| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * CXL Flash Device Driver |
| * |
| * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation |
| * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation |
| * |
| * Copyright (C) 2015 IBM Corporation |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| |
| #include <linux/unaligned.h> |
| |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_host.h> |
| #include <uapi/scsi/cxlflash_ioctl.h> |
| |
| #include "main.h" |
| #include "sislite.h" |
| #include "common.h" |
| |
| MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); |
| MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); |
| MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); |
| MODULE_LICENSE("GPL"); |
| |
| static char *cxlflash_devnode(const struct device *dev, umode_t *mode); |
| static const struct class cxlflash_class = { |
| .name = "cxlflash", |
| .devnode = cxlflash_devnode, |
| }; |
| |
| static u32 cxlflash_major; |
| static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); |
| |
| /** |
| * process_cmd_err() - command error handler |
| * @cmd: AFU command that experienced the error. |
| * @scp: SCSI command associated with the AFU command in error. |
| * |
| * Translates error bits from AFU command to SCSI command results. |
| */ |
| static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) |
| { |
| struct afu *afu = cmd->parent; |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| struct sisl_ioasa *ioasa; |
| u32 resid; |
| |
| ioasa = &(cmd->sa); |
| |
| if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { |
| resid = ioasa->resid; |
| scsi_set_resid(scp, resid); |
| dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", |
| __func__, cmd, scp, resid); |
| } |
| |
| if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { |
| dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", |
| __func__, cmd, scp); |
| scp->result = (DID_ERROR << 16); |
| } |
| |
| dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " |
| "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, |
| ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, |
| ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); |
| |
| if (ioasa->rc.scsi_rc) { |
| /* We have a SCSI status */ |
| if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { |
| memcpy(scp->sense_buffer, ioasa->sense_data, |
| SISL_SENSE_DATA_LEN); |
| scp->result = ioasa->rc.scsi_rc; |
| } else |
| scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); |
| } |
| |
| /* |
| * We encountered an error. Set scp->result based on nature |
| * of error. |
| */ |
| if (ioasa->rc.fc_rc) { |
| /* We have an FC status */ |
| switch (ioasa->rc.fc_rc) { |
| case SISL_FC_RC_LINKDOWN: |
| scp->result = (DID_REQUEUE << 16); |
| break; |
| case SISL_FC_RC_RESID: |
| /* This indicates an FCP resid underrun */ |
| if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { |
| /* If the SISL_RC_FLAGS_OVERRUN flag was set, |
| * then we will handle this error else where. |
| * If not then we must handle it here. |
| * This is probably an AFU bug. |
| */ |
| scp->result = (DID_ERROR << 16); |
| } |
| break; |
| case SISL_FC_RC_RESIDERR: |
| /* Resid mismatch between adapter and device */ |
| case SISL_FC_RC_TGTABORT: |
| case SISL_FC_RC_ABORTOK: |
| case SISL_FC_RC_ABORTFAIL: |
| case SISL_FC_RC_NOLOGI: |
| case SISL_FC_RC_ABORTPEND: |
| case SISL_FC_RC_WRABORTPEND: |
| case SISL_FC_RC_NOEXP: |
| case SISL_FC_RC_INUSE: |
| scp->result = (DID_ERROR << 16); |
| break; |
| } |
| } |
| |
| if (ioasa->rc.afu_rc) { |
| /* We have an AFU error */ |
| switch (ioasa->rc.afu_rc) { |
| case SISL_AFU_RC_NO_CHANNELS: |
| scp->result = (DID_NO_CONNECT << 16); |
| break; |
| case SISL_AFU_RC_DATA_DMA_ERR: |
| switch (ioasa->afu_extra) { |
| case SISL_AFU_DMA_ERR_PAGE_IN: |
| /* Retry */ |
| scp->result = (DID_IMM_RETRY << 16); |
| break; |
| case SISL_AFU_DMA_ERR_INVALID_EA: |
| default: |
| scp->result = (DID_ERROR << 16); |
| } |
| break; |
| case SISL_AFU_RC_OUT_OF_DATA_BUFS: |
| /* Retry */ |
| scp->result = (DID_ERROR << 16); |
| break; |
| default: |
| scp->result = (DID_ERROR << 16); |
| } |
| } |
| } |
| |
| /** |
| * cmd_complete() - command completion handler |
| * @cmd: AFU command that has completed. |
| * |
| * For SCSI commands this routine prepares and submits commands that have |
| * either completed or timed out to the SCSI stack. For internal commands |
| * (TMF or AFU), this routine simply notifies the originator that the |
| * command has completed. |
| */ |
| static void cmd_complete(struct afu_cmd *cmd) |
| { |
| struct scsi_cmnd *scp; |
| ulong lock_flags; |
| struct afu *afu = cmd->parent; |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq = get_hwq(afu, cmd->hwq_index); |
| |
| spin_lock_irqsave(&hwq->hsq_slock, lock_flags); |
| list_del(&cmd->list); |
| spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); |
| |
| if (cmd->scp) { |
| scp = cmd->scp; |
| if (unlikely(cmd->sa.ioasc)) |
| process_cmd_err(cmd, scp); |
| else |
| scp->result = (DID_OK << 16); |
| |
| dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", |
| __func__, scp, scp->result, cmd->sa.ioasc); |
| scsi_done(scp); |
| } else if (cmd->cmd_tmf) { |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| cfg->tmf_active = false; |
| wake_up_all_locked(&cfg->tmf_waitq); |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| } else |
| complete(&cmd->cevent); |
| } |
| |
| /** |
| * flush_pending_cmds() - flush all pending commands on this hardware queue |
| * @hwq: Hardware queue to flush. |
| * |
| * The hardware send queue lock associated with this hardware queue must be |
| * held when calling this routine. |
| */ |
| static void flush_pending_cmds(struct hwq *hwq) |
| { |
| struct cxlflash_cfg *cfg = hwq->afu->parent; |
| struct afu_cmd *cmd, *tmp; |
| struct scsi_cmnd *scp; |
| ulong lock_flags; |
| |
| list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { |
| /* Bypass command when on a doneq, cmd_complete() will handle */ |
| if (!list_empty(&cmd->queue)) |
| continue; |
| |
| list_del(&cmd->list); |
| |
| if (cmd->scp) { |
| scp = cmd->scp; |
| scp->result = (DID_IMM_RETRY << 16); |
| scsi_done(scp); |
| } else { |
| cmd->cmd_aborted = true; |
| |
| if (cmd->cmd_tmf) { |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| cfg->tmf_active = false; |
| wake_up_all_locked(&cfg->tmf_waitq); |
| spin_unlock_irqrestore(&cfg->tmf_slock, |
| lock_flags); |
| } else |
| complete(&cmd->cevent); |
| } |
| } |
| } |
| |
| /** |
| * context_reset() - reset context via specified register |
| * @hwq: Hardware queue owning the context to be reset. |
| * @reset_reg: MMIO register to perform reset. |
| * |
| * When the reset is successful, the SISLite specification guarantees that |
| * the AFU has aborted all currently pending I/O. Accordingly, these commands |
| * must be flushed. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) |
| { |
| struct cxlflash_cfg *cfg = hwq->afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| int rc = -ETIMEDOUT; |
| int nretry = 0; |
| u64 val = 0x1; |
| ulong lock_flags; |
| |
| dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); |
| |
| spin_lock_irqsave(&hwq->hsq_slock, lock_flags); |
| |
| writeq_be(val, reset_reg); |
| do { |
| val = readq_be(reset_reg); |
| if ((val & 0x1) == 0x0) { |
| rc = 0; |
| break; |
| } |
| |
| /* Double delay each time */ |
| udelay(1 << nretry); |
| } while (nretry++ < MC_ROOM_RETRY_CNT); |
| |
| if (!rc) |
| flush_pending_cmds(hwq); |
| |
| spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); |
| |
| dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", |
| __func__, rc, val, nretry); |
| return rc; |
| } |
| |
| /** |
| * context_reset_ioarrin() - reset context via IOARRIN register |
| * @hwq: Hardware queue owning the context to be reset. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int context_reset_ioarrin(struct hwq *hwq) |
| { |
| return context_reset(hwq, &hwq->host_map->ioarrin); |
| } |
| |
| /** |
| * context_reset_sq() - reset context via SQ_CONTEXT_RESET register |
| * @hwq: Hardware queue owning the context to be reset. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int context_reset_sq(struct hwq *hwq) |
| { |
| return context_reset(hwq, &hwq->host_map->sq_ctx_reset); |
| } |
| |
| /** |
| * send_cmd_ioarrin() - sends an AFU command via IOARRIN register |
| * @afu: AFU associated with the host. |
| * @cmd: AFU command to send. |
| * |
| * Return: |
| * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure |
| */ |
| static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq = get_hwq(afu, cmd->hwq_index); |
| int rc = 0; |
| s64 room; |
| ulong lock_flags; |
| |
| /* |
| * To avoid the performance penalty of MMIO, spread the update of |
| * 'room' over multiple commands. |
| */ |
| spin_lock_irqsave(&hwq->hsq_slock, lock_flags); |
| if (--hwq->room < 0) { |
| room = readq_be(&hwq->host_map->cmd_room); |
| if (room <= 0) { |
| dev_dbg_ratelimited(dev, "%s: no cmd_room to send " |
| "0x%02X, room=0x%016llX\n", |
| __func__, cmd->rcb.cdb[0], room); |
| hwq->room = 0; |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| hwq->room = room - 1; |
| } |
| |
| list_add(&cmd->list, &hwq->pending_cmds); |
| writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); |
| out: |
| spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); |
| dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", |
| __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); |
| return rc; |
| } |
| |
| /** |
| * send_cmd_sq() - sends an AFU command via SQ ring |
| * @afu: AFU associated with the host. |
| * @cmd: AFU command to send. |
| * |
| * Return: |
| * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure |
| */ |
| static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq = get_hwq(afu, cmd->hwq_index); |
| int rc = 0; |
| int newval; |
| ulong lock_flags; |
| |
| newval = atomic_dec_if_positive(&hwq->hsq_credits); |
| if (newval <= 0) { |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| |
| cmd->rcb.ioasa = &cmd->sa; |
| |
| spin_lock_irqsave(&hwq->hsq_slock, lock_flags); |
| |
| *hwq->hsq_curr = cmd->rcb; |
| if (hwq->hsq_curr < hwq->hsq_end) |
| hwq->hsq_curr++; |
| else |
| hwq->hsq_curr = hwq->hsq_start; |
| |
| list_add(&cmd->list, &hwq->pending_cmds); |
| writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); |
| |
| spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); |
| out: |
| dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " |
| "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, |
| cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, |
| readq_be(&hwq->host_map->sq_head), |
| readq_be(&hwq->host_map->sq_tail)); |
| return rc; |
| } |
| |
| /** |
| * wait_resp() - polls for a response or timeout to a sent AFU command |
| * @afu: AFU associated with the host. |
| * @cmd: AFU command that was sent. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int wait_resp(struct afu *afu, struct afu_cmd *cmd) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| int rc = 0; |
| ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); |
| |
| timeout = wait_for_completion_timeout(&cmd->cevent, timeout); |
| if (!timeout) |
| rc = -ETIMEDOUT; |
| |
| if (cmd->cmd_aborted) |
| rc = -EAGAIN; |
| |
| if (unlikely(cmd->sa.ioasc != 0)) { |
| dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", |
| __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); |
| rc = -EIO; |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command |
| * @host: SCSI host associated with device. |
| * @scp: SCSI command to send. |
| * @afu: SCSI command to send. |
| * |
| * Hashes a command based upon the hardware queue mode. |
| * |
| * Return: Trusted index of target hardware queue |
| */ |
| static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, |
| struct afu *afu) |
| { |
| u32 tag; |
| u32 hwq = 0; |
| |
| if (afu->num_hwqs == 1) |
| return 0; |
| |
| switch (afu->hwq_mode) { |
| case HWQ_MODE_RR: |
| hwq = afu->hwq_rr_count++ % afu->num_hwqs; |
| break; |
| case HWQ_MODE_TAG: |
| tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp)); |
| hwq = blk_mq_unique_tag_to_hwq(tag); |
| break; |
| case HWQ_MODE_CPU: |
| hwq = smp_processor_id() % afu->num_hwqs; |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| } |
| |
| return hwq; |
| } |
| |
| /** |
| * send_tmf() - sends a Task Management Function (TMF) |
| * @cfg: Internal structure associated with the host. |
| * @sdev: SCSI device destined for TMF. |
| * @tmfcmd: TMF command to send. |
| * |
| * Return: |
| * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure |
| */ |
| static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, |
| u64 tmfcmd) |
| { |
| struct afu *afu = cfg->afu; |
| struct afu_cmd *cmd = NULL; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); |
| bool needs_deletion = false; |
| char *buf = NULL; |
| ulong lock_flags; |
| int rc = 0; |
| ulong to; |
| |
| buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); |
| if (unlikely(!buf)) { |
| dev_err(dev, "%s: no memory for command\n", __func__); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); |
| INIT_LIST_HEAD(&cmd->queue); |
| |
| /* When Task Management Function is active do not send another */ |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| if (cfg->tmf_active) |
| wait_event_interruptible_lock_irq(cfg->tmf_waitq, |
| !cfg->tmf_active, |
| cfg->tmf_slock); |
| cfg->tmf_active = true; |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| |
| cmd->parent = afu; |
| cmd->cmd_tmf = true; |
| cmd->hwq_index = hwq->index; |
| |
