blob: 7abb82859ed09c40fb77c62cc52d1d1eaec5e99e [file] [log] [blame]
/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <acpi/video.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-resv.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <linux/vga_switcheroo.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_privacy_screen_consumer.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_rect.h>
#include "display/intel_audio.h"
#include "display/intel_crt.h"
#include "display/intel_ddi.h"
#include "display/intel_display_debugfs.h"
#include "display/intel_display_power.h"
#include "display/intel_dp.h"
#include "display/intel_dp_mst.h"
#include "display/intel_dpll.h"
#include "display/intel_dpll_mgr.h"
#include "display/intel_drrs.h"
#include "display/intel_dsi.h"
#include "display/intel_dvo.h"
#include "display/intel_fb.h"
#include "display/intel_gmbus.h"
#include "display/intel_hdmi.h"
#include "display/intel_lvds.h"
#include "display/intel_sdvo.h"
#include "display/intel_snps_phy.h"
#include "display/intel_tv.h"
#include "display/intel_vdsc.h"
#include "display/intel_vrr.h"
#include "gem/i915_gem_lmem.h"
#include "gem/i915_gem_object.h"
#include "gt/gen8_ppgtt.h"
#include "g4x_dp.h"
#include "g4x_hdmi.h"
#include "hsw_ips.h"
#include "i915_drv.h"
#include "i915_utils.h"
#include "icl_dsi.h"
#include "intel_acpi.h"
#include "intel_atomic.h"
#include "intel_atomic_plane.h"
#include "intel_bw.h"
#include "intel_cdclk.h"
#include "intel_color.h"
#include "intel_crtc.h"
#include "intel_crtc_state_dump.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dmc.h"
#include "intel_dp_link_training.h"
#include "intel_dpt.h"
#include "intel_dsb.h"
#include "intel_fbc.h"
#include "intel_fbdev.h"
#include "intel_fdi.h"
#include "intel_fifo_underrun.h"
#include "intel_frontbuffer.h"
#include "intel_hdcp.h"
#include "intel_hotplug.h"
#include "intel_modeset_verify.h"
#include "intel_modeset_setup.h"
#include "intel_overlay.h"
#include "intel_panel.h"
#include "intel_pch_display.h"
#include "intel_pch_refclk.h"
#include "intel_pcode.h"
#include "intel_pipe_crc.h"
#include "intel_plane_initial.h"
#include "intel_pm.h"
#include "intel_pps.h"
#include "intel_psr.h"
#include "intel_quirks.h"
#include "intel_sprite.h"
#include "intel_tc.h"
#include "intel_vga.h"
#include "i9xx_plane.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
#include "skl_watermark.h"
#include "vlv_dsi.h"
#include "vlv_dsi_pll.h"
#include "vlv_dsi_regs.h"
#include "vlv_sideband.h"
static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state);
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
static void hsw_set_transconf(const struct intel_crtc_state *crtc_state);
static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
* @dev_priv: i915 device
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
void intel_update_watermarks(struct drm_i915_private *dev_priv)
{
if (dev_priv->display.funcs.wm->update_wm)
dev_priv->display.funcs.wm->update_wm(dev_priv);
}
static int intel_compute_pipe_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
if (dev_priv->display.funcs.wm->compute_pipe_wm)
return dev_priv->display.funcs.wm->compute_pipe_wm(state, crtc);
return 0;
}
static int intel_compute_intermediate_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
if (!dev_priv->display.funcs.wm->compute_intermediate_wm)
return 0;
if (drm_WARN_ON(&dev_priv->drm,
!dev_priv->display.funcs.wm->compute_pipe_wm))
return 0;
return dev_priv->display.funcs.wm->compute_intermediate_wm(state, crtc);
}
static bool intel_initial_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
if (dev_priv->display.funcs.wm->initial_watermarks) {
dev_priv->display.funcs.wm->initial_watermarks(state, crtc);
return true;
}
return false;
}
static void intel_atomic_update_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
if (dev_priv->display.funcs.wm->atomic_update_watermarks)
dev_priv->display.funcs.wm->atomic_update_watermarks(state, crtc);
}
static void intel_optimize_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
if (dev_priv->display.funcs.wm->optimize_watermarks)
dev_priv->display.funcs.wm->optimize_watermarks(state, crtc);
}
static int intel_compute_global_watermarks(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
if (dev_priv->display.funcs.wm->compute_global_watermarks)
return dev_priv->display.funcs.wm->compute_global_watermarks(state);
return 0;
}
/* returns HPLL frequency in kHz */
int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
/* Obtain SKU information */
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
return vco_freq[hpll_freq] * 1000;
}
int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
const char *name, u32 reg, int ref_freq)
{
u32 val;
int divider;
val = vlv_cck_read(dev_priv, reg);
divider = val & CCK_FREQUENCY_VALUES;
drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
(divider << CCK_FREQUENCY_STATUS_SHIFT),
"%s change in progress\n", name);
return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
}
int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
const char *name, u32 reg)
{
int hpll;
vlv_cck_get(dev_priv);
if (dev_priv->hpll_freq == 0)
dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
vlv_cck_put(dev_priv);
return hpll;
}
static void intel_update_czclk(struct drm_i915_private *dev_priv)
{
if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
return;
dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
CCK_CZ_CLOCK_CONTROL);
drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
dev_priv->czclk_freq);
}
static bool is_hdr_mode(const struct intel_crtc_state *crtc_state)
{
return (crtc_state->active_planes &
~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0;
}
/* WA Display #0827: Gen9:all */
static void
skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
{
if (enable)
intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
else
intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
}
/* Wa_2006604312:icl,ehl */
static void
icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
bool enable)
{
if (enable)
intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
else
intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
}
/* Wa_1604331009:icl,jsl,ehl */
static void
icl_wa_cursorclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
bool enable)
{
intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe), CURSOR_GATING_DIS,
enable ? CURSOR_GATING_DIS : 0);
}
static bool
is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
{
return crtc_state->master_transcoder != INVALID_TRANSCODER;
}
static bool
is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
{
return crtc_state->sync_mode_slaves_mask != 0;
}
bool
is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
{
return is_trans_port_sync_master(crtc_state) ||
is_trans_port_sync_slave(crtc_state);
}
static enum pipe bigjoiner_master_pipe(const struct intel_crtc_state *crtc_state)
{
return ffs(crtc_state->bigjoiner_pipes) - 1;
}
u8 intel_crtc_bigjoiner_slave_pipes(const struct intel_crtc_state *crtc_state)
{
if (crtc_state->bigjoiner_pipes)
return crtc_state->bigjoiner_pipes & ~BIT(bigjoiner_master_pipe(crtc_state));
else
return 0;
}
bool intel_crtc_is_bigjoiner_slave(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return crtc_state->bigjoiner_pipes &&
crtc->pipe != bigjoiner_master_pipe(crtc_state);
}
bool intel_crtc_is_bigjoiner_master(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return crtc_state->bigjoiner_pipes &&
crtc->pipe == bigjoiner_master_pipe(crtc_state);
}
static int intel_bigjoiner_num_pipes(const struct intel_crtc_state *crtc_state)
{
return hweight8(crtc_state->bigjoiner_pipes);
}
struct intel_crtc *intel_master_crtc(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
if (intel_crtc_is_bigjoiner_slave(crtc_state))
return intel_crtc_for_pipe(i915, bigjoiner_master_pipe(crtc_state));
else
return to_intel_crtc(crtc_state->uapi.crtc);
}
static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
i915_reg_t reg = PIPEDSL(pipe);
u32 line1, line2;
line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
msleep(5);
line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
return line1 != line2;
}
static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* Wait for the display line to settle/start moving */
if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
drm_err(&dev_priv->drm,
"pipe %c scanline %s wait timed out\n",
pipe_name(pipe), str_on_off(state));
}
static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
{
wait_for_pipe_scanline_moving(crtc, false);
}
static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
{
wait_for_pipe_scanline_moving(crtc, true);
}
static void
intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (DISPLAY_VER(dev_priv) >= 4) {
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
/* Wait for the Pipe State to go off */
if (intel_de_wait_for_clear(dev_priv, PIPECONF(cpu_transcoder),
PIPECONF_STATE_ENABLE, 100))
drm_WARN(&dev_priv->drm, 1, "pipe_off wait timed out\n");
} else {
intel_wait_for_pipe_scanline_stopped(crtc);
}
}
void assert_transcoder(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, bool state)
{
bool cur_state;
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
/* we keep both pipes enabled on 830 */
if (IS_I830(dev_priv))
state = true;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (wakeref) {
u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
cur_state = !!(val & PIPECONF_ENABLE);
intel_display_power_put(dev_priv, power_domain, wakeref);
} else {
cur_state = false;
}
I915_STATE_WARN(cur_state != state,
"transcoder %s assertion failure (expected %s, current %s)\n",
transcoder_name(cpu_transcoder),
str_on_off(state), str_on_off(cur_state));
}
static void assert_plane(struct intel_plane *plane, bool state)
{
enum pipe pipe;
bool cur_state;
cur_state = plane->get_hw_state(plane, &pipe);
I915_STATE_WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
plane->base.name, str_on_off(state),
str_on_off(cur_state));
}
#define assert_plane_enabled(p) assert_plane(p, true)
#define assert_plane_disabled(p) assert_plane(p, false)
static void assert_planes_disabled(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
assert_plane_disabled(plane);
}
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
struct intel_digital_port *dig_port,
unsigned int expected_mask)
{
u32 port_mask;
i915_reg_t dpll_reg;
switch (dig_port->base.port) {
default:
MISSING_CASE(dig_port->base.port);
fallthrough;
case PORT_B:
port_mask = DPLL_PORTB_READY_MASK;
dpll_reg = DPLL(0);
break;
case PORT_C:
port_mask = DPLL_PORTC_READY_MASK;
dpll_reg = DPLL(0);
expected_mask <<= 4;
break;
case PORT_D:
port_mask = DPLL_PORTD_READY_MASK;
dpll_reg = DPIO_PHY_STATUS;
break;
}
if (intel_de_wait_for_register(dev_priv, dpll_reg,
port_mask, expected_mask, 1000))
drm_WARN(&dev_priv->drm, 1,
"timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
dig_port->base.base.base.id, dig_port->base.base.name,
intel_de_read(dev_priv, dpll_reg) & port_mask,
expected_mask);
}
void intel_enable_transcoder(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 val;
drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
assert_planes_disabled(crtc);
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (HAS_GMCH(dev_priv)) {
if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
} else {
if (new_crtc_state->has_pch_encoder) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv,
intel_crtc_pch_transcoder(crtc));
assert_fdi_tx_pll_enabled(dev_priv,
(enum pipe) cpu_transcoder);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
/* Wa_22012358565:adl-p */
if (DISPLAY_VER(dev_priv) == 13)
intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe),
0, PIPE_ARB_USE_PROG_SLOTS);
reg = PIPECONF(cpu_transcoder);
val = intel_de_read(dev_priv, reg);
if (val & PIPECONF_ENABLE) {
/* we keep both pipes enabled on 830 */
drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
return;
}
intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
intel_de_posting_read(dev_priv, reg);
/*
* Until the pipe starts PIPEDSL reads will return a stale value,
* which causes an apparent vblank timestamp jump when PIPEDSL
* resets to its proper value. That also messes up the frame count
* when it's derived from the timestamps. So let's wait for the
* pipe to start properly before we call drm_crtc_vblank_on()
*/
if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
intel_wait_for_pipe_scanline_moving(crtc);
}
void intel_disable_transcoder(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 val;
drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(crtc);
reg = PIPECONF(cpu_transcoder);
val = intel_de_read(dev_priv, reg);
if ((val & PIPECONF_ENABLE) == 0)
return;
/*
* Double wide has implications for planes
* so best keep it disabled when not needed.
*/
if (old_crtc_state->double_wide)
val &= ~PIPECONF_DOUBLE_WIDE;
/* Don't disable pipe or pipe PLLs if needed */
if (!IS_I830(dev_priv))
val &= ~PIPECONF_ENABLE;
if (DISPLAY_VER(dev_priv) >= 12)
intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder),
FECSTALL_DIS_DPTSTREAM_DPTTG, 0);
intel_de_write(dev_priv, reg, val);
if ((val & PIPECONF_ENABLE) == 0)
intel_wait_for_pipe_off(old_crtc_state);
}
unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
{
unsigned int size = 0;
int i;
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
size += rot_info->plane[i].dst_stride * rot_info->plane[i].width;
return size;
}
unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
{
unsigned int size = 0;
int i;
for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
unsigned int plane_size;
if (rem_info->plane[i].linear)
plane_size = rem_info->plane[i].size;
else
plane_size = rem_info->plane[i].dst_stride * rem_info->plane[i].height;
if (plane_size == 0)
continue;
if (rem_info->plane_alignment)
size = ALIGN(size, rem_info->plane_alignment);
size += plane_size;
}
return size;
}
bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
return DISPLAY_VER(dev_priv) < 4 ||
(plane->fbc &&
plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL);
}
/*
* Convert the x/y offsets into a linear offset.
* Only valid with 0/180 degree rotation, which is fine since linear
* offset is only used with linear buffers on pre-hsw and tiled buffers
* with gen2/3, and 90/270 degree rotations isn't supported on any of them.
*/
u32 intel_fb_xy_to_linear(int x, int y,
const struct intel_plane_state *state,
int color_plane)
{
const struct drm_framebuffer *fb = state->hw.fb;
unsigned int cpp = fb->format->cpp[color_plane];
unsigned int pitch = state->view.color_plane[color_plane].mapping_stride;
return y * pitch + x * cpp;
}
/*
* Add the x/y offsets derived from fb->offsets[] to the user
* specified plane src x/y offsets. The resulting x/y offsets
* specify the start of scanout from the beginning of the gtt mapping.
*/
void intel_add_fb_offsets(int *x, int *y,
const struct intel_plane_state *state,
int color_plane)
{
*x += state->view.color_plane[color_plane].x;
*y += state->view.color_plane[color_plane].y;
}
u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
u32 pixel_format, u64 modifier)
{
struct intel_crtc *crtc;
struct intel_plane *plane;
if (!HAS_DISPLAY(dev_priv))
return 0;
/*
* We assume the primary plane for pipe A has
* the highest stride limits of them all,
* if in case pipe A is disabled, use the first pipe from pipe_mask.
*/
crtc = intel_first_crtc(dev_priv);
if (!crtc)
return 0;
plane = to_intel_plane(crtc->base.primary);
return plane->max_stride(plane, pixel_format, modifier,
DRM_MODE_ROTATE_0);
}
void intel_set_plane_visible(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state,
bool visible)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
plane_state->uapi.visible = visible;
if (visible)
crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
else
crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
}
void intel_plane_fixup_bitmasks(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
struct drm_plane *plane;
/*
* Active_planes aliases if multiple "primary" or cursor planes
* have been used on the same (or wrong) pipe. plane_mask uses
* unique ids, hence we can use that to reconstruct active_planes.
*/
crtc_state->enabled_planes = 0;
crtc_state->active_planes = 0;
drm_for_each_plane_mask(plane, &dev_priv->drm,
crtc_state->uapi.plane_mask) {
crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id);
crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
}
}
void intel_plane_disable_noatomic(struct intel_crtc *crtc,
struct intel_plane *plane)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
drm_dbg_kms(&dev_priv->drm,
"Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
plane->base.base.id, plane->base.name,
crtc->base.base.id, crtc->base.name);
intel_set_plane_visible(crtc_state, plane_state, false);
intel_plane_fixup_bitmasks(crtc_state);
crtc_state->data_rate[plane->id] = 0;
crtc_state->data_rate_y[plane->id] = 0;
crtc_state->rel_data_rate[plane->id] = 0;
crtc_state->rel_data_rate_y[plane->id] = 0;
crtc_state->min_cdclk[plane->id] = 0;
if ((crtc_state->active_planes & ~BIT(PLANE_CURSOR)) == 0 &&
hsw_ips_disable(crtc_state)) {
crtc_state->ips_enabled = false;
intel_crtc_wait_for_next_vblank(crtc);
}
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH(dev_priv) &&
intel_set_memory_cxsr(dev_priv, false))
intel_crtc_wait_for_next_vblank(crtc);
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So disable underrun reporting before all the planes get disabled.
*/
if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes)
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
intel_plane_disable_arm(plane, crtc_state);
intel_crtc_wait_for_next_vblank(crtc);
}
unsigned int
intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
{
int x = 0, y = 0;
intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
plane_state->view.color_plane[0].offset, 0);
return y;
}
static int
__intel_display_resume(struct drm_i915_private *i915,
struct drm_atomic_state *state,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
int i, ret;
intel_modeset_setup_hw_state(i915, ctx);
intel_vga_redisable(i915);
if (!state)
return 0;
/*
* We've duplicated the state, pointers to the old state are invalid.
*
* Don't attempt to use the old state until we commit the duplicated state.
*/
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
/*
* Force recalculation even if we restore
* current state. With fast modeset this may not result
* in a modeset when the state is compatible.
*/
crtc_state->mode_changed = true;
}
/* ignore any reset values/BIOS leftovers in the WM registers */
if (!HAS_GMCH(i915))
to_intel_atomic_state(state)->skip_intermediate_wm = true;
ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
drm_WARN_ON(&i915->drm, ret == -EDEADLK);
return ret;
}
static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
{
return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
intel_has_gpu_reset(to_gt(dev_priv)));
}
void intel_display_prepare_reset(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
struct drm_atomic_state *state;
int ret;
if (!HAS_DISPLAY(dev_priv))
return;
/* reset doesn't touch the display */
if (!dev_priv->params.force_reset_modeset_test &&
!gpu_reset_clobbers_display(dev_priv))
return;
/* We have a modeset vs reset deadlock, defensively unbreak it. */
set_bit(I915_RESET_MODESET, &to_gt(dev_priv)->reset.flags);
smp_mb__after_atomic();
wake_up_bit(&to_gt(dev_priv)->reset.flags, I915_RESET_MODESET);
if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
drm_dbg_kms(&dev_priv->drm,
"Modeset potentially stuck, unbreaking through wedging\n");
intel_gt_set_wedged(to_gt(dev_priv));
}
/*
* Need mode_config.mutex so that we don't
* trample ongoing ->detect() and whatnot.
*/
mutex_lock(&dev->mode_config.mutex);
drm_modeset_acquire_init(ctx, 0);
while (1) {
ret = drm_modeset_lock_all_ctx(dev, ctx);
if (ret != -EDEADLK)
break;
drm_modeset_backoff(ctx);
}
/*
* Disabling the crtcs gracefully seems nicer. Also the
* g33 docs say we should at least disable all the planes.
*/
state = drm_atomic_helper_duplicate_state(dev, ctx);
if (IS_ERR(state)) {
ret = PTR_ERR(state);
drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
ret);
return;
}
ret = drm_atomic_helper_disable_all(dev, ctx);
if (ret) {
drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
ret);
drm_atomic_state_put(state);
return;
}
dev_priv->modeset_restore_state = state;
state->acquire_ctx = ctx;
}
void intel_display_finish_reset(struct drm_i915_private *i915)
{
struct drm_modeset_acquire_ctx *ctx = &i915->reset_ctx;
struct drm_atomic_state *state;
int ret;
if (!HAS_DISPLAY(i915))
return;
/* reset doesn't touch the display */
if (!test_bit(I915_RESET_MODESET, &to_gt(i915)->reset.flags))
return;
state = fetch_and_zero(&i915->modeset_restore_state);
if (!state)
goto unlock;
/* reset doesn't touch the display */
if (!gpu_reset_clobbers_display(i915)) {
/* for testing only restore the display */
ret = __intel_display_resume(i915, state, ctx);
if (ret)
drm_err(&i915->drm,
"Restoring old state failed with %i\n", ret);
} else {
/*
* The display has been reset as well,
* so need a full re-initialization.
*/
intel_pps_unlock_regs_wa(i915);
intel_modeset_init_hw(i915);
intel_init_clock_gating(i915);
intel_hpd_init(i915);
ret = __intel_display_resume(i915, state, ctx);
if (ret)
drm_err(&i915->drm,
"Restoring old state failed with %i\n", ret);
intel_hpd_poll_disable(i915);
}
drm_atomic_state_put(state);
unlock:
drm_modeset_drop_locks(ctx);
drm_modeset_acquire_fini(ctx);
mutex_unlock(&i915->drm.mode_config.mutex);
clear_bit_unlock(I915_RESET_MODESET, &to_gt(i915)->reset.flags);
}
static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 tmp;
tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
/*
* Display WA #1153: icl
* enable hardware to bypass the alpha math
* and rounding for per-pixel values 00 and 0xff
*/
tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
/*
* Display WA # 1605353570: icl
* Set the pixel rounding bit to 1 for allowing
* passthrough of Frame buffer pixels unmodified
* across pipe
*/
tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
/*
* Underrun recovery must always be disabled on display 13+.
* DG2 chicken bit meaning is inverted compared to other platforms.
