blob: ba6db61dd227c4126cd8bfd49539169da241f63e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Texas Instruments K3 AM65 Ethernet Switch SubSystem Driver
*
* Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/
*
*/
#include <linux/bpf_trace.h>
#include <linux/clk.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/net_tstamp.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/phylink.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/rtnetlink.h>
#include <linux/mfd/syscon.h>
#include <linux/sys_soc.h>
#include <linux/dma/ti-cppi5.h>
#include <linux/dma/k3-udma-glue.h>
#include <net/page_pool/helpers.h>
#include <net/switchdev.h>
#include "cpsw_ale.h"
#include "cpsw_sl.h"
#include "am65-cpsw-nuss.h"
#include "am65-cpsw-switchdev.h"
#include "k3-cppi-desc-pool.h"
#include "am65-cpts.h"
#define AM65_CPSW_SS_BASE 0x0
#define AM65_CPSW_SGMII_BASE 0x100
#define AM65_CPSW_XGMII_BASE 0x2100
#define AM65_CPSW_CPSW_NU_BASE 0x20000
#define AM65_CPSW_NU_PORTS_BASE 0x1000
#define AM65_CPSW_NU_FRAM_BASE 0x12000
#define AM65_CPSW_NU_STATS_BASE 0x1a000
#define AM65_CPSW_NU_ALE_BASE 0x1e000
#define AM65_CPSW_NU_CPTS_BASE 0x1d000
#define AM65_CPSW_NU_PORTS_OFFSET 0x1000
#define AM65_CPSW_NU_STATS_PORT_OFFSET 0x200
#define AM65_CPSW_NU_FRAM_PORT_OFFSET 0x200
#define AM65_CPSW_MAX_PORTS 8
#define AM65_CPSW_MIN_PACKET_SIZE VLAN_ETH_ZLEN
#define AM65_CPSW_MAX_PACKET_SIZE 2024
#define AM65_CPSW_REG_CTL 0x004
#define AM65_CPSW_REG_STAT_PORT_EN 0x014
#define AM65_CPSW_REG_PTYPE 0x018
#define AM65_CPSW_P0_REG_CTL 0x004
#define AM65_CPSW_PORT0_REG_FLOW_ID_OFFSET 0x008
#define AM65_CPSW_PORT_REG_PRI_CTL 0x01c
#define AM65_CPSW_PORT_REG_RX_PRI_MAP 0x020
#define AM65_CPSW_PORT_REG_RX_MAXLEN 0x024
#define AM65_CPSW_PORTN_REG_SA_L 0x308
#define AM65_CPSW_PORTN_REG_SA_H 0x30c
#define AM65_CPSW_PORTN_REG_TS_CTL 0x310
#define AM65_CPSW_PORTN_REG_TS_SEQ_LTYPE_REG 0x314
#define AM65_CPSW_PORTN_REG_TS_VLAN_LTYPE_REG 0x318
#define AM65_CPSW_PORTN_REG_TS_CTL_LTYPE2 0x31C
#define AM65_CPSW_SGMII_CONTROL_REG 0x010
#define AM65_CPSW_SGMII_MR_ADV_ABILITY_REG 0x018
#define AM65_CPSW_SGMII_CONTROL_MR_AN_ENABLE BIT(0)
#define AM65_CPSW_CTL_VLAN_AWARE BIT(1)
#define AM65_CPSW_CTL_P0_ENABLE BIT(2)
#define AM65_CPSW_CTL_P0_TX_CRC_REMOVE BIT(13)
#define AM65_CPSW_CTL_P0_RX_PAD BIT(14)
/* AM65_CPSW_P0_REG_CTL */
#define AM65_CPSW_P0_REG_CTL_RX_CHECKSUM_EN BIT(0)
#define AM65_CPSW_P0_REG_CTL_RX_REMAP_VLAN BIT(16)
/* AM65_CPSW_PORT_REG_PRI_CTL */
#define AM65_CPSW_PORT_REG_PRI_CTL_RX_PTYPE_RROBIN BIT(8)
/* AM65_CPSW_PN_TS_CTL register fields */
#define AM65_CPSW_PN_TS_CTL_TX_ANX_F_EN BIT(4)
#define AM65_CPSW_PN_TS_CTL_TX_VLAN_LT1_EN BIT(5)
#define AM65_CPSW_PN_TS_CTL_TX_VLAN_LT2_EN BIT(6)
#define AM65_CPSW_PN_TS_CTL_TX_ANX_D_EN BIT(7)
#define AM65_CPSW_PN_TS_CTL_TX_ANX_E_EN BIT(10)
#define AM65_CPSW_PN_TS_CTL_TX_HOST_TS_EN BIT(11)
#define AM65_CPSW_PN_TS_CTL_MSG_TYPE_EN_SHIFT 16
#define AM65_CPSW_PN_TS_CTL_RX_ANX_F_EN BIT(0)
#define AM65_CPSW_PN_TS_CTL_RX_VLAN_LT1_EN BIT(1)
#define AM65_CPSW_PN_TS_CTL_RX_VLAN_LT2_EN BIT(2)
#define AM65_CPSW_PN_TS_CTL_RX_ANX_D_EN BIT(3)
#define AM65_CPSW_PN_TS_CTL_RX_ANX_E_EN BIT(9)
/* AM65_CPSW_PORTN_REG_TS_SEQ_LTYPE_REG register fields */
#define AM65_CPSW_PN_TS_SEQ_ID_OFFSET_SHIFT 16
/* AM65_CPSW_PORTN_REG_TS_CTL_LTYPE2 */
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_107 BIT(16)
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_129 BIT(17)
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_130 BIT(18)
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_131 BIT(19)
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_132 BIT(20)
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_319 BIT(21)
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_320 BIT(22)
#define AM65_CPSW_PN_TS_CTL_LTYPE2_TS_TTL_NONZERO BIT(23)
/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define AM65_CPSW_TS_EVENT_MSG_TYPE_BITS (BIT(0) | BIT(1) | BIT(2) | BIT(3))
#define AM65_CPSW_TS_SEQ_ID_OFFSET (0x1e)
#define AM65_CPSW_TS_TX_ANX_ALL_EN \
(AM65_CPSW_PN_TS_CTL_TX_ANX_D_EN | \
AM65_CPSW_PN_TS_CTL_TX_ANX_E_EN | \
AM65_CPSW_PN_TS_CTL_TX_ANX_F_EN)
#define AM65_CPSW_TS_RX_ANX_ALL_EN \
(AM65_CPSW_PN_TS_CTL_RX_ANX_D_EN | \
AM65_CPSW_PN_TS_CTL_RX_ANX_E_EN | \
AM65_CPSW_PN_TS_CTL_RX_ANX_F_EN)
#define AM65_CPSW_ALE_AGEOUT_DEFAULT 30
/* Number of TX/RX descriptors per channel/flow */
#define AM65_CPSW_MAX_TX_DESC 500
#define AM65_CPSW_MAX_RX_DESC 500
#define AM65_CPSW_NAV_PS_DATA_SIZE 16
#define AM65_CPSW_NAV_SW_DATA_SIZE 16
#define AM65_CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK | \
NETIF_MSG_IFUP | NETIF_MSG_PROBE | NETIF_MSG_IFDOWN | \
NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
#define AM65_CPSW_DEFAULT_TX_CHNS 8
#define AM65_CPSW_DEFAULT_RX_CHN_FLOWS 1
/* CPPI streaming packet interface */
#define AM65_CPSW_CPPI_TX_FLOW_ID 0x3FFF
#define AM65_CPSW_CPPI_TX_PKT_TYPE 0x7
/* XDP */
#define AM65_CPSW_XDP_CONSUMED BIT(1)
#define AM65_CPSW_XDP_REDIRECT BIT(0)
#define AM65_CPSW_XDP_PASS 0
/* Include headroom compatible with both skb and xdpf */
#define AM65_CPSW_HEADROOM_NA (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
#define AM65_CPSW_HEADROOM ALIGN(AM65_CPSW_HEADROOM_NA, sizeof(long))
static void am65_cpsw_port_set_sl_mac(struct am65_cpsw_port *slave,
const u8 *dev_addr)
{
u32 mac_hi = (dev_addr[0] << 0) | (dev_addr[1] << 8) |
(dev_addr[2] << 16) | (dev_addr[3] << 24);
u32 mac_lo = (dev_addr[4] << 0) | (dev_addr[5] << 8);
writel(mac_hi, slave->port_base + AM65_CPSW_PORTN_REG_SA_H);
writel(mac_lo, slave->port_base + AM65_CPSW_PORTN_REG_SA_L);
}
static void am65_cpsw_sl_ctl_reset(struct am65_cpsw_port *port)
{
cpsw_sl_reset(port->slave.mac_sl, 100);
/* Max length register has to be restored after MAC SL reset */
writel(AM65_CPSW_MAX_PACKET_SIZE,
port->port_base + AM65_CPSW_PORT_REG_RX_MAXLEN);
}
static void am65_cpsw_nuss_get_ver(struct am65_cpsw_common *common)
{
common->nuss_ver = readl(common->ss_base);
common->cpsw_ver = readl(common->cpsw_base);
dev_info(common->dev,
"initializing am65 cpsw nuss version 0x%08X, cpsw version 0x%08X Ports: %u quirks:%08x\n",
common->nuss_ver,
common->cpsw_ver,
common->port_num + 1,
common->pdata.quirks);
}
static int am65_cpsw_nuss_ndo_slave_add_vid(struct net_device *ndev,
__be16 proto, u16 vid)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 port_mask, unreg_mcast = 0;
int ret;
if (!common->is_emac_mode)
return 0;
if (!netif_running(ndev) || !vid)
return 0;
ret = pm_runtime_resume_and_get(common->dev);
if (ret < 0)
return ret;
port_mask = BIT(port->port_id) | ALE_PORT_HOST;
if (!vid)
unreg_mcast = port_mask;
dev_info(common->dev, "Adding vlan %d to vlan filter\n", vid);
ret = cpsw_ale_vlan_add_modify(common->ale, vid, port_mask,
unreg_mcast, port_mask, 0);
pm_runtime_put(common->dev);
return ret;
}
static int am65_cpsw_nuss_ndo_slave_kill_vid(struct net_device *ndev,
__be16 proto, u16 vid)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
int ret;
if (!common->is_emac_mode)
return 0;
if (!netif_running(ndev) || !vid)
return 0;
ret = pm_runtime_resume_and_get(common->dev);
if (ret < 0)
return ret;
dev_info(common->dev, "Removing vlan %d from vlan filter\n", vid);
ret = cpsw_ale_del_vlan(common->ale, vid,
BIT(port->port_id) | ALE_PORT_HOST);
pm_runtime_put(common->dev);
return ret;
}
static void am65_cpsw_slave_set_promisc(struct am65_cpsw_port *port,
bool promisc)
{
struct am65_cpsw_common *common = port->common;
if (promisc && !common->is_emac_mode) {
dev_dbg(common->dev, "promisc mode requested in switch mode");
return;
}
if (promisc) {
/* Enable promiscuous mode */
cpsw_ale_control_set(common->ale, port->port_id,
ALE_PORT_MACONLY_CAF, 1);
dev_dbg(common->dev, "promisc enabled\n");
} else {
/* Disable promiscuous mode */
cpsw_ale_control_set(common->ale, port->port_id,
ALE_PORT_MACONLY_CAF, 0);
dev_dbg(common->dev, "promisc disabled\n");
}
}
static void am65_cpsw_nuss_ndo_slave_set_rx_mode(struct net_device *ndev)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 port_mask;
bool promisc;
promisc = !!(ndev->flags & IFF_PROMISC);
am65_cpsw_slave_set_promisc(port, promisc);
if (promisc)
return;
/* Restore allmulti on vlans if necessary */
cpsw_ale_set_allmulti(common->ale,
ndev->flags & IFF_ALLMULTI, port->port_id);
port_mask = ALE_PORT_HOST;
/* Clear all mcast from ALE */
cpsw_ale_flush_multicast(common->ale, port_mask, -1);
if (!netdev_mc_empty(ndev)) {
struct netdev_hw_addr *ha;
/* program multicast address list into ALE register */
netdev_for_each_mc_addr(ha, ndev) {
cpsw_ale_add_mcast(common->ale, ha->addr,
port_mask, 0, 0, 0);
}
}
}
static void am65_cpsw_nuss_ndo_host_tx_timeout(struct net_device *ndev,
unsigned int txqueue)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_tx_chn *tx_chn;
struct netdev_queue *netif_txq;
unsigned long trans_start;
netif_txq = netdev_get_tx_queue(ndev, txqueue);
tx_chn = &common->tx_chns[txqueue];
trans_start = READ_ONCE(netif_txq->trans_start);
netdev_err(ndev, "txq:%d DRV_XOFF:%d tmo:%u dql_avail:%d free_desc:%zu\n",
txqueue,
netif_tx_queue_stopped(netif_txq),
jiffies_to_msecs(jiffies - trans_start),
netdev_queue_dql_avail(netif_txq),
k3_cppi_desc_pool_avail(tx_chn->desc_pool));
if (netif_tx_queue_stopped(netif_txq)) {
/* try recover if stopped by us */
txq_trans_update(netif_txq);
netif_tx_wake_queue(netif_txq);
}
}
static int am65_cpsw_nuss_rx_push(struct am65_cpsw_common *common,
struct page *page, u32 flow_idx)
{
struct am65_cpsw_rx_chn *rx_chn = &common->rx_chns;
struct cppi5_host_desc_t *desc_rx;
struct device *dev = common->dev;
struct am65_cpsw_swdata *swdata;
dma_addr_t desc_dma;
dma_addr_t buf_dma;
desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool);
if (!desc_rx) {
dev_err(dev, "Failed to allocate RXFDQ descriptor\n");
return -ENOMEM;
}
desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx);
buf_dma = dma_map_single(rx_chn->dma_dev,
page_address(page) + AM65_CPSW_HEADROOM,
AM65_CPSW_MAX_PACKET_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) {
k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
dev_err(dev, "Failed to map rx buffer\n");
return -EINVAL;
}
cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT,
AM65_CPSW_NAV_PS_DATA_SIZE);
k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma);
cppi5_hdesc_attach_buf(desc_rx, buf_dma, AM65_CPSW_MAX_PACKET_SIZE,
buf_dma, AM65_CPSW_MAX_PACKET_SIZE);
swdata = cppi5_hdesc_get_swdata(desc_rx);
swdata->page = page;
swdata->flow_id = flow_idx;
return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, flow_idx,
desc_rx, desc_dma);
}
void am65_cpsw_nuss_set_p0_ptype(struct am65_cpsw_common *common)
{
struct am65_cpsw_host *host_p = am65_common_get_host(common);
u32 val, pri_map;
/* P0 set Receive Priority Type */
val = readl(host_p->port_base + AM65_CPSW_PORT_REG_PRI_CTL);
if (common->pf_p0_rx_ptype_rrobin) {
val |= AM65_CPSW_PORT_REG_PRI_CTL_RX_PTYPE_RROBIN;
/* Enet Ports fifos works in fixed priority mode only, so
* reset P0_Rx_Pri_Map so all packet will go in Enet fifo 0
*/
pri_map = 0x0;
} else {
val &= ~AM65_CPSW_PORT_REG_PRI_CTL_RX_PTYPE_RROBIN;
/* restore P0_Rx_Pri_Map */
pri_map = 0x76543210;
}
writel(pri_map, host_p->port_base + AM65_CPSW_PORT_REG_RX_PRI_MAP);
writel(val, host_p->port_base + AM65_CPSW_PORT_REG_PRI_CTL);
}
static void am65_cpsw_init_host_port_switch(struct am65_cpsw_common *common);
static void am65_cpsw_init_host_port_emac(struct am65_cpsw_common *common);
static void am65_cpsw_init_port_switch_ale(struct am65_cpsw_port *port);
static void am65_cpsw_init_port_emac_ale(struct am65_cpsw_port *port);
static void am65_cpsw_destroy_xdp_rxqs(struct am65_cpsw_common *common)
{
struct am65_cpsw_rx_chn *rx_chn = &common->rx_chns;
struct am65_cpsw_rx_flow *flow;
struct xdp_rxq_info *rxq;
int id, port;
for (id = 0; id < common->rx_ch_num_flows; id++) {
flow = &rx_chn->flows[id];
for (port = 0; port < common->port_num; port++) {