| cmd->rcb.ctx_id = hwq->ctx_hndl; |
| cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; |
| cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); |
| cmd->rcb.lun_id = lun_to_lunid(sdev->lun); |
| cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | |
| SISL_REQ_FLAGS_SUP_UNDERRUN | |
| SISL_REQ_FLAGS_TMF_CMD); |
| memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); |
| |
| rc = afu->send_cmd(afu, cmd); |
| if (unlikely(rc)) { |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| cfg->tmf_active = false; |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| goto out; |
| } |
| |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| to = msecs_to_jiffies(5000); |
| to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, |
| !cfg->tmf_active, |
| cfg->tmf_slock, |
| to); |
| if (!to) { |
| dev_err(dev, "%s: TMF timed out\n", __func__); |
| rc = -ETIMEDOUT; |
| needs_deletion = true; |
| } else if (cmd->cmd_aborted) { |
| dev_err(dev, "%s: TMF aborted\n", __func__); |
| rc = -EAGAIN; |
| } else if (cmd->sa.ioasc) { |
| dev_err(dev, "%s: TMF failed ioasc=%08x\n", |
| __func__, cmd->sa.ioasc); |
| rc = -EIO; |
| } |
| cfg->tmf_active = false; |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| |
| if (needs_deletion) { |
| spin_lock_irqsave(&hwq->hsq_slock, lock_flags); |
| list_del(&cmd->list); |
| spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); |
| } |
| out: |
| kfree(buf); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_driver_info() - information handler for this host driver |
| * @host: SCSI host associated with device. |
| * |
| * Return: A string describing the device. |
| */ |
| static const char *cxlflash_driver_info(struct Scsi_Host *host) |
| { |
| return CXLFLASH_ADAPTER_NAME; |
| } |
| |
| /** |
| * cxlflash_queuecommand() - sends a mid-layer request |
| * @host: SCSI host associated with device. |
| * @scp: SCSI command to send. |
| * |
| * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure |
| */ |
| static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(host); |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct afu_cmd *cmd = sc_to_afuci(scp); |
| struct scatterlist *sg = scsi_sglist(scp); |
| int hwq_index = cmd_to_target_hwq(host, scp, afu); |
| struct hwq *hwq = get_hwq(afu, hwq_index); |
| u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; |
| ulong lock_flags; |
| int rc = 0; |
| |
| dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " |
| "cdb=(%08x-%08x-%08x-%08x)\n", |
| __func__, scp, host->host_no, scp->device->channel, |
| scp->device->id, scp->device->lun, |
| get_unaligned_be32(&((u32 *)scp->cmnd)[0]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[1]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[2]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[3])); |
| |
| /* |
| * If a Task Management Function is active, wait for it to complete |
| * before continuing with regular commands. |
| */ |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| if (cfg->tmf_active) { |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| |
| switch (cfg->state) { |
| case STATE_PROBING: |
| case STATE_PROBED: |
| case STATE_RESET: |
| dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| case STATE_FAILTERM: |
| dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); |
| scp->result = (DID_NO_CONNECT << 16); |
| scsi_done(scp); |
| rc = 0; |
| goto out; |
| default: |
| atomic_inc(&afu->cmds_active); |
| break; |
| } |
| |
| if (likely(sg)) { |
| cmd->rcb.data_len = sg->length; |
| cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); |
| } |
| |
| cmd->scp = scp; |
| cmd->parent = afu; |
| cmd->hwq_index = hwq_index; |
| |
| cmd->sa.ioasc = 0; |
| cmd->rcb.ctx_id = hwq->ctx_hndl; |
| cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; |
| cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); |
| cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); |
| |
| if (scp->sc_data_direction == DMA_TO_DEVICE) |
| req_flags |= SISL_REQ_FLAGS_HOST_WRITE; |
| |
| cmd->rcb.req_flags = req_flags; |
| memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); |
| |
| rc = afu->send_cmd(afu, cmd); |
| atomic_dec(&afu->cmds_active); |
| out: |
| return rc; |
| } |
| |
| /** |
| * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe |
| * @cfg: Internal structure associated with the host. |
| */ |
| static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) |
| { |
| struct pci_dev *pdev = cfg->dev; |
| |
| if (pci_channel_offline(pdev)) |
| wait_event_timeout(cfg->reset_waitq, |
| !pci_channel_offline(pdev), |
| CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); |
| } |
| |
| /** |
| * free_mem() - free memory associated with the AFU |
| * @cfg: Internal structure associated with the host. |
| */ |
| static void free_mem(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| |
| if (cfg->afu) { |
| free_pages((ulong)afu, get_order(sizeof(struct afu))); |
| cfg->afu = NULL; |
| } |
| } |
| |
| /** |
| * cxlflash_reset_sync() - synchronizing point for asynchronous resets |
| * @cfg: Internal structure associated with the host. |
| */ |
| static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) |
| { |
| if (cfg->async_reset_cookie == 0) |
| return; |
| |
| /* Wait until all async calls prior to this cookie have completed */ |
| async_synchronize_cookie(cfg->async_reset_cookie + 1); |
| cfg->async_reset_cookie = 0; |
| } |
| |
| /** |
| * stop_afu() - stops the AFU command timers and unmaps the MMIO space |
| * @cfg: Internal structure associated with the host. |
| * |
| * Safe to call with AFU in a partially allocated/initialized state. |
| * |
| * Cancels scheduled worker threads, waits for any active internal AFU |
| * commands to timeout, disables IRQ polling and then unmaps the MMIO space. |
| */ |
| static void stop_afu(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct hwq *hwq; |
| int i; |
| |
| cancel_work_sync(&cfg->work_q); |
| if (!current_is_async()) |
| cxlflash_reset_sync(cfg); |
| |
| if (likely(afu)) { |
| while (atomic_read(&afu->cmds_active)) |
| ssleep(1); |
| |
| if (afu_is_irqpoll_enabled(afu)) { |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| |
| irq_poll_disable(&hwq->irqpoll); |
| } |
| } |
| |
| if (likely(afu->afu_map)) { |
| cfg->ops->psa_unmap(afu->afu_map); |
| afu->afu_map = NULL; |
| } |
| } |
| } |
| |
| /** |
| * term_intr() - disables all AFU interrupts |
| * @cfg: Internal structure associated with the host. |
| * @level: Depth of allocation, where to begin waterfall tear down. |
| * @index: Index of the hardware queue. |
| * |
| * Safe to call with AFU/MC in partially allocated/initialized state. |
| */ |
| static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, |
| u32 index) |
| { |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq; |
| |
| if (!afu) { |
| dev_err(dev, "%s: returning with NULL afu\n", __func__); |
| return; |
| } |
| |
| hwq = get_hwq(afu, index); |
| |
| if (!hwq->ctx_cookie) { |
| dev_err(dev, "%s: returning with NULL MC\n", __func__); |
| return; |
| } |
| |
| switch (level) { |
| case UNMAP_THREE: |
| /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ |
| if (index == PRIMARY_HWQ) |
| cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); |
| fallthrough; |
| case UNMAP_TWO: |
| cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); |
| fallthrough; |
| case UNMAP_ONE: |
| cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); |
| fallthrough; |
| case FREE_IRQ: |
| cfg->ops->free_afu_irqs(hwq->ctx_cookie); |
| fallthrough; |
| case UNDO_NOOP: |
| /* No action required */ |
| break; |
| } |
| } |
| |
| /** |
| * term_mc() - terminates the master context |
| * @cfg: Internal structure associated with the host. |
| * @index: Index of the hardware queue. |
| * |
| * Safe to call with AFU/MC in partially allocated/initialized state. |
| */ |
| static void term_mc(struct cxlflash_cfg *cfg, u32 index) |
| { |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq; |
| ulong lock_flags; |
| |
| if (!afu) { |
| dev_err(dev, "%s: returning with NULL afu\n", __func__); |
| return; |
| } |
| |
| hwq = get_hwq(afu, index); |
| |
| if (!hwq->ctx_cookie) { |
| dev_err(dev, "%s: returning with NULL MC\n", __func__); |
| return; |
| } |
| |
| WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); |
| if (index != PRIMARY_HWQ) |
| WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); |
| hwq->ctx_cookie = NULL; |
| |
| spin_lock_irqsave(&hwq->hrrq_slock, lock_flags); |
| hwq->hrrq_online = false; |
| spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags); |
| |
| spin_lock_irqsave(&hwq->hsq_slock, lock_flags); |
| flush_pending_cmds(hwq); |
| spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); |
| } |
| |
| /** |
| * term_afu() - terminates the AFU |
| * @cfg: Internal structure associated with the host. |
| * |
| * Safe to call with AFU/MC in partially allocated/initialized state. |
| */ |
| static void term_afu(struct cxlflash_cfg *cfg) |
| { |
| struct device *dev = &cfg->dev->dev; |
| int k; |
| |
| /* |
| * Tear down is carefully orchestrated to ensure |
| * no interrupts can come in when the problem state |
| * area is unmapped. |
| * |
| * 1) Disable all AFU interrupts for each master |
| * 2) Unmap the problem state area |
| * 3) Stop each master context |
| */ |
| for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) |
| term_intr(cfg, UNMAP_THREE, k); |
| |
| stop_afu(cfg); |
| |
| for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) |
| term_mc(cfg, k); |
| |
| dev_dbg(dev, "%s: returning\n", __func__); |
| } |
| |
| /** |
| * notify_shutdown() - notifies device of pending shutdown |
| * @cfg: Internal structure associated with the host. |
| * @wait: Whether to wait for shutdown processing to complete. |
| * |
| * This function will notify the AFU that the adapter is being shutdown |
| * and will wait for shutdown processing to complete if wait is true. |
| * This notification should flush pending I/Os to the device and halt |
| * further I/Os until the next AFU reset is issued and device restarted. |
| */ |
| static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) |
| { |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct dev_dependent_vals *ddv; |
| __be64 __iomem *fc_port_regs; |
| u64 reg, status; |
| int i, retry_cnt = 0; |
| |
| ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; |
| if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) |
| return; |
| |
| if (!afu || !afu->afu_map) { |
| dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); |
| return; |
| } |
| |
| /* Notify AFU */ |
| for (i = 0; i < cfg->num_fc_ports; i++) { |
| fc_port_regs = get_fc_port_regs(cfg, i); |
| |
| reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); |
| reg |= SISL_FC_SHUTDOWN_NORMAL; |
| writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); |
| } |
| |
| if (!wait) |
| return; |
| |
| /* Wait up to 1.5 seconds for shutdown processing to complete */ |
| for (i = 0; i < cfg->num_fc_ports; i++) { |
| fc_port_regs = get_fc_port_regs(cfg, i); |
| retry_cnt = 0; |
| |
| while (true) { |
| status = readq_be(&fc_port_regs[FC_STATUS / 8]); |
| if (status & SISL_STATUS_SHUTDOWN_COMPLETE) |
| break; |
| if (++retry_cnt >= MC_RETRY_CNT) { |
| dev_dbg(dev, "%s: port %d shutdown processing " |
| "not yet completed\n", __func__, i); |
| break; |
| } |
| msleep(100 * retry_cnt); |
| } |
| } |
| } |
| |
| /** |
| * cxlflash_get_minor() - gets the first available minor number |
| * |
| * Return: Unique minor number that can be used to create the character device. |
| */ |
| static int cxlflash_get_minor(void) |
| { |
| int minor; |
| long bit; |
| |
| bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); |
| if (bit >= CXLFLASH_MAX_ADAPTERS) |
| return -1; |
| |
| minor = bit & MINORMASK; |
| set_bit(minor, cxlflash_minor); |
| return minor; |
| } |
| |
| /** |
| * cxlflash_put_minor() - releases the minor number |
| * @minor: Minor number that is no longer needed. |
| */ |
| static void cxlflash_put_minor(int minor) |
| { |
| clear_bit(minor, cxlflash_minor); |
| } |
| |
| /** |
| * cxlflash_release_chrdev() - release the character device for the host |
| * @cfg: Internal structure associated with the host. |
| */ |
| static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) |
| { |
| device_unregister(cfg->chardev); |
| cfg->chardev = NULL; |
| cdev_del(&cfg->cdev); |
| cxlflash_put_minor(MINOR(cfg->cdev.dev)); |
| } |
| |
| /** |
| * cxlflash_remove() - PCI entry point to tear down host |
| * @pdev: PCI device associated with the host. |
| * |
| * Safe to use as a cleanup in partially allocated/initialized state. Note that |
| * the reset_waitq is flushed as part of the stop/termination of user contexts. |
| */ |
| static void cxlflash_remove(struct pci_dev *pdev) |
| { |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| struct device *dev = &pdev->dev; |
| ulong lock_flags; |
| |
| if (!pci_is_enabled(pdev)) { |
| dev_dbg(dev, "%s: Device is disabled\n", __func__); |
| return; |
| } |
| |
| /* Yield to running recovery threads before continuing with remove */ |
| wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && |
| cfg->state != STATE_PROBING); |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| if (cfg->tmf_active) |
| wait_event_interruptible_lock_irq(cfg->tmf_waitq, |
| !cfg->tmf_active, |
| cfg->tmf_slock); |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| |
| /* Notify AFU and wait for shutdown processing to complete */ |
| notify_shutdown(cfg, true); |
| |
| cfg->state = STATE_FAILTERM; |
| cxlflash_stop_term_user_contexts(cfg); |
| |
| switch (cfg->init_state) { |