*/
if (IS_DG2(dev_priv))
tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2;
else if (DISPLAY_VER(dev_priv) >= 13)
tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP;
/* Wa_14010547955:dg2 */
if (IS_DG2_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER))
tmp |= DG2_RENDER_CCSTAG_4_3_EN;
intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
}
bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
{
struct drm_crtc *crtc;
bool cleanup_done;
drm_for_each_crtc(crtc, &dev_priv->drm) {
struct drm_crtc_commit *commit;
spin_lock(&crtc->commit_lock);
commit = list_first_entry_or_null(&crtc->commit_list,
struct drm_crtc_commit, commit_entry);
cleanup_done = commit ?
try_wait_for_completion(&commit->cleanup_done) : true;
spin_unlock(&crtc->commit_lock);
if (cleanup_done)
continue;
intel_crtc_wait_for_next_vblank(to_intel_crtc(crtc));
return true;
}
return false;
}
/*
* Finds the encoder associated with the given CRTC. This can only be
* used when we know that the CRTC isn't feeding multiple encoders!
*/
struct intel_encoder *
intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
const struct drm_connector_state *connector_state;
const struct drm_connector *connector;
struct intel_encoder *encoder = NULL;
struct intel_crtc *master_crtc;
int num_encoders = 0;
int i;
master_crtc = intel_master_crtc(crtc_state);
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
if (connector_state->crtc != &master_crtc->base)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
num_encoders++;
}
drm_WARN(encoder->base.dev, num_encoders != 1,
"%d encoders for pipe %c\n",
num_encoders, pipe_name(master_crtc->pipe));
return encoder;
}
static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
i915_reg_t dslreg = PIPEDSL(pipe);
u32 temp;
temp = intel_de_read(dev_priv, dslreg);
udelay(500);
if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
drm_err(&dev_priv->drm,
"mode set failed: pipe %c stuck\n",
pipe_name(pipe));
}
}
static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
enum pipe pipe = crtc->pipe;
int width = drm_rect_width(dst);
int height = drm_rect_height(dst);
int x = dst->x1;
int y = dst->y1;
if (!crtc_state->pch_pfit.enabled)
return;
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
*/
if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
intel_de_write_fw(dev_priv, PF_CTL(pipe), PF_ENABLE |
PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
else
intel_de_write_fw(dev_priv, PF_CTL(pipe), PF_ENABLE |
PF_FILTER_MED_3x3);
intel_de_write_fw(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
intel_de_write_fw(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
}
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc)
{
if (crtc->overlay)
(void) intel_overlay_switch_off(crtc->overlay);
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (!crtc_state->nv12_planes)
return false;
/* WA Display #0827: Gen9:all */
if (DISPLAY_VER(dev_priv) == 9)
return true;
return false;
}
static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
/* Wa_2006604312:icl,ehl */
if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11)
return true;
return false;
}
static bool needs_cursorclk_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
/* Wa_1604331009:icl,jsl,ehl */
if (is_hdr_mode(crtc_state) &&
crtc_state->active_planes & BIT(PLANE_CURSOR) &&
DISPLAY_VER(dev_priv) == 11)
return true;
return false;
}
static void intel_async_flip_vtd_wa(struct drm_i915_private *i915,
enum pipe pipe, bool enable)
{
if (DISPLAY_VER(i915) == 9) {
/*
* "Plane N strech max must be programmed to 11b (x1)
* when Async flips are enabled on that plane."
*/
intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe),
SKL_PLANE1_STRETCH_MAX_MASK,
enable ? SKL_PLANE1_STRETCH_MAX_X1 : SKL_PLANE1_STRETCH_MAX_X8);
} else {
/* Also needed on HSW/BDW albeit undocumented */
intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe),
HSW_PRI_STRETCH_MAX_MASK,
enable ? HSW_PRI_STRETCH_MAX_X1 : HSW_PRI_STRETCH_MAX_X8);
}
}
static bool needs_async_flip_vtd_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
return crtc_state->uapi.async_flip && i915_vtd_active(i915) &&
(DISPLAY_VER(i915) == 9 || IS_BROADWELL(i915) || IS_HASWELL(i915));
}
static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) &&
new_crtc_state->active_planes;
}
static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return old_crtc_state->active_planes &&
(!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state));
}
static void intel_post_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
intel_update_watermarks(dev_priv);
hsw_ips_post_update(state, crtc);
intel_fbc_post_update(state, crtc);
if (needs_async_flip_vtd_wa(old_crtc_state) &&
!needs_async_flip_vtd_wa(new_crtc_state))
intel_async_flip_vtd_wa(dev_priv, pipe, false);
if (needs_nv12_wa(old_crtc_state) &&
!needs_nv12_wa(new_crtc_state))
skl_wa_827(dev_priv, pipe, false);
if (needs_scalerclk_wa(old_crtc_state) &&
!needs_scalerclk_wa(new_crtc_state))
icl_wa_scalerclkgating(dev_priv, pipe, false);
if (needs_cursorclk_wa(old_crtc_state) &&
!needs_cursorclk_wa(new_crtc_state))
icl_wa_cursorclkgating(dev_priv, pipe, false);
intel_drrs_activate(new_crtc_state);
}
static void intel_crtc_enable_flip_done(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 update_planes = crtc_state->update_planes;
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe &&
update_planes & BIT(plane->id))
plane->enable_flip_done(plane);
}
}
static void intel_crtc_disable_flip_done(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 update_planes = crtc_state->update_planes;
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe &&
update_planes & BIT(plane->id))
plane->disable_flip_done(plane);
}
}
static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 update_planes = new_crtc_state->update_planes;
const struct intel_plane_state *old_plane_state;
struct intel_plane *plane;
bool need_vbl_wait = false;
int i;
for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
if (plane->need_async_flip_disable_wa &&
plane->pipe == crtc->pipe &&
update_planes & BIT(plane->id)) {
/*
* Apart from the async flip bit we want to
* preserve the old state for the plane.
*/
plane->async_flip(plane, old_crtc_state,
old_plane_state, false);
need_vbl_wait = true;
}
}
if (need_vbl_wait)
intel_crtc_wait_for_next_vblank(crtc);
}
static void intel_pre_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
intel_drrs_deactivate(old_crtc_state);
intel_psr_pre_plane_update(state, crtc);
if (hsw_ips_pre_update(state, crtc))
intel_crtc_wait_for_next_vblank(crtc);
if (intel_fbc_pre_update(state, crtc))
intel_crtc_wait_for_next_vblank(crtc);
if (!needs_async_flip_vtd_wa(old_crtc_state) &&
needs_async_flip_vtd_wa(new_crtc_state))
intel_async_flip_vtd_wa(dev_priv, pipe, true);
/* Display WA 827 */
if (!needs_nv12_wa(old_crtc_state) &&
needs_nv12_wa(new_crtc_state))
skl_wa_827(dev_priv, pipe, true);
/* Wa_2006604312:icl,ehl */
if (!needs_scalerclk_wa(old_crtc_state) &&
needs_scalerclk_wa(new_crtc_state))
icl_wa_scalerclkgating(dev_priv, pipe, true);
/* Wa_1604331009:icl,jsl,ehl */
if (!needs_cursorclk_wa(old_crtc_state) &&
needs_cursorclk_wa(new_crtc_state))
icl_wa_cursorclkgating(dev_priv, pipe, true);
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
intel_crtc_wait_for_next_vblank(crtc);
/*
* IVB workaround: must disable low power watermarks for at least
* one frame before enabling scaling. LP watermarks can be re-enabled
* when scaling is disabled.
*
* WaCxSRDisabledForSpriteScaling:ivb
*/
if (old_crtc_state->hw.active &&
new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
intel_crtc_wait_for_next_vblank(crtc);
/*
* If we're doing a modeset we don't need to do any
* pre-vblank watermark programming here.
*/
if (!intel_crtc_needs_modeset(new_crtc_state)) {
/*
* For platforms that support atomic watermarks, program the
* 'intermediate' watermarks immediately. On pre-gen9 platforms, these
* will be the intermediate values that are safe for both pre- and
* post- vblank; when vblank happens, the 'active' values will be set
* to the final 'target' values and we'll do this again to get the
* optimal watermarks. For gen9+ platforms, the values we program here
* will be the final target values which will get automatically latched
* at vblank time; no further programming will be necessary.
*
* If a platform hasn't been transitioned to atomic watermarks yet,
* we'll continue to update watermarks the old way, if flags tell
* us to.
*/
if (!intel_initial_watermarks(state, crtc))
if (new_crtc_state->update_wm_pre)
intel_update_watermarks(dev_priv);
}
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So disable underrun reporting before all the planes get disabled.
*
* We do this after .initial_watermarks() so that we have a
* chance of catching underruns with the intermediate watermarks
* vs. the old plane configuration.
*/
if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
/*
* WA for platforms where async address update enable bit
* is double buffered and only latched at start of vblank.
*/
if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip)
intel_crtc_async_flip_disable_wa(state, crtc);
}
static void intel_crtc_disable_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
unsigned int update_mask = new_crtc_state->update_planes;
const struct intel_plane_state *old_plane_state;
struct intel_plane *plane;
unsigned fb_bits = 0;
int i;
intel_crtc_dpms_overlay_disable(crtc);
for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
intel_plane_disable_arm(plane, new_crtc_state);
if (old_plane_state->uapi.visible)
fb_bits |= plane->frontbuffer_bit;
}
intel_frontbuffer_flip(dev_priv, fb_bits);
}
/*
* intel_connector_primary_encoder - get the primary encoder for a connector
* @connector: connector for which to return the encoder
*
* Returns the primary encoder for a connector. There is a 1:1 mapping from
* all connectors to their encoder, except for DP-MST connectors which have
* both a virtual and a primary encoder. These DP-MST primary encoders can be
* pointed to by as many DP-MST connectors as there are pipes.
*/
static struct intel_encoder *
intel_connector_primary_encoder(struct intel_connector *connector)
{
struct intel_encoder *encoder;
if (connector->mst_port)
return &dp_to_dig_port(connector->mst_port)->base;
encoder = intel_attached_encoder(connector);
drm_WARN_ON(connector->base.dev, !encoder);
return encoder;
}
static void intel_encoders_update_prepare(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
struct drm_connector_state *new_conn_state;
struct drm_connector *connector;
int i;
/*
* Make sure the DPLL state is up-to-date for fastset TypeC ports after non-blocking commits.
* TODO: Update the DPLL state for all cases in the encoder->update_prepare() hook.
*/
if (i915->display.dpll.mgr) {
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (intel_crtc_needs_modeset(new_crtc_state))
continue;
new_crtc_state->shared_dpll = old_crtc_state->shared_dpll;
new_crtc_state->dpll_hw_state = old_crtc_state->dpll_hw_state;
}
}
if (!state->modeset)
return;
for_each_new_connector_in_state(&state->base, connector, new_conn_state,
i) {
struct intel_connector *intel_connector;
struct intel_encoder *encoder;
struct intel_crtc *crtc;
if (!intel_connector_needs_modeset(state, connector))
continue;
intel_connector = to_intel_connector(connector);
encoder = intel_connector_primary_encoder(intel_connector);
if (!encoder->update_prepare)
continue;
crtc = new_conn_state->crtc ?
to_intel_crtc(new_conn_state->crtc) : NULL;
encoder->update_prepare(state, encoder, crtc);
}
}
static void intel_encoders_update_complete(struct intel_atomic_state *state)
{
struct drm_connector_state *new_conn_state;
struct drm_connector *connector;
int i;
if (!state->modeset)
return;
for_each_new_connector_in_state(&state->base, connector, new_conn_state,
i) {
struct intel_connector *intel_connector;
struct intel_encoder *encoder;
struct intel_crtc *crtc;
if (!intel_connector_needs_modeset(state, connector))
continue;
intel_connector = to_intel_connector(connector);
encoder = intel_connector_primary_encoder(intel_connector);
if (!encoder->update_complete)
continue;
crtc = new_conn_state->crtc ?
to_intel_crtc(new_conn_state->crtc) : NULL;
encoder->update_complete(state, encoder, crtc);
}
}
static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->pre_pll_enable)
encoder->pre_pll_enable(state, encoder,
crtc_state, conn_state);
}
}
static void intel_encoders_pre_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->pre_enable)
encoder->pre_enable(state, encoder,
crtc_state, conn_state);
}
}
static void intel_encoders_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->enable)
encoder->enable(state, encoder,
crtc_state, conn_state);
intel_opregion_notify_encoder(encoder, true);
}
}
static void intel_encoders_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
intel_opregion_notify_encoder(encoder, false);
if (encoder->disable)
encoder->disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
if (encoder->post_disable)
encoder->post_disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
if (encoder->post_pll_disable)
encoder->post_pll_disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_update_pipe(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->update_pipe)
encoder->update_pipe(state, encoder,
crtc_state, conn_state);
}
}
static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
plane->disable_arm(plane, crtc_state);
}
static void ilk_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (crtc_state->has_pch_encoder) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->fdi_m_n);
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
ilk_set_pipeconf(crtc_state);
}
static void ilk_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
/*
* Sometimes spurious CPU pipe underruns happen during FDI
* training, at least with VGA+HDMI cloning. Suppress them.
*
* On ILK we get an occasional spurious CPU pipe underruns
* between eDP port A enable and vdd enable. Also PCH port
* enable seems to result in the occasional CPU pipe underrun.
*
* Spurious PCH underruns also occur during PCH enabling.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
ilk_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
crtc->active = true;
intel_encoders_pre_enable(state, crtc);
if (new_crtc_state->has_pch_encoder) {
ilk_pch_pre_enable(state, crtc);
} else {
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
}
ilk_pfit_enable(new_crtc_state);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
/* update DSPCNTR to configure gamma for pipe bottom color */
intel_disable_primary_plane(new_crtc_state);
intel_initial_watermarks(state, crtc);
intel_enable_transcoder(new_crtc_state);
if (new_crtc_state->has_pch_encoder)
ilk_pch_enable(state, crtc);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
if (HAS_PCH_CPT(dev_priv))
cpt_verify_modeset(dev_priv, pipe);
/*
* Must wait for vblank to avoid spurious PCH FIFO underruns.
* And a second vblank wait is needed at least on ILK with
* some interlaced HDMI modes. Let's do the double wait always
* in case there are more corner cases we don't know about.
*/
if (new_crtc_state->has_pch_encoder) {
intel_crtc_wait_for_next_vblank(crtc);
intel_crtc_wait_for_next_vblank(crtc);
}
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
}
static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
enum pipe pipe, bool apply)
{
u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
if (apply)
val |= mask;
else
val &= ~mask;
intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
}
static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
HSW_LINETIME(crtc_state->linetime) |
HSW_IPS_LINETIME(crtc_state->ips_linetime));
}
static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
u32 val;
val = intel_de_read(dev_priv, reg);
val &= ~HSW_FRAME_START_DELAY_MASK;
val |= HSW_FRAME_START_DELAY(crtc_state->framestart_delay - 1);
intel_de_write(dev_priv, reg, val);
}
static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *master_crtc = intel_master_crtc(crtc_state);
/*
* Enable sequence steps 1-7 on bigjoiner master
*/
if (intel_crtc_is_bigjoiner_slave(crtc_state))
intel_encoders_pre_pll_enable(state, master_crtc);
if (crtc_state->shared_dpll)
intel_enable_shared_dpll(crtc_state);
if (intel_crtc_is_bigjoiner_slave(crtc_state))
intel_encoders_pre_enable(state, master_crtc);
}
static void hsw_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (crtc_state->has_pch_encoder) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->fdi_m_n);
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
if (cpu_transcoder != TRANSCODER_EDP)
intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
crtc_state->pixel_multiplier - 1);
hsw_set_frame_start_delay(crtc_state);
hsw_set_transconf(crtc_state);
}
static void hsw_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
bool psl_clkgate_wa;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
if (!new_crtc_state->bigjoiner_pipes) {
intel_encoders_pre_pll_enable(state, crtc);
if (new_crtc_state->shared_dpll)
intel_enable_shared_dpll(new_crtc_state);
intel_encoders_pre_enable(state, crtc);
} else {
icl_ddi_bigjoiner_pre_enable(state, new_crtc_state);
}
intel_dsc_enable(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 13)
intel_uncompressed_joiner_enable(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
bdw_set_pipemisc(new_crtc_state);
if (!intel_crtc_is_bigjoiner_slave(new_crtc_state) &&
!transcoder_is_dsi(cpu_transcoder))
hsw_configure_cpu_transcoder(new_crtc_state);
crtc->active = true;
/* Display WA #1180: WaDisableScalarClockGating: glk */
psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 &&
new_crtc_state->pch_pfit.enabled;
if (psl_clkgate_wa)
glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
if (DISPLAY_VER(dev_priv) >= 9)
skl_pfit_enable(new_crtc_state);
else
ilk_pfit_enable(new_crtc_state);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
/* update DSPCNTR to configure gamma/csc for pipe bottom color */
if (DISPLAY_VER(dev_priv) < 9)
intel_disable_primary_plane(new_crtc_state);
hsw_set_linetime_wm(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 11)
icl_set_pipe_chicken(new_crtc_state);
intel_initial_watermarks(state, crtc);
if (intel_crtc_is_bigjoiner_slave(new_crtc_state))
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
if (psl_clkgate_wa) {
intel_crtc_wait_for_next_vblank(crtc);
glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
}
/* If we change the relative order between pipe/planes enabling, we need
* to change the workaround. */
hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
struct intel_crtc *wa_crtc;
wa_crtc = intel_crtc_for_pipe(dev_priv, hsw_workaround_pipe);
intel_crtc_wait_for_next_vblank(wa_crtc);
intel_crtc_wait_for_next_vblank(wa_crtc);
}
}
void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* To avoid upsetting the power well on haswell only disable the pfit if
* it's in use. The hw state code will make sure we get this right. */
if (!old_crtc_state->pch_pfit.enabled)
return;
intel_de_write_fw(dev_priv, PF_CTL(pipe), 0);
intel_de_write_fw(dev_priv, PF_WIN_POS(pipe), 0);
intel_de_write_fw(dev_priv, PF_WIN_SZ(pipe), 0);
}
static void ilk_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/*
* Sometimes spurious CPU pipe underruns happen when the
* pipe is already disabled, but FDI RX/TX is still enabled.
* Happens at least with VGA+HDMI cloning. Suppress them.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
intel_encoders_disable(state, crtc);
intel_crtc_vblank_off(old_crtc_state);
intel_disable_transcoder(old_crtc_state);
ilk_pfit_disable(old_crtc_state);
if (old_crtc_state->has_pch_encoder)
ilk_pch_disable(state, crtc);
intel_encoders_post_disable(state, crtc);
if (old_crtc_state->has_pch_encoder)
ilk_pch_post_disable(state, crtc);
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
}
static void hsw_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
/*
* FIXME collapse everything to one hook.
* Need care with mst->ddi interactions.
*/
if (!intel_crtc_is_bigjoiner_slave(old_crtc_state)) {
intel_encoders_disable(state, crtc);
intel_encoders_post_disable(state, crtc);
}
}
static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!crtc_state->gmch_pfit.control)
return;
/*
* The panel fitter should only be adjusted whilst the pipe is disabled,
* according to register description and PRM.
*/
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
intel_de_write(dev_priv, PFIT_PGM_RATIOS,
crtc_state->gmch_pfit.pgm_ratios);
intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
/* Border color in case we don't scale up to the full screen. Black by
* default, change to something else for debugging. */
intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
}
bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
{
if (phy == PHY_NONE)
return false;
else if (IS_ALDERLAKE_S(dev_priv))
return phy <= PHY_E;
else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv))
return phy <= PHY_D;
else if (IS_JSL_EHL(dev_priv))
return phy <= PHY_C;
else if (IS_ALDERLAKE_P(dev_priv) || IS_DISPLAY_VER(dev_priv, 11, 12))
return phy <= PHY_B;
else
/*
* DG2 outputs labelled as "combo PHY" in the bspec use
* SNPS PHYs with completely different programming,
* hence we always return false here.
*/
return false;
}
bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
{
if (IS_DG2(dev_priv))
/* DG2's "TC1" output uses a SNPS PHY */
return false;
else if (IS_ALDERLAKE_P(dev_priv))
return phy >= PHY_F && phy <= PHY_I;
else if (IS_TIGERLAKE(dev_priv))
return phy >= PHY_D && phy <= PHY_I;
else if (IS_ICELAKE(dev_priv))
return phy >= PHY_C && phy <= PHY_F;
else
return false;
}
bool intel_phy_is_snps(struct drm_i915_private *dev_priv, enum phy phy)
{
if (phy == PHY_NONE)
return false;
else if (IS_DG2(dev_priv))
/*
* All four "combo" ports and the TC1 port (PHY E) use
* Synopsis PHYs.