if (!common->ports[port].ndev)
continue;
rxq = &common->ports[port].xdp_rxq[id];
if (xdp_rxq_info_is_reg(rxq))
xdp_rxq_info_unreg(rxq);
}
if (flow->page_pool) {
page_pool_destroy(flow->page_pool);
flow->page_pool = NULL;
}
}
}
static int am65_cpsw_create_xdp_rxqs(struct am65_cpsw_common *common)
{
struct am65_cpsw_rx_chn *rx_chn = &common->rx_chns;
struct page_pool_params pp_params = {
.flags = PP_FLAG_DMA_MAP,
.order = 0,
.pool_size = AM65_CPSW_MAX_RX_DESC,
.nid = dev_to_node(common->dev),
.dev = common->dev,
.dma_dir = DMA_BIDIRECTIONAL,
/* .napi set dynamically */
};
struct am65_cpsw_rx_flow *flow;
struct xdp_rxq_info *rxq;
struct page_pool *pool;
int id, port, ret;
for (id = 0; id < common->rx_ch_num_flows; id++) {
flow = &rx_chn->flows[id];
pp_params.napi = &flow->napi_rx;
pool = page_pool_create(&pp_params);
if (IS_ERR(pool)) {
ret = PTR_ERR(pool);
goto err;
}
flow->page_pool = pool;
/* using same page pool is allowed as no running rx handlers
* simultaneously for both ndevs
*/
for (port = 0; port < common->port_num; port++) {
if (!common->ports[port].ndev)
continue;
rxq = &common->ports[port].xdp_rxq[id];
ret = xdp_rxq_info_reg(rxq, common->ports[port].ndev,
id, flow->napi_rx.napi_id);
if (ret)
goto err;
ret = xdp_rxq_info_reg_mem_model(rxq,
MEM_TYPE_PAGE_POOL,
pool);
if (ret)
goto err;
}
}
return 0;
err:
am65_cpsw_destroy_xdp_rxqs(common);
return ret;
}
static int am65_cpsw_nuss_desc_idx(struct k3_cppi_desc_pool *desc_pool,
void *desc,
unsigned char dsize_log2)
{
void *pool_addr = k3_cppi_desc_pool_cpuaddr(desc_pool);
return (desc - pool_addr) >> dsize_log2;
}
static void am65_cpsw_nuss_set_buf_type(struct am65_cpsw_tx_chn *tx_chn,
struct cppi5_host_desc_t *desc,
enum am65_cpsw_tx_buf_type buf_type)
{
int desc_idx;
desc_idx = am65_cpsw_nuss_desc_idx(tx_chn->desc_pool, desc,
tx_chn->dsize_log2);
k3_cppi_desc_pool_desc_info_set(tx_chn->desc_pool, desc_idx,
(void *)buf_type);
}
static enum am65_cpsw_tx_buf_type am65_cpsw_nuss_buf_type(struct am65_cpsw_tx_chn *tx_chn,
dma_addr_t desc_dma)
{
struct cppi5_host_desc_t *desc_tx;
int desc_idx;
desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
desc_idx = am65_cpsw_nuss_desc_idx(tx_chn->desc_pool, desc_tx,
tx_chn->dsize_log2);
return (enum am65_cpsw_tx_buf_type)k3_cppi_desc_pool_desc_info(tx_chn->desc_pool,
desc_idx);
}
static inline void am65_cpsw_put_page(struct am65_cpsw_rx_flow *flow,
struct page *page,
bool allow_direct)
{
page_pool_put_full_page(flow->page_pool, page, allow_direct);
}
static void am65_cpsw_nuss_rx_cleanup(void *data, dma_addr_t desc_dma)
{
struct am65_cpsw_rx_chn *rx_chn = data;
struct cppi5_host_desc_t *desc_rx;
struct am65_cpsw_swdata *swdata;
dma_addr_t buf_dma;
struct page *page;
u32 buf_dma_len;
u32 flow_id;
desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_rx);
page = swdata->page;
flow_id = swdata->flow_id;
cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
am65_cpsw_put_page(&rx_chn->flows[flow_id], page, false);
}
static void am65_cpsw_nuss_xmit_free(struct am65_cpsw_tx_chn *tx_chn,
struct cppi5_host_desc_t *desc)
{
struct cppi5_host_desc_t *first_desc, *next_desc;
dma_addr_t buf_dma, next_desc_dma;
u32 buf_dma_len;
first_desc = desc;
next_desc = first_desc;
cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len, DMA_TO_DEVICE);
next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
while (next_desc_dma) {
next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
next_desc_dma);
cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len,
DMA_TO_DEVICE);
next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc);
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
}
k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc);
}
static void am65_cpsw_nuss_tx_cleanup(void *data, dma_addr_t desc_dma)
{
struct am65_cpsw_tx_chn *tx_chn = data;
struct cppi5_host_desc_t *desc_tx;
struct sk_buff *skb;
void **swdata;
desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_tx);
skb = *(swdata);
am65_cpsw_nuss_xmit_free(tx_chn, desc_tx);
dev_kfree_skb_any(skb);
}
static struct sk_buff *am65_cpsw_build_skb(void *page_addr,
struct net_device *ndev,
unsigned int len)
{
struct sk_buff *skb;
len += AM65_CPSW_HEADROOM;
skb = build_skb(page_addr, len);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, AM65_CPSW_HEADROOM);
skb->dev = ndev;
return skb;
}
static int am65_cpsw_nuss_common_open(struct am65_cpsw_common *common)
{
struct am65_cpsw_host *host_p = am65_common_get_host(common);
struct am65_cpsw_rx_chn *rx_chn = &common->rx_chns;
struct am65_cpsw_tx_chn *tx_chn = common->tx_chns;
int port_idx, i, ret, tx, flow_idx;
struct am65_cpsw_rx_flow *flow;
u32 val, port_mask;
struct page *page;
if (common->usage_count)
return 0;
/* Control register */
writel(AM65_CPSW_CTL_P0_ENABLE | AM65_CPSW_CTL_P0_TX_CRC_REMOVE |
AM65_CPSW_CTL_VLAN_AWARE | AM65_CPSW_CTL_P0_RX_PAD,
common->cpsw_base + AM65_CPSW_REG_CTL);
/* Max length register */
writel(AM65_CPSW_MAX_PACKET_SIZE,
host_p->port_base + AM65_CPSW_PORT_REG_RX_MAXLEN);
/* set base flow_id */
writel(common->rx_flow_id_base,
host_p->port_base + AM65_CPSW_PORT0_REG_FLOW_ID_OFFSET);
writel(AM65_CPSW_P0_REG_CTL_RX_CHECKSUM_EN | AM65_CPSW_P0_REG_CTL_RX_REMAP_VLAN,
host_p->port_base + AM65_CPSW_P0_REG_CTL);
am65_cpsw_nuss_set_p0_ptype(common);
/* enable statistic */
val = BIT(HOST_PORT_NUM);
for (port_idx = 0; port_idx < common->port_num; port_idx++) {
struct am65_cpsw_port *port = &common->ports[port_idx];
if (!port->disabled)
val |= BIT(port->port_id);
}
writel(val, common->cpsw_base + AM65_CPSW_REG_STAT_PORT_EN);
/* disable priority elevation */
writel(0, common->cpsw_base + AM65_CPSW_REG_PTYPE);
cpsw_ale_start(common->ale);
/* limit to one RX flow only */
cpsw_ale_control_set(common->ale, HOST_PORT_NUM,
ALE_DEFAULT_THREAD_ID, 0);
cpsw_ale_control_set(common->ale, HOST_PORT_NUM,
ALE_DEFAULT_THREAD_ENABLE, 1);
/* switch to vlan unaware mode */
cpsw_ale_control_set(common->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1);
cpsw_ale_control_set(common->ale, HOST_PORT_NUM,
ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
/* default vlan cfg: create mask based on enabled ports */
port_mask = GENMASK(common->port_num, 0) &
~common->disabled_ports_mask;
cpsw_ale_add_vlan(common->ale, 0, port_mask,
port_mask, port_mask,
port_mask & ~ALE_PORT_HOST);
if (common->is_emac_mode)
am65_cpsw_init_host_port_emac(common);
else
am65_cpsw_init_host_port_switch(common);
am65_cpsw_qos_tx_p0_rate_init(common);
ret = am65_cpsw_create_xdp_rxqs(common);
if (ret) {
dev_err(common->dev, "Failed to create XDP rx queues\n");
return ret;
}
for (flow_idx = 0; flow_idx < common->rx_ch_num_flows; flow_idx++) {
flow = &rx_chn->flows[flow_idx];
for (i = 0; i < AM65_CPSW_MAX_RX_DESC; i++) {
page = page_pool_dev_alloc_pages(flow->page_pool);
if (!page) {
dev_err(common->dev, "cannot allocate page in flow %d\n",
flow_idx);
ret = -ENOMEM;
goto fail_rx;
}
ret = am65_cpsw_nuss_rx_push(common, page, flow_idx);
if (ret < 0) {
dev_err(common->dev,
"cannot submit page to rx channel flow %d, error %d\n",
flow_idx, ret);
am65_cpsw_put_page(flow, page, false);
goto fail_rx;
}
}
}
ret = k3_udma_glue_enable_rx_chn(rx_chn->rx_chn);
if (ret) {
dev_err(common->dev, "couldn't enable rx chn: %d\n", ret);
goto fail_rx;
}
for (i = 0; i < common->rx_ch_num_flows ; i++) {
napi_enable(&rx_chn->flows[i].napi_rx);
if (rx_chn->flows[i].irq_disabled) {
rx_chn->flows[i].irq_disabled = false;
enable_irq(rx_chn->flows[i].irq);
}
}
for (tx = 0; tx < common->tx_ch_num; tx++) {
ret = k3_udma_glue_enable_tx_chn(tx_chn[tx].tx_chn);
if (ret) {
dev_err(common->dev, "couldn't enable tx chn %d: %d\n",
tx, ret);
tx--;
goto fail_tx;
}
napi_enable(&tx_chn[tx].napi_tx);
}
dev_dbg(common->dev, "cpsw_nuss started\n");
return 0;
fail_tx:
while (tx >= 0) {
napi_disable(&tx_chn[tx].napi_tx);
k3_udma_glue_disable_tx_chn(tx_chn[tx].tx_chn);
tx--;
}
for (flow_idx = 0; i < common->rx_ch_num_flows; flow_idx++) {
flow = &rx_chn->flows[flow_idx];
if (!flow->irq_disabled) {
disable_irq(flow->irq);
flow->irq_disabled = true;
}
napi_disable(&flow->napi_rx);
}
k3_udma_glue_disable_rx_chn(rx_chn->rx_chn);
fail_rx:
for (i = 0; i < common->rx_ch_num_flows; i++)
k3_udma_glue_reset_rx_chn(rx_chn->rx_chn, i, rx_chn,
am65_cpsw_nuss_rx_cleanup, !!i);
am65_cpsw_destroy_xdp_rxqs(common);
return ret;
}
static int am65_cpsw_nuss_common_stop(struct am65_cpsw_common *common)
{
struct am65_cpsw_rx_chn *rx_chn = &common->rx_chns;
struct am65_cpsw_tx_chn *tx_chn = common->tx_chns;
int i;
if (common->usage_count != 1)
return 0;
cpsw_ale_control_set(common->ale, HOST_PORT_NUM,
ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
/* shutdown tx channels */
atomic_set(&common->tdown_cnt, common->tx_ch_num);
/* ensure new tdown_cnt value is visible */
smp_mb__after_atomic();
reinit_completion(&common->tdown_complete);
for (i = 0; i < common->tx_ch_num; i++)
k3_udma_glue_tdown_tx_chn(tx_chn[i].tx_chn, false);
i = wait_for_completion_timeout(&common->tdown_complete,
msecs_to_jiffies(1000));
if (!i)
dev_err(common->dev, "tx timeout\n");
for (i = 0; i < common->tx_ch_num; i++) {
napi_disable(&tx_chn[i].napi_tx);
hrtimer_cancel(&tx_chn[i].tx_hrtimer);
}
for (i = 0; i < common->tx_ch_num; i++) {
k3_udma_glue_reset_tx_chn(tx_chn[i].tx_chn, &tx_chn[i],
am65_cpsw_nuss_tx_cleanup);
k3_udma_glue_disable_tx_chn(tx_chn[i].tx_chn);
}
reinit_completion(&common->tdown_complete);
k3_udma_glue_tdown_rx_chn(rx_chn->rx_chn, true);
if (common->pdata.quirks & AM64_CPSW_QUIRK_DMA_RX_TDOWN_IRQ) {
i = wait_for_completion_timeout(&common->tdown_complete, msecs_to_jiffies(1000));
if (!i)
dev_err(common->dev, "rx teardown timeout\n");
}
for (i = common->rx_ch_num_flows - 1; i >= 0; i--) {
napi_disable(&rx_chn->flows[i].napi_rx);
hrtimer_cancel(&rx_chn->flows[i].rx_hrtimer);
k3_udma_glue_reset_rx_chn(rx_chn->rx_chn, i, rx_chn,
am65_cpsw_nuss_rx_cleanup, !!i);
}
k3_udma_glue_disable_rx_chn(rx_chn->rx_chn);
cpsw_ale_stop(common->ale);
writel(0, common->cpsw_base + AM65_CPSW_REG_CTL);
writel(0, common->cpsw_base + AM65_CPSW_REG_STAT_PORT_EN);
am65_cpsw_destroy_xdp_rxqs(common);
dev_dbg(common->dev, "cpsw_nuss stopped\n");
return 0;
}
static int am65_cpsw_nuss_ndo_slave_stop(struct net_device *ndev)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
int ret;
phylink_stop(port->slave.phylink);
netif_tx_stop_all_queues(ndev);
phylink_disconnect_phy(port->slave.phylink);
ret = am65_cpsw_nuss_common_stop(common);
if (ret)
return ret;
common->usage_count--;
pm_runtime_put(common->dev);
return 0;
}
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
struct am65_cpsw_port *port = arg;
if (!vdev)
return 0;
return am65_cpsw_nuss_ndo_slave_add_vid(port->ndev, 0, vid);
}
static int am65_cpsw_nuss_ndo_slave_open(struct net_device *ndev)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
int ret, i;
u32 reg;
ret = pm_runtime_resume_and_get(common->dev);
if (ret < 0)
return ret;
/* Idle MAC port */
cpsw_sl_ctl_set(port->slave.mac_sl, CPSW_SL_CTL_CMD_IDLE);
cpsw_sl_wait_for_idle(port->slave.mac_sl, 100);
cpsw_sl_ctl_reset(port->slave.mac_sl);
/* soft reset MAC */
cpsw_sl_reg_write(port->slave.mac_sl, CPSW_SL_SOFT_RESET, 1);
mdelay(1);
reg = cpsw_sl_reg_read(port->slave.mac_sl, CPSW_SL_SOFT_RESET);
if (reg) {
dev_err(common->dev, "soft RESET didn't complete\n");
ret = -ETIMEDOUT;
goto runtime_put;
}
/* Notify the stack of the actual queue counts. */
ret = netif_set_real_num_tx_queues(ndev, common->tx_ch_num);
if (ret) {
dev_err(common->dev, "cannot set real number of tx queues\n");
goto runtime_put;
}
ret = netif_set_real_num_rx_queues(ndev, common->rx_ch_num_flows);
if (ret) {
dev_err(common->dev, "cannot set real number of rx queues\n");
goto runtime_put;
}
for (i = 0; i < common->tx_ch_num; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(ndev, i);
netdev_tx_reset_queue(txq);
txq->tx_maxrate = common->tx_chns[i].rate_mbps;
}
ret = am65_cpsw_nuss_common_open(common);