| case INIT_STATE_CDEV: |
| cxlflash_release_chrdev(cfg); |
| fallthrough; |
| case INIT_STATE_SCSI: |
| cxlflash_term_local_luns(cfg); |
| scsi_remove_host(cfg->host); |
| fallthrough; |
| case INIT_STATE_AFU: |
| term_afu(cfg); |
| fallthrough; |
| case INIT_STATE_PCI: |
| cfg->ops->destroy_afu(cfg->afu_cookie); |
| pci_disable_device(pdev); |
| fallthrough; |
| case INIT_STATE_NONE: |
| free_mem(cfg); |
| scsi_host_put(cfg->host); |
| break; |
| } |
| |
| dev_dbg(dev, "%s: returning\n", __func__); |
| } |
| |
| /** |
| * alloc_mem() - allocates the AFU and its command pool |
| * @cfg: Internal structure associated with the host. |
| * |
| * A partially allocated state remains on failure. |
| * |
| * Return: |
| * 0 on success |
| * -ENOMEM on failure to allocate memory |
| */ |
| static int alloc_mem(struct cxlflash_cfg *cfg) |
| { |
| int rc = 0; |
| struct device *dev = &cfg->dev->dev; |
| |
| /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ |
| cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(sizeof(struct afu))); |
| if (unlikely(!cfg->afu)) { |
| dev_err(dev, "%s: cannot get %d free pages\n", |
| __func__, get_order(sizeof(struct afu))); |
| rc = -ENOMEM; |
| goto out; |
| } |
| cfg->afu->parent = cfg; |
| cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; |
| cfg->afu->afu_map = NULL; |
| out: |
| return rc; |
| } |
| |
| /** |
| * init_pci() - initializes the host as a PCI device |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_pci(struct cxlflash_cfg *cfg) |
| { |
| struct pci_dev *pdev = cfg->dev; |
| struct device *dev = &cfg->dev->dev; |
| int rc = 0; |
| |
| rc = pci_enable_device(pdev); |
| if (rc || pci_channel_offline(pdev)) { |
| if (pci_channel_offline(pdev)) { |
| cxlflash_wait_for_pci_err_recovery(cfg); |
| rc = pci_enable_device(pdev); |
| } |
| |
| if (rc) { |
| dev_err(dev, "%s: Cannot enable adapter\n", __func__); |
| cxlflash_wait_for_pci_err_recovery(cfg); |
| goto out; |
| } |
| } |
| |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * init_scsi() - adds the host to the SCSI stack and kicks off host scan |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_scsi(struct cxlflash_cfg *cfg) |
| { |
| struct pci_dev *pdev = cfg->dev; |
| struct device *dev = &cfg->dev->dev; |
| int rc = 0; |
| |
| rc = scsi_add_host(cfg->host, &pdev->dev); |
| if (rc) { |
| dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); |
| goto out; |
| } |
| |
| scsi_scan_host(cfg->host); |
| |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * set_port_online() - transitions the specified host FC port to online state |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * |
| * The provided MMIO region must be mapped prior to call. Online state means |
| * that the FC link layer has synced, completed the handshaking process, and |
| * is ready for login to start. |
| */ |
| static void set_port_online(__be64 __iomem *fc_regs) |
| { |
| u64 cmdcfg; |
| |
| cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ |
| cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ |
| writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| } |
| |
| /** |
| * set_port_offline() - transitions the specified host FC port to offline state |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * |
| * The provided MMIO region must be mapped prior to call. |
| */ |
| static void set_port_offline(__be64 __iomem *fc_regs) |
| { |
| u64 cmdcfg; |
| |
| cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ |
| cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ |
| writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| } |
| |
| /** |
| * wait_port_online() - waits for the specified host FC port come online |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * @delay_us: Number of microseconds to delay between reading port status. |
| * @nretry: Number of cycles to retry reading port status. |
| * |
| * The provided MMIO region must be mapped prior to call. This will timeout |
| * when the cable is not plugged in. |
| * |
| * Return: |
| * TRUE (1) when the specified port is online |
| * FALSE (0) when the specified port fails to come online after timeout |
| */ |
| static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) |
| { |
| u64 status; |
| |
| WARN_ON(delay_us < 1000); |
| |
| do { |
| msleep(delay_us / 1000); |
| status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); |
| if (status == U64_MAX) |
| nretry /= 2; |
| } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && |
| nretry--); |
| |
| return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); |
| } |
| |
| /** |
| * wait_port_offline() - waits for the specified host FC port go offline |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * @delay_us: Number of microseconds to delay between reading port status. |
| * @nretry: Number of cycles to retry reading port status. |
| * |
| * The provided MMIO region must be mapped prior to call. |
| * |
| * Return: |
| * TRUE (1) when the specified port is offline |
| * FALSE (0) when the specified port fails to go offline after timeout |
| */ |
| static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) |
| { |
| u64 status; |
| |
| WARN_ON(delay_us < 1000); |
| |
| do { |
| msleep(delay_us / 1000); |
| status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); |
| if (status == U64_MAX) |
| nretry /= 2; |
| } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && |
| nretry--); |
| |
| return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); |
| } |
| |
| /** |
| * afu_set_wwpn() - configures the WWPN for the specified host FC port |
| * @afu: AFU associated with the host that owns the specified FC port. |
| * @port: Port number being configured. |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * @wwpn: The world-wide-port-number previously discovered for port. |
| * |
| * The provided MMIO region must be mapped prior to call. As part of the |
| * sequence to configure the WWPN, the port is toggled offline and then back |
| * online. This toggling action can cause this routine to delay up to a few |
| * seconds. When configured to use the internal LUN feature of the AFU, a |
| * failure to come online is overridden. |
| */ |
| static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, |
| u64 wwpn) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| |
| set_port_offline(fc_regs); |
| if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) { |
| dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", |
| __func__, port); |
| } |
| |
| writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); |
| |
| set_port_online(fc_regs); |
| if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) { |
| dev_dbg(dev, "%s: wait on port %d to go online timed out\n", |
| __func__, port); |
| } |
| } |
| |
| /** |
| * afu_link_reset() - resets the specified host FC port |
| * @afu: AFU associated with the host that owns the specified FC port. |
| * @port: Port number being configured. |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * |
| * The provided MMIO region must be mapped prior to call. The sequence to |
| * reset the port involves toggling it offline and then back online. This |
| * action can cause this routine to delay up to a few seconds. An effort |
| * is made to maintain link with the device by switching to host to use |
| * the alternate port exclusively while the reset takes place. |
| * failure to come online is overridden. |
| */ |
| static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| u64 port_sel; |
| |
| /* first switch the AFU to the other links, if any */ |
| port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); |
| port_sel &= ~(1ULL << port); |
| writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); |
| cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); |
| |
| set_port_offline(fc_regs); |
| if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) |
| dev_err(dev, "%s: wait on port %d to go offline timed out\n", |
| __func__, port); |
| |
| set_port_online(fc_regs); |
| if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) |
| dev_err(dev, "%s: wait on port %d to go online timed out\n", |
| __func__, port); |
| |
| /* switch back to include this port */ |
| port_sel |= (1ULL << port); |
| writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); |
| cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); |
| |
| dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); |
| } |
| |
| /** |
| * afu_err_intr_init() - clears and initializes the AFU for error interrupts |
| * @afu: AFU associated with the host. |
| */ |
| static void afu_err_intr_init(struct afu *afu) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| __be64 __iomem *fc_port_regs; |
| int i; |
| struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); |
| u64 reg; |
| |
| /* global async interrupts: AFU clears afu_ctrl on context exit |
| * if async interrupts were sent to that context. This prevents |
| * the AFU form sending further async interrupts when |
| * there is |
| * nobody to receive them. |
| */ |
| |
| /* mask all */ |
| writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); |
| /* set LISN# to send and point to primary master context */ |
| reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); |
| |
| if (afu->internal_lun) |
| reg |= 1; /* Bit 63 indicates local lun */ |
| writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); |
| /* clear all */ |
| writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); |
| /* unmask bits that are of interest */ |
| /* note: afu can send an interrupt after this step */ |
| writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); |
| /* clear again in case a bit came on after previous clear but before */ |
| /* unmask */ |
| writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); |
| |
| /* Clear/Set internal lun bits */ |
| fc_port_regs = get_fc_port_regs(cfg, 0); |
| reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); |
| reg &= SISL_FC_INTERNAL_MASK; |
| if (afu->internal_lun) |
| reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); |
| writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); |
| |
| /* now clear FC errors */ |
| for (i = 0; i < cfg->num_fc_ports; i++) { |
| fc_port_regs = get_fc_port_regs(cfg, i); |
| |
| writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); |
| writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); |
| } |
| |
| /* sync interrupts for master's IOARRIN write */ |
| /* note that unlike asyncs, there can be no pending sync interrupts */ |
| /* at this time (this is a fresh context and master has not written */ |
| /* IOARRIN yet), so there is nothing to clear. */ |
| |
| /* set LISN#, it is always sent to the context that wrote IOARRIN */ |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| |
| reg = readq_be(&hwq->host_map->ctx_ctrl); |
| WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0); |
| reg |= SISL_MSI_SYNC_ERROR; |
| writeq_be(reg, &hwq->host_map->ctx_ctrl); |
| writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); |
| } |
| } |
| |
| /** |
| * cxlflash_sync_err_irq() - interrupt handler for synchronous errors |
| * @irq: Interrupt number. |
| * @data: Private data provided at interrupt registration, the AFU. |
| * |
| * Return: Always return IRQ_HANDLED. |
| */ |
| static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) |
| { |
| struct hwq *hwq = (struct hwq *)data; |
| struct cxlflash_cfg *cfg = hwq->afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| u64 reg; |
| u64 reg_unmasked; |
| |
| reg = readq_be(&hwq->host_map->intr_status); |
| reg_unmasked = (reg & SISL_ISTATUS_UNMASK); |
| |
| if (reg_unmasked == 0UL) { |
| dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", |
| __func__, reg); |
| goto cxlflash_sync_err_irq_exit; |
| } |
| |
| dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", |
| __func__, reg); |
| |
| writeq_be(reg_unmasked, &hwq->host_map->intr_clear); |
| |
| cxlflash_sync_err_irq_exit: |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * process_hrrq() - process the read-response queue |
| * @hwq: HWQ associated with the host. |
| * @doneq: Queue of commands harvested from the RRQ. |
| * @budget: Threshold of RRQ entries to process. |
| * |
| * This routine must be called holding the disabled RRQ spin lock. |
| * |
| * Return: The number of entries processed. |
| */ |
| static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) |
| { |
| struct afu *afu = hwq->afu; |
| struct afu_cmd *cmd; |
| struct sisl_ioasa *ioasa; |
| struct sisl_ioarcb *ioarcb; |
| bool toggle = hwq->toggle; |
| int num_hrrq = 0; |
| u64 entry, |
| *hrrq_start = hwq->hrrq_start, |
| *hrrq_end = hwq->hrrq_end, |
| *hrrq_curr = hwq->hrrq_curr; |
| |
| /* Process ready RRQ entries up to the specified budget (if any) */ |
| while (true) { |
| entry = *hrrq_curr; |
| |
| if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) |
| break; |
| |
| entry &= ~SISL_RESP_HANDLE_T_BIT; |
| |
| if (afu_is_sq_cmd_mode(afu)) { |
| ioasa = (struct sisl_ioasa *)entry; |
| cmd = container_of(ioasa, struct afu_cmd, sa); |
| } else { |
| ioarcb = (struct sisl_ioarcb *)entry; |
| cmd = container_of(ioarcb, struct afu_cmd, rcb); |
| } |
| |
| list_add_tail(&cmd->queue, doneq); |
| |
| /* Advance to next entry or wrap and flip the toggle bit */ |
| if (hrrq_curr < hrrq_end) |
| hrrq_curr++; |
| else { |
| hrrq_curr = hrrq_start; |
| toggle ^= SISL_RESP_HANDLE_T_BIT; |
| } |
| |
| atomic_inc(&hwq->hsq_credits); |
| num_hrrq++; |
| |
| if (budget > 0 && num_hrrq >= budget) |
| break; |
| } |
| |
| hwq->hrrq_curr = hrrq_curr; |
| hwq->toggle = toggle; |