*/
return phy <= PHY_E;
return false;
}
enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
{
if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD)
return PHY_D + port - PORT_D_XELPD;
else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1)
return PHY_F + port - PORT_TC1;
else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1)
return PHY_B + port - PORT_TC1;
else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1)
return PHY_C + port - PORT_TC1;
else if (IS_JSL_EHL(i915) && port == PORT_D)
return PHY_A;
return PHY_A + port - PORT_A;
}
enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
{
if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
return TC_PORT_NONE;
if (DISPLAY_VER(dev_priv) >= 12)
return TC_PORT_1 + port - PORT_TC1;
else
return TC_PORT_1 + port - PORT_C;
}
enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
return intel_display_power_tbt_aux_domain(i915, dig_port->aux_ch);
return intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch);
}
static void get_crtc_power_domains(struct intel_crtc_state *crtc_state,
struct intel_power_domain_mask *mask)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
struct drm_encoder *encoder;
enum pipe pipe = crtc->pipe;
bitmap_zero(mask->bits, POWER_DOMAIN_NUM);
if (!crtc_state->hw.active)
return;
set_bit(POWER_DOMAIN_PIPE(pipe), mask->bits);
set_bit(POWER_DOMAIN_TRANSCODER(cpu_transcoder), mask->bits);
if (crtc_state->pch_pfit.enabled ||
crtc_state->pch_pfit.force_thru)
set_bit(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe), mask->bits);
drm_for_each_encoder_mask(encoder, &dev_priv->drm,
crtc_state->uapi.encoder_mask) {
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
set_bit(intel_encoder->power_domain, mask->bits);
}
if (HAS_DDI(dev_priv) && crtc_state->has_audio)
set_bit(POWER_DOMAIN_AUDIO_MMIO, mask->bits);
if (crtc_state->shared_dpll)
set_bit(POWER_DOMAIN_DISPLAY_CORE, mask->bits);
if (crtc_state->dsc.compression_enable)
set_bit(intel_dsc_power_domain(crtc, cpu_transcoder), mask->bits);
}
void intel_modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state,
struct intel_power_domain_mask *old_domains)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_display_power_domain domain;
struct intel_power_domain_mask domains, new_domains;
get_crtc_power_domains(crtc_state, &domains);
bitmap_andnot(new_domains.bits,
domains.bits,
crtc->enabled_power_domains.mask.bits,
POWER_DOMAIN_NUM);
bitmap_andnot(old_domains->bits,
crtc->enabled_power_domains.mask.bits,
domains.bits,
POWER_DOMAIN_NUM);
for_each_power_domain(domain, &new_domains)
intel_display_power_get_in_set(dev_priv,
&crtc->enabled_power_domains,
domain);
}
void intel_modeset_put_crtc_power_domains(struct intel_crtc *crtc,
struct intel_power_domain_mask *domains)
{
intel_display_power_put_mask_in_set(to_i915(crtc->base.dev),
&crtc->enabled_power_domains,
domains);
}
static void i9xx_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
i9xx_set_pipeconf(crtc_state);
}
static void valleyview_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
i9xx_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
}
crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_encoders_pre_pll_enable(state, crtc);
if (IS_CHERRYVIEW(dev_priv))
chv_enable_pll(new_crtc_state);
else
vlv_enable_pll(new_crtc_state);
intel_encoders_pre_enable(state, crtc);
i9xx_pfit_enable(new_crtc_state);
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
/* update DSPCNTR to configure gamma for pipe bottom color */
intel_disable_primary_plane(new_crtc_state);
intel_initial_watermarks(state, crtc);
intel_enable_transcoder(new_crtc_state);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
}
static void i9xx_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
i9xx_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
crtc->active = true;
if (DISPLAY_VER(dev_priv) != 2)
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_encoders_pre_enable(state, crtc);
i9xx_enable_pll(new_crtc_state);
i9xx_pfit_enable(new_crtc_state);
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
/* update DSPCNTR to configure gamma for pipe bottom color */
intel_disable_primary_plane(new_crtc_state);
if (!intel_initial_watermarks(state, crtc))
intel_update_watermarks(dev_priv);
intel_enable_transcoder(new_crtc_state);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
/* prevents spurious underruns */
if (DISPLAY_VER(dev_priv) == 2)
intel_crtc_wait_for_next_vblank(crtc);
}
static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!old_crtc_state->gmch_pfit.control)
return;
assert_transcoder_disabled(dev_priv, old_crtc_state->cpu_transcoder);
drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
intel_de_read(dev_priv, PFIT_CONTROL));
intel_de_write(dev_priv, PFIT_CONTROL, 0);
}
static void i9xx_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/*
* On gen2 planes are double buffered but the pipe isn't, so we must
* wait for planes to fully turn off before disabling the pipe.
*/
if (DISPLAY_VER(dev_priv) == 2)
intel_crtc_wait_for_next_vblank(crtc);
intel_encoders_disable(state, crtc);
intel_crtc_vblank_off(old_crtc_state);
intel_disable_transcoder(old_crtc_state);
i9xx_pfit_disable(old_crtc_state);
intel_encoders_post_disable(state, crtc);
if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
if (IS_CHERRYVIEW(dev_priv))
chv_disable_pll(dev_priv, pipe);
else if (IS_VALLEYVIEW(dev_priv))
vlv_disable_pll(dev_priv, pipe);
else
i9xx_disable_pll(old_crtc_state);
}
intel_encoders_post_pll_disable(state, crtc);
if (DISPLAY_VER(dev_priv) != 2)
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
if (!dev_priv->display.funcs.wm->initial_watermarks)
intel_update_watermarks(dev_priv);
/* clock the pipe down to 640x480@60 to potentially save power */
if (IS_I830(dev_priv))
i830_enable_pipe(dev_priv, pipe);
}
/*
* turn all crtc's off, but do not adjust state
* This has to be paired with a call to intel_modeset_setup_hw_state.
*/
int intel_display_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *state;
int ret;
if (!HAS_DISPLAY(dev_priv))
return 0;
state = drm_atomic_helper_suspend(dev);
ret = PTR_ERR_OR_ZERO(state);
if (ret)
drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
ret);
else
dev_priv->modeset_restore_state = state;
return ret;
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
{
const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
/* GDG double wide on either pipe, otherwise pipe A only */
return DISPLAY_VER(dev_priv) < 4 &&
(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
}
static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
{
u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock;
struct drm_rect src;
/*
* We only use IF-ID interlacing. If we ever use
* PF-ID we'll need to adjust the pixel_rate here.
*/
if (!crtc_state->pch_pfit.enabled)
return pixel_rate;
drm_rect_init(&src, 0, 0,
drm_rect_width(&crtc_state->pipe_src) << 16,
drm_rect_height(&crtc_state->pipe_src) << 16);
return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst,
pixel_rate);
}
static void intel_mode_from_crtc_timings(struct drm_display_mode *mode,
const struct drm_display_mode *timings)
{
mode->hdisplay = timings->crtc_hdisplay;
mode->htotal = timings->crtc_htotal;
mode->hsync_start = timings->crtc_hsync_start;
mode->hsync_end = timings->crtc_hsync_end;
mode->vdisplay = timings->crtc_vdisplay;
mode->vtotal = timings->crtc_vtotal;
mode->vsync_start = timings->crtc_vsync_start;
mode->vsync_end = timings->crtc_vsync_end;
mode->flags = timings->flags;
mode->type = DRM_MODE_TYPE_DRIVER;
mode->clock = timings->crtc_clock;
drm_mode_set_name(mode);
}
static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (HAS_GMCH(dev_priv))
/* FIXME calculate proper pipe pixel rate for GMCH pfit */
crtc_state->pixel_rate =
crtc_state->hw.pipe_mode.crtc_clock;
else
crtc_state->pixel_rate =
ilk_pipe_pixel_rate(crtc_state);
}
static void intel_bigjoiner_adjust_timings(const struct intel_crtc_state *crtc_state,
struct drm_display_mode *mode)
{
int num_pipes = intel_bigjoiner_num_pipes(crtc_state);
if (num_pipes < 2)
return;
mode->crtc_clock /= num_pipes;
mode->crtc_hdisplay /= num_pipes;
mode->crtc_hblank_start /= num_pipes;
mode->crtc_hblank_end /= num_pipes;
mode->crtc_hsync_start /= num_pipes;
mode->crtc_hsync_end /= num_pipes;
mode->crtc_htotal /= num_pipes;
}
static void intel_splitter_adjust_timings(const struct intel_crtc_state *crtc_state,
struct drm_display_mode *mode)
{
int overlap = crtc_state->splitter.pixel_overlap;
int n = crtc_state->splitter.link_count;
if (!crtc_state->splitter.enable)
return;
/*
* eDP MSO uses segment timings from EDID for transcoder
* timings, but full mode for everything else.
*
* h_full = (h_segment - pixel_overlap) * link_count
*/
mode->crtc_hdisplay = (mode->crtc_hdisplay - overlap) * n;
mode->crtc_hblank_start = (mode->crtc_hblank_start - overlap) * n;
mode->crtc_hblank_end = (mode->crtc_hblank_end - overlap) * n;
mode->crtc_hsync_start = (mode->crtc_hsync_start - overlap) * n;
mode->crtc_hsync_end = (mode->crtc_hsync_end - overlap) * n;
mode->crtc_htotal = (mode->crtc_htotal - overlap) * n;
mode->crtc_clock *= n;
}
static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state)
{
struct drm_display_mode *mode = &crtc_state->hw.mode;
struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
/*
* Start with the adjusted_mode crtc timings, which
* have been filled with the transcoder timings.
*/
drm_mode_copy(pipe_mode, adjusted_mode);
/* Expand MSO per-segment transcoder timings to full */
intel_splitter_adjust_timings(crtc_state, pipe_mode);
/*
* We want the full numbers in adjusted_mode normal timings,
* adjusted_mode crtc timings are left with the raw transcoder
* timings.
*/
intel_mode_from_crtc_timings(adjusted_mode, pipe_mode);
/* Populate the "user" mode with full numbers */
drm_mode_copy(mode, pipe_mode);
intel_mode_from_crtc_timings(mode, mode);
mode->hdisplay = drm_rect_width(&crtc_state->pipe_src) *
(intel_bigjoiner_num_pipes(crtc_state) ?: 1);
mode->vdisplay = drm_rect_height(&crtc_state->pipe_src);
/* Derive per-pipe timings in case bigjoiner is used */
intel_bigjoiner_adjust_timings(crtc_state, pipe_mode);
intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
intel_crtc_compute_pixel_rate(crtc_state);
}
void intel_encoder_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
encoder->get_config(encoder, crtc_state);
intel_crtc_readout_derived_state(crtc_state);
}
static void intel_bigjoiner_compute_pipe_src(struct intel_crtc_state *crtc_state)
{
int num_pipes = intel_bigjoiner_num_pipes(crtc_state);
int width, height;
if (num_pipes < 2)
return;
width = drm_rect_width(&crtc_state->pipe_src);
height = drm_rect_height(&crtc_state->pipe_src);
drm_rect_init(&crtc_state->pipe_src, 0, 0,
width / num_pipes, height);
}
static int intel_crtc_compute_pipe_src(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
intel_bigjoiner_compute_pipe_src(crtc_state);
/*
* Pipe horizontal size must be even in:
* - DVO ganged mode
* - LVDS dual channel mode
* - Double wide pipe
*/
if (drm_rect_width(&crtc_state->pipe_src) & 1) {
if (crtc_state->double_wide) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Odd pipe source width not supported with double wide pipe\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_is_dual_link_lvds(i915)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Odd pipe source width not supported with dual link LVDS\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_crtc_compute_pipe_mode(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int clock_limit = i915->max_dotclk_freq;
/*
* Start with the adjusted_mode crtc timings, which
* have been filled with the transcoder timings.
*/
drm_mode_copy(pipe_mode, adjusted_mode);
/* Expand MSO per-segment transcoder timings to full */
intel_splitter_adjust_timings(crtc_state, pipe_mode);
/* Derive per-pipe timings in case bigjoiner is used */
intel_bigjoiner_adjust_timings(crtc_state, pipe_mode);
intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
if (DISPLAY_VER(i915) < 4) {
clock_limit = i915->display.cdclk.max_cdclk_freq * 9 / 10;
/*
* Enable double wide mode when the dot clock
* is > 90% of the (display) core speed.
*/
if (intel_crtc_supports_double_wide(crtc) &&
pipe_mode->crtc_clock > clock_limit) {
clock_limit = i915->max_dotclk_freq;
crtc_state->double_wide = true;
}
}
if (pipe_mode->crtc_clock > clock_limit) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
crtc->base.base.id, crtc->base.name,
pipe_mode->crtc_clock, clock_limit,
str_yes_no(crtc_state->double_wide));
return -EINVAL;
}
return 0;
}
static int intel_crtc_compute_config(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
int ret;
ret = intel_dpll_crtc_compute_clock(state, crtc);
if (ret)
return ret;
ret = intel_crtc_compute_pipe_src(crtc_state);
if (ret)
return ret;
ret = intel_crtc_compute_pipe_mode(crtc_state);
if (ret)
return ret;
intel_crtc_compute_pixel_rate(crtc_state);
if (crtc_state->has_pch_encoder)
return ilk_fdi_compute_config(crtc, crtc_state);
return 0;
}
static void
intel_reduce_m_n_ratio(u32 *num, u32 *den)
{
while (*num > DATA_LINK_M_N_MASK ||
*den > DATA_LINK_M_N_MASK) {
*num >>= 1;
*den >>= 1;
}
}
static void compute_m_n(u32 *ret_m, u32 *ret_n,
u32 m, u32 n, u32 constant_n)
{
if (constant_n)
*ret_n = constant_n;
else
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
intel_reduce_m_n_ratio(ret_m, ret_n);
}
void
intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
int pixel_clock, int link_clock,
struct intel_link_m_n *m_n,
bool fec_enable)
{
u32 data_clock = bits_per_pixel * pixel_clock;
if (fec_enable)
data_clock = intel_dp_mode_to_fec_clock(data_clock);
/*
* Windows/BIOS uses fixed M/N values always. Follow suit.
*
* Also several DP dongles in particular seem to be fussy
* about too large link M/N values. Presumably the 20bit
* value used by Windows/BIOS is acceptable to everyone.
*/
m_n->tu = 64;
compute_m_n(&m_n->data_m, &m_n->data_n,
data_clock, link_clock * nlanes * 8,
0x8000000);
compute_m_n(&m_n->link_m, &m_n->link_n,
pixel_clock, link_clock,
0x80000);
}
static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
{
/*
* There may be no VBT; and if the BIOS enabled SSC we can
* just keep using it to avoid unnecessary flicker. Whereas if the
* BIOS isn't using it, don't assume it will work even if the VBT
* indicates as much.
*/
if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
bool bios_lvds_use_ssc = intel_de_read(dev_priv,
PCH_DREF_CONTROL) &
DREF_SSC1_ENABLE;
if (dev_priv->display.vbt.lvds_use_ssc != bios_lvds_use_ssc) {
drm_dbg_kms(&dev_priv->drm,
"SSC %s by BIOS, overriding VBT which says %s\n",
str_enabled_disabled(bios_lvds_use_ssc),
str_enabled_disabled(dev_priv->display.vbt.lvds_use_ssc));
dev_priv->display.vbt.lvds_use_ssc = bios_lvds_use_ssc;
}
}
}
void intel_zero_m_n(struct intel_link_m_n *m_n)
{
/* corresponds to 0 register value */
memset(m_n, 0, sizeof(*m_n));
m_n->tu = 1;
}
void intel_set_m_n(struct drm_i915_private *i915,
const struct intel_link_m_n *m_n,
i915_reg_t data_m_reg, i915_reg_t data_n_reg,
i915_reg_t link_m_reg, i915_reg_t link_n_reg)
{
intel_de_write(i915, data_m_reg, TU_SIZE(m_n->tu) | m_n->data_m);
intel_de_write(i915, data_n_reg, m_n->data_n);
intel_de_write(i915, link_m_reg, m_n->link_m);
/*
* On BDW+ writing LINK_N arms the double buffered update
* of all the M/N registers, so it must be written last.
*/
intel_de_write(i915, link_n_reg, m_n->link_n);
}
bool intel_cpu_transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
enum transcoder transcoder)
{
if (IS_HASWELL(dev_priv))
return transcoder == TRANSCODER_EDP;
return IS_DISPLAY_VER(dev_priv, 5, 7) || IS_CHERRYVIEW(dev_priv);
}
void intel_cpu_transcoder_set_m1_n1(struct intel_crtc *crtc,
enum transcoder transcoder,
const struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (DISPLAY_VER(dev_priv) >= 5)
intel_set_m_n(dev_priv, m_n,
PIPE_DATA_M1(transcoder), PIPE_DATA_N1(transcoder),
PIPE_LINK_M1(transcoder), PIPE_LINK_N1(transcoder));
else
intel_set_m_n(dev_priv, m_n,
PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe),
PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe));
}
void intel_cpu_transcoder_set_m2_n2(struct intel_crtc *crtc,
enum transcoder transcoder,
const struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!intel_cpu_transcoder_has_m2_n2(dev_priv, transcoder))
return;
intel_set_m_n(dev_priv, m_n,
PIPE_DATA_M2(transcoder), PIPE_DATA_N2(transcoder),
PIPE_LINK_M2(transcoder), PIPE_LINK_N2(transcoder));
}
static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
u32 crtc_vtotal, crtc_vblank_end;
int vsyncshift = 0;
/* We need to be careful not to changed the adjusted mode, for otherwise
* the hw state checker will get angry at the mismatch. */
crtc_vtotal = adjusted_mode->crtc_vtotal;
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
/* the chip adds 2 halflines automatically */
crtc_vtotal -= 1;
crtc_vblank_end -= 1;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
else
vsyncshift = adjusted_mode->crtc_hsync_start -
adjusted_mode->crtc_htotal / 2;
if (vsyncshift < 0)
vsyncshift += adjusted_mode->crtc_htotal;
}
if (DISPLAY_VER(dev_priv) > 3)
intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
vsyncshift);
intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
(adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
intel_de_write(dev_priv, HBLANK(cpu_transcoder),
(adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
intel_de_write(dev_priv, HSYNC(cpu_transcoder),
(adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
(adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
intel_de_write(dev_priv, VBLANK(cpu_transcoder),
(adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
intel_de_write(dev_priv, VSYNC(cpu_transcoder),
(adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
* documented on the DDI_FUNC_CTL register description, EDP Input Select
* bits. */
if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
(pipe == PIPE_B || pipe == PIPE_C))
intel_de_write(dev_priv, VTOTAL(pipe),
intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
}
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int width = drm_rect_width(&crtc_state->pipe_src);
int height = drm_rect_height(&crtc_state->pipe_src);
enum pipe pipe = crtc->pipe;
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
intel_de_write(dev_priv, PIPESRC(pipe),
PIPESRC_WIDTH(width - 1) | PIPESRC_HEIGHT(height - 1));
}
static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (DISPLAY_VER(dev_priv) == 2)
return false;
if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
else
return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
}
static void intel_get_transcoder_timings(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
u32 tmp;
tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
if (!transcoder_is_dsi(cpu_transcoder)) {
tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
pipe_config->hw.adjusted_mode.crtc_hblank_start =
(tmp & 0xffff) + 1;
pipe_config->hw.adjusted_mode.crtc_hblank_end =
((tmp >> 16) & 0xffff) + 1;
}
tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
if (!transcoder_is_dsi(cpu_transcoder)) {
tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
pipe_config->hw.adjusted_mode.crtc_vblank_start =
(tmp & 0xffff) + 1;
pipe_config->hw.adjusted_mode.crtc_vblank_end =
((tmp >> 16) & 0xffff) + 1;
}
tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
if (intel_pipe_is_interlaced(pipe_config)) {
pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
}
}
static void intel_bigjoiner_adjust_pipe_src(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
int num_pipes = intel_bigjoiner_num_pipes(crtc_state);
enum pipe master_pipe, pipe = crtc->pipe;
int width;
if (num_pipes < 2)
return;
master_pipe = bigjoiner_master_pipe(crtc_state);
width = drm_rect_width(&crtc_state->pipe_src);
drm_rect_translate_to(&crtc_state->pipe_src,
(pipe - master_pipe) * width, 0);
}
static void intel_get_pipe_src_size(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 tmp;
tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
drm_rect_init(&pipe_config->pipe_src, 0, 0,
REG_FIELD_GET(PIPESRC_WIDTH_MASK, tmp) + 1,
REG_FIELD_GET(PIPESRC_HEIGHT_MASK, tmp) + 1);
intel_bigjoiner_adjust_pipe_src(pipe_config);
}
void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 pipeconf = 0;
/*
* - We keep both pipes enabled on 830
* - During modeset the pipe is still disabled and must remain so
* - During fastset the pipe is already enabled and must remain so
*/
if (IS_I830(dev_priv) || !intel_crtc_needs_modeset(crtc_state))
pipeconf |= PIPECONF_ENABLE;
if (crtc_state->double_wide)
pipeconf |= PIPECONF_DOUBLE_WIDE;
/* only g4x and later have fancy bpc/dither controls */
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
/* Bspec claims that we can't use dithering for 30bpp pipes. */
if (crtc_state->dither && crtc_state->pipe_bpp != 30)
pipeconf |= PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
switch (crtc_state->pipe_bpp) {
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
MISSING_CASE(crtc_state->pipe_bpp);
fallthrough;
case 18:
pipeconf |= PIPECONF_BPC_6;
break;
case 24:
pipeconf |= PIPECONF_BPC_8;
break;
case 30:
pipeconf |= PIPECONF_BPC_10;
break;
}
}
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (DISPLAY_VER(dev_priv) < 4 ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
else
pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
} else {
pipeconf |= PIPECONF_INTERLACE_PROGRESSIVE;
}
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
crtc_state->limited_color_range)
pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
pipeconf |= PIPECONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1);
intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
}
static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
{
if (IS_I830(dev_priv))
return false;
return DISPLAY_VER(dev_priv) >= 4 ||
IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
}
static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 tmp;
if (!i9xx_has_pfit(dev_priv))
return;
tmp = intel_de_read(dev_priv, PFIT_CONTROL);
if (!(tmp & PFIT_ENABLE))
return;
/* Check whether the pfit is attached to our pipe. */
if (DISPLAY_VER(dev_priv) < 4) {
if (crtc->pipe != PIPE_B)
return;
} else {
if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
return;
}
crtc_state->gmch_pfit.control = tmp;
crtc_state->gmch_pfit.pgm_ratios =
intel_de_read(dev_priv, PFIT_PGM_RATIOS);
}
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
struct dpll clock;
u32 mdiv;
int refclk = 100000;
/* In case of DSI, DPLL will not be used */
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
vlv_dpio_get(dev_priv);
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
vlv_dpio_put(dev_priv);
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
clock.m2 = mdiv & DPIO_M2DIV_MASK;
clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
}
static void chv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
struct dpll clock;
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
int refclk = 100000;
/* In case of DSI, DPLL will not be used */
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
vlv_dpio_get(dev_priv);
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
vlv_dpio_put(dev_priv);
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
clock.m2 = (pll_dw0 & 0xff) << 22;
if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
clock.m2 |= pll_dw2 & 0x3fffff;
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
}
static enum intel_output_format
bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 tmp;
tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
if (tmp & PIPEMISC_YUV420_ENABLE) {
/* We support 4:2:0 in full blend mode only */
drm_WARN_ON(&dev_priv->drm,
(tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
return INTEL_OUTPUT_FORMAT_YCBCR420;
} else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
return INTEL_OUTPUT_FORMAT_YCBCR444;
} else {
return INTEL_OUTPUT_FORMAT_RGB;
}
}
static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
u32 tmp;
tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
if (tmp & DISP_PIPE_GAMMA_ENABLE)
crtc_state->gamma_enable = true;
if (!HAS_GMCH(dev_priv) &&
tmp & DISP_PIPE_CSC_ENABLE)
crtc_state->csc_enable = true;
}
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp;
bool ret;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = NULL;
ret = false;
tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
goto out;
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_BPC_10:
pipe_config->pipe_bpp = 30;
break;
default:
MISSING_CASE(tmp);
break;
}
}
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
(tmp & PIPECONF_COLOR_RANGE_SELECT))
pipe_config->limited_color_range = true;
pipe_config->gamma_mode = REG_FIELD_GET(PIPECONF_GAMMA_MODE_MASK_I9XX, tmp);
pipe_config->framestart_delay = REG_FIELD_GET(PIPECONF_FRAME_START_DELAY_MASK, tmp) + 1;
if (IS_CHERRYVIEW(dev_priv))
pipe_config->cgm_mode = intel_de_read(dev_priv,
CGM_PIPE_MODE(crtc->pipe));
i9xx_get_pipe_color_config(pipe_config);
intel_color_get_config(pipe_config);
if (DISPLAY_VER(dev_priv) < 4)
pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
intel_get_transcoder_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
i9xx_get_pfit_config(pipe_config);
if (DISPLAY_VER(dev_priv) >= 4) {
/* No way to read it out on pipes B and C */
if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
tmp = dev_priv->chv_dpll_md[crtc->pipe];
else
tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
pipe_config->dpll_hw_state.dpll_md = tmp;
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & SDVO_MULTIPLIER_MASK)
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
} else {
/* Note that on i915G/GM the pixel multiplier is in the sdvo
* port and will be fixed up in the encoder->get_config
* function. */
pipe_config->pixel_multiplier = 1;
}
pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
DPLL(crtc->pipe));
if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
FP0(crtc->pipe));
pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
FP1(crtc->pipe));
} else {
/* Mask out read-only status bits. */
pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
DPLL_PORTC_READY_MASK |
DPLL_PORTB_READY_MASK);
}
if (IS_CHERRYVIEW(dev_priv))
chv_crtc_clock_get(crtc, pipe_config);
else if (IS_VALLEYVIEW(dev_priv))
vlv_crtc_clock_get(crtc, pipe_config);
else
i9xx_crtc_clock_get(crtc, pipe_config);
/*
* Normally the dotclock is filled in by the encoder .get_config()
* but in case the pipe is enabled w/o any ports we need a sane
* default.