if (ret)
goto runtime_put;
common->usage_count++;
am65_cpsw_port_set_sl_mac(port, ndev->dev_addr);
if (common->is_emac_mode)
am65_cpsw_init_port_emac_ale(port);
else
am65_cpsw_init_port_switch_ale(port);
/* mac_sl should be configured via phy-link interface */
am65_cpsw_sl_ctl_reset(port);
ret = phylink_of_phy_connect(port->slave.phylink, port->slave.port_np, 0);
if (ret)
goto error_cleanup;
/* restore vlan configurations */
vlan_for_each(ndev, cpsw_restore_vlans, port);
phylink_start(port->slave.phylink);
return 0;
error_cleanup:
am65_cpsw_nuss_ndo_slave_stop(ndev);
return ret;
runtime_put:
pm_runtime_put(common->dev);
return ret;
}
static int am65_cpsw_xdp_tx_frame(struct net_device *ndev,
struct am65_cpsw_tx_chn *tx_chn,
struct xdp_frame *xdpf,
enum am65_cpsw_tx_buf_type buf_type)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct cppi5_host_desc_t *host_desc;
struct netdev_queue *netif_txq;
dma_addr_t dma_desc, dma_buf;
u32 pkt_len = xdpf->len;
void **swdata;
int ret;
host_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
if (unlikely(!host_desc)) {
ndev->stats.tx_dropped++;
return AM65_CPSW_XDP_CONSUMED; /* drop */
}
am65_cpsw_nuss_set_buf_type(tx_chn, host_desc, buf_type);
dma_buf = dma_map_single(tx_chn->dma_dev, xdpf->data,
pkt_len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_chn->dma_dev, dma_buf))) {
ndev->stats.tx_dropped++;
ret = AM65_CPSW_XDP_CONSUMED; /* drop */
goto pool_free;
}
cppi5_hdesc_init(host_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
AM65_CPSW_NAV_PS_DATA_SIZE);
cppi5_hdesc_set_pkttype(host_desc, AM65_CPSW_CPPI_TX_PKT_TYPE);
cppi5_hdesc_set_pktlen(host_desc, pkt_len);
cppi5_desc_set_pktids(&host_desc->hdr, 0, AM65_CPSW_CPPI_TX_FLOW_ID);
cppi5_desc_set_tags_ids(&host_desc->hdr, 0, port->port_id);
k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &dma_buf);
cppi5_hdesc_attach_buf(host_desc, dma_buf, pkt_len, dma_buf, pkt_len);
swdata = cppi5_hdesc_get_swdata(host_desc);
*(swdata) = xdpf;
/* Report BQL before sending the packet */
netif_txq = netdev_get_tx_queue(ndev, tx_chn->id);
netdev_tx_sent_queue(netif_txq, pkt_len);
dma_desc = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, host_desc);
if (AM65_CPSW_IS_CPSW2G(common)) {
ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, host_desc,
dma_desc);
} else {
spin_lock_bh(&tx_chn->lock);
ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, host_desc,
dma_desc);
spin_unlock_bh(&tx_chn->lock);
}
if (ret) {
/* Inform BQL */
netdev_tx_completed_queue(netif_txq, 1, pkt_len);
ndev->stats.tx_errors++;
ret = AM65_CPSW_XDP_CONSUMED; /* drop */
goto dma_unmap;
}
return 0;
dma_unmap:
k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &dma_buf);
dma_unmap_single(tx_chn->dma_dev, dma_buf, pkt_len, DMA_TO_DEVICE);
pool_free:
k3_cppi_desc_pool_free(tx_chn->desc_pool, host_desc);
return ret;
}
static int am65_cpsw_run_xdp(struct am65_cpsw_rx_flow *flow,
struct am65_cpsw_port *port,
struct xdp_buff *xdp,
int cpu, int *len)
{
struct am65_cpsw_common *common = flow->common;
struct am65_cpsw_ndev_priv *ndev_priv;
struct net_device *ndev = port->ndev;
struct am65_cpsw_ndev_stats *stats;
int ret = AM65_CPSW_XDP_CONSUMED;
struct am65_cpsw_tx_chn *tx_chn;
struct netdev_queue *netif_txq;
struct xdp_frame *xdpf;
struct bpf_prog *prog;
struct page *page;
u32 act;
int err;
prog = READ_ONCE(port->xdp_prog);
if (!prog)
return AM65_CPSW_XDP_PASS;
act = bpf_prog_run_xdp(prog, xdp);
/* XDP prog might have changed packet data and boundaries */
*len = xdp->data_end - xdp->data;
ndev_priv = netdev_priv(ndev);
stats = this_cpu_ptr(ndev_priv->stats);
switch (act) {
case XDP_PASS:
ret = AM65_CPSW_XDP_PASS;
goto out;
case XDP_TX:
tx_chn = &common->tx_chns[cpu % AM65_CPSW_MAX_QUEUES];
netif_txq = netdev_get_tx_queue(ndev, tx_chn->id);
xdpf = xdp_convert_buff_to_frame(xdp);
if (unlikely(!xdpf))
goto drop;
__netif_tx_lock(netif_txq, cpu);
err = am65_cpsw_xdp_tx_frame(ndev, tx_chn, xdpf,
AM65_CPSW_TX_BUF_TYPE_XDP_TX);
__netif_tx_unlock(netif_txq);
if (err)
goto drop;
u64_stats_update_begin(&stats->syncp);
stats->rx_bytes += *len;
stats->rx_packets++;
u64_stats_update_end(&stats->syncp);
ret = AM65_CPSW_XDP_CONSUMED;
goto out;
case XDP_REDIRECT:
if (unlikely(xdp_do_redirect(ndev, xdp, prog)))
goto drop;
u64_stats_update_begin(&stats->syncp);
stats->rx_bytes += *len;
stats->rx_packets++;
u64_stats_update_end(&stats->syncp);
ret = AM65_CPSW_XDP_REDIRECT;
goto out;
default:
bpf_warn_invalid_xdp_action(ndev, prog, act);
fallthrough;
case XDP_ABORTED:
drop:
trace_xdp_exception(ndev, prog, act);
fallthrough;
case XDP_DROP:
ndev->stats.rx_dropped++;
}
page = virt_to_head_page(xdp->data);
am65_cpsw_put_page(flow, page, true);
out:
return ret;
}
/* RX psdata[2] word format - checksum information */
#define AM65_CPSW_RX_PSD_CSUM_ADD GENMASK(15, 0)
#define AM65_CPSW_RX_PSD_CSUM_ERR BIT(16)
#define AM65_CPSW_RX_PSD_IS_FRAGMENT BIT(17)
#define AM65_CPSW_RX_PSD_IS_TCP BIT(18)
#define AM65_CPSW_RX_PSD_IPV6_VALID BIT(19)
#define AM65_CPSW_RX_PSD_IPV4_VALID BIT(20)
static void am65_cpsw_nuss_rx_csum(struct sk_buff *skb, u32 csum_info)
{
/* HW can verify IPv4/IPv6 TCP/UDP packets checksum
* csum information provides in psdata[2] word:
* AM65_CPSW_RX_PSD_CSUM_ERR bit - indicates csum error
* AM65_CPSW_RX_PSD_IPV6_VALID and AM65_CPSW_RX_PSD_IPV4_VALID
* bits - indicates IPv4/IPv6 packet
* AM65_CPSW_RX_PSD_IS_FRAGMENT bit - indicates fragmented packet
* AM65_CPSW_RX_PSD_CSUM_ADD has value 0xFFFF for non fragmented packets
* or csum value for fragmented packets if !AM65_CPSW_RX_PSD_CSUM_ERR
*/
skb_checksum_none_assert(skb);
if (unlikely(!(skb->dev->features & NETIF_F_RXCSUM)))
return;
if ((csum_info & (AM65_CPSW_RX_PSD_IPV6_VALID |
AM65_CPSW_RX_PSD_IPV4_VALID)) &&
!(csum_info & AM65_CPSW_RX_PSD_CSUM_ERR)) {
/* csum for fragmented packets is unsupported */
if (!(csum_info & AM65_CPSW_RX_PSD_IS_FRAGMENT))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
static int am65_cpsw_nuss_rx_packets(struct am65_cpsw_rx_flow *flow,
int cpu, int *xdp_state)
{
struct am65_cpsw_rx_chn *rx_chn = &flow->common->rx_chns;
u32 buf_dma_len, pkt_len, port_id = 0, csum_info;
struct am65_cpsw_common *common = flow->common;
struct am65_cpsw_ndev_priv *ndev_priv;
struct am65_cpsw_ndev_stats *stats;
struct cppi5_host_desc_t *desc_rx;
struct device *dev = common->dev;
struct am65_cpsw_swdata *swdata;
struct page *page, *new_page;
dma_addr_t desc_dma, buf_dma;
struct am65_cpsw_port *port;
struct net_device *ndev;
u32 flow_idx = flow->id;
struct sk_buff *skb;
struct xdp_buff xdp;
int headroom, ret;
void *page_addr;
u32 *psdata;
*xdp_state = AM65_CPSW_XDP_PASS;
ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_idx, &desc_dma);
if (ret) {
if (ret != -ENODATA)
dev_err(dev, "RX: pop chn fail %d\n", ret);
return ret;
}
if (cppi5_desc_is_tdcm(desc_dma)) {
dev_dbg(dev, "%s RX tdown flow: %u\n", __func__, flow_idx);
if (common->pdata.quirks & AM64_CPSW_QUIRK_DMA_RX_TDOWN_IRQ)
complete(&common->tdown_complete);
return 0;
}
desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
dev_dbg(dev, "%s flow_idx: %u desc %pad\n",
__func__, flow_idx, &desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_rx);
page = swdata->page;
page_addr = page_address(page);
cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);
dev_dbg(dev, "%s rx port_id:%d\n", __func__, port_id);
port = am65_common_get_port(common, port_id);
ndev = port->ndev;
psdata = cppi5_hdesc_get_psdata(desc_rx);
csum_info = psdata[2];
dev_dbg(dev, "%s rx csum_info:%#x\n", __func__, csum_info);
dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
skb = am65_cpsw_build_skb(page_addr, ndev,
AM65_CPSW_MAX_PACKET_SIZE);
if (unlikely(!skb)) {
new_page = page;
goto requeue;
}
if (port->xdp_prog) {
xdp_init_buff(&xdp, PAGE_SIZE, &port->xdp_rxq[flow->id]);
xdp_prepare_buff(&xdp, page_addr, AM65_CPSW_HEADROOM,
pkt_len, false);
*xdp_state = am65_cpsw_run_xdp(flow, port, &xdp,
cpu, &pkt_len);
if (*xdp_state != AM65_CPSW_XDP_PASS)
goto allocate;
/* Compute additional headroom to be reserved */
headroom = (xdp.data - xdp.data_hard_start) - skb_headroom(skb);
skb_reserve(skb, headroom);
}
ndev_priv = netdev_priv(ndev);
am65_cpsw_nuss_set_offload_fwd_mark(skb, ndev_priv->offload_fwd_mark);
skb_put(skb, pkt_len);
if (port->rx_ts_enabled)
am65_cpts_rx_timestamp(common->cpts, skb);
skb_mark_for_recycle(skb);
skb->protocol = eth_type_trans(skb, ndev);
am65_cpsw_nuss_rx_csum(skb, csum_info);
napi_gro_receive(&flow->napi_rx, skb);
stats = this_cpu_ptr(ndev_priv->stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_packets++;
stats->rx_bytes += pkt_len;
u64_stats_update_end(&stats->syncp);
allocate:
new_page = page_pool_dev_alloc_pages(flow->page_pool);
if (unlikely(!new_page)) {
dev_err(dev, "page alloc failed\n");
return -ENOMEM;
}
if (netif_dormant(ndev)) {
am65_cpsw_put_page(flow, new_page, true);
ndev->stats.rx_dropped++;
return 0;
}
requeue:
ret = am65_cpsw_nuss_rx_push(common, new_page, flow_idx);
if (WARN_ON(ret < 0)) {
am65_cpsw_put_page(flow, new_page, true);
ndev->stats.rx_errors++;
ndev->stats.rx_dropped++;
}
return ret;
}
static enum hrtimer_restart am65_cpsw_nuss_rx_timer_callback(struct hrtimer *timer)
{
struct am65_cpsw_rx_flow *flow = container_of(timer,
struct am65_cpsw_rx_flow,
rx_hrtimer);
enable_irq(flow->irq);
return HRTIMER_NORESTART;
}
static int am65_cpsw_nuss_rx_poll(struct napi_struct *napi_rx, int budget)
{
struct am65_cpsw_rx_flow *flow = am65_cpsw_napi_to_rx_flow(napi_rx);
struct am65_cpsw_common *common = flow->common;
int cpu = smp_processor_id();
int xdp_state_or = 0;
int cur_budget, ret;
int xdp_state;
int num_rx = 0;
/* process only this flow */
cur_budget = budget;
while (cur_budget--) {
ret = am65_cpsw_nuss_rx_packets(flow, cpu, &xdp_state);
xdp_state_or |= xdp_state;
if (ret)
break;
num_rx++;
}
if (xdp_state_or & AM65_CPSW_XDP_REDIRECT)
xdp_do_flush();
dev_dbg(common->dev, "%s num_rx:%d %d\n", __func__, num_rx, budget);
if (num_rx < budget && napi_complete_done(napi_rx, num_rx)) {
if (flow->irq_disabled) {
flow->irq_disabled = false;
if (unlikely(flow->rx_pace_timeout)) {
hrtimer_start(&flow->rx_hrtimer,
ns_to_ktime(flow->rx_pace_timeout),
HRTIMER_MODE_REL_PINNED);
} else {
enable_irq(flow->irq);
}
}
}
return num_rx;
}
static struct sk_buff *
am65_cpsw_nuss_tx_compl_packet_skb(struct am65_cpsw_tx_chn *tx_chn,
dma_addr_t desc_dma)
{
struct am65_cpsw_ndev_priv *ndev_priv;
struct am65_cpsw_ndev_stats *stats;
struct cppi5_host_desc_t *desc_tx;
struct net_device *ndev;
struct sk_buff *skb;
void **swdata;
desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
desc_dma);
swdata = cppi5_hdesc_get_swdata(desc_tx);
skb = *(swdata);
am65_cpsw_nuss_xmit_free(tx_chn, desc_tx);
ndev = skb->dev;
am65_cpts_tx_timestamp(tx_chn->common->cpts, skb);
ndev_priv = netdev_priv(ndev);
stats = this_cpu_ptr(ndev_priv->stats);
u64_stats_update_begin(&stats->syncp);
stats->tx_packets++;
stats->tx_bytes += skb->len;
u64_stats_update_end(&stats->syncp);
return skb;
}
static struct xdp_frame *
am65_cpsw_nuss_tx_compl_packet_xdp(struct am65_cpsw_common *common,
struct am65_cpsw_tx_chn *tx_chn,
dma_addr_t desc_dma,
struct net_device **ndev)
{
struct am65_cpsw_ndev_priv *ndev_priv;
struct am65_cpsw_ndev_stats *stats;
struct cppi5_host_desc_t *desc_tx;
struct am65_cpsw_port *port;
struct xdp_frame *xdpf;
u32 port_id = 0;
void **swdata;
desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
cppi5_desc_get_tags_ids(&desc_tx->hdr, NULL, &port_id);
swdata = cppi5_hdesc_get_swdata(desc_tx);
xdpf = *(swdata);
am65_cpsw_nuss_xmit_free(tx_chn, desc_tx);
port = am65_common_get_port(common, port_id);
*ndev = port->ndev;
ndev_priv = netdev_priv(*ndev);
stats = this_cpu_ptr(ndev_priv->stats);
u64_stats_update_begin(&stats->syncp);
stats->tx_packets++;
stats->tx_bytes += xdpf->len;
u64_stats_update_end(&stats->syncp);
return xdpf;
}
