
unsigned long flags;
u32 val, mask;
int i;
g = &pctrl->soc->groups[group];
mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit);
for (i = 0; i < g->nfuncs; i++) {
if (g->funcs[i] == function)
break;
}
if (WARN_ON(i == g->nfuncs))
return -EINVAL;
/*
* If an GPIO interrupt is setup on this pin then we need special
* handling. Specifically interrupt detection logic will still see
* the pin twiddle even when we're muxed away.
*
* When we see a pin with an interrupt setup on it then we'll disable
* (mask) interrupts on it when we mux away until we mux back. Note
* that disable_irq() refcounts and interrupts are disabled as long as
* at least one disable_irq() has been called.
*/
if (d && i != gpio_func &&
!test_and_set_bit(d->hwirq, pctrl->disabled_for_mux))
disable_irq(irq);
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_ctl(pctrl, g);
/*
* If this is the first time muxing to GPIO and the direction is
* output, make sure that we're not going to be glitching the pin
* by reading the current state of the pin and setting it as the
* output.
*/
if (i == gpio_func && (val & BIT(g->oe_bit)) &&
!test_and_set_bit(group, pctrl->ever_gpio)) {
u32 io_val = msm_readl_io(pctrl, g);
if (io_val & BIT(g->in_bit)) {
if (!(io_val & BIT(g->out_bit)))
msm_writel_io(io_val | BIT(g->out_bit), pctrl, g);
} else {
if (io_val & BIT(g->out_bit))
msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g);
}
}
if (egpio_func && i == egpio_func) {
if (val & BIT(g->egpio_present))
val &= ~BIT(g->egpio_enable);
} else {
val &= ~mask;
val |= i << g->mux_bit;
/* Claim ownership of pin if egpio capable */
if (egpio_func && val & BIT(g->egpio_present))
val |= BIT(g->egpio_enable);
}
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
if (d && i == gpio_func &&
test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) {
/*
* Clear interrupts detected while not GPIO since we only
* masked things.
*/
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false);
else
msm_ack_intr_status(pctrl, g);
enable_irq(irq);
}
return 0;
}
static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *range,
unsigned offset)
{
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
const struct msm_pingroup *g = &pctrl->soc->groups[offset];
/* No funcs? Probably ACPI so can't do anything here */
if (!g->nfuncs)
return 0;
return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset);
}
static const struct pinmux_ops msm_pinmux_ops = {
.request = msm_pinmux_request,
.get_functions_count = msm_get_functions_count,
.get_function_name = msm_get_function_name,
.get_function_groups = msm_get_function_groups,
.gpio_request_enable = msm_pinmux_request_gpio,
.set_mux = msm_pinmux_set_mux,
};
static int msm_config_reg(struct msm_pinctrl *pctrl,
const struct msm_pingroup *g,
unsigned param,
unsigned *mask,
unsigned *bit)
{
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
case PIN_CONFIG_BIAS_PULL_DOWN:
case PIN_CONFIG_BIAS_BUS_HOLD:
case PIN_CONFIG_BIAS_PULL_UP:
*bit = g->pull_bit;
*mask = 3;
if (g->i2c_pull_bit)
*mask |= BIT(g->i2c_pull_bit) >> *bit;
break;
case PIN_CONFIG_DRIVE_OPEN_DRAIN:
*bit = g->od_bit;
*mask = 1;
break;
case PIN_CONFIG_DRIVE_STRENGTH:
*bit = g->drv_bit;
*mask = 7;
break;
case PIN_CONFIG_OUTPUT:
case PIN_CONFIG_INPUT_ENABLE:
case PIN_CONFIG_OUTPUT_ENABLE:
*bit = g->oe_bit;
*mask = 1;
break;
default:
return -ENOTSUPP;
}
return 0;
}
#define MSM_NO_PULL 0
#define MSM_PULL_DOWN 1
#define MSM_KEEPER 2
#define MSM_PULL_UP_NO_KEEPER 2
#define MSM_PULL_UP 3
#define MSM_I2C_STRONG_PULL_UP 2200
static unsigned msm_regval_to_drive(u32 val)
{
return (val + 1) * 2;
}
static int msm_config_group_get(struct pinctrl_dev *pctldev,