| |
| return num_hrrq; |
| } |
| |
| /** |
| * process_cmd_doneq() - process a queue of harvested RRQ commands |
| * @doneq: Queue of completed commands. |
| * |
| * Note that upon return the queue can no longer be trusted. |
| */ |
| static void process_cmd_doneq(struct list_head *doneq) |
| { |
| struct afu_cmd *cmd, *tmp; |
| |
| WARN_ON(list_empty(doneq)); |
| |
| list_for_each_entry_safe(cmd, tmp, doneq, queue) |
| cmd_complete(cmd); |
| } |
| |
| /** |
| * cxlflash_irqpoll() - process a queue of harvested RRQ commands |
| * @irqpoll: IRQ poll structure associated with queue to poll. |
| * @budget: Threshold of RRQ entries to process per poll. |
| * |
| * Return: The number of entries processed. |
| */ |
| static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) |
| { |
| struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); |
| unsigned long hrrq_flags; |
| LIST_HEAD(doneq); |
| int num_entries = 0; |
| |
| spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); |
| |
| num_entries = process_hrrq(hwq, &doneq, budget); |
| if (num_entries < budget) |
| irq_poll_complete(irqpoll); |
| |
| spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); |
| |
| process_cmd_doneq(&doneq); |
| return num_entries; |
| } |
| |
| /** |
| * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) |
| * @irq: Interrupt number. |
| * @data: Private data provided at interrupt registration, the AFU. |
| * |
| * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. |
| */ |
| static irqreturn_t cxlflash_rrq_irq(int irq, void *data) |
| { |
| struct hwq *hwq = (struct hwq *)data; |
| struct afu *afu = hwq->afu; |
| unsigned long hrrq_flags; |
| LIST_HEAD(doneq); |
| int num_entries = 0; |
| |
| spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); |
| |
| /* Silently drop spurious interrupts when queue is not online */ |
| if (!hwq->hrrq_online) { |
| spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); |
| return IRQ_HANDLED; |
| } |
| |
| if (afu_is_irqpoll_enabled(afu)) { |
| irq_poll_sched(&hwq->irqpoll); |
| spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); |
| return IRQ_HANDLED; |
| } |
| |
| num_entries = process_hrrq(hwq, &doneq, -1); |
| spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); |
| |
| if (num_entries == 0) |
| return IRQ_NONE; |
| |
| process_cmd_doneq(&doneq); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Asynchronous interrupt information table |
| * |
| * NOTE: |
| * - Order matters here as this array is indexed by bit position. |
| * |
| * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro |
| * as complex and complains due to a lack of parentheses/braces. |
| */ |
| #define ASTATUS_FC(_a, _b, _c, _d) \ |
| { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } |
| |
| #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ |
| ASTATUS_FC(_a, LINK_UP, "link up", 0), \ |
| ASTATUS_FC(_a, LINK_DN, "link down", 0), \ |
| ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ |
| ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ |
| ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ |
| ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ |
| ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ |
| ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) |
| |
| static const struct asyc_intr_info ainfo[] = { |
| BUILD_SISL_ASTATUS_FC_PORT(1), |
| BUILD_SISL_ASTATUS_FC_PORT(0), |
| BUILD_SISL_ASTATUS_FC_PORT(3), |
| BUILD_SISL_ASTATUS_FC_PORT(2) |
| }; |
| |
| /** |
| * cxlflash_async_err_irq() - interrupt handler for asynchronous errors |
| * @irq: Interrupt number. |
| * @data: Private data provided at interrupt registration, the AFU. |
| * |
| * Return: Always return IRQ_HANDLED. |
| */ |
| static irqreturn_t cxlflash_async_err_irq(int irq, void *data) |
| { |
| struct hwq *hwq = (struct hwq *)data; |
| struct afu *afu = hwq->afu; |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| const struct asyc_intr_info *info; |
| struct sisl_global_map __iomem *global = &afu->afu_map->global; |
| __be64 __iomem *fc_port_regs; |
| u64 reg_unmasked; |
| u64 reg; |
| u64 bit; |
| u8 port; |
| |
| reg = readq_be(&global->regs.aintr_status); |
| reg_unmasked = (reg & SISL_ASTATUS_UNMASK); |
| |
| if (unlikely(reg_unmasked == 0)) { |
| dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", |
| __func__, reg); |
| goto out; |
| } |
| |
| /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ |
| writeq_be(reg_unmasked, &global->regs.aintr_clear); |
| |
| /* Check each bit that is on */ |
| for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { |
| if (unlikely(bit >= ARRAY_SIZE(ainfo))) { |
| WARN_ON_ONCE(1); |
| continue; |
| } |
| |
| info = &ainfo[bit]; |
| if (unlikely(info->status != 1ULL << bit)) { |
| WARN_ON_ONCE(1); |
| continue; |
| } |
| |
| port = info->port; |
| fc_port_regs = get_fc_port_regs(cfg, port); |
| |
| dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", |
| __func__, port, info->desc, |
| readq_be(&fc_port_regs[FC_STATUS / 8])); |
| |
| /* |
| * Do link reset first, some OTHER errors will set FC_ERROR |
| * again if cleared before or w/o a reset |
| */ |
| if (info->action & LINK_RESET) { |
| dev_err(dev, "%s: FC Port %d: resetting link\n", |
| __func__, port); |
| cfg->lr_state = LINK_RESET_REQUIRED; |
| cfg->lr_port = port; |
| schedule_work(&cfg->work_q); |
| } |
| |
| if (info->action & CLR_FC_ERROR) { |
| reg = readq_be(&fc_port_regs[FC_ERROR / 8]); |
| |
| /* |
| * Since all errors are unmasked, FC_ERROR and FC_ERRCAP |
| * should be the same and tracing one is sufficient. |
| */ |
| |
| dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", |
| __func__, port, reg); |
| |
| writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); |
| writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); |
| } |
| |
| if (info->action & SCAN_HOST) { |
| atomic_inc(&cfg->scan_host_needed); |
| schedule_work(&cfg->work_q); |
| } |
| } |
| |
| out: |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * read_vpd() - obtains the WWPNs from VPD |
| * @cfg: Internal structure associated with the host. |
| * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) |
| { |
| struct device *dev = &cfg->dev->dev; |
| struct pci_dev *pdev = cfg->dev; |
| int i, k, rc = 0; |
| unsigned int kw_size; |
| ssize_t vpd_size; |
| char vpd_data[CXLFLASH_VPD_LEN]; |
| char tmp_buf[WWPN_BUF_LEN] = { 0 }; |
| const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) |
| cfg->dev_id->driver_data; |
| const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; |
| const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; |
| |
| /* Get the VPD data from the device */ |
| vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); |
| if (unlikely(vpd_size <= 0)) { |
| dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", |
| __func__, vpd_size); |
| rc = -ENODEV; |
| goto out; |
| } |
| |
| /* |
| * Find the offset of the WWPN tag within the read only |
| * VPD data and validate the found field (partials are |
| * no good to us). Convert the ASCII data to an integer |
| * value. Note that we must copy to a temporary buffer |
| * because the conversion service requires that the ASCII |
| * string be terminated. |
| * |
| * Allow for WWPN not being found for all devices, setting |
| * the returned WWPN to zero when not found. Notify with a |
| * log error for cards that should have had WWPN keywords |
| * in the VPD - cards requiring WWPN will not have their |
| * ports programmed and operate in an undefined state. |
| */ |
| for (k = 0; k < cfg->num_fc_ports; k++) { |
| i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, |
| wwpn_vpd_tags[k], &kw_size); |
| if (i == -ENOENT) { |
| if (wwpn_vpd_required) |
| dev_err(dev, "%s: Port %d WWPN not found\n", |
| __func__, k); |
| wwpn[k] = 0ULL; |
| continue; |
| } |
| |
| if (i < 0 || kw_size != WWPN_LEN) { |
| dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", |
| __func__, k); |
| rc = -ENODEV; |
| goto out; |
| } |
| |
| memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); |
| rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: WWPN conversion failed for port %d\n", |
| __func__, k); |
| rc = -ENODEV; |
| goto out; |
| } |
| |
| dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); |
| } |
| |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * init_pcr() - initialize the provisioning and control registers |
| * @cfg: Internal structure associated with the host. |
| * |
| * Also sets up fast access to the mapped registers and initializes AFU |
| * command fields that never change. |
| */ |
| static void init_pcr(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct sisl_ctrl_map __iomem *ctrl_map; |
| struct hwq *hwq; |
| void *cookie; |
| int i; |
| |
| for (i = 0; i < MAX_CONTEXT; i++) { |
| ctrl_map = &afu->afu_map->ctrls[i].ctrl; |
| /* Disrupt any clients that could be running */ |
| /* e.g. clients that survived a master restart */ |
| writeq_be(0, &ctrl_map->rht_start); |
| writeq_be(0, &ctrl_map->rht_cnt_id); |
| writeq_be(0, &ctrl_map->ctx_cap); |
| } |
| |
| /* Copy frequently used fields into hwq */ |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| cookie = hwq->ctx_cookie; |
| |
| hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); |
| hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; |
| hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; |
| |
| /* Program the Endian Control for the master context */ |
| writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); |
| } |
| } |
| |
| /** |
| * init_global() - initialize AFU global registers |
| * @cfg: Internal structure associated with the host. |
| */ |
| static int init_global(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq; |
| struct sisl_host_map __iomem *hmap; |
| __be64 __iomem *fc_port_regs; |
| u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ |
| int i = 0, num_ports = 0; |
| int rc = 0; |
| int j; |
| void *ctx; |
| u64 reg; |
| |
| rc = read_vpd(cfg, &wwpn[0]); |
| if (rc) { |
| dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); |
| goto out; |
| } |
| |
| /* Set up RRQ and SQ in HWQ for master issued cmds */ |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| hmap = hwq->host_map; |
| |
| writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); |
| writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); |
| hwq->hrrq_online = true; |
| |
| if (afu_is_sq_cmd_mode(afu)) { |
| writeq_be((u64)hwq->hsq_start, &hmap->sq_start); |
| writeq_be((u64)hwq->hsq_end, &hmap->sq_end); |
| } |
| } |
| |
| /* AFU configuration */ |
| reg = readq_be(&afu->afu_map->global.regs.afu_config); |
| reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; |
| /* enable all auto retry options and control endianness */ |
| /* leave others at default: */ |
| /* CTX_CAP write protected, mbox_r does not clear on read and */ |
| /* checker on if dual afu */ |
| writeq_be(reg, &afu->afu_map->global.regs.afu_config); |
| |
| /* Global port select: select either port */ |
| if (afu->internal_lun) { |
| /* Only use port 0 */ |
| writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); |
| num_ports = 0; |
| } else { |
| writeq_be(PORT_MASK(cfg->num_fc_ports), |
| &afu->afu_map->global.regs.afu_port_sel); |
| num_ports = cfg->num_fc_ports; |
| } |
| |
| for (i = 0; i < num_ports; i++) { |
| fc_port_regs = get_fc_port_regs(cfg, i); |
| |
| /* Unmask all errors (but they are still masked at AFU) */ |
| writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); |
| /* Clear CRC error cnt & set a threshold */ |
| (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); |
| writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); |
| |
| /* Set WWPNs. If already programmed, wwpn[i] is 0 */ |
| if (wwpn[i] != 0) |
| afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); |
| /* Programming WWPN back to back causes additional |
| * offline/online transitions and a PLOGI |
| */ |
| msleep(100); |
| } |
| |
| if (afu_is_ocxl_lisn(afu)) { |
| /* Set up the LISN effective address for each master */ |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| ctx = hwq->ctx_cookie; |
| |
| for (j = 0; j < hwq->num_irqs; j++) { |
| reg = cfg->ops->get_irq_objhndl(ctx, j); |
| writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]); |
| } |
| |
| reg = hwq->ctx_hndl; |
| writeq_be(SISL_LISN_PASID(reg, reg), |
| &hwq->ctrl_map->lisn_pasid[0]); |
| writeq_be(SISL_LISN_PASID(0UL, reg), |
| &hwq->ctrl_map->lisn_pasid[1]); |
| } |
| } |
| |
| /* Set up master's own CTX_CAP to allow real mode, host translation */ |
| /* tables, afu cmds and read/write GSCSI cmds. */ |
| /* First, unlock ctx_cap write by reading mbox */ |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| |
| (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ |
| writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | |
| SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | |
| SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), |
| &hwq->ctrl_map->ctx_cap); |
| } |
| |
| /* |
| * Determine write-same unmap support for host by evaluating the unmap |
| * sector support bit of the context control register associated with |
| * the primary hardware queue. Note that while this status is reflected |
| * in a context register, the outcome can be assumed to be host-wide. |
| */ |
| hwq = get_hwq(afu, PRIMARY_HWQ); |
| reg = readq_be(&hwq->host_map->ctx_ctrl); |
| if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) |
| cfg->ws_unmap = true; |
| |
| /* Initialize heartbeat */ |
| afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); |
| out: |
| return rc; |
| } |
| |
| /** |