static void am65_cpsw_nuss_tx_wake(struct am65_cpsw_tx_chn *tx_chn, struct net_device *ndev,
struct netdev_queue *netif_txq)
{
if (netif_tx_queue_stopped(netif_txq)) {
/* Check whether the queue is stopped due to stalled
* tx dma, if the queue is stopped then wake the queue
* as we have free desc for tx
*/
__netif_tx_lock(netif_txq, smp_processor_id());
if (netif_running(ndev) &&
(k3_cppi_desc_pool_avail(tx_chn->desc_pool) >= MAX_SKB_FRAGS))
netif_tx_wake_queue(netif_txq);
__netif_tx_unlock(netif_txq);
}
}
static int am65_cpsw_nuss_tx_compl_packets(struct am65_cpsw_common *common,
int chn, unsigned int budget, bool *tdown)
{
enum am65_cpsw_tx_buf_type buf_type;
struct device *dev = common->dev;
struct am65_cpsw_tx_chn *tx_chn;
struct netdev_queue *netif_txq;
unsigned int total_bytes = 0;
struct net_device *ndev;
struct xdp_frame *xdpf;
struct sk_buff *skb;
dma_addr_t desc_dma;
int res, num_tx = 0;
tx_chn = &common->tx_chns[chn];
while (true) {
spin_lock(&tx_chn->lock);
res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
spin_unlock(&tx_chn->lock);
if (res == -ENODATA)
break;
if (cppi5_desc_is_tdcm(desc_dma)) {
if (atomic_dec_and_test(&common->tdown_cnt))
complete(&common->tdown_complete);
*tdown = true;
break;
}
buf_type = am65_cpsw_nuss_buf_type(tx_chn, desc_dma);
if (buf_type == AM65_CPSW_TX_BUF_TYPE_SKB) {
skb = am65_cpsw_nuss_tx_compl_packet_skb(tx_chn, desc_dma);
ndev = skb->dev;
total_bytes = skb->len;
napi_consume_skb(skb, budget);
} else {
xdpf = am65_cpsw_nuss_tx_compl_packet_xdp(common, tx_chn,
desc_dma, &ndev);
total_bytes = xdpf->len;
if (buf_type == AM65_CPSW_TX_BUF_TYPE_XDP_TX)
xdp_return_frame_rx_napi(xdpf);
else
xdp_return_frame(xdpf);
}
num_tx++;
netif_txq = netdev_get_tx_queue(ndev, chn);
netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);
am65_cpsw_nuss_tx_wake(tx_chn, ndev, netif_txq);
}
dev_dbg(dev, "%s:%u pkt:%d\n", __func__, chn, num_tx);
return num_tx;
}
static int am65_cpsw_nuss_tx_compl_packets_2g(struct am65_cpsw_common *common,
int chn, unsigned int budget, bool *tdown)
{
enum am65_cpsw_tx_buf_type buf_type;
struct device *dev = common->dev;
struct am65_cpsw_tx_chn *tx_chn;
struct netdev_queue *netif_txq;
unsigned int total_bytes = 0;
struct net_device *ndev;
struct xdp_frame *xdpf;
struct sk_buff *skb;
dma_addr_t desc_dma;
int res, num_tx = 0;
tx_chn = &common->tx_chns[chn];
while (true) {
res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
if (res == -ENODATA)
break;
if (cppi5_desc_is_tdcm(desc_dma)) {
if (atomic_dec_and_test(&common->tdown_cnt))
complete(&common->tdown_complete);
*tdown = true;
break;
}
buf_type = am65_cpsw_nuss_buf_type(tx_chn, desc_dma);
if (buf_type == AM65_CPSW_TX_BUF_TYPE_SKB) {
skb = am65_cpsw_nuss_tx_compl_packet_skb(tx_chn, desc_dma);
ndev = skb->dev;
total_bytes += skb->len;
napi_consume_skb(skb, budget);
} else {
xdpf = am65_cpsw_nuss_tx_compl_packet_xdp(common, tx_chn,
desc_dma, &ndev);
total_bytes += xdpf->len;
if (buf_type == AM65_CPSW_TX_BUF_TYPE_XDP_TX)
xdp_return_frame_rx_napi(xdpf);
else
xdp_return_frame(xdpf);
}
num_tx++;
}
if (!num_tx)
return 0;
netif_txq = netdev_get_tx_queue(ndev, chn);
netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);
am65_cpsw_nuss_tx_wake(tx_chn, ndev, netif_txq);
dev_dbg(dev, "%s:%u pkt:%d\n", __func__, chn, num_tx);
return num_tx;
}
static enum hrtimer_restart am65_cpsw_nuss_tx_timer_callback(struct hrtimer *timer)
{
struct am65_cpsw_tx_chn *tx_chns =
container_of(timer, struct am65_cpsw_tx_chn, tx_hrtimer);
enable_irq(tx_chns->irq);
return HRTIMER_NORESTART;
}
static int am65_cpsw_nuss_tx_poll(struct napi_struct *napi_tx, int budget)
{
struct am65_cpsw_tx_chn *tx_chn = am65_cpsw_napi_to_tx_chn(napi_tx);
bool tdown = false;
int num_tx;
if (AM65_CPSW_IS_CPSW2G(tx_chn->common))
num_tx = am65_cpsw_nuss_tx_compl_packets_2g(tx_chn->common, tx_chn->id,
budget, &tdown);
else
num_tx = am65_cpsw_nuss_tx_compl_packets(tx_chn->common,
tx_chn->id, budget, &tdown);
if (num_tx >= budget)
return budget;
if (napi_complete_done(napi_tx, num_tx)) {
if (unlikely(tx_chn->tx_pace_timeout && !tdown)) {
hrtimer_start(&tx_chn->tx_hrtimer,
ns_to_ktime(tx_chn->tx_pace_timeout),
HRTIMER_MODE_REL_PINNED);
} else {
enable_irq(tx_chn->irq);
}
}
return 0;
}
static irqreturn_t am65_cpsw_nuss_rx_irq(int irq, void *dev_id)
{
struct am65_cpsw_rx_flow *flow = dev_id;
flow->irq_disabled = true;
disable_irq_nosync(irq);
napi_schedule(&flow->napi_rx);
return IRQ_HANDLED;
}
static irqreturn_t am65_cpsw_nuss_tx_irq(int irq, void *dev_id)
{
struct am65_cpsw_tx_chn *tx_chn = dev_id;
disable_irq_nosync(irq);
napi_schedule(&tx_chn->napi_tx);
return IRQ_HANDLED;
}
static netdev_tx_t am65_cpsw_nuss_ndo_slave_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc;
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct device *dev = common->dev;
struct am65_cpsw_tx_chn *tx_chn;
struct netdev_queue *netif_txq;
dma_addr_t desc_dma, buf_dma;
int ret, q_idx, i;
void **swdata;
u32 *psdata;
u32 pkt_len;
/* padding enabled in hw */
pkt_len = skb_headlen(skb);
/* SKB TX timestamp */
if (port->tx_ts_enabled)
am65_cpts_prep_tx_timestamp(common->cpts, skb);
q_idx = skb_get_queue_mapping(skb);
dev_dbg(dev, "%s skb_queue:%d\n", __func__, q_idx);
tx_chn = &common->tx_chns[q_idx];
netif_txq = netdev_get_tx_queue(ndev, q_idx);
/* Map the linear buffer */
buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_chn->dma_dev, buf_dma))) {
dev_err(dev, "Failed to map tx skb buffer\n");
ndev->stats.tx_errors++;
goto err_free_skb;
}
first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
if (!first_desc) {
dev_dbg(dev, "Failed to allocate descriptor\n");
dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len,
DMA_TO_DEVICE);
goto busy_stop_q;
}
am65_cpsw_nuss_set_buf_type(tx_chn, first_desc,
AM65_CPSW_TX_BUF_TYPE_SKB);
cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
AM65_CPSW_NAV_PS_DATA_SIZE);
cppi5_desc_set_pktids(&first_desc->hdr, 0, AM65_CPSW_CPPI_TX_FLOW_ID);
cppi5_hdesc_set_pkttype(first_desc, AM65_CPSW_CPPI_TX_PKT_TYPE);
cppi5_desc_set_tags_ids(&first_desc->hdr, 0, port->port_id);
k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
swdata = cppi5_hdesc_get_swdata(first_desc);
*(swdata) = skb;
psdata = cppi5_hdesc_get_psdata(first_desc);
/* HW csum offload if enabled */
psdata[2] = 0;
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
unsigned int cs_start, cs_offset;
cs_start = skb_transport_offset(skb);
cs_offset = cs_start + skb->csum_offset;
/* HW numerates bytes starting from 1 */
psdata[2] = ((cs_offset + 1) << 24) |
((cs_start + 1) << 16) | (skb->len - cs_start);
dev_dbg(dev, "%s tx psdata:%#x\n", __func__, psdata[2]);
}
if (!skb_is_nonlinear(skb))
goto done_tx;
dev_dbg(dev, "fragmented SKB\n");
/* Handle the case where skb is fragmented in pages */
cur_desc = first_desc;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
u32 frag_size = skb_frag_size(frag);
next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
if (!next_desc) {
dev_err(dev, "Failed to allocate descriptor\n");
goto busy_free_descs;
}
am65_cpsw_nuss_set_buf_type(tx_chn, next_desc,
AM65_CPSW_TX_BUF_TYPE_SKB);
buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_chn->dma_dev, buf_dma))) {
dev_err(dev, "Failed to map tx skb page\n");
k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
ndev->stats.tx_errors++;
goto err_free_descs;
}
cppi5_hdesc_reset_hbdesc(next_desc);
k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
cppi5_hdesc_attach_buf(next_desc,
buf_dma, frag_size, buf_dma, frag_size);
desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool,
next_desc);
k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma);
cppi5_hdesc_link_hbdesc(cur_desc, desc_dma);
pkt_len += frag_size;
cur_desc = next_desc;
}
WARN_ON(pkt_len != skb->len);
done_tx:
skb_tx_timestamp(skb);
/* report bql before sending packet */
netdev_tx_sent_queue(netif_txq, pkt_len);
cppi5_hdesc_set_pktlen(first_desc, pkt_len);
desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
if (AM65_CPSW_IS_CPSW2G(common)) {
ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
} else {
spin_lock_bh(&tx_chn->lock);
ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
spin_unlock_bh(&tx_chn->lock);
}
if (ret) {
dev_err(dev, "can't push desc %d\n", ret);
/* inform bql */
netdev_tx_completed_queue(netif_txq, 1, pkt_len);
ndev->stats.tx_errors++;
goto err_free_descs;
}
if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) {
netif_tx_stop_queue(netif_txq);
/* Barrier, so that stop_queue visible to other cpus */
smp_mb__after_atomic();
dev_dbg(dev, "netif_tx_stop_queue %d\n", q_idx);
/* re-check for smp */
if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
MAX_SKB_FRAGS) {
netif_tx_wake_queue(netif_txq);
dev_dbg(dev, "netif_tx_wake_queue %d\n", q_idx);
}
}
return NETDEV_TX_OK;
err_free_descs:
am65_cpsw_nuss_xmit_free(tx_chn, first_desc);
err_free_skb:
ndev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
busy_free_descs:
am65_cpsw_nuss_xmit_free(tx_chn, first_desc);
busy_stop_q:
netif_tx_stop_queue(netif_txq);
return NETDEV_TX_BUSY;
}
static int am65_cpsw_nuss_ndo_slave_set_mac_address(struct net_device *ndev,
void *addr)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct sockaddr *sockaddr = (struct sockaddr *)addr;
int ret;
ret = eth_prepare_mac_addr_change(ndev, addr);
if (ret < 0)
return ret;
ret = pm_runtime_resume_and_get(common->dev);
if (ret < 0)
return ret;
cpsw_ale_del_ucast(common->ale, ndev->dev_addr,
HOST_PORT_NUM, 0, 0);
cpsw_ale_add_ucast(common->ale, sockaddr->sa_data,
HOST_PORT_NUM, ALE_SECURE, 0);
am65_cpsw_port_set_sl_mac(port, addr);
eth_commit_mac_addr_change(ndev, sockaddr);
pm_runtime_put(common->dev);
return 0;
}
static int am65_cpsw_nuss_hwtstamp_set(struct net_device *ndev,
struct ifreq *ifr)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 ts_ctrl, seq_id, ts_ctrl_ltype2, ts_vlan_ltype;
struct hwtstamp_config cfg;
if (!IS_ENABLED(CONFIG_TI_K3_AM65_CPTS))
return -EOPNOTSUPP;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
/* TX HW timestamp */
switch (cfg.tx_type) {
case HWTSTAMP_TX_OFF:
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
port->rx_ts_enabled = false;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
port->rx_ts_enabled = true;
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_NTP_ALL:
return -EOPNOTSUPP;
default:
return -ERANGE;
}
port->tx_ts_enabled = (cfg.tx_type == HWTSTAMP_TX_ON);
/* cfg TX timestamp */
seq_id = (AM65_CPSW_TS_SEQ_ID_OFFSET <<
AM65_CPSW_PN_TS_SEQ_ID_OFFSET_SHIFT) | ETH_P_1588;
ts_vlan_ltype = ETH_P_8021Q;
ts_ctrl_ltype2 = ETH_P_1588 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_107 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_129 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_130 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_131 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_132 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_319 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_320 |
AM65_CPSW_PN_TS_CTL_LTYPE2_TS_TTL_NONZERO;
ts_ctrl = AM65_CPSW_TS_EVENT_MSG_TYPE_BITS <<
AM65_CPSW_PN_TS_CTL_MSG_TYPE_EN_SHIFT;
if (port->tx_ts_enabled)
ts_ctrl |= AM65_CPSW_TS_TX_ANX_ALL_EN |
AM65_CPSW_PN_TS_CTL_TX_VLAN_LT1_EN;
if (port->rx_ts_enabled)
ts_ctrl |= AM65_CPSW_TS_RX_ANX_ALL_EN |
AM65_CPSW_PN_TS_CTL_RX_VLAN_LT1_EN;
writel(seq_id, port->port_base + AM65_CPSW_PORTN_REG_TS_SEQ_LTYPE_REG);
writel(ts_vlan_ltype, port->port_base +
AM65_CPSW_PORTN_REG_TS_VLAN_LTYPE_REG);
writel(ts_ctrl_ltype2, port->port_base +
AM65_CPSW_PORTN_REG_TS_CTL_LTYPE2);
writel(ts_ctrl, port->port_base + AM65_CPSW_PORTN_REG_TS_CTL);
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int am65_cpsw_nuss_hwtstamp_get(struct net_device *ndev,
struct ifreq *ifr)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct hwtstamp_config cfg;
if (!IS_ENABLED(CONFIG_TI_K3_AM65_CPTS))
return -EOPNOTSUPP;
cfg.flags = 0;
cfg.tx_type = port->tx_ts_enabled ?
HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
cfg.rx_filter = port->rx_ts_enabled ?
HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE;
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int am65_cpsw_nuss_ndo_slave_ioctl(struct net_device *ndev,
struct ifreq *req, int cmd)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
if (!netif_running(ndev))
return -EINVAL;
switch (cmd) {
case SIOCSHWTSTAMP:
return am65_cpsw_nuss_hwtstamp_set(ndev, req);
case SIOCGHWTSTAMP:
return am65_cpsw_nuss_hwtstamp_get(ndev, req);
}
return phylink_mii_ioctl(port->slave.phylink, req, cmd);
}
static void am65_cpsw_nuss_ndo_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct am65_cpsw_ndev_priv *ndev_priv = netdev_priv(dev);
unsigned int start;
int cpu;
for_each_possible_cpu(cpu) {
struct am65_cpsw_ndev_stats *cpu_stats;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
cpu_stats = per_cpu_ptr(ndev_priv->stats, cpu);
do {
start = u64_stats_fetch_begin(&cpu_stats->syncp);
rx_packets = cpu_stats->rx_packets;
rx_bytes = cpu_stats->rx_bytes;
tx_packets = cpu_stats->tx_packets;
tx_bytes = cpu_stats->tx_bytes;
} while (u64_stats_fetch_retry(&cpu_stats->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
}
stats->rx_errors = dev->stats.rx_errors;
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
}
static int am65_cpsw_xdp_prog_setup(struct net_device *ndev,
struct bpf_prog *prog)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
bool running = netif_running(ndev);
struct bpf_prog *old_prog;
if (running)
am65_cpsw_nuss_ndo_slave_stop(ndev);
old_prog = xchg(&port->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
if (running)
return am65_cpsw_nuss_ndo_slave_open(ndev);
return 0;
}
static int am65_cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
{
switch (bpf->command) {
case XDP_SETUP_PROG:
return am65_cpsw_xdp_prog_setup(ndev, bpf->prog);
default:
return -EINVAL;
}
}
static int am65_cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
struct xdp_frame **frames, u32 flags)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_tx_chn *tx_chn;
struct netdev_queue *netif_txq;
int cpu = smp_processor_id();
int i, nxmit = 0;
tx_chn = &common->tx_chns[cpu % common->tx_ch_num];
netif_txq = netdev_get_tx_queue(ndev, tx_chn->id);
__netif_tx_lock(netif_txq, cpu);
for (i = 0; i < n; i++) {
if (am65_cpsw_xdp_tx_frame(ndev, tx_chn, frames[i],
AM65_CPSW_TX_BUF_TYPE_XDP_NDO))
break;
nxmit++;
}
__netif_tx_unlock(netif_txq);
return nxmit;
}
static const struct net_device_ops am65_cpsw_nuss_netdev_ops = {
.ndo_open = am65_cpsw_nuss_ndo_slave_open,
.ndo_stop = am65_cpsw_nuss_ndo_slave_stop,
.ndo_start_xmit = am65_cpsw_nuss_ndo_slave_xmit,
.ndo_set_rx_mode = am65_cpsw_nuss_ndo_slave_set_rx_mode,
.ndo_get_stats64 = am65_cpsw_nuss_ndo_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = am65_cpsw_nuss_ndo_slave_set_mac_address,
.ndo_tx_timeout = am65_cpsw_nuss_ndo_host_tx_timeout,
.ndo_vlan_rx_add_vid = am65_cpsw_nuss_ndo_slave_add_vid,
.ndo_vlan_rx_kill_vid = am65_cpsw_nuss_ndo_slave_kill_vid,
.ndo_eth_ioctl = am65_cpsw_nuss_ndo_slave_ioctl,
.ndo_setup_tc = am65_cpsw_qos_ndo_setup_tc,
.ndo_set_tx_maxrate = am65_cpsw_qos_ndo_tx_p0_set_maxrate,
.ndo_bpf = am65_cpsw_ndo_bpf,
.ndo_xdp_xmit = am65_cpsw_ndo_xdp_xmit,
};
static void am65_cpsw_disable_phy(struct phy *phy)
{
phy_power_off(phy);
phy_exit(phy);
}
static int am65_cpsw_enable_phy(struct phy *phy)
{
int ret;
ret = phy_init(phy);
if (ret < 0)
return ret;
ret = phy_power_on(phy);
if (ret < 0) {
phy_exit(phy);
return ret;
}
return 0;
}
static void am65_cpsw_disable_serdes_phy(struct am65_cpsw_common *common)
{
struct am65_cpsw_port *port;
struct phy *phy;
int i;
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
phy = port->slave.serdes_phy;
if (phy)
am65_cpsw_disable_phy(phy);
}
}
static int am65_cpsw_init_serdes_phy(struct device *dev, struct device_node *port_np,
struct am65_cpsw_port *port)
{
const char *name = "serdes";
struct phy *phy;
int ret;
phy = devm_of_phy_optional_get(dev, port_np, name);
if (IS_ERR_OR_NULL(phy))
return PTR_ERR_OR_ZERO(phy);
/* Serdes PHY exists. Store it. */
port->slave.serdes_phy = phy;
ret = am65_cpsw_enable_phy(phy);
if (ret < 0)
goto err_phy;
return 0;
err_phy:
devm_phy_put(dev, phy);
return ret;
}
static void am65_cpsw_nuss_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct am65_cpsw_slave_data *slave = container_of(config, struct am65_cpsw_slave_data,
phylink_config);
struct am65_cpsw_port *port = container_of(slave, struct am65_cpsw_port, slave);
struct am65_cpsw_common *common = port->common;
if (common->pdata.extra_modes & BIT(state->interface)) {
if (state->interface == PHY_INTERFACE_MODE_SGMII) {
writel(ADVERTISE_SGMII,
port->sgmii_base + AM65_CPSW_SGMII_MR_ADV_ABILITY_REG);
cpsw_sl_ctl_set(port->slave.mac_sl, CPSW_SL_CTL_EXT_EN);
} else {
cpsw_sl_ctl_clr(port->slave.mac_sl, CPSW_SL_CTL_EXT_EN);
}
if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
cpsw_sl_ctl_set(port->slave.mac_sl,
CPSW_SL_CTL_XGIG | CPSW_SL_CTL_XGMII_EN);
} else {
cpsw_sl_ctl_clr(port->slave.mac_sl,
CPSW_SL_CTL_XGIG | CPSW_SL_CTL_XGMII_EN);
}
writel(AM65_CPSW_SGMII_CONTROL_MR_AN_ENABLE,
port->sgmii_base + AM65_CPSW_SGMII_CONTROL_REG);
}
}
static void am65_cpsw_nuss_mac_link_down(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct am65_cpsw_slave_data *slave = container_of(config, struct am65_cpsw_slave_data,
phylink_config);
struct am65_cpsw_port *port = container_of(slave, struct am65_cpsw_port, slave);
struct am65_cpsw_common *common = port->common;
struct net_device *ndev = port->ndev;
u32 mac_control;
int tmo;
/* disable forwarding */
cpsw_ale_control_set(common->ale, port->port_id, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
cpsw_sl_ctl_set(port->slave.mac_sl, CPSW_SL_CTL_CMD_IDLE);
tmo = cpsw_sl_wait_for_idle(port->slave.mac_sl, 100);
dev_dbg(common->dev, "down msc_sl %08x tmo %d\n",
cpsw_sl_reg_read(port->slave.mac_sl, CPSW_SL_MACSTATUS), tmo);
/* All the bits that am65_cpsw_nuss_mac_link_up() can possibly set */
mac_control = CPSW_SL_CTL_GMII_EN | CPSW_SL_CTL_GIG | CPSW_SL_CTL_IFCTL_A |
CPSW_SL_CTL_FULLDUPLEX | CPSW_SL_CTL_RX_FLOW_EN | CPSW_SL_CTL_TX_FLOW_EN;
/* If interface mode is RGMII, CPSW_SL_CTL_EXT_EN might have been set for 10 Mbps */
if (phy_interface_mode_is_rgmii(interface))
mac_control |= CPSW_SL_CTL_EXT_EN;
/* Only clear those bits that can be set by am65_cpsw_nuss_mac_link_up() */
cpsw_sl_ctl_clr(port->slave.mac_sl, mac_control);
am65_cpsw_qos_link_down(ndev);
netif_tx_stop_all_queues(ndev);
}
static void am65_cpsw_nuss_mac_link_up(struct phylink_config *config, struct phy_device *phy,
unsigned int mode, phy_interface_t interface, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
struct am65_cpsw_slave_data *slave = container_of(config, struct am65_cpsw_slave_data,
phylink_config);
struct am65_cpsw_port *port = container_of(slave, struct am65_cpsw_port, slave);
struct am65_cpsw_common *common = port->common;
u32 mac_control = CPSW_SL_CTL_GMII_EN;
struct net_device *ndev = port->ndev;
/* Bring the port out of idle state */
cpsw_sl_ctl_clr(port->slave.mac_sl, CPSW_SL_CTL_CMD_IDLE);
if (speed == SPEED_1000)
mac_control |= CPSW_SL_CTL_GIG;
/* TODO: Verify whether in-band is necessary for 10 Mbps RGMII */
if (speed == SPEED_10 && phy_interface_mode_is_rgmii(interface))
/* Can be used with in band mode only */
mac_control |= CPSW_SL_CTL_EXT_EN;
if (speed == SPEED_100 && interface == PHY_INTERFACE_MODE_RMII)
mac_control |= CPSW_SL_CTL_IFCTL_A;
if (duplex)
mac_control |= CPSW_SL_CTL_FULLDUPLEX;
/* rx_pause/tx_pause */
if (rx_pause)
mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
if (tx_pause)
mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
cpsw_sl_ctl_set(port->slave.mac_sl, mac_control);
/* enable forwarding */
cpsw_ale_control_set(common->ale, port->port_id, ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
am65_cpsw_qos_link_up(ndev, speed);
netif_tx_wake_all_queues(ndev);
}
static const struct phylink_mac_ops am65_cpsw_phylink_mac_ops = {
.mac_config = am65_cpsw_nuss_mac_config,
.mac_link_down = am65_cpsw_nuss_mac_link_down,
.mac_link_up = am65_cpsw_nuss_mac_link_up,
};
static void am65_cpsw_nuss_slave_disable_unused(struct am65_cpsw_port *port)
{
struct am65_cpsw_common *common = port->common;
if (!port->disabled)
return;
cpsw_ale_control_set(common->ale, port->port_id,
ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
cpsw_sl_reset(port->slave.mac_sl, 100);
cpsw_sl_ctl_reset(port->slave.mac_sl);
}
static void am65_cpsw_nuss_free_tx_chns(void *data)
{
struct am65_cpsw_common *common = data;
int i;
for (i = 0; i < common->tx_ch_num; i++) {
struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[i];
if (!IS_ERR_OR_NULL(tx_chn->desc_pool))
k3_cppi_desc_pool_destroy(tx_chn->desc_pool);
if (!IS_ERR_OR_NULL(tx_chn->tx_chn))
k3_udma_glue_release_tx_chn(tx_chn->tx_chn);
memset(tx_chn, 0, sizeof(*tx_chn));
}
}
static void am65_cpsw_nuss_remove_tx_chns(struct am65_cpsw_common *common)
{
struct device *dev = common->dev;
int i;
devm_remove_action(dev, am65_cpsw_nuss_free_tx_chns, common);
common->tx_ch_rate_msk = 0;
for (i = 0; i < common->tx_ch_num; i++) {
struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[i];
if (tx_chn->irq)
devm_free_irq(dev, tx_chn->irq, tx_chn);
netif_napi_del(&tx_chn->napi_tx);
}
am65_cpsw_nuss_free_tx_chns(common);
}
static int am65_cpsw_nuss_ndev_add_tx_napi(struct am65_cpsw_common *common)
{
struct device *dev = common->dev;
int i, ret = 0;
for (i = 0; i < common->tx_ch_num; i++) {
struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[i];
netif_napi_add_tx(common->dma_ndev, &tx_chn->napi_tx,
am65_cpsw_nuss_tx_poll);
hrtimer_init(&tx_chn->tx_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
tx_chn->tx_hrtimer.function = &am65_cpsw_nuss_tx_timer_callback;
ret = devm_request_irq(dev, tx_chn->irq,
am65_cpsw_nuss_tx_irq,
IRQF_TRIGGER_HIGH,
tx_chn->tx_chn_name, tx_chn);
if (ret) {
dev_err(dev, "failure requesting tx%u irq %u, %d\n",
tx_chn->id, tx_chn->irq, ret);
goto err;
}
}
err:
return ret;
}
static int am65_cpsw_nuss_init_tx_chns(struct am65_cpsw_common *common)
{
u32 max_desc_num = ALIGN(AM65_CPSW_MAX_TX_DESC, MAX_SKB_FRAGS);
struct k3_udma_glue_tx_channel_cfg tx_cfg = { 0 };
struct device *dev = common->dev;
struct k3_ring_cfg ring_cfg = {
.elm_size = K3_RINGACC_RING_ELSIZE_8,
.mode = K3_RINGACC_RING_MODE_RING,
.flags = 0
};
u32 hdesc_size, hdesc_size_out;
int i, ret = 0;
hdesc_size = cppi5_hdesc_calc_size(true, AM65_CPSW_NAV_PS_DATA_SIZE,
AM65_CPSW_NAV_SW_DATA_SIZE);
tx_cfg.swdata_size = AM65_CPSW_NAV_SW_DATA_SIZE;
tx_cfg.tx_cfg = ring_cfg;
tx_cfg.txcq_cfg = ring_cfg;
tx_cfg.tx_cfg.size = max_desc_num;
tx_cfg.txcq_cfg.size = max_desc_num;
for (i = 0; i < common->tx_ch_num; i++) {
struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[i];
snprintf(tx_chn->tx_chn_name,
sizeof(tx_chn->tx_chn_name), "tx%d", i);
spin_lock_init(&tx_chn->lock);
tx_chn->common = common;
tx_chn->id = i;
tx_chn->descs_num = max_desc_num;
tx_chn->tx_chn =
k3_udma_glue_request_tx_chn(dev,
tx_chn->tx_chn_name,
&tx_cfg);
if (IS_ERR(tx_chn->tx_chn)) {
ret = dev_err_probe(dev, PTR_ERR(tx_chn->tx_chn),
"Failed to request tx dma channel\n");
goto err;
}
tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn);
tx_chn->desc_pool = k3_cppi_desc_pool_create_name(tx_chn->dma_dev,
tx_chn->descs_num,
hdesc_size,
tx_chn->tx_chn_name);
if (IS_ERR(tx_chn->desc_pool)) {
ret = PTR_ERR(tx_chn->desc_pool);
dev_err(dev, "Failed to create poll %d\n", ret);
goto err;
}
hdesc_size_out = k3_cppi_desc_pool_desc_size(tx_chn->desc_pool);