*/
pipe_config->hw.adjusted_mode.crtc_clock =
pipe_config->port_clock / pipe_config->pixel_multiplier;
ret = true;
out:
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 val = 0;
/*
* - During modeset the pipe is still disabled and must remain so
* - During fastset the pipe is already enabled and must remain so
*/
if (!intel_crtc_needs_modeset(crtc_state))
val |= PIPECONF_ENABLE;
switch (crtc_state->pipe_bpp) {
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
MISSING_CASE(crtc_state->pipe_bpp);
fallthrough;
case 18:
val |= PIPECONF_BPC_6;
break;
case 24:
val |= PIPECONF_BPC_8;
break;
case 30:
val |= PIPECONF_BPC_10;
break;
case 36:
val |= PIPECONF_BPC_12;
break;
}
if (crtc_state->dither)
val |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACE_IF_ID_ILK;
else
val |= PIPECONF_INTERLACE_PF_PD_ILK;
/*
* This would end up with an odd purple hue over
* the entire display. Make sure we don't do it.
*/
drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
if (crtc_state->limited_color_range &&
!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
val |= PIPECONF_COLOR_RANGE_SELECT;
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
val |= PIPECONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1);
val |= PIPECONF_MSA_TIMING_DELAY(crtc_state->msa_timing_delay);
intel_de_write(dev_priv, PIPECONF(pipe), val);
intel_de_posting_read(dev_priv, PIPECONF(pipe));
}
static void hsw_set_transconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
/*
* - During modeset the pipe is still disabled and must remain so
* - During fastset the pipe is already enabled and must remain so
*/
if (!intel_crtc_needs_modeset(crtc_state))
val |= PIPECONF_ENABLE;
if (IS_HASWELL(dev_priv) && crtc_state->dither)
val |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACE_IF_ID_ILK;
else
val |= PIPECONF_INTERLACE_PF_PD_ILK;
if (IS_HASWELL(dev_priv) &&
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
}
static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 val = 0;
switch (crtc_state->pipe_bpp) {
case 18:
val |= PIPEMISC_BPC_6;
break;
case 24:
val |= PIPEMISC_BPC_8;
break;
case 30:
val |= PIPEMISC_BPC_10;
break;
case 36:
/* Port output 12BPC defined for ADLP+ */
if (DISPLAY_VER(dev_priv) > 12)
val |= PIPEMISC_BPC_12_ADLP;
break;
default:
MISSING_CASE(crtc_state->pipe_bpp);
break;
}
if (crtc_state->dither)
val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
val |= PIPEMISC_YUV420_ENABLE |
PIPEMISC_YUV420_MODE_FULL_BLEND;
if (DISPLAY_VER(dev_priv) >= 11 && is_hdr_mode(crtc_state))
val |= PIPEMISC_HDR_MODE_PRECISION;
if (DISPLAY_VER(dev_priv) >= 12)
val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
}
int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 tmp;
tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
switch (tmp & PIPEMISC_BPC_MASK) {
case PIPEMISC_BPC_6:
return 18;
case PIPEMISC_BPC_8:
return 24;
case PIPEMISC_BPC_10:
return 30;
/*
* PORT OUTPUT 12 BPC defined for ADLP+.
*
* TODO:
* For previous platforms with DSI interface, bits 5:7
* are used for storing pipe_bpp irrespective of dithering.
* Since the value of 12 BPC is not defined for these bits
* on older platforms, need to find a workaround for 12 BPC
* MIPI DSI HW readout.
*/
case PIPEMISC_BPC_12_ADLP:
if (DISPLAY_VER(dev_priv) > 12)
return 36;
fallthrough;
default:
MISSING_CASE(tmp);
return 0;
}
}
int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
{
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * bpp * 21 / 20;
return DIV_ROUND_UP(bps, link_bw * 8);
}
void intel_get_m_n(struct drm_i915_private *i915,
struct intel_link_m_n *m_n,
i915_reg_t data_m_reg, i915_reg_t data_n_reg,
i915_reg_t link_m_reg, i915_reg_t link_n_reg)
{
m_n->link_m = intel_de_read(i915, link_m_reg) & DATA_LINK_M_N_MASK;
m_n->link_n = intel_de_read(i915, link_n_reg) & DATA_LINK_M_N_MASK;
m_n->data_m = intel_de_read(i915, data_m_reg) & DATA_LINK_M_N_MASK;
m_n->data_n = intel_de_read(i915, data_n_reg) & DATA_LINK_M_N_MASK;
m_n->tu = REG_FIELD_GET(TU_SIZE_MASK, intel_de_read(i915, data_m_reg)) + 1;
}
void intel_cpu_transcoder_get_m1_n1(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (DISPLAY_VER(dev_priv) >= 5)
intel_get_m_n(dev_priv, m_n,
PIPE_DATA_M1(transcoder), PIPE_DATA_N1(transcoder),
PIPE_LINK_M1(transcoder), PIPE_LINK_N1(transcoder));
else
intel_get_m_n(dev_priv, m_n,
PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe),
PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe));
}
void intel_cpu_transcoder_get_m2_n2(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!intel_cpu_transcoder_has_m2_n2(dev_priv, transcoder))
return;
intel_get_m_n(dev_priv, m_n,
PIPE_DATA_M2(transcoder), PIPE_DATA_N2(transcoder),
PIPE_LINK_M2(transcoder), PIPE_LINK_N2(transcoder));
}
static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
u32 pos, u32 size)
{
drm_rect_init(&crtc_state->pch_pfit.dst,
pos >> 16, pos & 0xffff,
size >> 16, size & 0xffff);
}
static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
int id = -1;
int i;
/* find scaler attached to this pipe */
for (i = 0; i < crtc->num_scalers; i++) {
u32 ctl, pos, size;
ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
continue;
id = i;
crtc_state->pch_pfit.enabled = true;
pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
ilk_get_pfit_pos_size(crtc_state, pos, size);
scaler_state->scalers[i].in_use = true;
break;
}
scaler_state->scaler_id = id;
if (id >= 0)
scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
else
scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
}
static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 ctl, pos, size;
ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
if ((ctl & PF_ENABLE) == 0)
return;
crtc_state->pch_pfit.enabled = true;
pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
ilk_get_pfit_pos_size(crtc_state, pos, size);
/*
* We currently do not free assignements of panel fitters on
* ivb/hsw (since we don't use the higher upscaling modes which
* differentiates them) so just WARN about this case for now.
*/
drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 &&
(ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
}
static bool ilk_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp;
bool ret;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = NULL;
ret = false;
tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
goto out;
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case PIPECONF_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
if (tmp & PIPECONF_COLOR_RANGE_SELECT)
pipe_config->limited_color_range = true;
switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
case PIPECONF_OUTPUT_COLORSPACE_YUV601:
case PIPECONF_OUTPUT_COLORSPACE_YUV709:
pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
break;
default:
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
break;
}
pipe_config->gamma_mode = REG_FIELD_GET(PIPECONF_GAMMA_MODE_MASK_ILK, tmp);
pipe_config->framestart_delay = REG_FIELD_GET(PIPECONF_FRAME_START_DELAY_MASK, tmp) + 1;
pipe_config->msa_timing_delay = REG_FIELD_GET(PIPECONF_MSA_TIMING_DELAY_MASK, tmp);
pipe_config->csc_mode = intel_de_read(dev_priv,
PIPE_CSC_MODE(crtc->pipe));
i9xx_get_pipe_color_config(pipe_config);
intel_color_get_config(pipe_config);
pipe_config->pixel_multiplier = 1;
ilk_pch_get_config(pipe_config);
intel_get_transcoder_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
ilk_get_pfit_config(pipe_config);
ret = true;
out:
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
static u8 bigjoiner_pipes(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 12)
return BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D);
else if (DISPLAY_VER(i915) >= 11)
return BIT(PIPE_B) | BIT(PIPE_C);
else
return 0;
}
static bool transcoder_ddi_func_is_enabled(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp = 0;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref)
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
return tmp & TRANS_DDI_FUNC_ENABLE;
}
static void enabled_bigjoiner_pipes(struct drm_i915_private *dev_priv,
u8 *master_pipes, u8 *slave_pipes)
{
struct intel_crtc *crtc;
*master_pipes = 0;
*slave_pipes = 0;
for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc,
bigjoiner_pipes(dev_priv)) {
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
power_domain = intel_dsc_power_domain(crtc, (enum transcoder) pipe);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) {
u32 tmp = intel_de_read(dev_priv, ICL_PIPE_DSS_CTL1(pipe));
if (!(tmp & BIG_JOINER_ENABLE))
continue;
if (tmp & MASTER_BIG_JOINER_ENABLE)
*master_pipes |= BIT(pipe);
else
*slave_pipes |= BIT(pipe);
}
if (DISPLAY_VER(dev_priv) < 13)
continue;
power_domain = POWER_DOMAIN_PIPE(pipe);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) {
u32 tmp = intel_de_read(dev_priv, ICL_PIPE_DSS_CTL1(pipe));
if (tmp & UNCOMPRESSED_JOINER_MASTER)
*master_pipes |= BIT(pipe);
if (tmp & UNCOMPRESSED_JOINER_SLAVE)
*slave_pipes |= BIT(pipe);
}
}
/* Bigjoiner pipes should always be consecutive master and slave */
drm_WARN(&dev_priv->drm, *slave_pipes != *master_pipes << 1,
"Bigjoiner misconfigured (master pipes 0x%x, slave pipes 0x%x)\n",
*master_pipes, *slave_pipes);
}
static enum pipe get_bigjoiner_master_pipe(enum pipe pipe, u8 master_pipes, u8 slave_pipes)
{
if ((slave_pipes & BIT(pipe)) == 0)
return pipe;
/* ignore everything above our pipe */
master_pipes &= ~GENMASK(7, pipe);
/* highest remaining bit should be our master pipe */
return fls(master_pipes) - 1;
}
static u8 get_bigjoiner_slave_pipes(enum pipe pipe, u8 master_pipes, u8 slave_pipes)
{
enum pipe master_pipe, next_master_pipe;
master_pipe = get_bigjoiner_master_pipe(pipe, master_pipes, slave_pipes);
if ((master_pipes & BIT(master_pipe)) == 0)
return 0;
/* ignore our master pipe and everything below it */
master_pipes &= ~GENMASK(master_pipe, 0);
/* make sure a high bit is set for the ffs() */
master_pipes |= BIT(7);
/* lowest remaining bit should be the next master pipe */
next_master_pipe = ffs(master_pipes) - 1;
return slave_pipes & GENMASK(next_master_pipe - 1, master_pipe);
}
static u8 hsw_panel_transcoders(struct drm_i915_private *i915)
{
u8 panel_transcoder_mask = BIT(TRANSCODER_EDP);
if (DISPLAY_VER(i915) >= 11)
panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
return panel_transcoder_mask;
}
static u8 hsw_enabled_transcoders(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u8 panel_transcoder_mask = hsw_panel_transcoders(dev_priv);
enum transcoder cpu_transcoder;
u8 master_pipes, slave_pipes;
u8 enabled_transcoders = 0;
/*
* XXX: Do intel_display_power_get_if_enabled before reading this (for
* consistency and less surprising code; it's in always on power).
*/
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder,
panel_transcoder_mask) {
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
enum pipe trans_pipe;
u32 tmp = 0;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref)
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (!(tmp & TRANS_DDI_FUNC_ENABLE))
continue;
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
drm_WARN(dev, 1,
"unknown pipe linked to transcoder %s\n",
transcoder_name(cpu_transcoder));
fallthrough;
case TRANS_DDI_EDP_INPUT_A_ONOFF:
case TRANS_DDI_EDP_INPUT_A_ON:
trans_pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
trans_pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
trans_pipe = PIPE_C;
break;
case TRANS_DDI_EDP_INPUT_D_ONOFF:
trans_pipe = PIPE_D;
break;
}
if (trans_pipe == crtc->pipe)
enabled_transcoders |= BIT(cpu_transcoder);
}
/* single pipe or bigjoiner master */
cpu_transcoder = (enum transcoder) crtc->pipe;
if (transcoder_ddi_func_is_enabled(dev_priv, cpu_transcoder))
enabled_transcoders |= BIT(cpu_transcoder);
/* bigjoiner slave -> consider the master pipe's transcoder as well */
enabled_bigjoiner_pipes(dev_priv, &master_pipes, &slave_pipes);
if (slave_pipes & BIT(crtc->pipe)) {
cpu_transcoder = (enum transcoder)
get_bigjoiner_master_pipe(crtc->pipe, master_pipes, slave_pipes);
if (transcoder_ddi_func_is_enabled(dev_priv, cpu_transcoder))
enabled_transcoders |= BIT(cpu_transcoder);
}
return enabled_transcoders;
}
static bool has_edp_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & BIT(TRANSCODER_EDP);
}
static bool has_dsi_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & (BIT(TRANSCODER_DSI_0) |
BIT(TRANSCODER_DSI_1));
}
static bool has_pipe_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & ~(BIT(TRANSCODER_EDP) |
BIT(TRANSCODER_DSI_0) |
BIT(TRANSCODER_DSI_1));
}
static void assert_enabled_transcoders(struct drm_i915_private *i915,
u8 enabled_transcoders)
{
/* Only one type of transcoder please */
drm_WARN_ON(&i915->drm,
has_edp_transcoders(enabled_transcoders) +
has_dsi_transcoders(enabled_transcoders) +
has_pipe_transcoders(enabled_transcoders) > 1);
/* Only DSI transcoders can be ganged */
drm_WARN_ON(&i915->drm,
!has_dsi_transcoders(enabled_transcoders) &&
!is_power_of_2(enabled_transcoders));
}
static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
struct intel_display_power_domain_set *power_domain_set)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long enabled_transcoders;
u32 tmp;
enabled_transcoders = hsw_enabled_transcoders(crtc);
if (!enabled_transcoders)
return false;
assert_enabled_transcoders(dev_priv, enabled_transcoders);
/*
* With the exception of DSI we should only ever have
* a single enabled transcoder. With DSI let's just
* pick the first one.
*/
pipe_config->cpu_transcoder = ffs(enabled_transcoders) - 1;
if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set,
POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
return false;
if (hsw_panel_transcoders(dev_priv) & BIT(pipe_config->cpu_transcoder)) {
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
if ((tmp & TRANS_DDI_EDP_INPUT_MASK) == TRANS_DDI_EDP_INPUT_A_ONOFF)
pipe_config->pch_pfit.force_thru = true;
}
tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
return tmp & PIPECONF_ENABLE;
}
static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
struct intel_display_power_domain_set *power_domain_set)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder;
enum port port;
u32 tmp;
for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
if (port == PORT_A)
cpu_transcoder = TRANSCODER_DSI_A;
else
cpu_transcoder = TRANSCODER_DSI_C;
if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set,
POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
continue;
/*
* The PLL needs to be enabled with a valid divider
* configuration, otherwise accessing DSI registers will hang
* the machine. See BSpec North Display Engine
* registers/MIPI[BXT]. We can break out here early, since we
* need the same DSI PLL to be enabled for both DSI ports.