unsigned int group,
unsigned long *config)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
unsigned param = pinconf_to_config_param(*config);
unsigned mask;
unsigned arg;
unsigned bit;
int ret;
u32 val;
g = &pctrl->soc->groups[group];
ret = msm_config_reg(pctrl, g, param, &mask, &bit);
if (ret < 0)
return ret;
val = msm_readl_ctl(pctrl, g);
arg = (val >> bit) & mask;
/* Convert register value to pinconf value */
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
if (arg != MSM_NO_PULL)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_BIAS_PULL_DOWN:
if (arg != MSM_PULL_DOWN)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_BIAS_BUS_HOLD:
if (pctrl->soc->pull_no_keeper)
return -ENOTSUPP;
if (arg != MSM_KEEPER)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_BIAS_PULL_UP:
if (pctrl->soc->pull_no_keeper)
arg = arg == MSM_PULL_UP_NO_KEEPER;
else if (arg & BIT(g->i2c_pull_bit))
arg = MSM_I2C_STRONG_PULL_UP;
else
arg = arg == MSM_PULL_UP;
if (!arg)
return -EINVAL;
break;
case PIN_CONFIG_DRIVE_OPEN_DRAIN:
/* Pin is not open-drain */
if (!arg)
return -EINVAL;
arg = 1;
break;
case PIN_CONFIG_DRIVE_STRENGTH:
arg = msm_regval_to_drive(arg);
break;
case PIN_CONFIG_OUTPUT:
/* Pin is not output */
if (!arg)
return -EINVAL;
val = msm_readl_io(pctrl, g);
arg = !!(val & BIT(g->in_bit));
break;
case PIN_CONFIG_OUTPUT_ENABLE:
if (!arg)
return -EINVAL;
break;
default:
return -ENOTSUPP;
}
*config = pinconf_to_config_packed(param, arg);
return 0;
}
static int msm_config_group_set(struct pinctrl_dev *pctldev,
unsigned group,
unsigned long *configs,
unsigned num_configs)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
unsigned long flags;
unsigned param;
unsigned mask;
unsigned arg;
unsigned bit;
int ret;
u32 val;
int i;
g = &pctrl->soc->groups[group];
for (i = 0; i < num_configs; i++) {
param = pinconf_to_config_param(configs[i]);
arg = pinconf_to_config_argument(configs[i]);
ret = msm_config_reg(pctrl, g, param, &mask, &bit);
if (ret < 0)
return ret;
/* Convert pinconf values to register values */
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
arg = MSM_NO_PULL;
break;
case PIN_CONFIG_BIAS_PULL_DOWN:
arg = MSM_PULL_DOWN;
break;
case PIN_CONFIG_BIAS_BUS_HOLD:
if (pctrl->soc->pull_no_keeper)
return -ENOTSUPP;
arg = MSM_KEEPER;
break;
case PIN_CONFIG_BIAS_PULL_UP:
if (pctrl->soc->pull_no_keeper)
arg = MSM_PULL_UP_NO_KEEPER;
else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP)
arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP;
else
arg = MSM_PULL_UP;
break;
case PIN_CONFIG_DRIVE_OPEN_DRAIN:
arg = 1;
break;
case PIN_CONFIG_DRIVE_STRENGTH:
/* Check for invalid values */
if (arg > 16 || arg < 2 || (arg % 2) != 0)
arg = -1;
else
arg = (arg / 2) - 1;
break;
case PIN_CONFIG_OUTPUT:
/* set output value */
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_io(pctrl, g);
if (arg)
val |= BIT(g->out_bit);
else
val &= ~BIT(g->out_bit);
msm_writel_io(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
/* enable output */
arg = 1;
break;
case PIN_CONFIG_INPUT_ENABLE:
/*
* According to pinctrl documentation this should
* actually be a no-op.
*
* The docs are explicit that "this does not affect
* the pin's ability to drive output" but what we do
* here is to modify the output enable bit. Thus, to
* follow the docs we should remove that.
*
* The docs say that we should enable any relevant
* input buffer, but TLMM there is no input buffer that
* can be enabled/disabled. It's always on.
*
* The points above, explain why this _should_ be a
* no-op. However, for historical reasons and to
* support old device trees, we'll violate the docs
* and still affect the output.