tx_chn->dsize_log2 = __fls(hdesc_size_out);
WARN_ON(hdesc_size_out != (1 << tx_chn->dsize_log2));
tx_chn->irq = k3_udma_glue_tx_get_irq(tx_chn->tx_chn);
if (tx_chn->irq < 0) {
dev_err(dev, "Failed to get tx dma irq %d\n",
tx_chn->irq);
ret = tx_chn->irq;
goto err;
}
snprintf(tx_chn->tx_chn_name,
sizeof(tx_chn->tx_chn_name), "%s-tx%d",
dev_name(dev), tx_chn->id);
}
ret = am65_cpsw_nuss_ndev_add_tx_napi(common);
if (ret) {
dev_err(dev, "Failed to add tx NAPI %d\n", ret);
goto err;
}
err:
i = devm_add_action(dev, am65_cpsw_nuss_free_tx_chns, common);
if (i) {
dev_err(dev, "Failed to add free_tx_chns action %d\n", i);
return i;
}
return ret;
}
static void am65_cpsw_nuss_free_rx_chns(void *data)
{
struct am65_cpsw_common *common = data;
struct am65_cpsw_rx_chn *rx_chn;
rx_chn = &common->rx_chns;
if (!IS_ERR_OR_NULL(rx_chn->desc_pool))
k3_cppi_desc_pool_destroy(rx_chn->desc_pool);
if (!IS_ERR_OR_NULL(rx_chn->rx_chn))
k3_udma_glue_release_rx_chn(rx_chn->rx_chn);
}
static void am65_cpsw_nuss_remove_rx_chns(struct am65_cpsw_common *common)
{
struct device *dev = common->dev;
struct am65_cpsw_rx_chn *rx_chn;
struct am65_cpsw_rx_flow *flows;
int i;
rx_chn = &common->rx_chns;
flows = rx_chn->flows;
devm_remove_action(dev, am65_cpsw_nuss_free_rx_chns, common);
for (i = 0; i < common->rx_ch_num_flows; i++) {
if (!(flows[i].irq < 0))
devm_free_irq(dev, flows[i].irq, &flows[i]);
netif_napi_del(&flows[i].napi_rx);
}
am65_cpsw_nuss_free_rx_chns(common);
common->rx_flow_id_base = -1;
}
static int am65_cpsw_nuss_init_rx_chns(struct am65_cpsw_common *common)
{
struct am65_cpsw_rx_chn *rx_chn = &common->rx_chns;
struct k3_udma_glue_rx_channel_cfg rx_cfg = { 0 };
u32 max_desc_num = AM65_CPSW_MAX_RX_DESC;
struct device *dev = common->dev;
struct am65_cpsw_rx_flow *flow;
u32 hdesc_size, hdesc_size_out;
u32 fdqring_id;
int i, ret = 0;
hdesc_size = cppi5_hdesc_calc_size(true, AM65_CPSW_NAV_PS_DATA_SIZE,
AM65_CPSW_NAV_SW_DATA_SIZE);
rx_cfg.swdata_size = AM65_CPSW_NAV_SW_DATA_SIZE;
rx_cfg.flow_id_num = common->rx_ch_num_flows;
rx_cfg.flow_id_base = common->rx_flow_id_base;
/* init all flows */
rx_chn->dev = dev;
rx_chn->descs_num = max_desc_num * rx_cfg.flow_id_num;
for (i = 0; i < common->rx_ch_num_flows; i++) {
flow = &rx_chn->flows[i];
flow->page_pool = NULL;
}
rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, "rx", &rx_cfg);
if (IS_ERR(rx_chn->rx_chn)) {
ret = dev_err_probe(dev, PTR_ERR(rx_chn->rx_chn),
"Failed to request rx dma channel\n");
goto err;
}
rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn);
rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev,
rx_chn->descs_num,
hdesc_size, "rx");
if (IS_ERR(rx_chn->desc_pool)) {
ret = PTR_ERR(rx_chn->desc_pool);
dev_err(dev, "Failed to create rx poll %d\n", ret);
goto err;
}
hdesc_size_out = k3_cppi_desc_pool_desc_size(rx_chn->desc_pool);
rx_chn->dsize_log2 = __fls(hdesc_size_out);
WARN_ON(hdesc_size_out != (1 << rx_chn->dsize_log2));
common->rx_flow_id_base =
k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn);
dev_info(dev, "set new flow-id-base %u\n", common->rx_flow_id_base);
fdqring_id = K3_RINGACC_RING_ID_ANY;
for (i = 0; i < rx_cfg.flow_id_num; i++) {
struct k3_ring_cfg rxring_cfg = {
.elm_size = K3_RINGACC_RING_ELSIZE_8,
.mode = K3_RINGACC_RING_MODE_RING,
.flags = 0,
};
struct k3_ring_cfg fdqring_cfg = {
.elm_size = K3_RINGACC_RING_ELSIZE_8,
.flags = K3_RINGACC_RING_SHARED,
};
struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = {
.rx_cfg = rxring_cfg,
.rxfdq_cfg = fdqring_cfg,
.ring_rxq_id = K3_RINGACC_RING_ID_ANY,
.src_tag_lo_sel =
K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG,
};
flow = &rx_chn->flows[i];
flow->id = i;
flow->common = common;
flow->irq = -EINVAL;
rx_flow_cfg.ring_rxfdq0_id = fdqring_id;
rx_flow_cfg.rx_cfg.size = max_desc_num;
/* share same FDQ for all flows */
rx_flow_cfg.rxfdq_cfg.size = max_desc_num * rx_cfg.flow_id_num;
rx_flow_cfg.rxfdq_cfg.mode = common->pdata.fdqring_mode;
ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn,
i, &rx_flow_cfg);
if (ret) {
dev_err(dev, "Failed to init rx flow%d %d\n", i, ret);
goto err;
}
if (!i)
fdqring_id =
k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn,
i);
flow->irq = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i);
if (flow->irq <= 0) {
dev_err(dev, "Failed to get rx dma irq %d\n",
flow->irq);
ret = flow->irq;
goto err;
}
snprintf(flow->name,
sizeof(flow->name), "%s-rx%d",
dev_name(dev), i);
netif_napi_add(common->dma_ndev, &flow->napi_rx,
am65_cpsw_nuss_rx_poll);
hrtimer_init(&flow->rx_hrtimer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
flow->rx_hrtimer.function = &am65_cpsw_nuss_rx_timer_callback;
ret = devm_request_irq(dev, flow->irq,
am65_cpsw_nuss_rx_irq,
IRQF_TRIGGER_HIGH,
flow->name, flow);
if (ret) {
dev_err(dev, "failure requesting rx %d irq %u, %d\n",
i, flow->irq, ret);
flow->irq = -EINVAL;
goto err;
}
}
/* setup classifier to route priorities to flows */
cpsw_ale_classifier_setup_default(common->ale, common->rx_ch_num_flows);
err:
i = devm_add_action(dev, am65_cpsw_nuss_free_rx_chns, common);
if (i) {
dev_err(dev, "Failed to add free_rx_chns action %d\n", i);
return i;
}
return ret;
}
static int am65_cpsw_nuss_init_host_p(struct am65_cpsw_common *common)
{
struct am65_cpsw_host *host_p = am65_common_get_host(common);
host_p->common = common;
host_p->port_base = common->cpsw_base + AM65_CPSW_NU_PORTS_BASE;
host_p->stat_base = common->cpsw_base + AM65_CPSW_NU_STATS_BASE;
return 0;
}
static int am65_cpsw_am654_get_efuse_macid(struct device_node *of_node,
int slave, u8 *mac_addr)
{
u32 mac_lo, mac_hi, offset;
struct regmap *syscon;
int ret;
syscon = syscon_regmap_lookup_by_phandle(of_node, "ti,syscon-efuse");
if (IS_ERR(syscon)) {
if (PTR_ERR(syscon) == -ENODEV)
return 0;
return PTR_ERR(syscon);
}
ret = of_property_read_u32_index(of_node, "ti,syscon-efuse", 1,
&offset);
if (ret)
return ret;
regmap_read(syscon, offset, &mac_lo);
regmap_read(syscon, offset + 4, &mac_hi);
mac_addr[0] = (mac_hi >> 8) & 0xff;
mac_addr[1] = mac_hi & 0xff;
mac_addr[2] = (mac_lo >> 24) & 0xff;
mac_addr[3] = (mac_lo >> 16) & 0xff;
mac_addr[4] = (mac_lo >> 8) & 0xff;
mac_addr[5] = mac_lo & 0xff;
return 0;
}
static int am65_cpsw_init_cpts(struct am65_cpsw_common *common)
{
struct device *dev = common->dev;
struct device_node *node;
struct am65_cpts *cpts;
void __iomem *reg_base;
if (!IS_ENABLED(CONFIG_TI_K3_AM65_CPTS))
return 0;
node = of_get_child_by_name(dev->of_node, "cpts");
if (!node) {
dev_err(dev, "%s cpts not found\n", __func__);
return -ENOENT;
}
reg_base = common->cpsw_base + AM65_CPSW_NU_CPTS_BASE;
cpts = am65_cpts_create(dev, reg_base, node);
if (IS_ERR(cpts)) {
int ret = PTR_ERR(cpts);
of_node_put(node);
dev_err(dev, "cpts create err %d\n", ret);
return ret;
}
common->cpts = cpts;
/* Forbid PM runtime if CPTS is running.
* K3 CPSWxG modules may completely lose context during ON->OFF
* transitions depending on integration.
* AM65x/J721E MCU CPSW2G: false
* J721E MAIN_CPSW9G: true
*/
pm_runtime_forbid(dev);
return 0;
}
static int am65_cpsw_nuss_init_slave_ports(struct am65_cpsw_common *common)
{
struct device_node *node, *port_np;
struct device *dev = common->dev;
int ret;
node = of_get_child_by_name(dev->of_node, "ethernet-ports");
if (!node)
return -ENOENT;
for_each_child_of_node(node, port_np) {
struct am65_cpsw_port *port;
u32 port_id;
/* it is not a slave port node, continue */
if (strcmp(port_np->name, "port"))
continue;
ret = of_property_read_u32(port_np, "reg", &port_id);
if (ret < 0) {
dev_err(dev, "%pOF error reading port_id %d\n",
port_np, ret);
goto of_node_put;
}
if (!port_id || port_id > common->port_num) {
dev_err(dev, "%pOF has invalid port_id %u %s\n",
port_np, port_id, port_np->name);
ret = -EINVAL;
goto of_node_put;
}
port = am65_common_get_port(common, port_id);
port->port_id = port_id;
port->common = common;
port->port_base = common->cpsw_base + AM65_CPSW_NU_PORTS_BASE +
AM65_CPSW_NU_PORTS_OFFSET * (port_id);
if (common->pdata.extra_modes)
port->sgmii_base = common->ss_base + AM65_CPSW_SGMII_BASE * (port_id);
port->stat_base = common->cpsw_base + AM65_CPSW_NU_STATS_BASE +
(AM65_CPSW_NU_STATS_PORT_OFFSET * port_id);
port->name = of_get_property(port_np, "label", NULL);
port->fetch_ram_base =
common->cpsw_base + AM65_CPSW_NU_FRAM_BASE +
(AM65_CPSW_NU_FRAM_PORT_OFFSET * (port_id - 1));
port->slave.mac_sl = cpsw_sl_get("am65", dev, port->port_base);
if (IS_ERR(port->slave.mac_sl)) {
ret = PTR_ERR(port->slave.mac_sl);
goto of_node_put;
}
port->disabled = !of_device_is_available(port_np);
if (port->disabled) {
common->disabled_ports_mask |= BIT(port->port_id);
continue;
}
port->slave.ifphy = devm_of_phy_get(dev, port_np, NULL);
if (IS_ERR(port->slave.ifphy)) {
ret = PTR_ERR(port->slave.ifphy);
dev_err(dev, "%pOF error retrieving port phy: %d\n",
port_np, ret);
goto of_node_put;
}
/* Initialize the Serdes PHY for the port */
ret = am65_cpsw_init_serdes_phy(dev, port_np, port);
if (ret)
goto of_node_put;
port->slave.mac_only =
of_property_read_bool(port_np, "ti,mac-only");
/* get phy/link info */
port->slave.port_np = port_np;
ret = of_get_phy_mode(port_np, &port->slave.phy_if);
if (ret) {
dev_err(dev, "%pOF read phy-mode err %d\n",
port_np, ret);
goto of_node_put;
}
ret = phy_set_mode_ext(port->slave.ifphy, PHY_MODE_ETHERNET, port->slave.phy_if);
if (ret)
goto of_node_put;
ret = of_get_mac_address(port_np, port->slave.mac_addr);
if (ret) {
am65_cpsw_am654_get_efuse_macid(port_np,
port->port_id,
port->slave.mac_addr);
if (!is_valid_ether_addr(port->slave.mac_addr)) {
eth_random_addr(port->slave.mac_addr);
dev_err(dev, "Use random MAC address\n");
}
}
/* Reset all Queue priorities to 0 */
writel(0, port->port_base + AM65_CPSW_PN_REG_TX_PRI_MAP);
}
of_node_put(node);
/* is there at least one ext.port */
if (!(~common->disabled_ports_mask & GENMASK(common->port_num, 1))) {
dev_err(dev, "No Ext. port are available\n");
return -ENODEV;
}
return 0;
of_node_put:
of_node_put(port_np);
of_node_put(node);
return ret;
}
static void am65_cpsw_pcpu_stats_free(void *data)
{
struct am65_cpsw_ndev_stats __percpu *stats = data;
free_percpu(stats);
}
static void am65_cpsw_nuss_phylink_cleanup(struct am65_cpsw_common *common)
{
struct am65_cpsw_port *port;
int i;
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
if (port->slave.phylink)
phylink_destroy(port->slave.phylink);
}
}
static int
am65_cpsw_nuss_init_port_ndev(struct am65_cpsw_common *common, u32 port_idx)
{
struct am65_cpsw_ndev_priv *ndev_priv;
struct device *dev = common->dev;
struct am65_cpsw_port *port;
struct phylink *phylink;
int ret;
port = &common->ports[port_idx];
if (port->disabled)
return 0;
/* alloc netdev */
port->ndev = alloc_etherdev_mqs(sizeof(struct am65_cpsw_ndev_priv),
AM65_CPSW_MAX_QUEUES,
AM65_CPSW_MAX_QUEUES);
if (!port->ndev) {
dev_err(dev, "error allocating slave net_device %u\n",
port->port_id);
return -ENOMEM;
}
ndev_priv = netdev_priv(port->ndev);
ndev_priv->port = port;
ndev_priv->msg_enable = AM65_CPSW_DEBUG;
mutex_init(&ndev_priv->mm_lock);
port->qos.link_speed = SPEED_UNKNOWN;
SET_NETDEV_DEV(port->ndev, dev);
port->ndev->dev.of_node = port->slave.port_np;
eth_hw_addr_set(port->ndev, port->slave.mac_addr);
port->ndev->min_mtu = AM65_CPSW_MIN_PACKET_SIZE;
port->ndev->max_mtu = AM65_CPSW_MAX_PACKET_SIZE -
(VLAN_ETH_HLEN + ETH_FCS_LEN);
port->ndev->hw_features = NETIF_F_SG |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM |
NETIF_F_HW_TC;
port->ndev->features = port->ndev->hw_features |
NETIF_F_HW_VLAN_CTAG_FILTER;
port->ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_NDO_XMIT;
port->ndev->vlan_features |= NETIF_F_SG;