*/
if (!bxt_dsi_pll_is_enabled(dev_priv))
break;
/* XXX: this works for video mode only */
tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
if (!(tmp & DPI_ENABLE))
continue;
tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
continue;
pipe_config->cpu_transcoder = cpu_transcoder;
break;
}
return transcoder_is_dsi(pipe_config->cpu_transcoder);
}
static void intel_bigjoiner_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
u8 master_pipes, slave_pipes;
enum pipe pipe = crtc->pipe;
enabled_bigjoiner_pipes(i915, &master_pipes, &slave_pipes);
if (((master_pipes | slave_pipes) & BIT(pipe)) == 0)
return;
crtc_state->bigjoiner_pipes =
BIT(get_bigjoiner_master_pipe(pipe, master_pipes, slave_pipes)) |
get_bigjoiner_slave_pipes(pipe, master_pipes, slave_pipes);
}
static bool hsw_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_display_power_domain_set power_domain_set = { };
bool active;
u32 tmp;
if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->shared_dpll = NULL;
active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set);
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) {
drm_WARN_ON(&dev_priv->drm, active);
active = true;
}
if (!active)
goto out;
intel_dsc_get_config(pipe_config);
intel_bigjoiner_get_config(pipe_config);
if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
DISPLAY_VER(dev_priv) >= 11)
intel_get_transcoder_timings(crtc, pipe_config);
if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder))
intel_vrr_get_config(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
if (IS_HASWELL(dev_priv)) {
u32 tmp = intel_de_read(dev_priv,
PIPECONF(pipe_config->cpu_transcoder));
if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
else
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
} else {
pipe_config->output_format =
bdw_get_pipemisc_output_format(crtc);
}
pipe_config->gamma_mode = intel_de_read(dev_priv,
GAMMA_MODE(crtc->pipe));
pipe_config->csc_mode = intel_de_read(dev_priv,
PIPE_CSC_MODE(crtc->pipe));
if (DISPLAY_VER(dev_priv) >= 9) {
tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
pipe_config->gamma_enable = true;
if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
pipe_config->csc_enable = true;
} else {
i9xx_get_pipe_color_config(pipe_config);
}
intel_color_get_config(pipe_config);
tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
pipe_config->ips_linetime =
REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set,
POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) {
if (DISPLAY_VER(dev_priv) >= 9)
skl_get_pfit_config(pipe_config);
else
ilk_get_pfit_config(pipe_config);
}
hsw_ips_get_config(pipe_config);
if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
pipe_config->pixel_multiplier =
intel_de_read(dev_priv,
PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
} else {
pipe_config->pixel_multiplier = 1;
}
if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
tmp = intel_de_read(dev_priv, CHICKEN_TRANS(pipe_config->cpu_transcoder));
pipe_config->framestart_delay = REG_FIELD_GET(HSW_FRAME_START_DELAY_MASK, tmp) + 1;
} else {
/* no idea if this is correct */
pipe_config->framestart_delay = 1;
}
out:
intel_display_power_put_all_in_set(dev_priv, &power_domain_set);
return active;
}
bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (!i915->display.funcs.display->get_pipe_config(crtc, crtc_state))
return false;
crtc_state->hw.active = true;
intel_crtc_readout_derived_state(crtc_state);
return true;
}
/* VESA 640x480x72Hz mode to set on the pipe */
static const struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
static int intel_modeset_disable_planes(struct drm_atomic_state *state,
struct drm_crtc *crtc)
{
struct drm_plane *plane;
struct drm_plane_state *plane_state;
int ret, i;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
for_each_new_plane_in_state(state, plane, plane_state, i) {
if (plane_state->crtc != crtc)
continue;
ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
if (ret)
return ret;
drm_atomic_set_fb_for_plane(plane_state, NULL);
}
return 0;
}
int intel_get_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct intel_encoder *encoder =
intel_attached_encoder(to_intel_connector(connector));
struct intel_crtc *possible_crtc;
struct intel_crtc *crtc = NULL;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_mode_config *config = &dev->mode_config;
struct drm_atomic_state *state = NULL, *restore_state = NULL;
struct drm_connector_state *connector_state;
struct intel_crtc_state *crtc_state;
int ret;
drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.base.id, encoder->base.name);
old->restore_state = NULL;
drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
/*
* Algorithm gets a little messy:
*
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
*
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
*/
/* See if we already have a CRTC for this connector */
if (connector->state->crtc) {
crtc = to_intel_crtc(connector->state->crtc);
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
if (ret)
goto fail;
/* Make sure the crtc and connector are running */
goto found;
}
/* Find an unused one (if possible) */
for_each_intel_crtc(dev, possible_crtc) {
if (!(encoder->base.possible_crtcs &
drm_crtc_mask(&possible_crtc->base)))
continue;
ret = drm_modeset_lock(&possible_crtc->base.mutex, ctx);
if (ret)
goto fail;
if (possible_crtc->base.state->enable) {
drm_modeset_unlock(&possible_crtc->base.mutex);
continue;
}
crtc = possible_crtc;
break;
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
drm_dbg_kms(&dev_priv->drm,
"no pipe available for load-detect\n");
ret = -ENODEV;
goto fail;
}
found:
state = drm_atomic_state_alloc(dev);
restore_state = drm_atomic_state_alloc(dev);
if (!state || !restore_state) {
ret = -ENOMEM;
goto fail;
}
state->acquire_ctx = ctx;
restore_state->acquire_ctx = ctx;
connector_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(connector_state)) {
ret = PTR_ERR(connector_state);
goto fail;
}
ret = drm_atomic_set_crtc_for_connector(connector_state, &crtc->base);
if (ret)
goto fail;
crtc_state = intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto fail;
}
crtc_state->uapi.active = true;
ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
&load_detect_mode);
if (ret)
goto fail;
ret = intel_modeset_disable_planes(state, &crtc->base);
if (ret)
goto fail;
ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
if (!ret)
ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, &crtc->base));
if (!ret)
ret = drm_atomic_add_affected_planes(restore_state, &crtc->base);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"Failed to create a copy of old state to restore: %i\n",
ret);
goto fail;
}
ret = drm_atomic_commit(state);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"failed to set mode on load-detect pipe\n");
goto fail;
}
old->restore_state = restore_state;
drm_atomic_state_put(state);
/* let the connector get through one full cycle before testing */
intel_crtc_wait_for_next_vblank(crtc);
return true;
fail:
if (state) {
drm_atomic_state_put(state);
state = NULL;
}
if (restore_state) {
drm_atomic_state_put(restore_state);
restore_state = NULL;
}
if (ret == -EDEADLK)
return ret;
return false;
}
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct intel_encoder *intel_encoder =
intel_attached_encoder(to_intel_connector(connector));
struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_atomic_state *state = old->restore_state;
int ret;
drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.id, encoder->name);
if (!state)
return;
ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
if (ret)
drm_dbg_kms(&i915->drm,
"Couldn't release load detect pipe: %i\n", ret);
drm_atomic_state_put(state);
}
static int i9xx_pll_refclk(struct drm_device *dev,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 dpll = pipe_config->dpll_hw_state.dpll;
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
return dev_priv->display.vbt.lvds_ssc_freq;
else if (HAS_PCH_SPLIT(dev_priv))
return 120000;
else if (DISPLAY_VER(dev_priv) != 2)
return 96000;
else
return 48000;
}
/* Returns the clock of the currently programmed mode of the given pipe. */
void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 dpll = pipe_config->dpll_hw_state.dpll;
u32 fp;
struct dpll clock;
int port_clock;
int refclk = i9xx_pll_refclk(dev, pipe_config);
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = pipe_config->dpll_hw_state.fp0;
else
fp = pipe_config->dpll_hw_state.fp1;
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev_priv)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (DISPLAY_VER(dev_priv) != 2) {
if (IS_PINEVIEW(dev_priv))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
drm_dbg_kms(&dev_priv->drm,
"Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return;
}
if (IS_PINEVIEW(dev_priv))
port_clock = pnv_calc_dpll_params(refclk, &clock);
else
port_clock = i9xx_calc_dpll_params(refclk, &clock);
} else {
enum pipe lvds_pipe;
if (IS_I85X(dev_priv) &&
intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
lvds_pipe == crtc->pipe) {
u32 lvds = intel_de_read(dev_priv, LVDS);
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
if (lvds & LVDS_CLKB_POWER_UP)
clock.p2 = 7;
else
clock.p2 = 14;
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
}
port_clock = i9xx_calc_dpll_params(refclk, &clock);
}
/*
* This value includes pixel_multiplier. We will use
* port_clock to compute adjusted_mode.crtc_clock in the
* encoder's get_config() function.
*/
pipe_config->port_clock = port_clock;
}
int intel_dotclock_calculate(int link_freq,
const struct intel_link_m_n *m_n)
{
/*
* The calculation for the data clock is:
* pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
* But we want to avoid losing precison if possible, so:
* pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
*
* and the link clock is simpler:
* link_clock = (m * link_clock) / n
*/
if (!m_n->link_n)
return 0;
return DIV_ROUND_UP_ULL(mul_u32_u32(m_n->link_m, link_freq),
m_n->link_n);
}
int intel_crtc_dotclock(const struct intel_crtc_state *pipe_config)
{
int dotclock;
if (intel_crtc_has_dp_encoder(pipe_config))
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp > 24)
dotclock = DIV_ROUND_CLOSEST(pipe_config->port_clock * 24,
pipe_config->pipe_bpp);
else
dotclock = pipe_config->port_clock;
if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
!intel_crtc_has_dp_encoder(pipe_config))
dotclock *= 2;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
return dotclock;
}
/* Returns the currently programmed mode of the given encoder. */
struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc_state *crtc_state;
struct drm_display_mode *mode;
struct intel_crtc *crtc;
enum pipe pipe;
if (!encoder->get_hw_state(encoder, &pipe))
return NULL;
crtc = intel_crtc_for_pipe(dev_priv, pipe);
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
crtc_state = intel_crtc_state_alloc(crtc);
if (!crtc_state) {
kfree(mode);
return NULL;
}
if (!intel_crtc_get_pipe_config(crtc_state)) {
kfree(crtc_state);
kfree(mode);
return NULL;
}
intel_encoder_get_config(encoder, crtc_state);
intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode);
kfree(crtc_state);
return mode;
}
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
/* masks could be asymmetric, so check both ways */
return a == b || (a->cloneable & (1 << b->type) &&
b->cloneable & (1 << a->type));
}
static bool check_single_encoder_cloning(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_encoder *source_encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
source_encoder =
to_intel_encoder(connector_state->best_encoder);
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
return true;
}
static int icl_add_linked_planes(struct intel_atomic_state *state)
{
struct intel_plane *plane, *linked;
struct intel_plane_state *plane_state, *linked_plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
linked = plane_state->planar_linked_plane;
if (!linked)
continue;
linked_plane_state = intel_atomic_get_plane_state(state, linked);
if (IS_ERR(linked_plane_state))
return PTR_ERR(linked_plane_state);
drm_WARN_ON(state->base.dev,
linked_plane_state->planar_linked_plane != plane);
drm_WARN_ON(state->base.dev,
linked_plane_state->planar_slave == plane_state->planar_slave);
}
return 0;
}
static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
struct intel_plane *plane, *linked;
struct intel_plane_state *plane_state;
int i;
if (DISPLAY_VER(dev_priv) < 11)
return 0;
/*
* Destroy all old plane links and make the slave plane invisible
* in the crtc_state->active_planes mask.
*/
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
continue;
plane_state->planar_linked_plane = NULL;
if (plane_state->planar_slave && !plane_state->uapi.visible) {
crtc_state->enabled_planes &= ~BIT(plane->id);
crtc_state->active_planes &= ~BIT(plane->id);
crtc_state->update_planes |= BIT(plane->id);
crtc_state->data_rate[plane->id] = 0;
crtc_state->rel_data_rate[plane->id] = 0;
}
plane_state->planar_slave = false;
}
if (!crtc_state->nv12_planes)
return 0;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct intel_plane_state *linked_state = NULL;
if (plane->pipe != crtc->pipe ||
!(crtc_state->nv12_planes & BIT(plane->id)))
continue;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
if (!icl_is_nv12_y_plane(dev_priv, linked->id))
continue;
if (crtc_state->active_planes & BIT(linked->id))
continue;
linked_state = intel_atomic_get_plane_state(state, linked);
if (IS_ERR(linked_state))
return PTR_ERR(linked_state);
break;
}
if (!linked_state) {
drm_dbg_kms(&dev_priv->drm,
"Need %d free Y planes for planar YUV\n",
hweight8(crtc_state->nv12_planes));
return -EINVAL;
}
plane_state->planar_linked_plane = linked;
linked_state->planar_slave = true;
linked_state->planar_linked_plane = plane;
crtc_state->enabled_planes |= BIT(linked->id);
crtc_state->active_planes |= BIT(linked->id);
crtc_state->update_planes |= BIT(linked->id);
crtc_state->data_rate[linked->id] =
crtc_state->data_rate_y[plane->id];
crtc_state->rel_data_rate[linked->id] =
crtc_state->rel_data_rate_y[plane->id];
drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
linked->base.name, plane->base.name);
/* Copy parameters to slave plane */
linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
linked_state->color_ctl = plane_state->color_ctl;
linked_state->view = plane_state->view;
linked_state->decrypt = plane_state->decrypt;
intel_plane_copy_hw_state(linked_state, plane_state);
linked_state->uapi.src = plane_state->uapi.src;
linked_state->uapi.dst = plane_state->uapi.dst;
if (icl_is_hdr_plane(dev_priv, plane->id)) {
if (linked->id == PLANE_SPRITE5)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_7_ICL;
else if (linked->id == PLANE_SPRITE4)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_6_ICL;
else if (linked->id == PLANE_SPRITE3)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_5_RKL;
else if (linked->id == PLANE_SPRITE2)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_4_RKL;
else
MISSING_CASE(linked->id);
}
}
return 0;
}
static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct intel_atomic_state *state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
}
static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
pipe_mode->crtc_clock);
return min(linetime_wm, 0x1ff);
}
static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
const struct intel_cdclk_state *cdclk_state)
{
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
cdclk_state->logical.cdclk);
return min(linetime_wm, 0x1ff);
}
static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8,
crtc_state->pixel_rate);
/* Display WA #1135: BXT:ALL GLK:ALL */
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
dev_priv->ipc_enabled)
linetime_wm /= 2;
return min(linetime_wm, 0x1ff);
}
static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_cdclk_state *cdclk_state;
if (DISPLAY_VER(dev_priv) >= 9)
crtc_state->linetime = skl_linetime_wm(crtc_state);
else
crtc_state->linetime = hsw_linetime_wm(crtc_state);
if (!hsw_crtc_supports_ips(crtc))
return 0;
cdclk_state = intel_atomic_get_cdclk_state(state);
if (IS_ERR(cdclk_state))
return PTR_ERR(cdclk_state);
crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
cdclk_state);
return 0;
}
static int intel_crtc_atomic_check(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool mode_changed = intel_crtc_needs_modeset(crtc_state);
int ret;
if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) &&
mode_changed && !crtc_state->hw.active)
crtc_state->update_wm_post = true;
if (mode_changed) {
ret = intel_dpll_crtc_get_shared_dpll(state, crtc);
if (ret)
return ret;
}
/*
* May need to update pipe gamma enable bits
* when C8 planes are getting enabled/disabled.
*/
if (c8_planes_changed(crtc_state))
crtc_state->uapi.color_mgmt_changed = true;
if (mode_changed || crtc_state->update_pipe ||
crtc_state->uapi.color_mgmt_changed) {
ret = intel_color_check(crtc_state);
if (ret)
return ret;
}
ret = intel_compute_pipe_wm(state, crtc);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"Target pipe watermarks are invalid\n");
return ret;
}
/*
* Calculate 'intermediate' watermarks that satisfy both the
* old state and the new state. We can program these
* immediately.
*/
ret = intel_compute_intermediate_wm(state, crtc);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"No valid intermediate pipe watermarks are possible\n");
return ret;
}
if (DISPLAY_VER(dev_priv) >= 9) {
if (mode_changed || crtc_state->update_pipe) {
ret = skl_update_scaler_crtc(crtc_state);
if (ret)
return ret;
}
ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
if (ret)
return ret;
}
if (HAS_IPS(dev_priv)) {
ret = hsw_ips_compute_config(state, crtc);
if (ret)
return ret;
}
if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
ret = hsw_compute_linetime_wm(state, crtc);
if (ret)
return ret;
}
ret = intel_psr2_sel_fetch_update(state, crtc);
if (ret)
return ret;
return 0;
}
static int
compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
struct intel_crtc_state *crtc_state)
{
struct drm_connector *connector = conn_state->connector;
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_display_info *info = &connector->display_info;
int bpp;
switch (conn_state->max_bpc) {
case 6 ... 7:
bpp = 6 * 3;
break;
case 8 ... 9:
bpp = 8 * 3;
break;
case 10 ... 11:
bpp = 10 * 3;
break;
case 12 ... 16:
bpp = 12 * 3;
break;
default:
MISSING_CASE(conn_state->max_bpc);
return -EINVAL;
}
if (bpp < crtc_state->pipe_bpp) {
drm_dbg_kms(&i915->drm,
"[CONNECTOR:%d:%s] Limiting display bpp to %d "
"(EDID bpp %d, max requested bpp %d, max platform bpp %d)\n",
connector->base.id, connector->name,
bpp, 3 * info->bpc,
3 * conn_state->max_requested_bpc,
crtc_state->pipe_bpp);
crtc_state->pipe_bpp = bpp;
}
return 0;
}
static int
compute_baseline_pipe_bpp(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int bpp, i;
if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)))
bpp = 10*3;
else if (DISPLAY_VER(dev_priv) >= 5)
bpp = 12*3;
else
bpp = 8*3;
crtc_state->pipe_bpp = bpp;
/* Clamp display bpp to connector max bpp */
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
int ret;
if (connector_state->crtc != &crtc->base)
continue;
ret = compute_sink_pipe_bpp(connector_state, crtc_state);
if (ret)
return ret;
}
return 0;
}
static bool check_digital_port_conflicts(struct intel_atomic_state *state)
{
struct drm_device *dev = state->base.dev;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
unsigned int used_ports = 0;
unsigned int used_mst_ports = 0;
bool ret = true;
/*
* We're going to peek into connector->state,
* hence connection_mutex must be held.
*/
drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
/*
* Walk the connector list instead of the encoder
* list to detect the problem on ddi platforms
* where there's just one encoder per digital port.
*/
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
connector_state =
drm_atomic_get_new_connector_state(&state->base,
connector);
if (!connector_state)
connector_state = connector->state;
if (!connector_state->best_encoder)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
drm_WARN_ON(dev, !connector_state->crtc);
switch (encoder->type) {
case INTEL_OUTPUT_DDI:
if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
break;
fallthrough;
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_EDP:
/* the same port mustn't appear more than once */
if (used_ports & BIT(encoder->port))
ret = false;
used_ports |= BIT(encoder->port);
break;
case INTEL_OUTPUT_DP_MST:
used_mst_ports |=
1 << encoder->port;
break;
default:
break;
}
}
drm_connector_list_iter_end(&conn_iter);
/* can't mix MST and SST/HDMI on the same port */
if (used_ports & used_mst_ports)
return false;
return ret;
}
static void
intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
WARN_ON(intel_crtc_is_bigjoiner_slave(crtc_state));
drm_property_replace_blob(&crtc_state->hw.degamma_lut,
crtc_state->uapi.degamma_lut);
drm_property_replace_blob(&crtc_state->hw.gamma_lut,
crtc_state->uapi.gamma_lut);
drm_property_replace_blob(&crtc_state->hw.ctm,
crtc_state->uapi.ctm);
}
static void
intel_crtc_copy_uapi_to_hw_state_modeset(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
WARN_ON(intel_crtc_is_bigjoiner_slave(crtc_state));
crtc_state->hw.enable = crtc_state->uapi.enable;
crtc_state->hw.active = crtc_state->uapi.active;
drm_mode_copy(&crtc_state->hw.mode,
&crtc_state->uapi.mode);
drm_mode_copy(&crtc_state->hw.adjusted_mode,
&crtc_state->uapi.adjusted_mode);
crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter;
intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc);
}
static void
copy_bigjoiner_crtc_state_nomodeset(struct intel_atomic_state *state,
struct intel_crtc *slave_crtc)
{
struct intel_crtc_state *slave_crtc_state =
intel_atomic_get_new_crtc_state(state, slave_crtc);
struct intel_crtc *master_crtc = intel_master_crtc(slave_crtc_state);
const struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
drm_property_replace_blob(&slave_crtc_state->hw.degamma_lut,
master_crtc_state->hw.degamma_lut);
drm_property_replace_blob(&slave_crtc_state->hw.gamma_lut,
master_crtc_state->hw.gamma_lut);
drm_property_replace_blob(&slave_crtc_state->hw.ctm,
master_crtc_state->hw.ctm);
slave_crtc_state->uapi.color_mgmt_changed = master_crtc_state->uapi.color_mgmt_changed;
}
static int
copy_bigjoiner_crtc_state_modeset(struct intel_atomic_state *state,
struct intel_crtc *slave_crtc)
{
struct intel_crtc_state *slave_crtc_state =
intel_atomic_get_new_crtc_state(state, slave_crtc);
struct intel_crtc *master_crtc = intel_master_crtc(slave_crtc_state);
const struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
struct intel_crtc_state *saved_state;
WARN_ON(master_crtc_state->bigjoiner_pipes !=
slave_crtc_state->bigjoiner_pipes);
saved_state = kmemdup(master_crtc_state, sizeof(*saved_state), GFP_KERNEL);
if (!saved_state)
return -ENOMEM;
/* preserve some things from the slave's original crtc state */
saved_state->uapi = slave_crtc_state->uapi;
saved_state->scaler_state = slave_crtc_state->scaler_state;
saved_state->shared_dpll = slave_crtc_state->shared_dpll;
saved_state->dpll_hw_state = slave_crtc_state->dpll_hw_state;
saved_state->crc_enabled = slave_crtc_state->crc_enabled;
intel_crtc_free_hw_state(slave_crtc_state);
memcpy(slave_crtc_state, saved_state, sizeof(*slave_crtc_state));
kfree(saved_state);
/* Re-init hw state */
memset(&slave_crtc_state->hw, 0, sizeof(slave_crtc_state->hw));
slave_crtc_state->hw.enable = master_crtc_state->hw.enable;
slave_crtc_state->hw.active = master_crtc_state->hw.active;
drm_mode_copy(&slave_crtc_state->hw.mode,
&master_crtc_state->hw.mode);
drm_mode_copy(&slave_crtc_state->hw.pipe_mode,
&master_crtc_state->hw.pipe_mode);
drm_mode_copy(&slave_crtc_state->hw.adjusted_mode,
&master_crtc_state->hw.adjusted_mode);
slave_crtc_state->hw.scaling_filter = master_crtc_state->hw.scaling_filter;
copy_bigjoiner_crtc_state_nomodeset(state, slave_crtc);
slave_crtc_state->uapi.mode_changed = master_crtc_state->uapi.mode_changed;
slave_crtc_state->uapi.connectors_changed = master_crtc_state->uapi.connectors_changed;
slave_crtc_state->uapi.active_changed = master_crtc_state->uapi.active_changed;
WARN_ON(master_crtc_state->bigjoiner_pipes !=
slave_crtc_state->bigjoiner_pipes);
return 0;
}
static int
intel_crtc_prepare_cleared_state(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *saved_state;
saved_state = intel_crtc_state_alloc(crtc);
if (!saved_state)
return -ENOMEM;
/* free the old crtc_state->hw members */
intel_crtc_free_hw_state(crtc_state);
/* FIXME: before the switch to atomic started, a new pipe_config was
* kzalloc'd. Code that depends on any field being zero should be
* fixed, so that the crtc_state can be safely duplicated. For now,
* only fields that are know to not cause problems are preserved. */
saved_state->uapi = crtc_state->uapi;
saved_state->scaler_state = crtc_state->scaler_state;
saved_state->shared_dpll = crtc_state->shared_dpll;
saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
sizeof(saved_state->icl_port_dplls));
saved_state->crc_enabled = crtc_state->crc_enabled;
if (IS_G4X(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
saved_state->wm = crtc_state->wm;
memcpy(crtc_state, saved_state, sizeof(*crtc_state));
kfree(saved_state);
intel_crtc_copy_uapi_to_hw_state_modeset(state, crtc);
return 0;
}
static int
intel_modeset_pipe_config(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int pipe_src_w, pipe_src_h;
int base_bpp, ret, i;
bool retry = true;
crtc_state->cpu_transcoder = (enum transcoder) crtc->pipe;
crtc_state->framestart_delay = 1;
/*
* Sanitize sync polarity flags based on requested ones. If neither
* positive or negative polarity is requested, treat this as meaning
* negative polarity.