*
* It should further be noted that this old historical
* behavior actually overrides arg to 0. That means
* that "input-enable" and "input-disable" in a device
* tree would _both_ disable the output. We'll
* continue to preserve this behavior as well since
* we have no other use for this attribute.
*/
arg = 0;
break;
case PIN_CONFIG_OUTPUT_ENABLE:
arg = !!arg;
break;
default:
dev_err(pctrl->dev, "Unsupported config parameter: %x\n",
param);
return -EINVAL;
}
/* Range-check user-supplied value */
if (arg & ~mask) {
dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg);
return -EINVAL;
}
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_ctl(pctrl, g);
val &= ~(mask << bit);
val |= arg << bit;
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
return 0;
}
static const struct pinconf_ops msm_pinconf_ops = {
.is_generic = true,
.pin_config_group_get = msm_config_group_get,
.pin_config_group_set = msm_config_group_set,
};
static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned long flags;
u32 val;
g = &pctrl->soc->groups[offset];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_ctl(pctrl, g);
val &= ~BIT(g->oe_bit);
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
return 0;
}
static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned long flags;
u32 val;
g = &pctrl->soc->groups[offset];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_io(pctrl, g);
if (value)
val |= BIT(g->out_bit);
else
val &= ~BIT(g->out_bit);
msm_writel_io(val, pctrl, g);
val = msm_readl_ctl(pctrl, g);
val |= BIT(g->oe_bit);
msm_writel_ctl(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
return 0;
}
static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
{
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
const struct msm_pingroup *g;
u32 val;
g = &pctrl->soc->groups[offset];
val = msm_readl_ctl(pctrl, g);
return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT :
GPIO_LINE_DIRECTION_IN;
}
static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
u32 val;
g = &pctrl->soc->groups[offset];
val = msm_readl_io(pctrl, g);
return !!(val & BIT(g->in_bit));
}
static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned long flags;
u32 val;
g = &pctrl->soc->groups[offset];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_io(pctrl, g);
if (value)
val |= BIT(g->out_bit);
else
val &= ~BIT(g->out_bit);
msm_writel_io(val, pctrl, g);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
#ifdef CONFIG_DEBUG_FS
static void msm_gpio_dbg_show_one(struct seq_file *s,
struct pinctrl_dev *pctldev,
struct gpio_chip *chip,
unsigned offset,
unsigned gpio)
{
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
unsigned func;
int is_out;
int drive;
int pull;
int val;
int egpio_enable;
u32 ctl_reg, io_reg;
static const char * const pulls_keeper[] = {
"no pull",
"pull down",
"keeper",
"pull up"
};
static const char * const pulls_no_keeper[] = {
"no pull",
"pull down",
"pull up",
};
if (!gpiochip_line_is_valid(chip, offset))
return;
g = &pctrl->soc->groups[offset];
ctl_reg = msm_readl_ctl(pctrl, g);
io_reg = msm_readl_io(pctrl, g);
is_out = !!(ctl_reg & BIT(g->oe_bit));
func = (ctl_reg >> g->mux_bit) & 7;
drive = (ctl_reg >> g->drv_bit) & 7;
pull = (ctl_reg >> g->pull_bit) & 3;
egpio_enable = 0;
if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present))
egpio_enable = !(ctl_reg & BIT(g->egpio_enable));
if (is_out)
val = !!(io_reg & BIT(g->out_bit));
else
val = !!(io_reg & BIT(g->in_bit));
if (egpio_enable) {
seq_printf(s, " %-8s: egpio\n", g->grp.name);
return;
}
seq_printf(s, " %-8s: %-3s", g->grp.name, is_out ? "out" : "in");
seq_printf(s, " %-4s func%d", val ? "high" : "low", func);
seq_printf(s, " %dmA", msm_regval_to_drive(drive));
if (pctrl->soc->pull_no_keeper)
seq_printf(s, " %s", pulls_no_keeper[pull]);
else
seq_printf(s, " %s", pulls_keeper[pull]);
seq_puts(s, "\n");
}
static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
{
unsigned gpio = chip->base;
unsigned i;
for (i = 0; i < chip->ngpio; i++, gpio++)
msm_gpio_dbg_show_one(s, NULL, chip, i, gpio);
}
#else
#define msm_gpio_dbg_show NULL
#endif
static int msm_gpio_init_valid_mask(struct gpio_chip *gc,
unsigned long *valid_mask,