port->ndev->netdev_ops = &am65_cpsw_nuss_netdev_ops;
port->ndev->ethtool_ops = &am65_cpsw_ethtool_ops_slave;
/* Configuring Phylink */
port->slave.phylink_config.dev = &port->ndev->dev;
port->slave.phylink_config.type = PHYLINK_NETDEV;
port->slave.phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 | MAC_100 |
MAC_1000FD | MAC_5000FD;
port->slave.phylink_config.mac_managed_pm = true; /* MAC does PM */
switch (port->slave.phy_if) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
phy_interface_set_rgmii(port->slave.phylink_config.supported_interfaces);
break;
case PHY_INTERFACE_MODE_RMII:
__set_bit(PHY_INTERFACE_MODE_RMII,
port->slave.phylink_config.supported_interfaces);
break;
case PHY_INTERFACE_MODE_QSGMII:
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_USXGMII:
if (common->pdata.extra_modes & BIT(port->slave.phy_if)) {
__set_bit(port->slave.phy_if,
port->slave.phylink_config.supported_interfaces);
} else {
dev_err(dev, "selected phy-mode is not supported\n");
return -EOPNOTSUPP;
}
break;
default:
dev_err(dev, "selected phy-mode is not supported\n");
return -EOPNOTSUPP;
}
phylink = phylink_create(&port->slave.phylink_config,
of_fwnode_handle(port->slave.port_np),
port->slave.phy_if,
&am65_cpsw_phylink_mac_ops);
if (IS_ERR(phylink))
return PTR_ERR(phylink);
port->slave.phylink = phylink;
/* Disable TX checksum offload by default due to HW bug */
if (common->pdata.quirks & AM65_CPSW_QUIRK_I2027_NO_TX_CSUM)
port->ndev->features &= ~NETIF_F_HW_CSUM;
ndev_priv->stats = netdev_alloc_pcpu_stats(struct am65_cpsw_ndev_stats);
if (!ndev_priv->stats)
return -ENOMEM;
ret = devm_add_action_or_reset(dev, am65_cpsw_pcpu_stats_free,
ndev_priv->stats);
if (ret)
dev_err(dev, "failed to add percpu stat free action %d\n", ret);
port->xdp_prog = NULL;
if (!common->dma_ndev)
common->dma_ndev = port->ndev;
return ret;
}
static int am65_cpsw_nuss_init_ndevs(struct am65_cpsw_common *common)
{
int ret;
int i;
for (i = 0; i < common->port_num; i++) {
ret = am65_cpsw_nuss_init_port_ndev(common, i);
if (ret)
return ret;
}
return ret;
}
static void am65_cpsw_nuss_cleanup_ndev(struct am65_cpsw_common *common)
{
struct am65_cpsw_port *port;
int i;
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
if (!port->ndev)
continue;
if (port->ndev->reg_state == NETREG_REGISTERED)
unregister_netdev(port->ndev);
free_netdev(port->ndev);
port->ndev = NULL;
}
}
static void am65_cpsw_port_offload_fwd_mark_update(struct am65_cpsw_common *common)
{
int set_val = 0;
int i;
if (common->br_members == (GENMASK(common->port_num, 1) & ~common->disabled_ports_mask))
set_val = 1;
dev_dbg(common->dev, "set offload_fwd_mark %d\n", set_val);
for (i = 1; i <= common->port_num; i++) {
struct am65_cpsw_port *port = am65_common_get_port(common, i);
struct am65_cpsw_ndev_priv *priv;
if (!port->ndev)
continue;
priv = am65_ndev_to_priv(port->ndev);
priv->offload_fwd_mark = set_val;
}
}
bool am65_cpsw_port_dev_check(const struct net_device *ndev)
{
if (ndev->netdev_ops == &am65_cpsw_nuss_netdev_ops) {
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
return !common->is_emac_mode;
}
return false;
}
static int am65_cpsw_netdevice_port_link(struct net_device *ndev,
struct net_device *br_ndev,
struct netlink_ext_ack *extack)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(ndev);
int err;
if (!common->br_members) {
common->hw_bridge_dev = br_ndev;
} else {
/* This is adding the port to a second bridge, this is
* unsupported
*/
if (common->hw_bridge_dev != br_ndev)
return -EOPNOTSUPP;
}
err = switchdev_bridge_port_offload(ndev, ndev, NULL, NULL, NULL,
false, extack);
if (err)
return err;
common->br_members |= BIT(priv->port->port_id);
am65_cpsw_port_offload_fwd_mark_update(common);
return NOTIFY_DONE;
}
static void am65_cpsw_netdevice_port_unlink(struct net_device *ndev)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(ndev);
switchdev_bridge_port_unoffload(ndev, NULL, NULL, NULL);
common->br_members &= ~BIT(priv->port->port_id);
am65_cpsw_port_offload_fwd_mark_update(common);
if (!common->br_members)
common->hw_bridge_dev = NULL;
}
/* netdev notifier */
static int am65_cpsw_netdevice_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr);
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct netdev_notifier_changeupper_info *info;
int ret = NOTIFY_DONE;
if (!am65_cpsw_port_dev_check(ndev))
return NOTIFY_DONE;
switch (event) {
case NETDEV_CHANGEUPPER:
info = ptr;
if (netif_is_bridge_master(info->upper_dev)) {
if (info->linking)
ret = am65_cpsw_netdevice_port_link(ndev,
info->upper_dev,
extack);
else
am65_cpsw_netdevice_port_unlink(ndev);
}
break;
default:
return NOTIFY_DONE;
}
return notifier_from_errno(ret);
}
static int am65_cpsw_register_notifiers(struct am65_cpsw_common *cpsw)
{
int ret = 0;
if (AM65_CPSW_IS_CPSW2G(cpsw) ||
!IS_REACHABLE(CONFIG_TI_K3_AM65_CPSW_SWITCHDEV))
return 0;
cpsw->am65_cpsw_netdevice_nb.notifier_call = &am65_cpsw_netdevice_event;
ret = register_netdevice_notifier(&cpsw->am65_cpsw_netdevice_nb);
if (ret) {
dev_err(cpsw->dev, "can't register netdevice notifier\n");
return ret;
}
ret = am65_cpsw_switchdev_register_notifiers(cpsw);
if (ret)
unregister_netdevice_notifier(&cpsw->am65_cpsw_netdevice_nb);
return ret;
}
static void am65_cpsw_unregister_notifiers(struct am65_cpsw_common *cpsw)
{
if (AM65_CPSW_IS_CPSW2G(cpsw) ||
!IS_REACHABLE(CONFIG_TI_K3_AM65_CPSW_SWITCHDEV))
return;
am65_cpsw_switchdev_unregister_notifiers(cpsw);
unregister_netdevice_notifier(&cpsw->am65_cpsw_netdevice_nb);
}
static const struct devlink_ops am65_cpsw_devlink_ops = {};
static void am65_cpsw_init_stp_ale_entry(struct am65_cpsw_common *cpsw)
{
cpsw_ale_add_mcast(cpsw->ale, eth_stp_addr, ALE_PORT_HOST, ALE_SUPER, 0,
ALE_MCAST_BLOCK_LEARN_FWD);
}
static void am65_cpsw_init_host_port_switch(struct am65_cpsw_common *common)
{
struct am65_cpsw_host *host = am65_common_get_host(common);
writel(common->default_vlan, host->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
am65_cpsw_init_stp_ale_entry(common);
cpsw_ale_control_set(common->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1);
dev_dbg(common->dev, "Set P0_UNI_FLOOD\n");
cpsw_ale_control_set(common->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0);
}
static void am65_cpsw_init_host_port_emac(struct am65_cpsw_common *common)
{
struct am65_cpsw_host *host = am65_common_get_host(common);
writel(0, host->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
cpsw_ale_control_set(common->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0);
dev_dbg(common->dev, "unset P0_UNI_FLOOD\n");
/* learning make no sense in multi-mac mode */
cpsw_ale_control_set(common->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1);
}
static int am65_cpsw_dl_switch_mode_get(struct devlink *dl, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct am65_cpsw_devlink *dl_priv = devlink_priv(dl);
struct am65_cpsw_common *common = dl_priv->common;
dev_dbg(common->dev, "%s id:%u\n", __func__, id);
if (id != AM65_CPSW_DL_PARAM_SWITCH_MODE)
return -EOPNOTSUPP;
ctx->val.vbool = !common->is_emac_mode;
return 0;
}
static void am65_cpsw_init_port_emac_ale(struct am65_cpsw_port *port)
{
struct am65_cpsw_slave_data *slave = &port->slave;
struct am65_cpsw_common *common = port->common;
u32 port_mask;
writel(slave->port_vlan, port->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
if (slave->mac_only)
/* enable mac-only mode on port */
cpsw_ale_control_set(common->ale, port->port_id,
ALE_PORT_MACONLY, 1);
cpsw_ale_control_set(common->ale, port->port_id, ALE_PORT_NOLEARN, 1);
port_mask = BIT(port->port_id) | ALE_PORT_HOST;
cpsw_ale_add_ucast(common->ale, port->ndev->dev_addr,
HOST_PORT_NUM, ALE_SECURE, slave->port_vlan);
cpsw_ale_add_mcast(common->ale, port->ndev->broadcast,
port_mask, ALE_VLAN, slave->port_vlan, ALE_MCAST_FWD_2);
}
static void am65_cpsw_init_port_switch_ale(struct am65_cpsw_port *port)
{
struct am65_cpsw_slave_data *slave = &port->slave;
struct am65_cpsw_common *cpsw = port->common;
u32 port_mask;
cpsw_ale_control_set(cpsw->ale, port->port_id,
ALE_PORT_NOLEARN, 0);
cpsw_ale_add_ucast(cpsw->ale, port->ndev->dev_addr,
HOST_PORT_NUM, ALE_SECURE | ALE_BLOCKED | ALE_VLAN,
slave->port_vlan);
port_mask = BIT(port->port_id) | ALE_PORT_HOST;
cpsw_ale_add_mcast(cpsw->ale, port->ndev->broadcast,
port_mask, ALE_VLAN, slave->port_vlan,
ALE_MCAST_FWD_2);
writel(slave->port_vlan, port->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
cpsw_ale_control_set(cpsw->ale, port->port_id,
ALE_PORT_MACONLY, 0);
}
static int am65_cpsw_dl_switch_mode_set(struct devlink *dl, u32 id,
struct devlink_param_gset_ctx *ctx,
struct netlink_ext_ack *extack)
{
struct am65_cpsw_devlink *dl_priv = devlink_priv(dl);
struct am65_cpsw_common *cpsw = dl_priv->common;
bool switch_en = ctx->val.vbool;
bool if_running = false;
int i;
dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
if (id != AM65_CPSW_DL_PARAM_SWITCH_MODE)
return -EOPNOTSUPP;
if (switch_en == !cpsw->is_emac_mode)
return 0;
if (!switch_en && cpsw->br_members) {
dev_err(cpsw->dev, "Remove ports from bridge before disabling switch mode\n");
return -EINVAL;
}
rtnl_lock();
cpsw->is_emac_mode = !switch_en;
for (i = 0; i < cpsw->port_num; i++) {
struct net_device *sl_ndev = cpsw->ports[i].ndev;
if (!sl_ndev || !netif_running(sl_ndev))
continue;
if_running = true;
}
if (!if_running) {
/* all ndevs are down */
for (i = 0; i < cpsw->port_num; i++) {
struct net_device *sl_ndev = cpsw->ports[i].ndev;
struct am65_cpsw_slave_data *slave;
if (!sl_ndev)
continue;
slave = am65_ndev_to_slave(sl_ndev);
if (switch_en)
slave->port_vlan = cpsw->default_vlan;
else
slave->port_vlan = 0;
}
goto exit;
}
cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1);
/* clean up ALE table */
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_CLEAR, 1);
cpsw_ale_control_get(cpsw->ale, HOST_PORT_NUM, ALE_AGEOUT);
if (switch_en) {
dev_info(cpsw->dev, "Enable switch mode\n");
am65_cpsw_init_host_port_switch(cpsw);
for (i = 0; i < cpsw->port_num; i++) {
struct net_device *sl_ndev = cpsw->ports[i].ndev;
struct am65_cpsw_slave_data *slave;
struct am65_cpsw_port *port;
if (!sl_ndev)
continue;
port = am65_ndev_to_port(sl_ndev);
slave = am65_ndev_to_slave(sl_ndev);
slave->port_vlan = cpsw->default_vlan;
if (netif_running(sl_ndev))
am65_cpsw_init_port_switch_ale(port);
}
} else {
dev_info(cpsw->dev, "Disable switch mode\n");
am65_cpsw_init_host_port_emac(cpsw);
for (i = 0; i < cpsw->port_num; i++) {
struct net_device *sl_ndev = cpsw->ports[i].ndev;
struct am65_cpsw_port *port;
if (!sl_ndev)
continue;
port = am65_ndev_to_port(sl_ndev);
port->slave.port_vlan = 0;
if (netif_running(sl_ndev))
am65_cpsw_init_port_emac_ale(port);
}
}
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_BYPASS, 0);
exit:
rtnl_unlock();
return 0;
}
static const struct devlink_param am65_cpsw_devlink_params[] = {
DEVLINK_PARAM_DRIVER(AM65_CPSW_DL_PARAM_SWITCH_MODE, "switch_mode",
DEVLINK_PARAM_TYPE_BOOL,
BIT(DEVLINK_PARAM_CMODE_RUNTIME),
am65_cpsw_dl_switch_mode_get,
am65_cpsw_dl_switch_mode_set, NULL),
};
static int am65_cpsw_nuss_register_devlink(struct am65_cpsw_common *common)
{
struct devlink_port_attrs attrs = {};
struct am65_cpsw_devlink *dl_priv;
struct device *dev = common->dev;
struct devlink_port *dl_port;
struct am65_cpsw_port *port;
int ret = 0;
int i;
common->devlink =
devlink_alloc(&am65_cpsw_devlink_ops, sizeof(*dl_priv), dev);
if (!common->devlink)
return -ENOMEM;
dl_priv = devlink_priv(common->devlink);
dl_priv->common = common;
/* Provide devlink hook to switch mode when multiple external ports
* are present NUSS switchdev driver is enabled.