*/
if (!(crtc_state->hw.adjusted_mode.flags &
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (!(crtc_state->hw.adjusted_mode.flags &
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
ret = compute_baseline_pipe_bpp(state, crtc);
if (ret)
return ret;
base_bpp = crtc_state->pipe_bpp;
/*
* Determine the real pipe dimensions. Note that stereo modes can
* increase the actual pipe size due to the frame doubling and
* insertion of additional space for blanks between the frame. This
* is stored in the crtc timings. We use the requested mode to do this
* computation to clearly distinguish it from the adjusted mode, which
* can be changed by the connectors in the below retry loop.
*/
drm_mode_get_hv_timing(&crtc_state->hw.mode,
&pipe_src_w, &pipe_src_h);
drm_rect_init(&crtc_state->pipe_src, 0, 0,
pipe_src_w, pipe_src_h);
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(connector_state->best_encoder);
if (connector_state->crtc != &crtc->base)
continue;
if (!check_single_encoder_cloning(state, crtc, encoder)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] rejecting invalid cloning configuration\n",
encoder->base.base.id, encoder->base.name);
return -EINVAL;
}
/*
* Determine output_types before calling the .compute_config()
* hooks so that the hooks can use this information safely.
*/
if (encoder->compute_output_type)
crtc_state->output_types |=
BIT(encoder->compute_output_type(encoder, crtc_state,
connector_state));
else
crtc_state->output_types |= BIT(encoder->type);
}
encoder_retry:
/* Ensure the port clock defaults are reset when retrying. */
crtc_state->port_clock = 0;
crtc_state->pixel_multiplier = 1;
/* Fill in default crtc timings, allow encoders to overwrite them. */
drm_mode_set_crtcinfo(&crtc_state->hw.adjusted_mode,
CRTC_STEREO_DOUBLE);
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(connector_state->best_encoder);
if (connector_state->crtc != &crtc->base)
continue;
ret = encoder->compute_config(encoder, crtc_state,
connector_state);
if (ret == -EDEADLK)
return ret;
if (ret < 0) {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] config failure: %d\n",
encoder->base.base.id, encoder->base.name, ret);
return ret;
}
}
/* Set default port clock if not overwritten by the encoder. Needs to be
* done afterwards in case the encoder adjusts the mode. */
if (!crtc_state->port_clock)
crtc_state->port_clock = crtc_state->hw.adjusted_mode.crtc_clock
* crtc_state->pixel_multiplier;
ret = intel_crtc_compute_config(state, crtc);
if (ret == -EDEADLK)
return ret;
if (ret == -EAGAIN) {
if (drm_WARN(&i915->drm, !retry,
"[CRTC:%d:%s] loop in pipe configuration computation\n",
crtc->base.base.id, crtc->base.name))
return -EINVAL;
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] bw constrained, retrying\n",
crtc->base.base.id, crtc->base.name);
retry = false;
goto encoder_retry;
}
if (ret < 0) {
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] config failure: %d\n",
crtc->base.base.id, crtc->base.name, ret);
return ret;
}
/* Dithering seems to not pass-through bits correctly when it should, so
* only enable it on 6bpc panels and when its not a compliance
* test requesting 6bpc video pattern.
*/
crtc_state->dither = (crtc_state->pipe_bpp == 6*3) &&
!crtc_state->dither_force_disable;
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
crtc->base.base.id, crtc->base.name,
base_bpp, crtc_state->pipe_bpp, crtc_state->dither);
return 0;
}
static int
intel_modeset_pipe_config_late(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector_state *conn_state;
struct drm_connector *connector;
int i;
intel_bigjoiner_adjust_pipe_src(crtc_state);
for_each_new_connector_in_state(&state->base, connector,
conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
int ret;
if (conn_state->crtc != &crtc->base ||
!encoder->compute_config_late)
continue;
ret = encoder->compute_config_late(encoder, crtc_state,
conn_state);
if (ret)
return ret;
}
return 0;
}
bool intel_fuzzy_clock_check(int clock1, int clock2)
{
int diff;
if (clock1 == clock2)
return true;
if (!clock1 || !clock2)
return false;
diff = abs(clock1 - clock2);
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
return false;
}
static bool
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
const struct intel_link_m_n *m2_n2)
{
return m_n->tu == m2_n2->tu &&
m_n->data_m == m2_n2->data_m &&
m_n->data_n == m2_n2->data_n &&
m_n->link_m == m2_n2->link_m &&
m_n->link_n == m2_n2->link_n;
}
static bool
intel_compare_infoframe(const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
return memcmp(a, b, sizeof(*a)) == 0;
}
static bool
intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
const struct drm_dp_vsc_sdp *b)
{
return memcmp(a, b, sizeof(*a)) == 0;
}
static void
pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
bool fastset, const char *name,
const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
if (fastset) {
if (!drm_debug_enabled(DRM_UT_KMS))
return;
drm_dbg_kms(&dev_priv->drm,
"fastset mismatch in %s infoframe\n", name);
drm_dbg_kms(&dev_priv->drm, "expected:\n");
hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
drm_dbg_kms(&dev_priv->drm, "found:\n");
hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
} else {
drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
drm_err(&dev_priv->drm, "expected:\n");
hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
drm_err(&dev_priv->drm, "found:\n");
hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
}
}
static void
pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
bool fastset, const char *name,
const struct drm_dp_vsc_sdp *a,
const struct drm_dp_vsc_sdp *b)
{
if (fastset) {
if (!drm_debug_enabled(DRM_UT_KMS))
return;
drm_dbg_kms(&dev_priv->drm,
"fastset mismatch in %s dp sdp\n", name);
drm_dbg_kms(&dev_priv->drm, "expected:\n");
drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
drm_dbg_kms(&dev_priv->drm, "found:\n");
drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
} else {
drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
drm_err(&dev_priv->drm, "expected:\n");
drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
drm_err(&dev_priv->drm, "found:\n");
drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
}
}
static void __printf(4, 5)
pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
const char *name, const char *format, ...)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct va_format vaf;
va_list args;
va_start(args, format);
vaf.fmt = format;
vaf.va = &args;
if (fastset)
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] fastset mismatch in %s %pV\n",
crtc->base.base.id, crtc->base.name, name, &vaf);
else
drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
crtc->base.base.id, crtc->base.name, name, &vaf);
va_end(args);
}
static bool fastboot_enabled(struct drm_i915_private *dev_priv)
{
if (dev_priv->params.fastboot != -1)
return dev_priv->params.fastboot;
/* Enable fastboot by default on Skylake and newer */
if (DISPLAY_VER(dev_priv) >= 9)
return true;
/* Enable fastboot by default on VLV and CHV */
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return true;
/* Disabled by default on all others */
return false;
}
bool
intel_pipe_config_compare(const struct intel_crtc_state *current_config,
const struct intel_crtc_state *pipe_config,
bool fastset)
{
struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
bool ret = true;
u32 bp_gamma = 0;
bool fixup_inherited = fastset &&
current_config->inherited && !pipe_config->inherited;
if (fixup_inherited && !fastboot_enabled(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"initial modeset and fastboot not set\n");
ret = false;
}
#define PIPE_CONF_CHECK_X(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected 0x%08x, found 0x%08x)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \
if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected 0x%08x, found 0x%08x)", \
current_config->name & (mask), \
pipe_config->name & (mask)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_I(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected %i, found %i)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_BOOL(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected %s, found %s)", \
str_yes_no(current_config->name), \
str_yes_no(pipe_config->name)); \
ret = false; \
} \
} while (0)
/*
* Checks state where we only read out the enabling, but not the entire
* state itself (like full infoframes or ELD for audio). These states
* require a full modeset on bootup to fix up.
*/
#define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
PIPE_CONF_CHECK_BOOL(name); \
} else { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
str_yes_no(current_config->name), \
str_yes_no(pipe_config->name)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_P(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected %p, found %p)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_M_N(name) do { \
if (!intel_compare_link_m_n(&current_config->name, \
&pipe_config->name)) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected tu %i data %i/%i link %i/%i, " \
"found tu %i, data %i/%i link %i/%i)", \
current_config->name.tu, \
current_config->name.data_m, \
current_config->name.data_n, \
current_config->name.link_m, \
current_config->name.link_n, \
pipe_config->name.tu, \
pipe_config->name.data_m, \
pipe_config->name.data_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_TIMINGS(name) do { \
PIPE_CONF_CHECK_I(name.crtc_hdisplay); \
PIPE_CONF_CHECK_I(name.crtc_htotal); \
PIPE_CONF_CHECK_I(name.crtc_hblank_start); \
PIPE_CONF_CHECK_I(name.crtc_hblank_end); \
PIPE_CONF_CHECK_I(name.crtc_hsync_start); \
PIPE_CONF_CHECK_I(name.crtc_hsync_end); \
PIPE_CONF_CHECK_I(name.crtc_vdisplay); \
PIPE_CONF_CHECK_I(name.crtc_vtotal); \
PIPE_CONF_CHECK_I(name.crtc_vblank_start); \
PIPE_CONF_CHECK_I(name.crtc_vblank_end); \
PIPE_CONF_CHECK_I(name.crtc_vsync_start); \
PIPE_CONF_CHECK_I(name.crtc_vsync_end); \
} while (0)
#define PIPE_CONF_CHECK_RECT(name) do { \
PIPE_CONF_CHECK_I(name.x1); \
PIPE_CONF_CHECK_I(name.x2); \
PIPE_CONF_CHECK_I(name.y1); \
PIPE_CONF_CHECK_I(name.y2); \
} while (0)
/* This is required for BDW+ where there is only one set of registers for
* switching between high and low RR.
* This macro can be used whenever a comparison has to be made between one
* hw state and multiple sw state variables.
*/
#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
if (!intel_compare_link_m_n(&current_config->name, \
&pipe_config->name) && \
!intel_compare_link_m_n(&current_config->alt_name, \
&pipe_config->name)) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected tu %i data %i/%i link %i/%i, " \
"or tu %i data %i/%i link %i/%i, " \
"found tu %i, data %i/%i link %i/%i)", \
current_config->name.tu, \
current_config->name.data_m, \
current_config->name.data_n, \
current_config->name.link_m, \
current_config->name.link_n, \
current_config->alt_name.tu, \
current_config->alt_name.data_m, \
current_config->alt_name.data_n, \
current_config->alt_name.link_m, \
current_config->alt_name.link_n, \
pipe_config->name.tu, \
pipe_config->name.data_m, \
pipe_config->name.data_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
if ((current_config->name ^ pipe_config->name) & (mask)) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(%x) (expected %i, found %i)", \
(mask), \
current_config->name & (mask), \
pipe_config->name & (mask)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_INFOFRAME(name) do { \
if (!intel_compare_infoframe(&current_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
&current_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
if (!current_config->has_psr && !pipe_config->has_psr && \
!intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
&current_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
if (current_config->name1 != pipe_config->name1) { \
pipe_config_mismatch(fastset, crtc, __stringify(name1), \
"(expected %i, found %i, won't compare lut values)", \
current_config->name1, \
pipe_config->name1); \
ret = false;\
} else { \
if (!intel_color_lut_equal(current_config->name2, \
pipe_config->name2, pipe_config->name1, \
bit_precision)) { \
pipe_config_mismatch(fastset, crtc, __stringify(name2), \
"hw_state doesn't match sw_state"); \
ret = false; \
} \
} \
} while (0)
#define PIPE_CONF_QUIRK(quirk) \
((current_config->quirks | pipe_config->quirks) & (quirk))
PIPE_CONF_CHECK_I(hw.enable);
PIPE_CONF_CHECK_I(hw.active);
PIPE_CONF_CHECK_I(cpu_transcoder);
PIPE_CONF_CHECK_I(mst_master_transcoder);
PIPE_CONF_CHECK_BOOL(has_pch_encoder);
PIPE_CONF_CHECK_I(fdi_lanes);
PIPE_CONF_CHECK_M_N(fdi_m_n);
PIPE_CONF_CHECK_I(lane_count);
PIPE_CONF_CHECK_X(lane_lat_optim_mask);
if (HAS_DOUBLE_BUFFERED_M_N(dev_priv)) {
if (!fastset || !pipe_config->seamless_m_n)
PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
} else {
PIPE_CONF_CHECK_M_N(dp_m_n);
PIPE_CONF_CHECK_M_N(dp_m2_n2);
}
PIPE_CONF_CHECK_X(output_types);
PIPE_CONF_CHECK_I(framestart_delay);
PIPE_CONF_CHECK_I(msa_timing_delay);
PIPE_CONF_CHECK_TIMINGS(hw.pipe_mode);
PIPE_CONF_CHECK_TIMINGS(hw.adjusted_mode);
PIPE_CONF_CHECK_I(pixel_multiplier);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_INTERLACE);
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_PHSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_NHSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_PVSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_NVSYNC);
}
PIPE_CONF_CHECK_I(output_format);
PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
PIPE_CONF_CHECK_BOOL(limited_color_range);
PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
PIPE_CONF_CHECK_BOOL(has_infoframe);
PIPE_CONF_CHECK_BOOL(fec_enable);
PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
PIPE_CONF_CHECK_X(gmch_pfit.control);
/* pfit ratios are autocomputed by the hw on gen4+ */
if (DISPLAY_VER(dev_priv) < 4)
PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
/*
* Changing the EDP transcoder input mux
* (A_ONOFF vs. A_ON) requires a full modeset.
*/
PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
if (!fastset) {
PIPE_CONF_CHECK_RECT(pipe_src);
PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
PIPE_CONF_CHECK_RECT(pch_pfit.dst);
PIPE_CONF_CHECK_I(scaler_state.scaler_id);
PIPE_CONF_CHECK_I(pixel_rate);
PIPE_CONF_CHECK_X(gamma_mode);
if (IS_CHERRYVIEW(dev_priv))
PIPE_CONF_CHECK_X(cgm_mode);
else
PIPE_CONF_CHECK_X(csc_mode);
PIPE_CONF_CHECK_BOOL(gamma_enable);
PIPE_CONF_CHECK_BOOL(csc_enable);
PIPE_CONF_CHECK_I(linetime);
PIPE_CONF_CHECK_I(ips_linetime);
bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
if (bp_gamma)
PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
if (current_config->active_planes) {
PIPE_CONF_CHECK_BOOL(has_psr);
PIPE_CONF_CHECK_BOOL(has_psr2);
PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch);
PIPE_CONF_CHECK_I(dc3co_exitline);
}
}
PIPE_CONF_CHECK_BOOL(double_wide);
if (dev_priv->display.dpll.mgr) {
PIPE_CONF_CHECK_P(shared_dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
PIPE_CONF_CHECK_X(dpll_hw_state.spll);
PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
PIPE_CONF_CHECK_X(dpll_hw_state.div0);
PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
}
PIPE_CONF_CHECK_X(dsi_pll.ctrl);
PIPE_CONF_CHECK_X(dsi_pll.div);
if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5)
PIPE_CONF_CHECK_I(pipe_bpp);
if (!fastset || !pipe_config->seamless_m_n) {
PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_clock);
PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_clock);
}
PIPE_CONF_CHECK_I(port_clock);
PIPE_CONF_CHECK_I(min_voltage_level);
if (current_config->has_psr || pipe_config->has_psr)
PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable,
~intel_hdmi_infoframe_enable(DP_SDP_VSC));
else
PIPE_CONF_CHECK_X(infoframes.enable);
PIPE_CONF_CHECK_X(infoframes.gcp);
PIPE_CONF_CHECK_INFOFRAME(avi);
PIPE_CONF_CHECK_INFOFRAME(spd);
PIPE_CONF_CHECK_INFOFRAME(hdmi);
PIPE_CONF_CHECK_INFOFRAME(drm);
PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
PIPE_CONF_CHECK_I(master_transcoder);
PIPE_CONF_CHECK_X(bigjoiner_pipes);
PIPE_CONF_CHECK_I(dsc.compression_enable);
PIPE_CONF_CHECK_I(dsc.dsc_split);
PIPE_CONF_CHECK_I(dsc.compressed_bpp);
PIPE_CONF_CHECK_BOOL(splitter.enable);
PIPE_CONF_CHECK_I(splitter.link_count);
PIPE_CONF_CHECK_I(splitter.pixel_overlap);
PIPE_CONF_CHECK_BOOL(vrr.enable);
PIPE_CONF_CHECK_I(vrr.vmin);
PIPE_CONF_CHECK_I(vrr.vmax);
PIPE_CONF_CHECK_I(vrr.flipline);
PIPE_CONF_CHECK_I(vrr.pipeline_full);
PIPE_CONF_CHECK_I(vrr.guardband);
#undef PIPE_CONF_CHECK_X
#undef PIPE_CONF_CHECK_I
#undef PIPE_CONF_CHECK_BOOL
#undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
#undef PIPE_CONF_CHECK_P
#undef PIPE_CONF_CHECK_FLAGS
#undef PIPE_CONF_CHECK_COLOR_LUT
#undef PIPE_CONF_CHECK_TIMINGS
#undef PIPE_CONF_CHECK_RECT
#undef PIPE_CONF_QUIRK
return ret;
}
static void
intel_verify_planes(struct intel_atomic_state *state)
{
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane,
plane_state, i)
assert_plane(plane, plane_state->planar_slave ||
plane_state->uapi.visible);
}
int intel_modeset_all_pipes(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
/*
* Add all pipes to the state, and force
* a modeset on all the active ones.
*/
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state;
int ret;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state->hw.active ||
drm_atomic_crtc_needs_modeset(&crtc_state->uapi))
continue;
crtc_state->uapi.mode_changed = true;
ret = drm_atomic_add_affected_connectors(&state->base,
&crtc->base);
if (ret)
return ret;
ret = intel_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
crtc_state->update_planes |= crtc_state->active_planes;
}
return 0;
}
void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct drm_display_mode adjusted_mode;
drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode);
if (crtc_state->vrr.enable) {
adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax;
adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax;
adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
}
drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
crtc->mode_flags = crtc_state->mode_flags;
/*
* The scanline counter increments at the leading edge of hsync.
*
* On most platforms it starts counting from vtotal-1 on the
* first active line. That means the scanline counter value is
* always one less than what we would expect. Ie. just after
* start of vblank, which also occurs at start of hsync (on the
* last active line), the scanline counter will read vblank_start-1.
*
* On gen2 the scanline counter starts counting from 1 instead
* of vtotal-1, so we have to subtract one (or rather add vtotal-1
* to keep the value positive), instead of adding one.
*
* On HSW+ the behaviour of the scanline counter depends on the output
* type. For DP ports it behaves like most other platforms, but on HDMI
* there's an extra 1 line difference. So we need to add two instead of
* one to the value.
*
* On VLV/CHV DSI the scanline counter would appear to increment
* approx. 1/3 of a scanline before start of vblank. Unfortunately
* that means we can't tell whether we're in vblank or not while
* we're on that particular line. We must still set scanline_offset
* to 1 so that the vblank timestamps come out correct when we query
* the scanline counter from within the vblank interrupt handler.
* However if queried just before the start of vblank we'll get an
* answer that's slightly in the future.