| * start_afu() - initializes and starts the AFU |
| * @cfg: Internal structure associated with the host. |
| */ |
| static int start_afu(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq; |
| int rc = 0; |
| int i; |
| |
| init_pcr(cfg); |
| |
| /* Initialize each HWQ */ |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| |
| /* After an AFU reset, RRQ entries are stale, clear them */ |
| memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); |
| |
| /* Initialize RRQ pointers */ |
| hwq->hrrq_start = &hwq->rrq_entry[0]; |
| hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; |
| hwq->hrrq_curr = hwq->hrrq_start; |
| hwq->toggle = 1; |
| |
| /* Initialize spin locks */ |
| spin_lock_init(&hwq->hrrq_slock); |
| spin_lock_init(&hwq->hsq_slock); |
| |
| /* Initialize SQ */ |
| if (afu_is_sq_cmd_mode(afu)) { |
| memset(&hwq->sq, 0, sizeof(hwq->sq)); |
| hwq->hsq_start = &hwq->sq[0]; |
| hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; |
| hwq->hsq_curr = hwq->hsq_start; |
| |
| atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); |
| } |
| |
| /* Initialize IRQ poll */ |
| if (afu_is_irqpoll_enabled(afu)) |
| irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, |
| cxlflash_irqpoll); |
| |
| } |
| |
| rc = init_global(cfg); |
| |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * init_intr() - setup interrupt handlers for the master context |
| * @cfg: Internal structure associated with the host. |
| * @hwq: Hardware queue to initialize. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static enum undo_level init_intr(struct cxlflash_cfg *cfg, |
| struct hwq *hwq) |
| { |
| struct device *dev = &cfg->dev->dev; |
| void *ctx = hwq->ctx_cookie; |
| int rc = 0; |
| enum undo_level level = UNDO_NOOP; |
| bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); |
| int num_irqs = hwq->num_irqs; |
| |
| rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", |
| __func__, rc); |
| level = UNDO_NOOP; |
| goto out; |
| } |
| |
| rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, |
| "SISL_MSI_SYNC_ERROR"); |
| if (unlikely(rc <= 0)) { |
| dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); |
| level = FREE_IRQ; |
| goto out; |
| } |
| |
| rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, |
| "SISL_MSI_RRQ_UPDATED"); |
| if (unlikely(rc <= 0)) { |
| dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); |
| level = UNMAP_ONE; |
| goto out; |
| } |
| |
| /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ |
| if (!is_primary_hwq) |
| goto out; |
| |
| rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, |
| "SISL_MSI_ASYNC_ERROR"); |
| if (unlikely(rc <= 0)) { |
| dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); |
| level = UNMAP_TWO; |
| goto out; |
| } |
| out: |
| return level; |
| } |
| |
| /** |
| * init_mc() - create and register as the master context |
| * @cfg: Internal structure associated with the host. |
| * @index: HWQ Index of the master context. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_mc(struct cxlflash_cfg *cfg, u32 index) |
| { |
| void *ctx; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq = get_hwq(cfg->afu, index); |
| int rc = 0; |
| int num_irqs; |
| enum undo_level level; |
| |
| hwq->afu = cfg->afu; |
| hwq->index = index; |
| INIT_LIST_HEAD(&hwq->pending_cmds); |
| |
| if (index == PRIMARY_HWQ) { |
| ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); |
| num_irqs = 3; |
| } else { |
| ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); |
| num_irqs = 2; |
| } |
| if (IS_ERR_OR_NULL(ctx)) { |
| rc = -ENOMEM; |
| goto err1; |
| } |
| |
| WARN_ON(hwq->ctx_cookie); |
| hwq->ctx_cookie = ctx; |
| hwq->num_irqs = num_irqs; |
| |
| /* Set it up as a master with the CXL */ |
| cfg->ops->set_master(ctx); |
| |
| /* Reset AFU when initializing primary context */ |
| if (index == PRIMARY_HWQ) { |
| rc = cfg->ops->afu_reset(ctx); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: AFU reset failed rc=%d\n", |
| __func__, rc); |
| goto err1; |
| } |
| } |
| |
| level = init_intr(cfg, hwq); |
| if (unlikely(level)) { |
| dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); |
| goto err2; |
| } |
| |
| /* Finally, activate the context by starting it */ |
| rc = cfg->ops->start_context(hwq->ctx_cookie); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); |
| level = UNMAP_THREE; |
| goto err2; |
| } |
| |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| err2: |
| term_intr(cfg, level, index); |
| if (index != PRIMARY_HWQ) |
| cfg->ops->release_context(ctx); |
| err1: |
| hwq->ctx_cookie = NULL; |
| goto out; |
| } |
| |
| /** |
| * get_num_afu_ports() - determines and configures the number of AFU ports |
| * @cfg: Internal structure associated with the host. |
| * |
| * This routine determines the number of AFU ports by converting the global |
| * port selection mask. The converted value is only valid following an AFU |
| * reset (explicit or power-on). This routine must be invoked shortly after |
| * mapping as other routines are dependent on the number of ports during the |
| * initialization sequence. |
| * |
| * To support legacy AFUs that might not have reflected an initial global |
| * port mask (value read is 0), default to the number of ports originally |
| * supported by the cxlflash driver (2) before hardware with other port |
| * offerings was introduced. |
| */ |
| static void get_num_afu_ports(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| u64 port_mask; |
| int num_fc_ports = LEGACY_FC_PORTS; |
| |
| port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); |
| if (port_mask != 0ULL) |
| num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); |
| |
| dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", |
| __func__, port_mask, num_fc_ports); |
| |
| cfg->num_fc_ports = num_fc_ports; |
| cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); |
| } |
| |
| /** |
| * init_afu() - setup as master context and start AFU |
| * @cfg: Internal structure associated with the host. |
| * |
| * This routine is a higher level of control for configuring the |
| * AFU on probe and reset paths. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_afu(struct cxlflash_cfg *cfg) |
| { |
| u64 reg; |
| int rc = 0; |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct hwq *hwq; |
| int i; |
| |
| cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); |
| |
| mutex_init(&afu->sync_active); |
| afu->num_hwqs = afu->desired_hwqs; |
| for (i = 0; i < afu->num_hwqs; i++) { |
| rc = init_mc(cfg, i); |
| if (rc) { |
| dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", |
| __func__, rc, i); |
| goto err1; |
| } |
| } |
| |
| /* Map the entire MMIO space of the AFU using the first context */ |
| hwq = get_hwq(afu, PRIMARY_HWQ); |
| afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); |
| if (!afu->afu_map) { |
| dev_err(dev, "%s: psa_map failed\n", __func__); |
| rc = -ENOMEM; |
| goto err1; |
| } |
| |
| /* No byte reverse on reading afu_version or string will be backwards */ |
| reg = readq(&afu->afu_map->global.regs.afu_version); |
| memcpy(afu->version, ®, sizeof(reg)); |
| afu->interface_version = |
| readq_be(&afu->afu_map->global.regs.interface_version); |
| if ((afu->interface_version + 1) == 0) { |
| dev_err(dev, "Back level AFU, please upgrade. AFU version %s " |
| "interface version %016llx\n", afu->version, |
| afu->interface_version); |
| rc = -EINVAL; |
| goto err1; |
| } |
| |
| if (afu_is_sq_cmd_mode(afu)) { |
| afu->send_cmd = send_cmd_sq; |
| afu->context_reset = context_reset_sq; |
| } else { |
| afu->send_cmd = send_cmd_ioarrin; |
| afu->context_reset = context_reset_ioarrin; |
| } |
| |
| dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, |
| afu->version, afu->interface_version); |
| |
| get_num_afu_ports(cfg); |
| |
| rc = start_afu(cfg); |
| if (rc) { |
| dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); |
| goto err1; |
| } |
| |
| afu_err_intr_init(cfg->afu); |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| |
| hwq->room = readq_be(&hwq->host_map->cmd_room); |
| } |
| |
| /* Restore the LUN mappings */ |
| cxlflash_restore_luntable(cfg); |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| |
| err1: |
| for (i = afu->num_hwqs - 1; i >= 0; i--) { |
| term_intr(cfg, UNMAP_THREE, i); |
| term_mc(cfg, i); |
| } |
| goto out; |
| } |
| |
| /** |
| * afu_reset() - resets the AFU |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int afu_reset(struct cxlflash_cfg *cfg) |
| { |
| struct device *dev = &cfg->dev->dev; |
| int rc = 0; |
| |
| /* Stop the context before the reset. Since the context is |
| * no longer available restart it after the reset is complete |
| */ |
| term_afu(cfg); |
| |
| rc = init_afu(cfg); |
| |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * drain_ioctls() - wait until all currently executing ioctls have completed |
| * @cfg: Internal structure associated with the host. |
| * |
| * Obtain write access to read/write semaphore that wraps ioctl |
| * handling to 'drain' ioctls currently executing. |
| */ |
| static void drain_ioctls(struct cxlflash_cfg *cfg) |
| { |
| down_write(&cfg->ioctl_rwsem); |
| up_write(&cfg->ioctl_rwsem); |
| } |
| |
| /** |
| * cxlflash_async_reset_host() - asynchronous host reset handler |
| * @data: Private data provided while scheduling reset. |
| * @cookie: Cookie that can be used for checkpointing. |
| */ |
| static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) |
| { |
| struct cxlflash_cfg *cfg = data; |
| struct device *dev = &cfg->dev->dev; |
| int rc = 0; |
| |
| if (cfg->state != STATE_RESET) { |
| dev_dbg(dev, "%s: Not performing a reset, state=%d\n", |
| __func__, cfg->state); |
| goto out; |
| } |
| |
| drain_ioctls(cfg); |
| cxlflash_mark_contexts_error(cfg); |
| rc = afu_reset(cfg); |
| if (rc) |
| cfg->state = STATE_FAILTERM; |
| else |
| cfg->state = STATE_NORMAL; |
| wake_up_all(&cfg->reset_waitq); |
| |
| out: |
| scsi_unblock_requests(cfg->host); |
| } |
| |
| /** |
| * cxlflash_schedule_async_reset() - schedule an asynchronous host reset |
| * @cfg: Internal structure associated with the host. |
| */ |
| static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) |
| { |
| struct device *dev = &cfg->dev->dev; |
| |
| if (cfg->state != STATE_NORMAL) { |
| dev_dbg(dev, "%s: Not performing reset state=%d\n", |
| __func__, cfg->state); |
| return; |
| } |
| |
| cfg->state = STATE_RESET; |
| scsi_block_requests(cfg->host); |
| cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, |
| cfg); |
| } |
| |
| /** |
| * send_afu_cmd() - builds and sends an internal AFU command |
| * @afu: AFU associated with the host. |
| * @rcb: Pre-populated IOARCB describing command to send. |
| * |
| * The AFU can only take one internal AFU command at a time. This limitation is |
| * enforced by using a mutex to provide exclusive access to the AFU during the |
| * operation. This design point requires calling threads to not be on interrupt |
| * context due to the possibility of sleeping during concurrent AFU operations. |
| * |
| * The command status is optionally passed back to the caller when the caller |
| * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. |
| * |
| * Return: |
| * 0 on success, -errno on failure |
| */ |
| static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| struct afu_cmd *cmd = NULL; |
| struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); |
| ulong lock_flags; |
| char *buf = NULL; |
| int rc = 0; |
| int nretry = 0; |
| |
| if (cfg->state != STATE_NORMAL) { |
| dev_dbg(dev, "%s: Sync not required state=%u\n", |
| __func__, cfg->state); |
| return 0; |
| } |
| |
| mutex_lock(&afu->sync_active); |
| atomic_inc(&afu->cmds_active); |
| buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); |
| if (unlikely(!buf)) { |
| dev_err(dev, "%s: no memory for command\n", __func__); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); |
| |
| retry: |
| memset(cmd, 0, sizeof(*cmd)); |
| memcpy(&cmd->rcb, rcb, sizeof(*rcb)); |
| INIT_LIST_HEAD(&cmd->queue); |
| init_completion(&cmd->cevent); |
| cmd->parent = afu; |
| cmd->hwq_index = hwq->index; |
| cmd->rcb.ctx_id = hwq->ctx_hndl; |
| |
| dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", |
| __func__, afu, cmd, cmd->rcb.cdb[0], nretry); |
| |
| rc = afu->send_cmd(afu, cmd); |
| if (unlikely(rc)) { |
| rc = -ENOBUFS; |
| goto out; |
| } |
| |
| rc = wait_resp(afu, cmd); |
| switch (rc) { |
| case -ETIMEDOUT: |
| rc = afu->context_reset(hwq); |
| if (rc) { |
| /* Delete the command from pending_cmds list */ |
| spin_lock_irqsave(&hwq->hsq_slock, lock_flags); |
| list_del(&cmd->list); |
| spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); |
| |
| cxlflash_schedule_async_reset(cfg); |
| break; |
| } |
| fallthrough; /* to retry */ |
| case -EAGAIN: |
| if (++nretry < 2) |
| goto retry; |
| fallthrough; /* to exit */ |
| default: |
| break; |
| } |
| |
| if (rcb->ioasa) |
| *rcb->ioasa = cmd->sa; |
| out: |
| atomic_dec(&afu->cmds_active); |
| mutex_unlock(&afu->sync_active); |
| kfree(buf); |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_afu_sync() - builds and sends an AFU sync command |
| * @afu: AFU associated with the host. |
| * @ctx: Identifies context requesting sync. |
| * @res: Identifies resource requesting sync. |
| * @mode: Type of sync to issue (lightweight, heavyweight, global). |
| * |
| * AFU sync operations are only necessary and allowed when the device is |
| * operating normally. When not operating normally, sync requests can occur as |
| * part of cleaning up resources associated with an adapter prior to removal. |