unsigned int ngpios)
{
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
int ret;
unsigned int len, i;
const int *reserved = pctrl->soc->reserved_gpios;
u16 *tmp;
/* Remove driver-provided reserved GPIOs from valid_mask */
if (reserved) {
for (i = 0; reserved[i] >= 0; i++) {
if (i >= ngpios || reserved[i] >= ngpios) {
dev_err(pctrl->dev, "invalid list of reserved GPIOs\n");
return -EINVAL;
}
clear_bit(reserved[i], valid_mask);
}
return 0;
}
/* The number of GPIOs in the ACPI tables */
len = ret = device_property_count_u16(pctrl->dev, "gpios");
if (ret < 0)
return 0;
if (ret > ngpios)
return -EINVAL;
tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len);
if (ret < 0) {
dev_err(pctrl->dev, "could not read list of GPIOs\n");
goto out;
}
bitmap_zero(valid_mask, ngpios);
for (i = 0; i < len; i++)
set_bit(tmp[i], valid_mask);
out:
kfree(tmp);
return ret;
}
static const struct gpio_chip msm_gpio_template = {
.direction_input = msm_gpio_direction_input,
.direction_output = msm_gpio_direction_output,
.get_direction = msm_gpio_get_direction,
.get = msm_gpio_get,
.set = msm_gpio_set,
.request = gpiochip_generic_request,
.free = gpiochip_generic_free,
.dbg_show = msm_gpio_dbg_show,
};
/* For dual-edge interrupts in software, since some hardware has no
* such support:
*
* At appropriate moments, this function may be called to flip the polarity
* settings of both-edge irq lines to try and catch the next edge.
*
* The attempt is considered successful if:
* - the status bit goes high, indicating that an edge was caught, or
* - the input value of the gpio doesn't change during the attempt.
* If the value changes twice during the process, that would cause the first
* test to fail but would force the second, as two opposite
* transitions would cause a detection no matter the polarity setting.
*
* The do-loop tries to sledge-hammer closed the timing hole between
* the initial value-read and the polarity-write - if the line value changes
* during that window, an interrupt is lost, the new polarity setting is
* incorrect, and the first success test will fail, causing a retry.
*
* Algorithm comes from Google's msmgpio driver.
*/
static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl,
const struct msm_pingroup *g,
struct irq_data *d)
{
int loop_limit = 100;
unsigned val, val2, intstat;
unsigned pol;
do {
val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
pol = msm_readl_intr_cfg(pctrl, g);
pol ^= BIT(g->intr_polarity_bit);
msm_writel_intr_cfg(pol, pctrl, g);
val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit);
intstat = msm_readl_intr_status(pctrl, g);
if (intstat || (val == val2))
return;
} while (loop_limit-- > 0);
dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n",
val, val2);
}
static void msm_gpio_irq_mask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
unsigned long flags;
u32 val;
if (d->parent_data)
irq_chip_mask_parent(d);
if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
return;
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_intr_cfg(pctrl, g);
/*
* There are two bits that control interrupt forwarding to the CPU. The
* RAW_STATUS_EN bit causes the level or edge sensed on the line to be
* latched into the interrupt status register when the hardware detects
* an irq that it's configured for (either edge for edge type or level
* for level type irq). The 'non-raw' status enable bit causes the
* hardware to assert the summary interrupt to the CPU if the latched
* status bit is set. There's a bug though, the edge detection logic
* seems to have a problem where toggling the RAW_STATUS_EN bit may
* cause the status bit to latch spuriously when there isn't any edge
* so we can't touch that bit for edge type irqs and we have to keep
* the bit set anyway so that edges are latched while the line is masked.
*
* To make matters more complicated, leaving the RAW_STATUS_EN bit
* enabled all the time causes level interrupts to re-latch into the
* status register because the level is still present on the line after
* we ack it. We clear the raw status enable bit during mask here and
* set the bit on unmask so the interrupt can't latch into the hardware
* while it's masked.