*/
if (!AM65_CPSW_IS_CPSW2G(common) &&
IS_ENABLED(CONFIG_TI_K3_AM65_CPSW_SWITCHDEV)) {
ret = devlink_params_register(common->devlink,
am65_cpsw_devlink_params,
ARRAY_SIZE(am65_cpsw_devlink_params));
if (ret) {
dev_err(dev, "devlink params reg fail ret:%d\n", ret);
goto dl_unreg;
}
}
for (i = 1; i <= common->port_num; i++) {
port = am65_common_get_port(common, i);
dl_port = &port->devlink_port;
if (port->ndev)
attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
else
attrs.flavour = DEVLINK_PORT_FLAVOUR_UNUSED;
attrs.phys.port_number = port->port_id;
attrs.switch_id.id_len = sizeof(resource_size_t);
memcpy(attrs.switch_id.id, common->switch_id, attrs.switch_id.id_len);
devlink_port_attrs_set(dl_port, &attrs);
ret = devlink_port_register(common->devlink, dl_port, port->port_id);
if (ret) {
dev_err(dev, "devlink_port reg fail for port %d, ret:%d\n",
port->port_id, ret);
goto dl_port_unreg;
}
}
devlink_register(common->devlink);
return ret;
dl_port_unreg:
for (i = i - 1; i >= 1; i--) {
port = am65_common_get_port(common, i);
dl_port = &port->devlink_port;
devlink_port_unregister(dl_port);
}
dl_unreg:
devlink_free(common->devlink);
return ret;
}
static void am65_cpsw_unregister_devlink(struct am65_cpsw_common *common)
{
struct devlink_port *dl_port;
struct am65_cpsw_port *port;
int i;
devlink_unregister(common->devlink);
for (i = 1; i <= common->port_num; i++) {
port = am65_common_get_port(common, i);
dl_port = &port->devlink_port;
devlink_port_unregister(dl_port);
}
if (!AM65_CPSW_IS_CPSW2G(common) &&
IS_ENABLED(CONFIG_TI_K3_AM65_CPSW_SWITCHDEV))
devlink_params_unregister(common->devlink,
am65_cpsw_devlink_params,
ARRAY_SIZE(am65_cpsw_devlink_params));
devlink_free(common->devlink);
}
static int am65_cpsw_nuss_register_ndevs(struct am65_cpsw_common *common)
{
struct am65_cpsw_rx_chn *rx_chan = &common->rx_chns;
struct am65_cpsw_tx_chn *tx_chan = common->tx_chns;
struct device *dev = common->dev;
struct am65_cpsw_port *port;
int ret = 0, i;
/* init tx channels */
ret = am65_cpsw_nuss_init_tx_chns(common);
if (ret)
return ret;
ret = am65_cpsw_nuss_init_rx_chns(common);
if (ret)
return ret;
/* The DMA Channels are not guaranteed to be in a clean state.
* Reset and disable them to ensure that they are back to the
* clean state and ready to be used.
*/
for (i = 0; i < common->tx_ch_num; i++) {
k3_udma_glue_reset_tx_chn(tx_chan[i].tx_chn, &tx_chan[i],
am65_cpsw_nuss_tx_cleanup);
k3_udma_glue_disable_tx_chn(tx_chan[i].tx_chn);
}
for (i = 0; i < common->rx_ch_num_flows; i++)
k3_udma_glue_reset_rx_chn(rx_chan->rx_chn, i,
rx_chan,
am65_cpsw_nuss_rx_cleanup, !!i);
k3_udma_glue_disable_rx_chn(rx_chan->rx_chn);
ret = am65_cpsw_nuss_register_devlink(common);
if (ret)
return ret;
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
if (!port->ndev)
continue;
SET_NETDEV_DEVLINK_PORT(port->ndev, &port->devlink_port);
ret = register_netdev(port->ndev);
if (ret) {
dev_err(dev, "error registering slave net device%i %d\n",
i, ret);
goto err_cleanup_ndev;
}
}
ret = am65_cpsw_register_notifiers(common);
if (ret)
goto err_cleanup_ndev;
/* can't auto unregister ndev using devm_add_action() due to
* devres release sequence in DD core for DMA
*/
return 0;
err_cleanup_ndev:
am65_cpsw_nuss_cleanup_ndev(common);
am65_cpsw_unregister_devlink(common);
return ret;
}
int am65_cpsw_nuss_update_tx_rx_chns(struct am65_cpsw_common *common,
int num_tx, int num_rx)
{
int ret;
am65_cpsw_nuss_remove_tx_chns(common);
am65_cpsw_nuss_remove_rx_chns(common);
common->tx_ch_num = num_tx;
common->rx_ch_num_flows = num_rx;
ret = am65_cpsw_nuss_init_tx_chns(common);
if (ret)
return ret;
ret = am65_cpsw_nuss_init_rx_chns(common);
return ret;
}
struct am65_cpsw_soc_pdata {
u32 quirks_dis;
};
static const struct am65_cpsw_soc_pdata am65x_soc_sr2_0 = {
.quirks_dis = AM65_CPSW_QUIRK_I2027_NO_TX_CSUM,
};
static const struct soc_device_attribute am65_cpsw_socinfo[] = {
{ .family = "AM65X",
.revision = "SR2.0",
.data = &am65x_soc_sr2_0
},
{/* sentinel */}
};
static const struct am65_cpsw_pdata am65x_sr1_0 = {
.quirks = AM65_CPSW_QUIRK_I2027_NO_TX_CSUM,
.ale_dev_id = "am65x-cpsw2g",
.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
};
static const struct am65_cpsw_pdata j721e_pdata = {
.quirks = 0,
.ale_dev_id = "am65x-cpsw2g",
.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
};
static const struct am65_cpsw_pdata am64x_cpswxg_pdata = {
.quirks = AM64_CPSW_QUIRK_DMA_RX_TDOWN_IRQ,
.ale_dev_id = "am64-cpswxg",
.fdqring_mode = K3_RINGACC_RING_MODE_RING,
};
static const struct am65_cpsw_pdata j7200_cpswxg_pdata = {
.quirks = 0,
.ale_dev_id = "am64-cpswxg",
.fdqring_mode = K3_RINGACC_RING_MODE_RING,
.extra_modes = BIT(PHY_INTERFACE_MODE_QSGMII) | BIT(PHY_INTERFACE_MODE_SGMII),
};
static const struct am65_cpsw_pdata j721e_cpswxg_pdata = {
.quirks = 0,
.ale_dev_id = "am64-cpswxg",
.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
.extra_modes = BIT(PHY_INTERFACE_MODE_QSGMII) | BIT(PHY_INTERFACE_MODE_SGMII),
};
static const struct am65_cpsw_pdata j784s4_cpswxg_pdata = {
.quirks = 0,
.ale_dev_id = "am64-cpswxg",
.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
.extra_modes = BIT(PHY_INTERFACE_MODE_QSGMII) | BIT(PHY_INTERFACE_MODE_SGMII) |
BIT(PHY_INTERFACE_MODE_USXGMII),
};
static const struct of_device_id am65_cpsw_nuss_of_mtable[] = {
{ .compatible = "ti,am654-cpsw-nuss", .data = &am65x_sr1_0},
{ .compatible = "ti,j721e-cpsw-nuss", .data = &j721e_pdata},
{ .compatible = "ti,am642-cpsw-nuss", .data = &am64x_cpswxg_pdata},
{ .compatible = "ti,j7200-cpswxg-nuss", .data = &j7200_cpswxg_pdata},
{ .compatible = "ti,j721e-cpswxg-nuss", .data = &j721e_cpswxg_pdata},
{ .compatible = "ti,j784s4-cpswxg-nuss", .data = &j784s4_cpswxg_pdata},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, am65_cpsw_nuss_of_mtable);
static void am65_cpsw_nuss_apply_socinfo(struct am65_cpsw_common *common)
{
const struct soc_device_attribute *soc;
soc = soc_device_match(am65_cpsw_socinfo);
if (soc && soc->data) {
const struct am65_cpsw_soc_pdata *socdata = soc->data;
/* disable quirks */
common->pdata.quirks &= ~socdata->quirks_dis;
}
}
static int am65_cpsw_nuss_probe(struct platform_device *pdev)
{
struct cpsw_ale_params ale_params = { 0 };
const struct of_device_id *of_id;
struct device *dev = &pdev->dev;
struct am65_cpsw_common *common;
struct device_node *node;
struct resource *res;
struct clk *clk;
int ale_entries;
u64 id_temp;
int ret, i;
common = devm_kzalloc(dev, sizeof(struct am65_cpsw_common), GFP_KERNEL);
if (!common)
return -ENOMEM;
common->dev = dev;
of_id = of_match_device(am65_cpsw_nuss_of_mtable, dev);
if (!of_id)
return -EINVAL;
common->pdata = *(const struct am65_cpsw_pdata *)of_id->data;
am65_cpsw_nuss_apply_socinfo(common);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cpsw_nuss");
common->ss_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(common->ss_base))
return PTR_ERR(common->ss_base);
common->cpsw_base = common->ss_base + AM65_CPSW_CPSW_NU_BASE;
/* Use device's physical base address as switch id */
id_temp = cpu_to_be64(res->start);
memcpy(common->switch_id, &id_temp, sizeof(res->start));
node = of_get_child_by_name(dev->of_node, "ethernet-ports");
if (!node)
return -ENOENT;
common->port_num = of_get_child_count(node);
of_node_put(node);
if (common->port_num < 1 || common->port_num > AM65_CPSW_MAX_PORTS)
return -ENOENT;
common->rx_flow_id_base = -1;
init_completion(&common->tdown_complete);
common->tx_ch_num = AM65_CPSW_DEFAULT_TX_CHNS;
common->rx_ch_num_flows = AM65_CPSW_DEFAULT_RX_CHN_FLOWS;
common->pf_p0_rx_ptype_rrobin = false;
common->default_vlan = 1;
common->ports = devm_kcalloc(dev, common->port_num,
sizeof(*common->ports),
GFP_KERNEL);
if (!common->ports)
return -ENOMEM;
clk = devm_clk_get(dev, "fck");
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "getting fck clock\n");
common->bus_freq = clk_get_rate(clk);
pm_runtime_enable(dev);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
pm_runtime_disable(dev);
return ret;
}
node = of_get_child_by_name(dev->of_node, "mdio");
if (!node) {
dev_warn(dev, "MDIO node not found\n");
} else if (of_device_is_available(node)) {
struct platform_device *mdio_pdev;
mdio_pdev = of_platform_device_create(node, NULL, dev);
if (!mdio_pdev) {
ret = -ENODEV;
goto err_pm_clear;
}
common->mdio_dev = &mdio_pdev->dev;
}
of_node_put(node);
am65_cpsw_nuss_get_ver(common);
ret = am65_cpsw_nuss_init_host_p(common);
if (ret)
goto err_of_clear;
ret = am65_cpsw_nuss_init_slave_ports(common);
if (ret)
goto err_of_clear;
/* init common data */
ale_params.dev = dev;
ale_params.ale_ageout = AM65_CPSW_ALE_AGEOUT_DEFAULT;
ale_params.ale_ports = common->port_num + 1;
ale_params.ale_regs = common->cpsw_base + AM65_CPSW_NU_ALE_BASE;
ale_params.dev_id = common->pdata.ale_dev_id;
ale_params.bus_freq = common->bus_freq;
common->ale = cpsw_ale_create(&ale_params);
if (IS_ERR(common->ale)) {
dev_err(dev, "error initializing ale engine\n");
ret = PTR_ERR(common->ale);
goto err_of_clear;
}
ale_entries = common->ale->params.ale_entries;
common->ale_context = devm_kzalloc(dev,
ale_entries * ALE_ENTRY_WORDS * sizeof(u32),
GFP_KERNEL);
ret = am65_cpsw_init_cpts(common);
if (ret)
goto err_of_clear;
/* init ports */
for (i = 0; i < common->port_num; i++)
am65_cpsw_nuss_slave_disable_unused(&common->ports[i]);
dev_set_drvdata(dev, common);
common->is_emac_mode = true;
ret = am65_cpsw_nuss_init_ndevs(common);
if (ret)
goto err_ndevs_clear;
ret = am65_cpsw_nuss_register_ndevs(common);
if (ret)
goto err_ndevs_clear;
pm_runtime_put(dev);
return 0;
err_ndevs_clear:
am65_cpsw_nuss_cleanup_ndev(common);
am65_cpsw_nuss_phylink_cleanup(common);
am65_cpts_release(common->cpts);
err_of_clear:
if (common->mdio_dev)
of_platform_device_destroy(common->mdio_dev, NULL);
err_pm_clear:
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
return ret;
}
static void am65_cpsw_nuss_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct am65_cpsw_common *common;
int ret;
common = dev_get_drvdata(dev);
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0) {
/* Note, if this error path is taken, we're leaking some
* resources.
*/
dev_err(&pdev->dev, "Failed to resume device (%pe)\n",
ERR_PTR(ret));
return;
}
am65_cpsw_unregister_notifiers(common);
/* must unregister ndevs here because DD release_driver routine calls
* dma_deconfigure(dev) before devres_release_all(dev)
*/
am65_cpsw_nuss_cleanup_ndev(common);
am65_cpsw_unregister_devlink(common);
am65_cpsw_nuss_phylink_cleanup(common);
am65_cpts_release(common->cpts);
am65_cpsw_disable_serdes_phy(common);
if (common->mdio_dev)
of_platform_device_destroy(common->mdio_dev, NULL);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
static int am65_cpsw_nuss_suspend(struct device *dev)
{
struct am65_cpsw_common *common = dev_get_drvdata(dev);
struct am65_cpsw_host *host_p = am65_common_get_host(common);
struct am65_cpsw_port *port;
struct net_device *ndev;
int i, ret;
cpsw_ale_dump(common->ale, common->ale_context);
host_p->vid_context = readl(host_p->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
ndev = port->ndev;
if (!ndev)
continue;
port->vid_context = readl(port->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
netif_device_detach(ndev);
if (netif_running(ndev)) {
rtnl_lock();
ret = am65_cpsw_nuss_ndo_slave_stop(ndev);
rtnl_unlock();
if (ret < 0) {
netdev_err(ndev, "failed to stop: %d", ret);
return ret;
}
}
}
am65_cpts_suspend(common->cpts);
am65_cpsw_nuss_remove_rx_chns(common);
am65_cpsw_nuss_remove_tx_chns(common);
return 0;
}
static int am65_cpsw_nuss_resume(struct device *dev)
{
struct am65_cpsw_common *common = dev_get_drvdata(dev);
struct am65_cpsw_host *host_p = am65_common_get_host(common);
struct am65_cpsw_port *port;
struct net_device *ndev;
int i, ret;
ret = am65_cpsw_nuss_init_tx_chns(common);
if (ret)
return ret;
ret = am65_cpsw_nuss_init_rx_chns(common);
if (ret)
return ret;
/* If RX IRQ was disabled before suspend, keep it disabled */
for (i = 0; i < common->rx_ch_num_flows; i++) {
if (common->rx_chns.flows[i].irq_disabled)
disable_irq(common->rx_chns.flows[i].irq);
}
am65_cpts_resume(common->cpts);
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
ndev = port->ndev;
if (!ndev)
continue;
if (netif_running(ndev)) {
rtnl_lock();
ret = am65_cpsw_nuss_ndo_slave_open(ndev);
rtnl_unlock();
if (ret < 0) {
netdev_err(ndev, "failed to start: %d", ret);
return ret;
}
}
netif_device_attach(ndev);
writel(port->vid_context, port->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
}
writel(host_p->vid_context, host_p->port_base + AM65_CPSW_PORT_VLAN_REG_OFFSET);
cpsw_ale_restore(common->ale, common->ale_context);
return 0;
}
static const struct dev_pm_ops am65_cpsw_nuss_dev_pm_ops = {
SYSTEM_SLEEP_PM_OPS(am65_cpsw_nuss_suspend, am65_cpsw_nuss_resume)
};
static struct platform_driver am65_cpsw_nuss_driver = {
.driver = {
.name = AM65_CPSW_DRV_NAME,
.of_match_table = am65_cpsw_nuss_of_mtable,
.pm = &am65_cpsw_nuss_dev_pm_ops,
},
.probe = am65_cpsw_nuss_probe,
.remove_new = am65_cpsw_nuss_remove,
};
module_platform_driver(am65_cpsw_nuss_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Grygorii Strashko <grygorii.strashko@ti.com>");
MODULE_DESCRIPTION("TI AM65 CPSW Ethernet driver");