| * In this scenario, these requests are simply ignored (safe due to the AFU |
| * going away). |
| * |
| * Return: |
| * 0 on success, -errno on failure |
| */ |
| int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| struct sisl_ioarcb rcb = { 0 }; |
| |
| dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", |
| __func__, afu, ctx, res, mode); |
| |
| rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; |
| rcb.msi = SISL_MSI_RRQ_UPDATED; |
| rcb.timeout = MC_AFU_SYNC_TIMEOUT; |
| |
| rcb.cdb[0] = SISL_AFU_CMD_SYNC; |
| rcb.cdb[1] = mode; |
| put_unaligned_be16(ctx, &rcb.cdb[2]); |
| put_unaligned_be32(res, &rcb.cdb[4]); |
| |
| return send_afu_cmd(afu, &rcb); |
| } |
| |
| /** |
| * cxlflash_eh_abort_handler() - abort a SCSI command |
| * @scp: SCSI command to abort. |
| * |
| * CXL Flash devices do not support a single command abort. Reset the context |
| * as per SISLite specification. Flush any pending commands in the hardware |
| * queue before the reset. |
| * |
| * Return: SUCCESS/FAILED as defined in scsi/scsi.h |
| */ |
| static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) |
| { |
| int rc = FAILED; |
| struct Scsi_Host *host = scp->device->host; |
| struct cxlflash_cfg *cfg = shost_priv(host); |
| struct afu_cmd *cmd = sc_to_afuc(scp); |
| struct device *dev = &cfg->dev->dev; |
| struct afu *afu = cfg->afu; |
| struct hwq *hwq = get_hwq(afu, cmd->hwq_index); |
| |
| dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " |
| "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, |
| scp->device->channel, scp->device->id, scp->device->lun, |
| get_unaligned_be32(&((u32 *)scp->cmnd)[0]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[1]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[2]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[3])); |
| |
| /* When the state is not normal, another reset/reload is in progress. |
| * Return failed and the mid-layer will invoke host reset handler. |
| */ |
| if (cfg->state != STATE_NORMAL) { |
| dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", |
| __func__, cfg->state); |
| goto out; |
| } |
| |
| rc = afu->context_reset(hwq); |
| if (unlikely(rc)) |
| goto out; |
| |
| rc = SUCCESS; |
| |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_eh_device_reset_handler() - reset a single LUN |
| * @scp: SCSI command to send. |
| * |
| * Return: |
| * SUCCESS as defined in scsi/scsi.h |
| * FAILED as defined in scsi/scsi.h |
| */ |
| static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) |
| { |
| int rc = SUCCESS; |
| struct scsi_device *sdev = scp->device; |
| struct Scsi_Host *host = sdev->host; |
| struct cxlflash_cfg *cfg = shost_priv(host); |
| struct device *dev = &cfg->dev->dev; |
| int rcr = 0; |
| |
| dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, |
| host->host_no, sdev->channel, sdev->id, sdev->lun); |
| retry: |
| switch (cfg->state) { |
| case STATE_NORMAL: |
| rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); |
| if (unlikely(rcr)) |
| rc = FAILED; |
| break; |
| case STATE_RESET: |
| wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); |
| goto retry; |
| default: |
| rc = FAILED; |
| break; |
| } |
| |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_eh_host_reset_handler() - reset the host adapter |
| * @scp: SCSI command from stack identifying host. |
| * |
| * Following a reset, the state is evaluated again in case an EEH occurred |
| * during the reset. In such a scenario, the host reset will either yield |
| * until the EEH recovery is complete or return success or failure based |
| * upon the current device state. |
| * |
| * Return: |
| * SUCCESS as defined in scsi/scsi.h |
| * FAILED as defined in scsi/scsi.h |
| */ |
| static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) |
| { |
| int rc = SUCCESS; |
| int rcr = 0; |
| struct Scsi_Host *host = scp->device->host; |
| struct cxlflash_cfg *cfg = shost_priv(host); |
| struct device *dev = &cfg->dev->dev; |
| |
| dev_dbg(dev, "%s: %d\n", __func__, host->host_no); |
| |
| switch (cfg->state) { |
| case STATE_NORMAL: |
| cfg->state = STATE_RESET; |
| drain_ioctls(cfg); |
| cxlflash_mark_contexts_error(cfg); |
| rcr = afu_reset(cfg); |
| if (rcr) { |
| rc = FAILED; |
| cfg->state = STATE_FAILTERM; |
| } else |
| cfg->state = STATE_NORMAL; |
| wake_up_all(&cfg->reset_waitq); |
| ssleep(1); |
| fallthrough; |
| case STATE_RESET: |
| wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); |
| if (cfg->state == STATE_NORMAL) |
| break; |
| fallthrough; |
| default: |
| rc = FAILED; |
| break; |
| } |
| |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_change_queue_depth() - change the queue depth for the device |
| * @sdev: SCSI device destined for queue depth change. |
| * @qdepth: Requested queue depth value to set. |
| * |
| * The requested queue depth is capped to the maximum supported value. |
| * |
| * Return: The actual queue depth set. |
| */ |
| static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) |
| { |
| |
| if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) |
| qdepth = CXLFLASH_MAX_CMDS_PER_LUN; |
| |
| scsi_change_queue_depth(sdev, qdepth); |
| return sdev->queue_depth; |
| } |
| |
| /** |
| * cxlflash_show_port_status() - queries and presents the current port status |
| * @port: Desired port for status reporting. |
| * @cfg: Internal structure associated with the host. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf or -EINVAL. |
| */ |
| static ssize_t cxlflash_show_port_status(u32 port, |
| struct cxlflash_cfg *cfg, |
| char *buf) |
| { |
| struct device *dev = &cfg->dev->dev; |
| char *disp_status; |
| u64 status; |
| __be64 __iomem *fc_port_regs; |
| |
| WARN_ON(port >= MAX_FC_PORTS); |
| |
| if (port >= cfg->num_fc_ports) { |
| dev_info(dev, "%s: Port %d not supported on this card.\n", |
| __func__, port); |
| return -EINVAL; |
| } |
| |
| fc_port_regs = get_fc_port_regs(cfg, port); |
| status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); |
| status &= FC_MTIP_STATUS_MASK; |
| |
| if (status == FC_MTIP_STATUS_ONLINE) |
| disp_status = "online"; |
| else if (status == FC_MTIP_STATUS_OFFLINE) |
| disp_status = "offline"; |
| else |
| disp_status = "unknown"; |
| |
| return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); |
| } |
| |
| /** |
| * port0_show() - queries and presents the current status of port 0 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port0_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_status(0, cfg, buf); |
| } |
| |
| /** |
| * port1_show() - queries and presents the current status of port 1 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port1_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_status(1, cfg, buf); |
| } |
| |
| /** |
| * port2_show() - queries and presents the current status of port 2 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port2_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_status(2, cfg, buf); |
| } |
| |
| /** |
| * port3_show() - queries and presents the current status of port 3 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port3_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_status(3, cfg, buf); |
| } |
| |
| /** |
| * lun_mode_show() - presents the current LUN mode of the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the LUN mode. |
| * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t lun_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| struct afu *afu = cfg->afu; |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); |
| } |
| |
| /** |
| * lun_mode_store() - sets the LUN mode of the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the LUN mode. |
| * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. |
| * @count: Length of data resizing in @buf. |
| * |
| * The CXL Flash AFU supports a dummy LUN mode where the external |
| * links and storage are not required. Space on the FPGA is used |
| * to create 1 or 2 small LUNs which are presented to the system |
| * as if they were a normal storage device. This feature is useful |
| * during development and also provides manufacturing with a way |
| * to test the AFU without an actual device. |
| * |
| * 0 = external LUN[s] (default) |
| * 1 = internal LUN (1 x 64K, 512B blocks, id 0) |
| * 2 = internal LUN (1 x 64K, 4K blocks, id 0) |
| * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) |
| * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t lun_mode_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = shost_priv(shost); |
| struct afu *afu = cfg->afu; |
| int rc; |
| u32 lun_mode; |
| |
| rc = kstrtouint(buf, 10, &lun_mode); |
| if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { |
| afu->internal_lun = lun_mode; |
| |
| /* |
| * When configured for internal LUN, there is only one channel, |
| * channel number 0, else there will be one less than the number |
| * of fc ports for this card. |
| */ |
| if (afu->internal_lun) |
| shost->max_channel = 0; |
| else |
| shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); |
| |
| afu_reset(cfg); |
| scsi_scan_host(cfg->host); |
| } |
| |
| return count; |
| } |
| |
| /** |
| * ioctl_version_show() - presents the current ioctl version of the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the ioctl version. |
| * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t ioctl_version_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| ssize_t bytes = 0; |
| |
| bytes = scnprintf(buf, PAGE_SIZE, |
| "disk: %u\n", DK_CXLFLASH_VERSION_0); |
| bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, |
| "host: %u\n", HT_CXLFLASH_VERSION_0); |
| |
| return bytes; |
| } |
| |
| /** |
| * cxlflash_show_port_lun_table() - queries and presents the port LUN table |
| * @port: Desired port for status reporting. |
| * @cfg: Internal structure associated with the host. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf or -EINVAL. |
| */ |
| static ssize_t cxlflash_show_port_lun_table(u32 port, |
| struct cxlflash_cfg *cfg, |
| char *buf) |
| { |
| struct device *dev = &cfg->dev->dev; |
| __be64 __iomem *fc_port_luns; |
| int i; |
| ssize_t bytes = 0; |
| |
| WARN_ON(port >= MAX_FC_PORTS); |
| |
| if (port >= cfg->num_fc_ports) { |
| dev_info(dev, "%s: Port %d not supported on this card.\n", |
| __func__, port); |
| return -EINVAL; |
| } |
| |
| fc_port_luns = get_fc_port_luns(cfg, port); |
| |
| for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) |
| bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, |
| "%03d: %016llx\n", |
| i, readq_be(&fc_port_luns[i])); |
| return bytes; |
| } |
| |
| /** |
| * port0_lun_table_show() - presents the current LUN table of port 0 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port0_lun_table_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_lun_table(0, cfg, buf); |
| } |
| |
| /** |
| * port1_lun_table_show() - presents the current LUN table of port 1 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port1_lun_table_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_lun_table(1, cfg, buf); |
| } |
| |
| /** |
| * port2_lun_table_show() - presents the current LUN table of port 2 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port2_lun_table_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_lun_table(2, cfg, buf); |
| } |
| |
| /** |
| * port3_lun_table_show() - presents the current LUN table of port 3 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port3_lun_table_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| |
| return cxlflash_show_port_lun_table(3, cfg, buf); |
| } |
| |
| /** |
| * irqpoll_weight_show() - presents the current IRQ poll weight for the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the IRQ poll weight. |
| * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll |
| * weight in ASCII. |
| * |
| * An IRQ poll weight of 0 indicates polling is disabled. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t irqpoll_weight_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| struct afu *afu = cfg->afu; |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); |
| } |
| |
| /** |
| * irqpoll_weight_store() - sets the current IRQ poll weight for the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the IRQ poll weight. |
| * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll |
| * weight in ASCII. |
| * @count: Length of data resizing in @buf. |
| * |
| * An IRQ poll weight of 0 indicates polling is disabled. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t irqpoll_weight_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| struct device *cfgdev = &cfg->dev->dev; |
| struct afu *afu = cfg->afu; |
| struct hwq *hwq; |
| u32 weight; |
| int rc, i; |
| |
| rc = kstrtouint(buf, 10, &weight); |
| if (rc) |
| return -EINVAL; |
| |
| if (weight > 256) { |
| dev_info(cfgdev, |
| "Invalid IRQ poll weight. It must be 256 or less.\n"); |
| return -EINVAL; |
| } |
| |
| if (weight == afu->irqpoll_weight) { |
| dev_info(cfgdev, |
| "Current IRQ poll weight has the same weight.\n"); |
| return -EINVAL; |
| } |
| |
| if (afu_is_irqpoll_enabled(afu)) { |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| |
| irq_poll_disable(&hwq->irqpoll); |
| } |
| } |
| |
| afu->irqpoll_weight = weight; |
| |
| if (weight > 0) { |
| for (i = 0; i < afu->num_hwqs; i++) { |
| hwq = get_hwq(afu, i); |
| |
| irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); |
| } |
| } |
| |
| return count; |
| } |
| |
| /** |
| * num_hwqs_show() - presents the number of hardware queues for the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the number of hardware queues. |
| * @buf: Buffer of length PAGE_SIZE to report back the number of hardware |