*/
if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK)
val &= ~BIT(g->intr_raw_status_bit);
val &= ~BIT(g->intr_enable_bit);
msm_writel_intr_cfg(val, pctrl, g);
clear_bit(d->hwirq, pctrl->enabled_irqs);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
static void msm_gpio_irq_unmask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
unsigned long flags;
u32 val;
if (d->parent_data)
irq_chip_unmask_parent(d);
if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
return;
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
val = msm_readl_intr_cfg(pctrl, g);
val |= BIT(g->intr_raw_status_bit);
val |= BIT(g->intr_enable_bit);
msm_writel_intr_cfg(val, pctrl, g);
set_bit(d->hwirq, pctrl->enabled_irqs);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
static void msm_gpio_irq_enable(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
gpiochip_enable_irq(gc, d->hwirq);
if (d->parent_data)
irq_chip_enable_parent(d);
if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
msm_gpio_irq_unmask(d);
}
static void msm_gpio_irq_disable(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
if (d->parent_data)
irq_chip_disable_parent(d);
if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
msm_gpio_irq_mask(d);
gpiochip_disable_irq(gc, d->hwirq);
}
/**
* msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent.
* @d: The irq dta.
*
* This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are
* normally handled by the parent irqchip. The logic here is slightly
* different due to what's easy to do with our parent, but in principle it's
* the same.
*/
static void msm_gpio_update_dual_edge_parent(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
int loop_limit = 100;
unsigned int val;
unsigned int type;
/* Read the value and make a guess about what edge we need to catch */
val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;
do {
/* Set the parent to catch the next edge */
irq_chip_set_type_parent(d, type);
/*
* Possibly the line changed between when we last read "val"
* (and decided what edge we needed) and when set the edge.
* If the value didn't change (or changed and then changed
* back) then we're done.
*/
val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
if (type == IRQ_TYPE_EDGE_RISING) {
if (!val)
return;
type = IRQ_TYPE_EDGE_FALLING;
} else if (type == IRQ_TYPE_EDGE_FALLING) {
if (val)
return;
type = IRQ_TYPE_EDGE_RISING;
}
} while (loop_limit-- > 0);
dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n");
}
static void msm_gpio_irq_ack(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
unsigned long flags;
if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
msm_gpio_update_dual_edge_parent(d);
return;
}
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
msm_ack_intr_status(pctrl, g);
if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
msm_gpio_update_dual_edge_pos(pctrl, g, d);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
}
static void msm_gpio_irq_eoi(struct irq_data *d)
{
d = d->parent_data;
if (d)
d->chip->irq_eoi(d);
}
static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d,
unsigned int type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
return type == IRQ_TYPE_EDGE_BOTH &&
pctrl->soc->wakeirq_dual_edge_errata && d->parent_data &&
test_bit(d->hwirq, pctrl->skip_wake_irqs);
}
static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_pingroup *g;
u32 intr_target_mask = GENMASK(2, 0);
unsigned long flags;
bool was_enabled;
u32 val;
if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) {
set_bit(d->hwirq, pctrl->dual_edge_irqs);
irq_set_handler_locked(d, handle_fasteoi_ack_irq);
msm_gpio_update_dual_edge_parent(d);
return 0;
}
if (d->parent_data)
irq_chip_set_type_parent(d, type);
if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
clear_bit(d->hwirq, pctrl->dual_edge_irqs);
irq_set_handler_locked(d, handle_fasteoi_irq);
return 0;
}
g = &pctrl->soc->groups[d->hwirq];
raw_spin_lock_irqsave(&pctrl->lock, flags);
/*
* For hw without possibility of detecting both edges
*/
if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH)
set_bit(d->hwirq, pctrl->dual_edge_irqs);
else
clear_bit(d->hwirq, pctrl->dual_edge_irqs);
/* Route interrupts to application cpu.
* With intr_target_use_scm interrupts are routed to
* application cpu using scm calls.
*/
if (g->intr_target_width)
intr_target_mask = GENMASK(g->intr_target_width - 1, 0);
if (pctrl->intr_target_use_scm) {
u32 addr = pctrl->phys_base[0] + g->intr_target_reg;
int ret;
qcom_scm_io_readl(addr, &val);
val &= ~(intr_target_mask << g->intr_target_bit);
val |= g->intr_target_kpss_val << g->intr_target_bit;
ret = qcom_scm_io_writel(addr, val);
if (ret)
dev_err(pctrl->dev,
"Failed routing %lu interrupt to Apps proc",
d->hwirq);
} else {
val = msm_readl_intr_target(pctrl, g);
val &= ~(intr_target_mask << g->intr_target_bit);
val |= g->intr_target_kpss_val << g->intr_target_bit;
msm_writel_intr_target(val, pctrl, g);
}
/* Update configuration for gpio.