*/
if (DISPLAY_VER(dev_priv) == 2) {
int vtotal;
vtotal = adjusted_mode.crtc_vtotal;
if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
crtc->scanline_offset = vtotal - 1;
} else if (HAS_DDI(dev_priv) &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
crtc->scanline_offset = 2;
} else {
crtc->scanline_offset = 1;
}
}
/*
* This implements the workaround described in the "notes" section of the mode
* set sequence documentation. When going from no pipes or single pipe to
* multiple pipes, and planes are enabled after the pipe, we need to wait at
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
*/
static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
struct intel_crtc_state *first_crtc_state = NULL;
struct intel_crtc_state *other_crtc_state = NULL;
enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
int i;
/* look at all crtc's that are going to be enabled in during modeset */
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (!crtc_state->hw.active ||
!intel_crtc_needs_modeset(crtc_state))
continue;
if (first_crtc_state) {
other_crtc_state = crtc_state;
break;
} else {
first_crtc_state = crtc_state;
first_pipe = crtc->pipe;
}
}
/* No workaround needed? */
if (!first_crtc_state)
return 0;
/* w/a possibly needed, check how many crtc's are already enabled. */
for_each_intel_crtc(state->base.dev, crtc) {
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->hsw_workaround_pipe = INVALID_PIPE;
if (!crtc_state->hw.active ||
intel_crtc_needs_modeset(crtc_state))
continue;
/* 2 or more enabled crtcs means no need for w/a */
if (enabled_pipe != INVALID_PIPE)
return 0;
enabled_pipe = crtc->pipe;
}
if (enabled_pipe != INVALID_PIPE)
first_crtc_state->hsw_workaround_pipe = enabled_pipe;
else if (other_crtc_state)
other_crtc_state->hsw_workaround_pipe = first_pipe;
return 0;
}
u8 intel_calc_active_pipes(struct intel_atomic_state *state,
u8 active_pipes)
{
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (crtc_state->hw.active)
active_pipes |= BIT(crtc->pipe);
else
active_pipes &= ~BIT(crtc->pipe);
}
return active_pipes;
}
static int intel_modeset_checks(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
state->modeset = true;
if (IS_HASWELL(dev_priv))
return hsw_mode_set_planes_workaround(state);
return 0;
}
static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state)
{
if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
return;
new_crtc_state->uapi.mode_changed = false;
new_crtc_state->update_pipe = true;
}
static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
struct intel_crtc *crtc,
u8 plane_ids_mask)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
struct intel_plane_state *plane_state;
if ((plane_ids_mask & BIT(plane->id)) == 0)
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
}
return 0;
}
int intel_atomic_add_affected_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
return intel_crtc_add_planes_to_state(state, crtc,
old_crtc_state->enabled_planes |
new_crtc_state->enabled_planes);
}
static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
{
/* See {hsw,vlv,ivb}_plane_ratio() */
return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_IVYBRIDGE(dev_priv);
}
static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_crtc *other)
{
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
u8 plane_ids = 0;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe)
plane_ids |= BIT(plane->id);
}
return intel_crtc_add_planes_to_state(state, other, plane_ids);
}
static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
struct intel_crtc *other;
for_each_intel_crtc_in_pipe_mask(&i915->drm, other,
crtc_state->bigjoiner_pipes) {
int ret;
if (crtc == other)
continue;
ret = intel_crtc_add_bigjoiner_planes(state, crtc, other);
if (ret)
return ret;
}
}
return 0;
}
static int intel_atomic_check_planes(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_plane_state *plane_state;
struct intel_plane *plane;
struct intel_crtc *crtc;
int i, ret;
ret = icl_add_linked_planes(state);
if (ret)
return ret;
ret = intel_bigjoiner_add_affected_planes(state);
if (ret)
return ret;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
ret = intel_plane_atomic_check(state, plane);
if (ret) {
drm_dbg_atomic(&dev_priv->drm,
"[PLANE:%d:%s] atomic driver check failed\n",
plane->base.base.id, plane->base.name);
return ret;
}
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
u8 old_active_planes, new_active_planes;
ret = icl_check_nv12_planes(new_crtc_state);
if (ret)
return ret;
/*
* On some platforms the number of active planes affects
* the planes' minimum cdclk calculation. Add such planes
* to the state before we compute the minimum cdclk.
*/
if (!active_planes_affects_min_cdclk(dev_priv))
continue;
old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
if (hweight8(old_active_planes) == hweight8(new_active_planes))
continue;
ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
if (ret)
return ret;
}
return 0;
}
static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
int ret;
ret = intel_crtc_atomic_check(state, crtc);
if (ret) {
drm_dbg_atomic(&i915->drm,
"[CRTC:%d:%s] atomic driver check failed\n",
crtc->base.base.id, crtc->base.name);
return ret;
}
}
return 0;
}
static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
u8 transcoders)
{
const struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->hw.enable &&
transcoders & BIT(new_crtc_state->cpu_transcoder) &&
intel_crtc_needs_modeset(new_crtc_state))
return true;
}
return false;
}
static bool intel_pipes_need_modeset(struct intel_atomic_state *state,
u8 pipes)
{
const struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->hw.enable &&
pipes & BIT(crtc->pipe) &&
intel_crtc_needs_modeset(new_crtc_state))
return true;
}
return false;
}
static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state,
struct intel_crtc *master_crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
struct intel_crtc *slave_crtc;
if (!master_crtc_state->bigjoiner_pipes)
return 0;
/* sanity check */
if (drm_WARN_ON(&i915->drm,
master_crtc->pipe != bigjoiner_master_pipe(master_crtc_state)))
return -EINVAL;
if (master_crtc_state->bigjoiner_pipes & ~bigjoiner_pipes(i915)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Cannot act as big joiner master "
"(need 0x%x as pipes, only 0x%x possible)\n",
master_crtc->base.base.id, master_crtc->base.name,
master_crtc_state->bigjoiner_pipes, bigjoiner_pipes(i915));
return -EINVAL;
}
for_each_intel_crtc_in_pipe_mask(&i915->drm, slave_crtc,
intel_crtc_bigjoiner_slave_pipes(master_crtc_state)) {
struct intel_crtc_state *slave_crtc_state;
int ret;
slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave_crtc);
if (IS_ERR(slave_crtc_state))
return PTR_ERR(slave_crtc_state);
/* master being enabled, slave was already configured? */
if (slave_crtc_state->uapi.enable) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Slave is enabled as normal CRTC, but "
"[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n",
slave_crtc->base.base.id, slave_crtc->base.name,
master_crtc->base.base.id, master_crtc->base.name);
return -EINVAL;
}
/*
* The state copy logic assumes the master crtc gets processed
* before the slave crtc during the main compute_config loop.
* This works because the crtcs are created in pipe order,
* and the hardware requires master pipe < slave pipe as well.
* Should that change we need to rethink the logic.
*/
if (WARN_ON(drm_crtc_index(&master_crtc->base) >
drm_crtc_index(&slave_crtc->base)))
return -EINVAL;
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Used as slave for big joiner master [CRTC:%d:%s]\n",
slave_crtc->base.base.id, slave_crtc->base.name,
master_crtc->base.base.id, master_crtc->base.name);
slave_crtc_state->bigjoiner_pipes =
master_crtc_state->bigjoiner_pipes;
ret = copy_bigjoiner_crtc_state_modeset(state, slave_crtc);
if (ret)
return ret;
}
return 0;
}
static void kill_bigjoiner_slave(struct intel_atomic_state *state,
struct intel_crtc *master_crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
struct intel_crtc *slave_crtc;
for_each_intel_crtc_in_pipe_mask(&i915->drm, slave_crtc,
intel_crtc_bigjoiner_slave_pipes(master_crtc_state)) {
struct intel_crtc_state *slave_crtc_state =
intel_atomic_get_new_crtc_state(state, slave_crtc);
slave_crtc_state->bigjoiner_pipes = 0;
intel_crtc_copy_uapi_to_hw_state_modeset(state, slave_crtc);
}
master_crtc_state->bigjoiner_pipes = 0;
}
/**
* DOC: asynchronous flip implementation
*
* Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC
* flag. Currently async flip is only supported via the drmModePageFlip IOCTL.
* Correspondingly, support is currently added for primary plane only.
*
* Async flip can only change the plane surface address, so anything else
* changing is rejected from the intel_async_flip_check_hw() function.
* Once this check is cleared, flip done interrupt is enabled using
* the intel_crtc_enable_flip_done() function.
*
* As soon as the surface address register is written, flip done interrupt is
* generated and the requested events are sent to the usersapce in the interrupt
* handler itself. The timestamp and sequence sent during the flip done event
* correspond to the last vblank and have no relation to the actual time when
* the flip done event was sent.
*/
static int intel_async_flip_check_uapi(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_plane_state *old_plane_state;
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
if (!new_crtc_state->uapi.async_flip)
return 0;
if (!new_crtc_state->uapi.active) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] not active\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_needs_modeset(new_crtc_state)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] modeset required\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
/*
* TODO: Async flip is only supported through the page flip IOCTL
* as of now. So support currently added for primary plane only.
* Support for other planes on platforms on which supports
* this(vlv/chv and icl+) should be added when async flip is
* enabled in the atomic IOCTL path.
*/
if (!plane->async_flip) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] async flip not supported\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (!old_plane_state->uapi.fb || !new_plane_state->uapi.fb) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] no old or new framebuffer\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_async_flip_check_hw(struct intel_atomic_state *state, struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state, *new_crtc_state;
const struct intel_plane_state *new_plane_state, *old_plane_state;
struct intel_plane *plane;
int i;
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->uapi.async_flip)
return 0;
if (!new_crtc_state->hw.active) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] not active\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_needs_modeset(new_crtc_state)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] modeset required\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (old_crtc_state->active_planes != new_crtc_state->active_planes) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Active planes cannot be in async flip\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
/*
* Only async flip capable planes should be in the state
* if we're really about to ask the hardware to perform
* an async flip. We should never get this far otherwise.
*/
if (drm_WARN_ON(&i915->drm,
new_crtc_state->do_async_flip && !plane->async_flip))
return -EINVAL;
/*
* Only check async flip capable planes other planes
* may be involved in the initial commit due to
* the wm0/ddb optimization.
*
* TODO maybe should track which planes actually
* were requested to do the async flip...
*/
if (!plane->async_flip)
continue;
/*
* FIXME: This check is kept generic for all platforms.
* Need to verify this for all gen9 platforms to enable
* this selectively if required.
*/
switch (new_plane_state->hw.fb->modifier) {
case I915_FORMAT_MOD_X_TILED:
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
case I915_FORMAT_MOD_4_TILED:
break;
default:
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Modifier does not support async flips\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (new_plane_state->hw.fb->format->num_planes > 1) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Planar formats do not support async flips\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->view.color_plane[0].mapping_stride !=
new_plane_state->view.color_plane[0].mapping_stride) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Stride cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.fb->modifier !=
new_plane_state->hw.fb->modifier) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Modifier cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.fb->format !=
new_plane_state->hw.fb->format) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Pixel format cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.rotation !=
new_plane_state->hw.rotation) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Rotation cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) ||
!drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Size/co-ordinates cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) {
drm_dbg_kms(&i915->drm,
"[PLANES:%d:%s] Alpha value cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.pixel_blend_mode !=
new_plane_state->hw.pixel_blend_mode) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Pixel blend mode cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Color encoding cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Color range cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
/* plane decryption is allow to change only in synchronous flips */
if (old_plane_state->decrypt != new_plane_state->decrypt) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Decryption cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
u8 affected_pipes = 0;
u8 modeset_pipes = 0;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
affected_pipes |= crtc_state->bigjoiner_pipes;
if (intel_crtc_needs_modeset(crtc_state))
modeset_pipes |= crtc_state->bigjoiner_pipes;
}
for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, affected_pipes) {
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, modeset_pipes) {
int ret;
crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
crtc_state->uapi.mode_changed = true;
ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
if (ret)
return ret;
ret = intel_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
/* Kill old bigjoiner link, we may re-establish afterwards */
if (intel_crtc_needs_modeset(crtc_state) &&
intel_crtc_is_bigjoiner_master(crtc_state))
kill_bigjoiner_slave(state, crtc);
}
return 0;
}
/**
* intel_atomic_check - validate state object
* @dev: drm device
* @_state: state to validate
*/
static int intel_atomic_check(struct drm_device *dev,
struct drm_atomic_state *_state)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_atomic_state *state = to_intel_atomic_state(_state);
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
int ret, i;
bool any_ms = false;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (new_crtc_state->inherited != old_crtc_state->inherited)
new_crtc_state->uapi.mode_changed = true;
if (new_crtc_state->uapi.scaling_filter !=
old_crtc_state->uapi.scaling_filter)
new_crtc_state->uapi.mode_changed = true;
}
intel_vrr_check_modeset(state);
ret = drm_atomic_helper_check_modeset(dev, &state->base);
if (ret)
goto fail;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = intel_async_flip_check_uapi(state, crtc);
if (ret)
return ret;
}
ret = intel_bigjoiner_add_affected_crtcs(state);
if (ret)
goto fail;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state)) {
if (intel_crtc_is_bigjoiner_slave(new_crtc_state))
copy_bigjoiner_crtc_state_nomodeset(state, crtc);
else
intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc);
continue;
}
if (intel_crtc_is_bigjoiner_slave(new_crtc_state)) {
drm_WARN_ON(&dev_priv->drm, new_crtc_state->uapi.enable);
continue;
}
ret = intel_crtc_prepare_cleared_state(state, crtc);
if (ret)
goto fail;
if (!new_crtc_state->hw.enable)
continue;
ret = intel_modeset_pipe_config(state, crtc);
if (ret)
goto fail;
ret = intel_atomic_check_bigjoiner(state, crtc);
if (ret)
goto fail;
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (new_crtc_state->hw.enable) {
ret = intel_modeset_pipe_config_late(state, crtc);
if (ret)
goto fail;
}
intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
}
/**
* Check if fastset is allowed by external dependencies like other
* pipes and transcoders.
*
* Right now it only forces a fullmodeset when the MST master
* transcoder did not changed but the pipe of the master transcoder
* needs a fullmodeset so all slaves also needs to do a fullmodeset or
* in case of port synced crtcs, if one of the synced crtcs
* needs a full modeset, all other synced crtcs should be
* forced a full modeset.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state))
continue;
if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
enum transcoder master = new_crtc_state->mst_master_transcoder;
if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
new_crtc_state->uapi.mode_changed = true;
new_crtc_state->update_pipe = false;
}
}
if (is_trans_port_sync_mode(new_crtc_state)) {
u8 trans = new_crtc_state->sync_mode_slaves_mask;
if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
trans |= BIT(new_crtc_state->master_transcoder);
if (intel_cpu_transcoders_need_modeset(state, trans)) {
new_crtc_state->uapi.mode_changed = true;
new_crtc_state->update_pipe = false;
}
}
if (new_crtc_state->bigjoiner_pipes) {
if (intel_pipes_need_modeset(state, new_crtc_state->bigjoiner_pipes)) {
new_crtc_state->uapi.mode_changed = true;
new_crtc_state->update_pipe = false;
}
}
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
any_ms = true;
intel_release_shared_dplls(state, crtc);
}
if (any_ms && !check_digital_port_conflicts(state)) {
drm_dbg_kms(&dev_priv->drm,
"rejecting conflicting digital port configuration\n");
ret = -EINVAL;
goto fail;
}
ret = drm_dp_mst_atomic_check(&state->base);
if (ret)
goto fail;
ret = intel_atomic_check_planes(state);
if (ret)
goto fail;
ret = intel_compute_global_watermarks(state);
if (ret)
goto fail;
ret = intel_bw_atomic_check(state);
if (ret)
goto fail;
ret = intel_cdclk_atomic_check(state, &any_ms);
if (ret)
goto fail;
if (intel_any_crtc_needs_modeset(state))
any_ms = true;
if (any_ms) {
ret = intel_modeset_checks(state);
if (ret)
goto fail;
ret = intel_modeset_calc_cdclk(state);
if (ret)
return ret;
}
ret = intel_atomic_check_crtcs(state);
if (ret)
goto fail;
ret = intel_fbc_atomic_check(state);
if (ret)
goto fail;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
ret = intel_async_flip_check_hw(state, crtc);
if (ret)
goto fail;
if (!intel_crtc_needs_modeset(new_crtc_state) &&
!new_crtc_state->update_pipe)
continue;
intel_crtc_state_dump(new_crtc_state, state,
intel_crtc_needs_modeset(new_crtc_state) ?
"modeset" : "fastset");
}
return 0;
fail:
if (ret == -EDEADLK)
return ret;
/*
* FIXME would probably be nice to know which crtc specifically
* caused the failure, in cases where we can pinpoint it.
*/
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i)
intel_crtc_state_dump(new_crtc_state, state, "failed");
return ret;
}
static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i, ret;
ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
if (ret < 0)
return ret;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
bool mode_changed = intel_crtc_needs_modeset(crtc_state);
if (mode_changed || crtc_state->update_pipe ||
crtc_state->uapi.color_mgmt_changed) {
intel_dsb_prepare(crtc_state);
}
}
return 0;
}
void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes)
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
if (crtc_state->has_pch_encoder) {
enum pipe pch_transcoder =
intel_crtc_pch_transcoder(crtc);
intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
}
}
static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
/*
* Update pipe size and adjust fitter if needed: the reason for this is
* that in compute_mode_changes we check the native mode (not the pfit
* mode) to see if we can flip rather than do a full mode set. In the
* fastboot case, we'll flip, but if we don't update the pipesrc and
* pfit state, we'll end up with a big fb scanned out into the wrong
* sized surface.
*/
intel_set_pipe_src_size(new_crtc_state);
/* on skylake this is done by detaching scalers */
if (DISPLAY_VER(dev_priv) >= 9) {
if (new_crtc_state->pch_pfit.enabled)
skl_pfit_enable(new_crtc_state);
} else if (HAS_PCH_SPLIT(dev_priv)) {
if (new_crtc_state->pch_pfit.enabled)
ilk_pfit_enable(new_crtc_state);
else if (old_crtc_state->pch_pfit.enabled)
ilk_pfit_disable(old_crtc_state);
}
/*
* The register is supposedly single buffered so perhaps
* not 100% correct to do this here. But SKL+ calculate
* this based on the adjust pixel rate so pfit changes do
* affect it and so it must be updated for fastsets.
* HSW/BDW only really need this here for fastboot, after
* that the value should not change without a full modeset.
*/
if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
hsw_set_linetime_wm(new_crtc_state);
if (new_crtc_state->seamless_m_n)
intel_cpu_transcoder_set_m1_n1(crtc, new_crtc_state->cpu_transcoder,
&new_crtc_state->dp_m_n);
}
static void commit_pipe_pre_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
/*
* During modesets pipe configuration was programmed as the
* CRTC was enabled.
*/
if (!modeset) {
if (new_crtc_state->uapi.color_mgmt_changed ||
new_crtc_state->update_pipe)
intel_color_commit_arm(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
bdw_set_pipemisc(new_crtc_state);
if (new_crtc_state->update_pipe)
intel_pipe_fastset(old_crtc_state, new_crtc_state);
}
intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
intel_atomic_update_watermarks(state, crtc);
}
static void commit_pipe_post_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
/*
* Disable the scaler(s) after the plane(s) so that we don't
* get a catastrophic underrun even if the two operations
* end up happening in two different frames.
*/
if (DISPLAY_VER(dev_priv) >= 9 &&
!intel_crtc_needs_modeset(new_crtc_state))
skl_detach_scalers(new_crtc_state);
}
static void intel_enable_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!intel_crtc_needs_modeset(new_crtc_state))
return;
intel_crtc_update_active_timings(new_crtc_state);
dev_priv->display.funcs.display->crtc_enable(state, crtc);
if (intel_crtc_is_bigjoiner_slave(new_crtc_state))
return;
/* vblanks work again, re-enable pipe CRC. */
intel_crtc_enable_pipe_crc(crtc);
}
static void intel_update_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
if (!modeset) {
if (new_crtc_state->preload_luts &&
(new_crtc_state->uapi.color_mgmt_changed ||
new_crtc_state->update_pipe))
intel_color_load_luts(new_crtc_state);
intel_pre_plane_update(state, crtc);
if (new_crtc_state->update_pipe)
intel_encoders_update_pipe(state, crtc);
if (DISPLAY_VER(i915) >= 11 &&
new_crtc_state->update_pipe)
icl_set_pipe_chicken(new_crtc_state);
}
intel_fbc_update(state, crtc);
if (!modeset &&
(new_crtc_state->uapi.color_mgmt_changed ||
new_crtc_state->update_pipe))
intel_color_commit_noarm(new_crtc_state);
intel_crtc_planes_update_noarm(state, crtc);
/* Perform vblank evasion around commit operation */
intel_pipe_update_start(new_crtc_state);
commit_pipe_pre_planes(state, crtc);
intel_crtc_planes_update_arm(state, crtc);
commit_pipe_post_planes(state, crtc);
intel_pipe_update_end(new_crtc_state);
/*
* We usually enable FIFO underrun interrupts as part of the
* CRTC enable sequence during modesets. But when we inherit a
* valid pipe configuration from the BIOS we need to take care
* of enabling them on the CRTC's first fastset.
*/
if (new_crtc_state->update_pipe && !modeset &&
old_crtc_state->inherited)
intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
}
static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
/*
* We need to disable pipe CRC before disabling the pipe,
* or we race against vblank off.
*/
intel_crtc_disable_pipe_crc(crtc);
dev_priv->display.funcs.display->crtc_disable(state, crtc);
crtc->active = false;
intel_fbc_disable(crtc);
intel_disable_shared_dpll(old_crtc_state);
/* FIXME unify this for all platforms */
if (!new_crtc_state->hw.active &&
!HAS_GMCH(dev_priv))
intel_initial_watermarks(state, crtc);
}
static void intel_commit_modeset_disables(struct intel_atomic_state *state)
{
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
u32 handled = 0;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (!old_crtc_state->hw.active)
continue;
intel_pre_plane_update(state, crtc);
intel_crtc_disable_planes(state, crtc);
}
/* Only disable port sync and MST slaves */
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (!old_crtc_state->hw.active)
continue;
/* In case of Transcoder port Sync master slave CRTCs can be
* assigned in any order and we need to make sure that
* slave CRTCs are disabled first and then master CRTC since
* Slave vblanks are masked till Master Vblanks.