| * queues in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t num_hwqs_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| struct afu *afu = cfg->afu; |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); |
| } |
| |
| /** |
| * num_hwqs_store() - sets the number of hardware queues for the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the number of hardware queues. |
| * @buf: Buffer of length PAGE_SIZE containing the number of hardware |
| * queues in ASCII. |
| * @count: Length of data resizing in @buf. |
| * |
| * n > 0: num_hwqs = n |
| * n = 0: num_hwqs = num_online_cpus() |
| * n < 0: num_online_cpus() / abs(n) |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t num_hwqs_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| struct afu *afu = cfg->afu; |
| int rc; |
| int nhwqs, num_hwqs; |
| |
| rc = kstrtoint(buf, 10, &nhwqs); |
| if (rc) |
| return -EINVAL; |
| |
| if (nhwqs >= 1) |
| num_hwqs = nhwqs; |
| else if (nhwqs == 0) |
| num_hwqs = num_online_cpus(); |
| else |
| num_hwqs = num_online_cpus() / abs(nhwqs); |
| |
| afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); |
| WARN_ON_ONCE(afu->desired_hwqs == 0); |
| |
| retry: |
| switch (cfg->state) { |
| case STATE_NORMAL: |
| cfg->state = STATE_RESET; |
| drain_ioctls(cfg); |
| cxlflash_mark_contexts_error(cfg); |
| rc = afu_reset(cfg); |
| if (rc) |
| cfg->state = STATE_FAILTERM; |
| else |
| cfg->state = STATE_NORMAL; |
| wake_up_all(&cfg->reset_waitq); |
| break; |
| case STATE_RESET: |
| wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); |
| if (cfg->state == STATE_NORMAL) |
| goto retry; |
| fallthrough; |
| default: |
| /* Ideally should not happen */ |
| dev_err(dev, "%s: Device is not ready, state=%d\n", |
| __func__, cfg->state); |
| break; |
| } |
| |
| return count; |
| } |
| |
| static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; |
| |
| /** |
| * hwq_mode_show() - presents the HWQ steering mode for the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the HWQ steering mode. |
| * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode |
| * as a character string. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t hwq_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); |
| struct afu *afu = cfg->afu; |
| |
| return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); |
| } |
| |
| /** |
| * hwq_mode_store() - sets the HWQ steering mode for the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the HWQ steering mode. |
| * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode |
| * as a character string. |
| * @count: Length of data resizing in @buf. |
| * |
| * rr = Round-Robin |
| * tag = Block MQ Tagging |
| * cpu = CPU Affinity |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t hwq_mode_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = shost_priv(shost); |
| struct device *cfgdev = &cfg->dev->dev; |
| struct afu *afu = cfg->afu; |
| int i; |
| u32 mode = MAX_HWQ_MODE; |
| |
| for (i = 0; i < MAX_HWQ_MODE; i++) { |
| if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { |
| mode = i; |
| break; |
| } |
| } |
| |
| if (mode >= MAX_HWQ_MODE) { |
| dev_info(cfgdev, "Invalid HWQ steering mode.\n"); |
| return -EINVAL; |
| } |
| |
| afu->hwq_mode = mode; |
| |
| return count; |
| } |
| |
| /** |
| * mode_show() - presents the current mode of the device |
| * @dev: Generic device associated with the device. |
| * @attr: Device attribute representing the device mode. |
| * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct scsi_device *sdev = to_scsi_device(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%s\n", |
| sdev->hostdata ? "superpipe" : "legacy"); |
| } |
| |
| /* |
| * Host attributes |
| */ |
| static DEVICE_ATTR_RO(port0); |
| static DEVICE_ATTR_RO(port1); |
| static DEVICE_ATTR_RO(port2); |
| static DEVICE_ATTR_RO(port3); |
| static DEVICE_ATTR_RW(lun_mode); |
| static DEVICE_ATTR_RO(ioctl_version); |
| static DEVICE_ATTR_RO(port0_lun_table); |
| static DEVICE_ATTR_RO(port1_lun_table); |
| static DEVICE_ATTR_RO(port2_lun_table); |
| static DEVICE_ATTR_RO(port3_lun_table); |
| static DEVICE_ATTR_RW(irqpoll_weight); |
| static DEVICE_ATTR_RW(num_hwqs); |
| static DEVICE_ATTR_RW(hwq_mode); |
| |
| static struct attribute *cxlflash_host_attrs[] = { |
| &dev_attr_port0.attr, |
| &dev_attr_port1.attr, |
| &dev_attr_port2.attr, |
| &dev_attr_port3.attr, |
| &dev_attr_lun_mode.attr, |
| &dev_attr_ioctl_version.attr, |
| &dev_attr_port0_lun_table.attr, |
| &dev_attr_port1_lun_table.attr, |
| &dev_attr_port2_lun_table.attr, |
| &dev_attr_port3_lun_table.attr, |
| &dev_attr_irqpoll_weight.attr, |
| &dev_attr_num_hwqs.attr, |
| &dev_attr_hwq_mode.attr, |
| NULL |
| }; |
| |
| ATTRIBUTE_GROUPS(cxlflash_host); |
| |
| /* |
| * Device attributes |
| */ |
| static DEVICE_ATTR_RO(mode); |
| |
| static struct attribute *cxlflash_dev_attrs[] = { |
| &dev_attr_mode.attr, |
| NULL |
| }; |
| |
| ATTRIBUTE_GROUPS(cxlflash_dev); |
| |
| /* |
| * Host template |
| */ |
| static struct scsi_host_template driver_template = { |
| .module = THIS_MODULE, |
| .name = CXLFLASH_ADAPTER_NAME, |
| .info = cxlflash_driver_info, |
| .ioctl = cxlflash_ioctl, |
| .proc_name = CXLFLASH_NAME, |
| .queuecommand = cxlflash_queuecommand, |
| .eh_abort_handler = cxlflash_eh_abort_handler, |
| .eh_device_reset_handler = cxlflash_eh_device_reset_handler, |
| .eh_host_reset_handler = cxlflash_eh_host_reset_handler, |
| .change_queue_depth = cxlflash_change_queue_depth, |
| .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, |
| .can_queue = CXLFLASH_MAX_CMDS, |
| .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, |
| .this_id = -1, |
| .sg_tablesize = 1, /* No scatter gather support */ |
| .max_sectors = CXLFLASH_MAX_SECTORS, |
| .shost_groups = cxlflash_host_groups, |
| .sdev_groups = cxlflash_dev_groups, |
| }; |
| |
| /* |
| * Device dependent values |
| */ |
| static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, |
| CXLFLASH_WWPN_VPD_REQUIRED }; |
| static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, |
| CXLFLASH_NOTIFY_SHUTDOWN }; |
| static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, |
| (CXLFLASH_NOTIFY_SHUTDOWN | |
| CXLFLASH_OCXL_DEV) }; |
| |
| /* |
| * PCI device binding table |
| */ |
| static struct pci_device_id cxlflash_pci_table[] = { |
| {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, |
| {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, |
| {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); |
| |
| /** |
| * cxlflash_worker_thread() - work thread handler for the AFU |
| * @work: Work structure contained within cxlflash associated with host. |
| * |
| * Handles the following events: |
| * - Link reset which cannot be performed on interrupt context due to |
| * blocking up to a few seconds |
| * - Rescan the host |
| */ |
| static void cxlflash_worker_thread(struct work_struct *work) |
| { |
| struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, |
| work_q); |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| __be64 __iomem *fc_port_regs; |
| int port; |
| ulong lock_flags; |
| |
| /* Avoid MMIO if the device has failed */ |
| |
| if (cfg->state != STATE_NORMAL) |
| return; |
| |
| spin_lock_irqsave(cfg->host->host_lock, lock_flags); |
| |
| if (cfg->lr_state == LINK_RESET_REQUIRED) { |
| port = cfg->lr_port; |
| if (port < 0) |
| dev_err(dev, "%s: invalid port index %d\n", |
| __func__, port); |
| else { |
| spin_unlock_irqrestore(cfg->host->host_lock, |
| lock_flags); |
| |
| /* The reset can block... */ |
| fc_port_regs = get_fc_port_regs(cfg, port); |
| afu_link_reset(afu, port, fc_port_regs); |
| spin_lock_irqsave(cfg->host->host_lock, lock_flags); |
| } |
| |
| cfg->lr_state = LINK_RESET_COMPLETE; |
| } |
| |
| spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); |
| |
| if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) |
| scsi_scan_host(cfg->host); |
| } |
| |
| /** |
| * cxlflash_chr_open() - character device open handler |
| * @inode: Device inode associated with this character device. |
| * @file: File pointer for this device. |
| * |
| * Only users with admin privileges are allowed to open the character device. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int cxlflash_chr_open(struct inode *inode, struct file *file) |
| { |
| struct cxlflash_cfg *cfg; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); |
| file->private_data = cfg; |
| |
| return 0; |
| } |
| |
| /** |
| * decode_hioctl() - translates encoded host ioctl to easily identifiable string |
| * @cmd: The host ioctl command to decode. |
| * |
| * Return: A string identifying the decoded host ioctl. |
| */ |
| static char *decode_hioctl(unsigned int cmd) |
| { |
| switch (cmd) { |
| case HT_CXLFLASH_LUN_PROVISION: |
| return __stringify_1(HT_CXLFLASH_LUN_PROVISION); |
| } |
| |
| return "UNKNOWN"; |
| } |
| |
| /** |
| * cxlflash_lun_provision() - host LUN provisioning handler |
| * @cfg: Internal structure associated with the host. |
| * @arg: Kernel copy of userspace ioctl data structure. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, void *arg) |
| { |
| struct ht_cxlflash_lun_provision *lunprov = arg; |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct sisl_ioarcb rcb; |
| struct sisl_ioasa asa; |
| __be64 __iomem *fc_port_regs; |
| u16 port = lunprov->port; |
| u16 scmd = lunprov->hdr.subcmd; |
| u16 type; |
| u64 reg; |
| u64 size; |
| u64 lun_id; |
| int rc = 0; |
| |
| if (!afu_is_lun_provision(afu)) { |
| rc = -ENOTSUPP; |
| goto out; |
| } |
| |
| if (port >= cfg->num_fc_ports) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| switch (scmd) { |
| case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: |
| type = SISL_AFU_LUN_PROVISION_CREATE; |
| size = lunprov->size; |
| lun_id = 0; |
| break; |
| case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: |
| type = SISL_AFU_LUN_PROVISION_DELETE; |
| size = 0; |
| lun_id = lunprov->lun_id; |
| break; |
| case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: |
| fc_port_regs = get_fc_port_regs(cfg, port); |
| |
| reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); |
| lunprov->max_num_luns = reg; |
| reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); |
| lunprov->cur_num_luns = reg; |
| reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); |
| lunprov->max_cap_port = reg; |
| reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); |
| lunprov->cur_cap_port = reg; |
| |
| goto out; |
| default: |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| memset(&rcb, 0, sizeof(rcb)); |
| memset(&asa, 0, sizeof(asa)); |
| rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; |
| rcb.lun_id = lun_id; |
| rcb.msi = SISL_MSI_RRQ_UPDATED; |
| rcb.timeout = MC_LUN_PROV_TIMEOUT; |
| rcb.ioasa = &asa; |
| |
| rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; |
| rcb.cdb[1] = type; |
| rcb.cdb[2] = port; |
| put_unaligned_be64(size, &rcb.cdb[8]); |
| |
| rc = send_afu_cmd(afu, &rcb); |
| if (rc) { |
| dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", |
| __func__, rc, asa.ioasc, asa.afu_extra); |
| goto out; |
| } |
| |
| if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { |
| lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; |
| memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); |
| } |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_afu_debug() - host AFU debug handler |
| * @cfg: Internal structure associated with the host. |
| * @arg: Kernel copy of userspace ioctl data structure. |
| * |
| * For debug requests requiring a data buffer, always provide an aligned |
| * (cache line) buffer to the AFU to appease any alignment requirements. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, void *arg) |
| { |
| struct ht_cxlflash_afu_debug *afu_dbg = arg; |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct sisl_ioarcb rcb; |
| struct sisl_ioasa asa; |
| char *buf = NULL; |
| char *kbuf = NULL; |
| void __user *ubuf = (__force void __user *)afu_dbg->data_ea; |
| u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; |
| u32 ulen = afu_dbg->data_len; |
| bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; |
| int rc = 0; |
| |
| if (!afu_is_afu_debug(afu)) { |
| rc = -ENOTSUPP; |
| goto out; |
| } |
| |
| if (ulen) { |
| req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; |
| |
| if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); |
| if (unlikely(!buf)) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| kbuf = PTR_ALIGN(buf, cache_line_size()); |
| |
| if (is_write) { |
| req_flags |= SISL_REQ_FLAGS_HOST_WRITE; |
| |
| if (copy_from_user(kbuf, ubuf, ulen)) { |
| rc = -EFAULT; |
| goto out; |
| } |
| } |
| } |
| |
| memset(&rcb, 0, sizeof(rcb)); |
| memset(&asa, 0, sizeof(asa)); |
| |
| rcb.req_flags = req_flags; |
| rcb.msi = SISL_MSI_RRQ_UPDATED; |
| rcb.timeout = MC_AFU_DEBUG_TIMEOUT; |
| rcb.ioasa = &asa; |
| |
| if (ulen) { |
| rcb.data_len = ulen; |
| rcb.data_ea = (uintptr_t)kbuf; |
| } |
| |
| rcb.cdb[0] = SISL_AFU_CMD_DEBUG; |
| memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, |
| HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); |
| |
| rc = send_afu_cmd(afu, &rcb); |
| if (rc) { |
| dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", |
| __func__, rc, asa.ioasc, asa.afu_extra); |
| goto out; |
| } |
| |
| if (ulen && !is_write) { |
| if (copy_to_user(ubuf, kbuf, ulen)) |
| rc = -EFAULT; |
| } |
| out: |
| kfree(buf); |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_chr_ioctl() - character device IOCTL handler |
| * @file: File pointer for this device. |
| * @cmd: IOCTL command. |
| * @arg: Userspace ioctl data structure. |
| * |