* RAW_STATUS_EN is left on for all gpio irqs. Due to the
* internal circuitry of TLMM, toggling the RAW_STATUS
* could cause the INTR_STATUS to be set for EDGE interrupts.
*/
val = msm_readl_intr_cfg(pctrl, g);
was_enabled = val & BIT(g->intr_raw_status_bit);
val |= BIT(g->intr_raw_status_bit);
if (g->intr_detection_width == 2) {
val &= ~(3 << g->intr_detection_bit);
val &= ~(1 << g->intr_polarity_bit);
switch (type) {
case IRQ_TYPE_EDGE_RISING:
val |= 1 << g->intr_detection_bit;
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_EDGE_FALLING:
val |= 2 << g->intr_detection_bit;
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_EDGE_BOTH:
val |= 3 << g->intr_detection_bit;
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_LEVEL_LOW:
break;
case IRQ_TYPE_LEVEL_HIGH:
val |= BIT(g->intr_polarity_bit);
break;
}
} else if (g->intr_detection_width == 1) {
val &= ~(1 << g->intr_detection_bit);
val &= ~(1 << g->intr_polarity_bit);
switch (type) {
case IRQ_TYPE_EDGE_RISING:
val |= BIT(g->intr_detection_bit);
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_EDGE_FALLING:
val |= BIT(g->intr_detection_bit);
break;
case IRQ_TYPE_EDGE_BOTH:
val |= BIT(g->intr_detection_bit);
val |= BIT(g->intr_polarity_bit);
break;
case IRQ_TYPE_LEVEL_LOW:
break;
case IRQ_TYPE_LEVEL_HIGH:
val |= BIT(g->intr_polarity_bit);
break;
}
} else {
BUG();
}
msm_writel_intr_cfg(val, pctrl, g);
/*
* The first time we set RAW_STATUS_EN it could trigger an interrupt.
* Clear the interrupt. This is safe because we have
* IRQCHIP_SET_TYPE_MASKED.
*/
if (!was_enabled)
msm_ack_intr_status(pctrl, g);
if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
msm_gpio_update_dual_edge_pos(pctrl, g, d);
raw_spin_unlock_irqrestore(&pctrl->lock, flags);
if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
irq_set_handler_locked(d, handle_level_irq);
else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
irq_set_handler_locked(d, handle_edge_irq);
return 0;
}
static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
/*
* While they may not wake up when the TLMM is powered off,
* some GPIOs would like to wakeup the system from suspend
* when TLMM is powered on. To allow that, enable the GPIO
* summary line to be wakeup capable at GIC.
*/
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
return irq_chip_set_wake_parent(d, on);
return irq_set_irq_wake(pctrl->irq, on);
}
static int msm_gpio_irq_reqres(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
int ret;
if (!try_module_get(gc->owner))
return -ENODEV;
ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq);
if (ret)
goto out;
msm_gpio_direction_input(gc, d->hwirq);
if (gpiochip_lock_as_irq(gc, d->hwirq)) {
dev_err(gc->parent,
"unable to lock HW IRQ %lu for IRQ\n",
d->hwirq);
ret = -EINVAL;
goto out;
}
/*
* The disable / clear-enable workaround we do in msm_pinmux_set_mux()
* only works if disable is not lazy since we only clear any bogus
* interrupt in hardware. Explicitly mark the interrupt as UNLAZY.
*/
irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY);
return 0;
out:
module_put(gc->owner);
return ret;
}
static void msm_gpio_irq_relres(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
gpiochip_unlock_as_irq(gc, d->hwirq);
module_put(gc->owner);
}
static int msm_gpio_irq_set_affinity(struct irq_data *d,
const struct cpumask *dest, bool force)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
return irq_chip_set_affinity_parent(d, dest, force);
return -EINVAL;
}
static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
return irq_chip_set_vcpu_affinity_parent(d, vcpu_info);
return -EINVAL;
}
static void msm_gpio_irq_handler(struct irq_desc *desc)
{
struct gpio_chip *gc = irq_desc_get_handler_data(desc);
const struct msm_pingroup *g;
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
struct irq_chip *chip = irq_desc_get_chip(desc);
int handled = 0;
u32 val;
int i;
chained_irq_enter(chip, desc);
/*
* Each pin has it's own IRQ status register, so use
* enabled_irq bitmap to limit the number of reads.