| * A read/write semaphore is used to implement a 'drain' of currently |
| * running ioctls. The read semaphore is taken at the beginning of each |
| * ioctl thread and released upon concluding execution. Additionally the |
| * semaphore should be released and then reacquired in any ioctl execution |
| * path which will wait for an event to occur that is outside the scope of |
| * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, |
| * a thread simply needs to acquire the write semaphore. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| typedef int (*hioctl) (struct cxlflash_cfg *, void *); |
| |
| struct cxlflash_cfg *cfg = file->private_data; |
| struct device *dev = &cfg->dev->dev; |
| char buf[sizeof(union cxlflash_ht_ioctls)]; |
| void __user *uarg = (void __user *)arg; |
| struct ht_cxlflash_hdr *hdr; |
| size_t size = 0; |
| bool known_ioctl = false; |
| int idx = 0; |
| int rc = 0; |
| hioctl do_ioctl = NULL; |
| |
| static const struct { |
| size_t size; |
| hioctl ioctl; |
| } ioctl_tbl[] = { /* NOTE: order matters here */ |
| { sizeof(struct ht_cxlflash_lun_provision), cxlflash_lun_provision }, |
| { sizeof(struct ht_cxlflash_afu_debug), cxlflash_afu_debug }, |
| }; |
| |
| /* Hold read semaphore so we can drain if needed */ |
| down_read(&cfg->ioctl_rwsem); |
| |
| dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", |
| __func__, cmd, idx, sizeof(ioctl_tbl)); |
| |
| switch (cmd) { |
| case HT_CXLFLASH_LUN_PROVISION: |
| case HT_CXLFLASH_AFU_DEBUG: |
| known_ioctl = true; |
| idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); |
| size = ioctl_tbl[idx].size; |
| do_ioctl = ioctl_tbl[idx].ioctl; |
| |
| if (likely(do_ioctl)) |
| break; |
| |
| fallthrough; |
| default: |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (unlikely(copy_from_user(&buf, uarg, size))) { |
| dev_err(dev, "%s: copy_from_user() fail " |
| "size=%lu cmd=%d (%s) uarg=%p\n", |
| __func__, size, cmd, decode_hioctl(cmd), uarg); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| hdr = (struct ht_cxlflash_hdr *)&buf; |
| if (hdr->version != HT_CXLFLASH_VERSION_0) { |
| dev_dbg(dev, "%s: Version %u not supported for %s\n", |
| __func__, hdr->version, decode_hioctl(cmd)); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { |
| dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| rc = do_ioctl(cfg, (void *)&buf); |
| if (likely(!rc)) |
| if (unlikely(copy_to_user(uarg, &buf, size))) { |
| dev_err(dev, "%s: copy_to_user() fail " |
| "size=%lu cmd=%d (%s) uarg=%p\n", |
| __func__, size, cmd, decode_hioctl(cmd), uarg); |
| rc = -EFAULT; |
| } |
| |
| /* fall through to exit */ |
| |
| out: |
| up_read(&cfg->ioctl_rwsem); |
| if (unlikely(rc && known_ioctl)) |
| dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", |
| __func__, decode_hioctl(cmd), cmd, rc); |
| else |
| dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", |
| __func__, decode_hioctl(cmd), cmd, rc); |
| return rc; |
| } |
| |
| /* |
| * Character device file operations |
| */ |
| static const struct file_operations cxlflash_chr_fops = { |
| .owner = THIS_MODULE, |
| .open = cxlflash_chr_open, |
| .unlocked_ioctl = cxlflash_chr_ioctl, |
| .compat_ioctl = compat_ptr_ioctl, |
| }; |
| |
| /** |
| * init_chrdev() - initialize the character device for the host |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_chrdev(struct cxlflash_cfg *cfg) |
| { |
| struct device *dev = &cfg->dev->dev; |
| struct device *char_dev; |
| dev_t devno; |
| int minor; |
| int rc = 0; |
| |
| minor = cxlflash_get_minor(); |
| if (unlikely(minor < 0)) { |
| dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); |
| rc = -ENOSPC; |
| goto out; |
| } |
| |
| devno = MKDEV(cxlflash_major, minor); |
| cdev_init(&cfg->cdev, &cxlflash_chr_fops); |
| |
| rc = cdev_add(&cfg->cdev, devno, 1); |
| if (rc) { |
| dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); |
| goto err1; |
| } |
| |
| char_dev = device_create(&cxlflash_class, NULL, devno, |
| NULL, "cxlflash%d", minor); |
| if (IS_ERR(char_dev)) { |
| rc = PTR_ERR(char_dev); |
| dev_err(dev, "%s: device_create failed rc=%d\n", |
| __func__, rc); |
| goto err2; |
| } |
| |
| cfg->chardev = char_dev; |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| err2: |
| cdev_del(&cfg->cdev); |
| err1: |
| cxlflash_put_minor(minor); |
| goto out; |
| } |
| |
| /** |
| * cxlflash_probe() - PCI entry point to add host |
| * @pdev: PCI device associated with the host. |
| * @dev_id: PCI device id associated with device. |
| * |
| * The device will initially start out in a 'probing' state and |
| * transition to the 'normal' state at the end of a successful |
| * probe. Should an EEH event occur during probe, the notification |
| * thread (error_detected()) will wait until the probe handler |
| * is nearly complete. At that time, the device will be moved to |
| * a 'probed' state and the EEH thread woken up to drive the slot |
| * reset and recovery (device moves to 'normal' state). Meanwhile, |
| * the probe will be allowed to exit successfully. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int cxlflash_probe(struct pci_dev *pdev, |
| const struct pci_device_id *dev_id) |
| { |
| struct Scsi_Host *host; |
| struct cxlflash_cfg *cfg = NULL; |
| struct device *dev = &pdev->dev; |
| struct dev_dependent_vals *ddv; |
| int rc = 0; |
| int k; |
| |
| dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", |
| __func__, pdev->irq); |
| |
| ddv = (struct dev_dependent_vals *)dev_id->driver_data; |
| driver_template.max_sectors = ddv->max_sectors; |
| |
| host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); |
| if (!host) { |
| dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; |
| host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; |
| host->unique_id = host->host_no; |
| host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; |
| |
| cfg = shost_priv(host); |
| cfg->state = STATE_PROBING; |
| cfg->host = host; |
| rc = alloc_mem(cfg); |
| if (rc) { |
| dev_err(dev, "%s: alloc_mem failed\n", __func__); |
| rc = -ENOMEM; |
| scsi_host_put(cfg->host); |
| goto out; |
| } |
| |
| cfg->init_state = INIT_STATE_NONE; |
| cfg->dev = pdev; |
| cfg->cxl_fops = cxlflash_cxl_fops; |
| cfg->ops = cxlflash_assign_ops(ddv); |
| WARN_ON_ONCE(!cfg->ops); |
| |
| /* |
| * Promoted LUNs move to the top of the LUN table. The rest stay on |
| * the bottom half. The bottom half grows from the end (index = 255), |
| * whereas the top half grows from the beginning (index = 0). |
| * |
| * Initialize the last LUN index for all possible ports. |
| */ |
| cfg->promote_lun_index = 0; |
| |
| for (k = 0; k < MAX_FC_PORTS; k++) |
| cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; |
| |
| cfg->dev_id = (struct pci_device_id *)dev_id; |
| |
| init_waitqueue_head(&cfg->tmf_waitq); |
| init_waitqueue_head(&cfg->reset_waitq); |
| |
| INIT_WORK(&cfg->work_q, cxlflash_worker_thread); |
| cfg->lr_state = LINK_RESET_INVALID; |
| cfg->lr_port = -1; |
| spin_lock_init(&cfg->tmf_slock); |
| mutex_init(&cfg->ctx_tbl_list_mutex); |
| mutex_init(&cfg->ctx_recovery_mutex); |
| init_rwsem(&cfg->ioctl_rwsem); |
| INIT_LIST_HEAD(&cfg->ctx_err_recovery); |
| INIT_LIST_HEAD(&cfg->lluns); |
| |
| pci_set_drvdata(pdev, cfg); |
| |
| rc = init_pci(cfg); |
| if (rc) { |
| dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); |
| goto out_remove; |
| } |
| cfg->init_state = INIT_STATE_PCI; |
| |
| cfg->afu_cookie = cfg->ops->create_afu(pdev); |
| if (unlikely(!cfg->afu_cookie)) { |
| dev_err(dev, "%s: create_afu failed\n", __func__); |
| rc = -ENOMEM; |
| goto out_remove; |
| } |
| |
| rc = init_afu(cfg); |
| if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { |
| dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); |
| goto out_remove; |
| } |
| cfg->init_state = INIT_STATE_AFU; |
| |
| rc = init_scsi(cfg); |
| if (rc) { |
| dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); |
| goto out_remove; |
| } |
| cfg->init_state = INIT_STATE_SCSI; |
| |
| rc = init_chrdev(cfg); |
| if (rc) { |
| dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); |
| goto out_remove; |
| } |
| cfg->init_state = INIT_STATE_CDEV; |
| |
| if (wq_has_sleeper(&cfg->reset_waitq)) { |
| cfg->state = STATE_PROBED; |
| wake_up_all(&cfg->reset_waitq); |
| } else |
| cfg->state = STATE_NORMAL; |
| out: |
| dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| |
| out_remove: |
| cfg->state = STATE_PROBED; |
| cxlflash_remove(pdev); |
| goto out; |
| } |
| |
| /** |
| * cxlflash_pci_error_detected() - called when a PCI error is detected |
| * @pdev: PCI device struct. |
| * @state: PCI channel state. |
| * |
| * When an EEH occurs during an active reset, wait until the reset is |
| * complete and then take action based upon the device state. |
| * |
| * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT |
| */ |
| static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| int rc = 0; |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| struct device *dev = &cfg->dev->dev; |
| |
| dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); |
| |
| switch (state) { |
| case pci_channel_io_frozen: |
| wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && |
| cfg->state != STATE_PROBING); |
| if (cfg->state == STATE_FAILTERM) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| cfg->state = STATE_RESET; |
| scsi_block_requests(cfg->host); |
| drain_ioctls(cfg); |
| rc = cxlflash_mark_contexts_error(cfg); |
| if (unlikely(rc)) |
| dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", |
| __func__, rc); |
| term_afu(cfg); |
| return PCI_ERS_RESULT_NEED_RESET; |
| case pci_channel_io_perm_failure: |
| cfg->state = STATE_FAILTERM; |
| wake_up_all(&cfg->reset_waitq); |
| scsi_unblock_requests(cfg->host); |
| return PCI_ERS_RESULT_DISCONNECT; |
| default: |
| break; |
| } |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * cxlflash_pci_slot_reset() - called when PCI slot has been reset |
| * @pdev: PCI device struct. |
| * |
| * This routine is called by the pci error recovery code after the PCI |
| * slot has been reset, just before we should resume normal operations. |
| * |
| * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT |
| */ |
| static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) |
| { |
| int rc = 0; |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| struct device *dev = &cfg->dev->dev; |
| |
| dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); |
| |
| rc = init_afu(cfg); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * cxlflash_pci_resume() - called when normal operation can resume |
| * @pdev: PCI device struct |
| */ |
| static void cxlflash_pci_resume(struct pci_dev *pdev) |
| { |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| struct device *dev = &cfg->dev->dev; |
| |
| dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); |
| |
| cfg->state = STATE_NORMAL; |
| wake_up_all(&cfg->reset_waitq); |
| scsi_unblock_requests(cfg->host); |
| } |
| |
| /** |
| * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class |
| * @dev: Character device. |
| * @mode: Mode that can be used to verify access. |
| * |
| * Return: Allocated string describing the devtmpfs structure. |
| */ |
| static char *cxlflash_devnode(const struct device *dev, umode_t *mode) |
| { |
| return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); |
| } |
| |
| /** |
| * cxlflash_class_init() - create character device class |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int cxlflash_class_init(void) |
| { |
| dev_t devno; |
| int rc = 0; |
| |
| rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); |
| if (unlikely(rc)) { |
| pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); |
| goto out; |
| } |
| |
| cxlflash_major = MAJOR(devno); |
| |
| rc = class_register(&cxlflash_class); |
| if (rc) { |
| pr_err("%s: class_create failed rc=%d\n", __func__, rc); |
| goto err; |
| } |
| |
| out: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| err: |
| unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); |
| goto out; |
| } |
| |
| /** |
| * cxlflash_class_exit() - destroy character device class |
| */ |
| static void cxlflash_class_exit(void) |
| { |
| dev_t devno = MKDEV(cxlflash_major, 0); |
| |
| class_unregister(&cxlflash_class); |
| unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); |
| } |
| |
| static const struct pci_error_handlers cxlflash_err_handler = { |
| .error_detected = cxlflash_pci_error_detected, |
| .slot_reset = cxlflash_pci_slot_reset, |
| .resume = cxlflash_pci_resume, |
| }; |
| |
| /* |
| * PCI device structure |
| */ |
| static struct pci_driver cxlflash_driver = { |
| .name = CXLFLASH_NAME, |
| .id_table = cxlflash_pci_table, |
| .probe = cxlflash_probe, |
| .remove = cxlflash_remove, |
| .shutdown = cxlflash_remove, |
| .err_handler = &cxlflash_err_handler, |
| }; |
| |
| /** |
| * init_cxlflash() - module entry point |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int __init init_cxlflash(void) |
| { |
| int rc; |
| |
| check_sizes(); |
| cxlflash_list_init(); |
| rc = cxlflash_class_init(); |
| if (unlikely(rc)) |
| goto out; |
| |
| rc = pci_register_driver(&cxlflash_driver); |
| if (unlikely(rc)) |
| goto err; |
| out: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| err: |
| cxlflash_class_exit(); |
| goto out; |
| } |
| |
| /** |
| * exit_cxlflash() - module exit point |
| */ |
| static void __exit exit_cxlflash(void) |
| { |
| cxlflash_term_global_luns(); |
| cxlflash_free_errpage(); |
| |
| pci_unregister_driver(&cxlflash_driver); |
| cxlflash_class_exit(); |
| } |
| |
| module_init(init_cxlflash); |
| module_exit(exit_cxlflash); |