*/
for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) {
g = &pctrl->soc->groups[i];
val = msm_readl_intr_status(pctrl, g);
if (val & BIT(g->intr_status_bit)) {
generic_handle_domain_irq(gc->irq.domain, i);
handled++;
}
}
/* No interrupts were flagged */
if (handled == 0)
handle_bad_irq(desc);
chained_irq_exit(chip, desc);
}
static int msm_gpio_wakeirq(struct gpio_chip *gc,
unsigned int child,
unsigned int child_type,
unsigned int *parent,
unsigned int *parent_type)
{
struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
const struct msm_gpio_wakeirq_map *map;
int i;
*parent = GPIO_NO_WAKE_IRQ;
*parent_type = IRQ_TYPE_EDGE_RISING;
for (i = 0; i < pctrl->soc->nwakeirq_map; i++) {
map = &pctrl->soc->wakeirq_map[i];
if (map->gpio == child) {
*parent = map->wakeirq;
break;
}
}
return 0;
}
static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl)
{
if (pctrl->soc->reserved_gpios)
return true;
return device_property_count_u16(pctrl->dev, "gpios") > 0;
}
static const struct irq_chip msm_gpio_irq_chip = {
.name = "msmgpio",
.irq_enable = msm_gpio_irq_enable,
.irq_disable = msm_gpio_irq_disable,
.irq_mask = msm_gpio_irq_mask,
.irq_unmask = msm_gpio_irq_unmask,
.irq_ack = msm_gpio_irq_ack,
.irq_eoi = msm_gpio_irq_eoi,
.irq_set_type = msm_gpio_irq_set_type,
.irq_set_wake = msm_gpio_irq_set_wake,
.irq_request_resources = msm_gpio_irq_reqres,
.irq_release_resources = msm_gpio_irq_relres,
.irq_set_affinity = msm_gpio_irq_set_affinity,
.irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity,
.flags = (IRQCHIP_MASK_ON_SUSPEND |
IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND |
IRQCHIP_IMMUTABLE),
};
static int msm_gpio_init(struct msm_pinctrl *pctrl)
{
struct gpio_chip *chip;
struct gpio_irq_chip *girq;
int i, ret;
unsigned gpio, ngpio = pctrl->soc->ngpios;
struct device_node *np;
bool skip;
if (WARN_ON(ngpio > MAX_NR_GPIO))
return -EINVAL;
chip = &pctrl->chip;
chip->base = -1;
chip->ngpio = ngpio;
chip->label = dev_name(pctrl->dev);
chip->parent = pctrl->dev;
chip->owner = THIS_MODULE;
if (msm_gpio_needs_valid_mask(pctrl))
chip->init_valid_mask = msm_gpio_init_valid_mask;
np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0);
if (np) {
chip->irq.parent_domain = irq_find_matching_host(np,
DOMAIN_BUS_WAKEUP);
of_node_put(np);
if (!chip->irq.parent_domain)
return -EPROBE_DEFER;
chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq;
/*
* Let's skip handling the GPIOs, if the parent irqchip
* is handling the direct connect IRQ of the GPIO.
*/
skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain);
for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) {
gpio = pctrl->soc->wakeirq_map[i].gpio;
set_bit(gpio, pctrl->skip_wake_irqs);
}
}
girq = &chip->irq;
gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip);
girq->parent_handler = msm_gpio_irq_handler;
girq->fwnode = dev_fwnode(pctrl->dev);
girq->num_parents = 1;
girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents),
GFP_KERNEL);
if (!girq->parents)
return -ENOMEM;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_bad_irq;
girq->parents[0] = pctrl->irq;
ret = gpiochip_add_data(&pctrl->chip, pctrl);
if (ret) {
dev_err(pctrl->dev, "Failed register gpiochip\n");
return ret;
}
/*
* For DeviceTree-supported systems, the gpio core checks the
* pinctrl's device node for the "gpio-ranges" property.
* If it is present, it takes care of adding the pin ranges
* for the driver. In this case the driver can skip ahead.
*
* In order to remain compatible with older, existing DeviceTree
* files which don't set the "gpio-ranges" property or systems that
* utilize ACPI the driver has to call gpiochip_add_pin_range().
*/
if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) {
ret = gpiochip_add_pin_range(&pctrl->chip,
dev_name(pctrl->dev), 0, 0, chip->ngpio);
if (ret) {
dev_err(pctrl->dev, "Failed to add pin range\n");
gpiochip_remove(&pctrl->chip);
return ret;
}
}
return 0;
}
static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action,
void *data)
{
struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb);
writel(0, pctrl->regs[0] + PS_HOLD_OFFSET);
mdelay(1000);
return NOTIFY_DONE;
}
static struct msm_pinctrl *poweroff_pctrl;
static void msm_ps_hold_poweroff(void)
{
msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL);
}
static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl)
{
int i;
const struct pinfunction *func = pctrl->soc->functions;
for (i = 0; i < pctrl->soc->nfunctions; i++)
if (!strcmp(func[i].name, "ps_hold")) {
pctrl->restart_nb.notifier_call = msm_ps_hold_restart;
pctrl->restart_nb.priority = 128;
if (register_restart_handler(&pctrl->restart_nb))
dev_err(pctrl->dev,
"failed to setup restart handler.\n");
poweroff_pctrl = pctrl;
pm_power_off = msm_ps_hold_poweroff;
break;
}
}
static __maybe_unused int msm_pinctrl_suspend(struct device *dev)
{
struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
return pinctrl_force_sleep(pctrl->pctrl);
}
static __maybe_unused int msm_pinctrl_resume(struct device *dev)
{
struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
return pinctrl_force_default(pctrl->pctrl);
}
SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend,
msm_pinctrl_resume);
EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops);
int msm_pinctrl_probe(struct platform_device *pdev,
const struct msm_pinctrl_soc_data *soc_data)
{
struct msm_pinctrl *pctrl;
struct resource *res;
int ret;
int i;
pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL);
if (!pctrl)
return -ENOMEM;
pctrl->dev = &pdev->dev;
pctrl->soc = soc_data;
pctrl->chip = msm_gpio_template;
pctrl->intr_target_use_scm = of_device_is_compatible(
pctrl->dev->of_node,
"qcom,ipq8064-pinctrl");
raw_spin_lock_init(&pctrl->lock);
if (soc_data->tiles) {
for (i = 0; i < soc_data->ntiles; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
soc_data->tiles[i]);
pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pctrl->regs[i]))
return PTR_ERR(pctrl->regs[i]);
}
} else {
pctrl->regs[0] = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(pctrl->regs[0]))
return PTR_ERR(pctrl->regs[0]);
pctrl->phys_base[0] = res->start;
}
msm_pinctrl_setup_pm_reset(pctrl);
pctrl->irq = platform_get_irq(pdev, 0);
if (pctrl->irq < 0)
return pctrl->irq;
pctrl->desc.owner = THIS_MODULE;
pctrl->desc.pctlops = &msm_pinctrl_ops;
pctrl->desc.pmxops = &msm_pinmux_ops;
pctrl->desc.confops = &msm_pinconf_ops;
pctrl->desc.name = dev_name(&pdev->dev);
pctrl->desc.pins = pctrl->soc->pins;
pctrl->desc.npins = pctrl->soc->npins;
pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl);
if (IS_ERR(pctrl->pctrl)) {
dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
return PTR_ERR(pctrl->pctrl);
}
ret = msm_gpio_init(pctrl);
if (ret)
return ret;
platform_set_drvdata(pdev, pctrl);
dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n");
return 0;
}
EXPORT_SYMBOL(msm_pinctrl_probe);
void msm_pinctrl_remove(struct platform_device *pdev)
{
struct msm_pinctrl *pctrl = platform_get_drvdata(pdev);
gpiochip_remove(&pctrl->chip);
unregister_restart_handler(&pctrl->restart_nb);
}
EXPORT_SYMBOL(msm_pinctrl_remove);
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver");
MODULE_LICENSE("GPL v2");