*/
if (!is_trans_port_sync_slave(old_crtc_state) &&
!intel_dp_mst_is_slave_trans(old_crtc_state) &&
!intel_crtc_is_bigjoiner_slave(old_crtc_state))
continue;
intel_old_crtc_state_disables(state, old_crtc_state,
new_crtc_state, crtc);
handled |= BIT(crtc->pipe);
}
/* Disable everything else left on */
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state) ||
(handled & BIT(crtc->pipe)))
continue;
if (!old_crtc_state->hw.active)
continue;
intel_old_crtc_state_disables(state, old_crtc_state,
new_crtc_state, crtc);
}
}
static void intel_commit_modeset_enables(struct intel_atomic_state *state)
{
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.active)
continue;
intel_enable_crtc(state, crtc);
intel_update_crtc(state, crtc);
}
}
static void skl_commit_modeset_enables(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
u8 update_pipes = 0, modeset_pipes = 0;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if (!new_crtc_state->hw.active)
continue;
/* ignore allocations for crtc's that have been turned off. */
if (!intel_crtc_needs_modeset(new_crtc_state)) {
entries[pipe] = old_crtc_state->wm.skl.ddb;
update_pipes |= BIT(pipe);
} else {
modeset_pipes |= BIT(pipe);
}
}
/*
* Whenever the number of active pipes changes, we need to make sure we
* update the pipes in the right order so that their ddb allocations
* never overlap with each other between CRTC updates. Otherwise we'll
* cause pipe underruns and other bad stuff.
*
* So first lets enable all pipes that do not need a fullmodeset as
* those don't have any external dependency.
*/
while (update_pipes) {
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
entries, I915_MAX_PIPES, pipe))
continue;
entries[pipe] = new_crtc_state->wm.skl.ddb;
update_pipes &= ~BIT(pipe);
intel_update_crtc(state, crtc);
/*
* If this is an already active pipe, it's DDB changed,
* and this isn't the last pipe that needs updating
* then we need to wait for a vblank to pass for the
* new ddb allocation to take effect.
*/
if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
&old_crtc_state->wm.skl.ddb) &&
(update_pipes | modeset_pipes))
intel_crtc_wait_for_next_vblank(crtc);
}
}
update_pipes = modeset_pipes;
/*
* Enable all pipes that needs a modeset and do not depends on other
* pipes
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((modeset_pipes & BIT(pipe)) == 0)
continue;
if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
is_trans_port_sync_master(new_crtc_state) ||
intel_crtc_is_bigjoiner_master(new_crtc_state))
continue;
modeset_pipes &= ~BIT(pipe);
intel_enable_crtc(state, crtc);
}
/*
* Then we enable all remaining pipes that depend on other
* pipes: MST slaves and port sync masters, big joiner master
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((modeset_pipes & BIT(pipe)) == 0)
continue;
modeset_pipes &= ~BIT(pipe);
intel_enable_crtc(state, crtc);
}
/*
* Finally we do the plane updates/etc. for all pipes that got enabled.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
entries, I915_MAX_PIPES, pipe));
entries[pipe] = new_crtc_state->wm.skl.ddb;
update_pipes &= ~BIT(pipe);
intel_update_crtc(state, crtc);
}
drm_WARN_ON(&dev_priv->drm, modeset_pipes);
drm_WARN_ON(&dev_priv->drm, update_pipes);
}
static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
{
struct intel_atomic_state *state, *next;
struct llist_node *freed;
freed = llist_del_all(&dev_priv->display.atomic_helper.free_list);
llist_for_each_entry_safe(state, next, freed, freed)
drm_atomic_state_put(&state->base);
}
static void intel_atomic_helper_free_state_worker(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), display.atomic_helper.free_work);
intel_atomic_helper_free_state(dev_priv);
}
static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
{
struct wait_queue_entry wait_fence, wait_reset;
struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
init_wait_entry(&wait_fence, 0);
init_wait_entry(&wait_reset, 0);
for (;;) {
prepare_to_wait(&intel_state->commit_ready.wait,
&wait_fence, TASK_UNINTERRUPTIBLE);
prepare_to_wait(bit_waitqueue(&to_gt(dev_priv)->reset.flags,
I915_RESET_MODESET),
&wait_reset, TASK_UNINTERRUPTIBLE);
if (i915_sw_fence_done(&intel_state->commit_ready) ||
test_bit(I915_RESET_MODESET, &to_gt(dev_priv)->reset.flags))
break;
schedule();
}
finish_wait(&intel_state->commit_ready.wait, &wait_fence);
finish_wait(bit_waitqueue(&to_gt(dev_priv)->reset.flags,
I915_RESET_MODESET),
&wait_reset);
}
static void intel_cleanup_dsbs(struct intel_atomic_state *state)
{
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i)
intel_dsb_cleanup(old_crtc_state);
}
static void intel_atomic_cleanup_work(struct work_struct *work)
{
struct intel_atomic_state *state =
container_of(work, struct intel_atomic_state, base.commit_work);
struct drm_i915_private *i915 = to_i915(state->base.dev);
intel_cleanup_dsbs(state);
drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
drm_atomic_helper_commit_cleanup_done(&state->base);
drm_atomic_state_put(&state->base);
intel_atomic_helper_free_state(i915);
}
static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_plane *plane;
struct intel_plane_state *plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct drm_framebuffer *fb = plane_state->hw.fb;
int cc_plane;
int ret;
if (!fb)
continue;
cc_plane = intel_fb_rc_ccs_cc_plane(fb);
if (cc_plane < 0)
continue;
/*
* The layout of the fast clear color value expected by HW
* (the DRM ABI requiring this value to be located in fb at
* offset 0 of cc plane, plane #2 previous generations or
* plane #1 for flat ccs):
* - 4 x 4 bytes per-channel value
* (in surface type specific float/int format provided by the fb user)
* - 8 bytes native color value used by the display
* (converted/written by GPU during a fast clear operation using the
* above per-channel values)
*
* The commit's FB prepare hook already ensured that FB obj is pinned and the
* caller made sure that the object is synced wrt. the related color clear value
* GPU write on it.
*/
ret = i915_gem_object_read_from_page(intel_fb_obj(fb),
fb->offsets[cc_plane] + 16,
&plane_state->ccval,
sizeof(plane_state->ccval));
/* The above could only fail if the FB obj has an unexpected backing store type. */
drm_WARN_ON(&i915->drm, ret);
}
}
static void intel_atomic_commit_tail(struct intel_atomic_state *state)
{
struct drm_device *dev = state->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
struct intel_power_domain_mask put_domains[I915_MAX_PIPES] = {};
intel_wakeref_t wakeref = 0;
int i;
intel_atomic_commit_fence_wait(state);
drm_atomic_helper_wait_for_dependencies(&state->base);
drm_dp_mst_atomic_wait_for_dependencies(&state->base);
if (state->modeset)
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
intel_atomic_prepare_plane_clear_colors(state);
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (intel_crtc_needs_modeset(new_crtc_state) ||
new_crtc_state->update_pipe) {
intel_modeset_get_crtc_power_domains(new_crtc_state, &put_domains[crtc->pipe]);
}
}
intel_commit_modeset_disables(state);
/* FIXME: Eventually get rid of our crtc->config pointer */
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
crtc->config = new_crtc_state;
if (state->modeset) {
drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
intel_set_cdclk_pre_plane_update(state);
intel_modeset_verify_disabled(dev_priv, state);
}
intel_sagv_pre_plane_update(state);
/* Complete the events for pipes that have now been disabled */
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
/* Complete events for now disable pipes here. */
if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
spin_lock_irq(&dev->event_lock);
drm_crtc_send_vblank_event(&crtc->base,
new_crtc_state->uapi.event);
spin_unlock_irq(&dev->event_lock);
new_crtc_state->uapi.event = NULL;
}
}
intel_encoders_update_prepare(state);
intel_dbuf_pre_plane_update(state);
intel_mbus_dbox_update(state);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->do_async_flip)
intel_crtc_enable_flip_done(state, crtc);
}
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
dev_priv->display.funcs.display->commit_modeset_enables(state);
intel_encoders_update_complete(state);
if (state->modeset)
intel_set_cdclk_post_plane_update(state);
intel_wait_for_vblank_workers(state);
/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
* already, but still need the state for the delayed optimization. To
* fix this:
* - wrap the optimization/post_plane_update stuff into a per-crtc work.
* - schedule that vblank worker _before_ calling hw_done
* - at the start of commit_tail, cancel it _synchrously
* - switch over to the vblank wait helper in the core after that since
* we don't need out special handling any more.
*/
drm_atomic_helper_wait_for_flip_done(dev, &state->base);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->do_async_flip)
intel_crtc_disable_flip_done(state, crtc);
}
/*
* Now that the vblank has passed, we can go ahead and program the
* optimal watermarks on platforms that need two-step watermark
* programming.
*
* TODO: Move this (and other cleanup) to an async worker eventually.
*/
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So re-enable underrun reporting after some planes get enabled.
*
* We do this before .optimize_watermarks() so that we have a
* chance of catching underruns with the intermediate watermarks
* vs. the new plane configuration.
*/
if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state))
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
intel_optimize_watermarks(state, crtc);
}
intel_dbuf_post_plane_update(state);
intel_psr_post_plane_update(state);
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
intel_post_plane_update(state, crtc);
intel_modeset_put_crtc_power_domains(crtc, &put_domains[crtc->pipe]);
intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
/*
* DSB cleanup is done in cleanup_work aligning with framebuffer
* cleanup. So copy and reset the dsb structure to sync with
* commit_done and later do dsb cleanup in cleanup_work.
*/
old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
}
/* Underruns don't always raise interrupts, so check manually */
intel_check_cpu_fifo_underruns(dev_priv);
intel_check_pch_fifo_underruns(dev_priv);
if (state->modeset)
intel_verify_planes(state);
intel_sagv_post_plane_update(state);
drm_atomic_helper_commit_hw_done(&state->base);
if (state->modeset) {
/* As one of the primary mmio accessors, KMS has a high
* likelihood of triggering bugs in unclaimed access. After we
* finish modesetting, see if an error has been flagged, and if
* so enable debugging for the next modeset - and hope we catch
* the culprit.
*/
intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
}
intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
/*
* Defer the cleanup of the old state to a separate worker to not
* impede the current task (userspace for blocking modesets) that
* are executed inline. For out-of-line asynchronous modesets/flips,
* deferring to a new worker seems overkill, but we would place a
* schedule point (cond_resched()) here anyway to keep latencies
* down.
*/
INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
queue_work(system_highpri_wq, &state->base.commit_work);
}
static void intel_atomic_commit_work(struct work_struct *work)
{
struct intel_atomic_state *state =
container_of(work, struct intel_atomic_state, base.commit_work);
intel_atomic_commit_tail(state);
}
static int
intel_atomic_commit_ready(struct i915_sw_fence *fence,
enum i915_sw_fence_notify notify)
{
struct intel_atomic_state *state =
container_of(fence, struct intel_atomic_state, commit_ready);
switch (notify) {
case FENCE_COMPLETE:
/* we do blocking waits in the worker, nothing to do here */
break;
case FENCE_FREE:
{
struct intel_atomic_helper *helper =
&to_i915(state->base.dev)->display.atomic_helper;
if (llist_add(&state->freed, &helper->free_list))
schedule_work(&helper->free_work);
break;
}
}
return NOTIFY_DONE;
}
static void intel_atomic_track_fbs(struct intel_atomic_state *state)
{
struct intel_plane_state *old_plane_state, *new_plane_state;
struct intel_plane *plane;
int i;
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i)
intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
to_intel_frontbuffer(new_plane_state->hw.fb),
plane->frontbuffer_bit);
}
static int intel_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *_state,
bool nonblock)
{
struct intel_atomic_state *state = to_intel_atomic_state(_state);
struct drm_i915_private *dev_priv = to_i915(dev);
int ret = 0;
state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
drm_atomic_state_get(&state->base);
i915_sw_fence_init(&state->commit_ready,
intel_atomic_commit_ready);
/*
* The intel_legacy_cursor_update() fast path takes care
* of avoiding the vblank waits for simple cursor
* movement and flips. For cursor on/off and size changes,
* we want to perform the vblank waits so that watermark
* updates happen during the correct frames. Gen9+ have
* double buffered watermarks and so shouldn't need this.
*
* Unset state->legacy_cursor_update before the call to
* drm_atomic_helper_setup_commit() because otherwise
* drm_atomic_helper_wait_for_flip_done() is a noop and
* we get FIFO underruns because we didn't wait
* for vblank.
*
* FIXME doing watermarks and fb cleanup from a vblank worker
* (assuming we had any) would solve these problems.
*/
if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) {
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
if (new_crtc_state->wm.need_postvbl_update ||
new_crtc_state->update_wm_post)
state->base.legacy_cursor_update = false;
}
ret = intel_atomic_prepare_commit(state);
if (ret) {
drm_dbg_atomic(&dev_priv->drm,
"Preparing state failed with %i\n", ret);
i915_sw_fence_commit(&state->commit_ready);
intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
return ret;
}
ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
if (!ret)
ret = drm_atomic_helper_swap_state(&state->base, true);
if (!ret)
intel_atomic_swap_global_state(state);
if (ret) {
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
i915_sw_fence_commit(&state->commit_ready);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
intel_dsb_cleanup(new_crtc_state);
drm_atomic_helper_cleanup_planes(dev, &state->base);
intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
return ret;
}
intel_shared_dpll_swap_state(state);
intel_atomic_track_fbs(state);
drm_atomic_state_get(&state->base);
INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
i915_sw_fence_commit(&state->commit_ready);
if (nonblock && state->modeset) {
queue_work(dev_priv->display.wq.modeset, &state->base.commit_work);
} else if (nonblock) {
queue_work(dev_priv->display.wq.flip, &state->base.commit_work);
} else {
if (state->modeset)
flush_workqueue(dev_priv->display.wq.modeset);
intel_atomic_commit_tail(state);
}
return 0;
}
/**
* intel_plane_destroy - destroy a plane
* @plane: plane to destroy
*
* Common destruction function for all types of planes (primary, cursor,
* sprite).
*/
void intel_plane_destroy(struct drm_plane *plane)
{
drm_plane_cleanup(plane);
kfree(to_intel_plane(plane));
}
static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
{
struct intel_plane *plane;
for_each_intel_plane(&dev_priv->drm, plane) {
struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv,
plane->pipe);
plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
}
}
int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_crtc *drmmode_crtc;
struct intel_crtc *crtc;
drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
if (!drmmode_crtc)
return -ENOENT;
crtc = to_intel_crtc(drmmode_crtc);
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
u32 possible_clones = 0;
for_each_intel_encoder(dev, source_encoder) {
if (encoders_cloneable(encoder, source_encoder))
possible_clones |= drm_encoder_mask(&source_encoder->base);
}
return possible_clones;
}
static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_crtc *crtc;
u32 possible_crtcs = 0;
for_each_intel_crtc_in_pipe_mask(dev, crtc, encoder->pipe_mask)
possible_crtcs |= drm_crtc_mask(&crtc->base);
return possible_crtcs;
}
static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
{
if (!IS_MOBILE(dev_priv))
return false;
if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
return false;
if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 9)
return false;
if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
return false;
if (HAS_PCH_LPT_H(dev_priv) &&
intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
return false;
/* DDI E can't be used if DDI A requires 4 lanes */
if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
return false;
if (!dev_priv->display.vbt.int_crt_support)
return false;
return true;
}
static void intel_setup_outputs(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
bool dpd_is_edp = false;
intel_pps_unlock_regs_wa(dev_priv);
if (!HAS_DISPLAY(dev_priv))
return;
if (IS_DG2(dev_priv)) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
intel_ddi_init(dev_priv, PORT_D_XELPD);
intel_ddi_init(dev_priv, PORT_TC1);
} else if (IS_ALDERLAKE_P(dev_priv)) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_TC1);
intel_ddi_init(dev_priv, PORT_TC2);
intel_ddi_init(dev_priv, PORT_TC3);
intel_ddi_init(dev_priv, PORT_TC4);
icl_dsi_init(dev_priv);
} else if (IS_ALDERLAKE_S(dev_priv)) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_TC1);
intel_ddi_init(dev_priv, PORT_TC2);
intel_ddi_init(dev_priv, PORT_TC3);
intel_ddi_init(dev_priv, PORT_TC4);
} else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_TC1);
intel_ddi_init(dev_priv, PORT_TC2);
} else if (DISPLAY_VER(dev_priv) >= 12) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_TC1);
intel_ddi_init(dev_priv, PORT_TC2);
intel_ddi_init(dev_priv, PORT_TC3);
intel_ddi_init(dev_priv, PORT_TC4);
intel_ddi_init(dev_priv, PORT_TC5);
intel_ddi_init(dev_priv, PORT_TC6);
icl_dsi_init(dev_priv);
} else if (IS_JSL_EHL(dev_priv)) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
intel_ddi_init(dev_priv, PORT_D);
icl_dsi_init(dev_priv);
} else if (DISPLAY_VER(dev_priv) == 11) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
intel_ddi_init(dev_priv, PORT_D);
intel_ddi_init(dev_priv, PORT_E);
intel_ddi_init(dev_priv, PORT_F);
icl_dsi_init(dev_priv);
} else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
vlv_dsi_init(dev_priv);
} else if (DISPLAY_VER(dev_priv) >= 9) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
intel_ddi_init(dev_priv, PORT_D);
intel_ddi_init(dev_priv, PORT_E);
} else if (HAS_DDI(dev_priv)) {
u32 found;
if (intel_ddi_crt_present(dev_priv))
intel_crt_init(dev_priv);
/* Haswell uses DDI functions to detect digital outputs. */
found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
if (found)
intel_ddi_init(dev_priv, PORT_A);
found = intel_de_read(dev_priv, SFUSE_STRAP);
if (found & SFUSE_STRAP_DDIB_DETECTED)
intel_ddi_init(dev_priv, PORT_B);
if (found & SFUSE_STRAP_DDIC_DETECTED)
intel_ddi_init(dev_priv, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev_priv, PORT_D);
if (found & SFUSE_STRAP_DDIF_DETECTED)
intel_ddi_init(dev_priv, PORT_F);
} else if (HAS_PCH_SPLIT(dev_priv)) {
int found;
/*
* intel_edp_init_connector() depends on this completing first,
* to prevent the registration of both eDP and LVDS and the
* incorrect sharing of the PPS.
*/
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
if (ilk_has_edp_a(dev_priv))
g4x_dp_init(dev_priv, DP_A, PORT_A);
if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
if (!found)
g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
g4x_dp_init(dev_priv, PCH_DP_B, PORT_B);
}
if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
g4x_dp_init(dev_priv, PCH_DP_C, PORT_C);
if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
g4x_dp_init(dev_priv, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
bool has_edp, has_port;
if (IS_VALLEYVIEW(dev_priv) && dev_priv->display.vbt.int_crt_support)
intel_crt_init(dev_priv);
/*
* The DP_DETECTED bit is the latched state of the DDC
* SDA pin at boot. However since eDP doesn't require DDC
* (no way to plug in a DP->HDMI dongle) the DDC pins for
* eDP ports may have been muxed to an alternate function.
* Thus we can't rely on the DP_DETECTED bit alone to detect
* eDP ports. Consult the VBT as well as DP_DETECTED to
* detect eDP ports.
*
* Sadly the straps seem to be missing sometimes even for HDMI
* ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
* and VBT for the presence of the port. Additionally we can't
* trust the port type the VBT declares as we've seen at least
* HDMI ports that the VBT claim are DP or eDP.
*/
has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
has_port = intel_bios_is_port_present(dev_priv, PORT_B);
if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B);
if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
has_port = intel_bios_is_port_present(dev_priv, PORT_C);
if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C);
if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
if (IS_CHERRYVIEW(dev_priv)) {
/*
* eDP not supported on port D,
* so no need to worry about it
*/
has_port = intel_bios_is_port_present(dev_priv, PORT_D);
if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
g4x_dp_init(dev_priv, CHV_DP_D, PORT_D);
if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
}
vlv_dsi_init(dev_priv);
} else if (IS_PINEVIEW(dev_priv)) {
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
} else if (IS_DISPLAY_VER(dev_priv, 3, 4)) {
bool found = false;
if (IS_MOBILE(dev_priv))
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
if (!found && IS_G4X(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"probing HDMI on SDVOB\n");
g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
}
if (!found && IS_G4X(dev_priv))
g4x_dp_init(dev_priv, DP_B, PORT_B);
}
/* Before G4X SDVOC doesn't have its own detect register */
if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
}
if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
if (IS_G4X(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"probing HDMI on SDVOC\n");
g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
}
if (IS_G4X(dev_priv))
g4x_dp_init(dev_priv, DP_C, PORT_C);
}
if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
g4x_dp_init(dev_priv, DP_D, PORT_D);
if (SUPPORTS_TV(dev_priv))
intel_tv_init(dev_priv);
} else if (DISPLAY_VER(dev_priv) == 2) {
if (IS_I85X(dev_priv))
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
intel_dvo_init(dev_priv);
}
for_each_intel_encoder(&dev_priv->drm, encoder) {
encoder->base.possible_crtcs =
intel_encoder_possible_crtcs(encoder);
encoder->base.possible_clones =
intel_encoder_possible_clones(encoder);
}
intel_init_pch_refclk(dev_priv);
drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
}
static enum drm_mode_status
intel_mode_valid(struct drm_device *dev,
const struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int hdisplay_max, htotal_max;
int vdisplay_max, vtotal_max;
/*
* Can't reject DBLSCAN here because Xorg ddxen can add piles
* of DBLSCAN modes to the output's mode list when they detect
* the scaling mode property on the connector. And they don't
* ask the kernel to validate those modes in any way until
* modeset time at which point the client gets a protocol error.
* So in order to not upset those clients we silently ignore the
* DBLSCAN flag on such connectors. For other connectors we will
* reject modes with the DBLSCAN flag in encoder->compute_config().
* And we always reject DBLSCAN modes in connector->mode_valid()
* as we never want such modes on the connector's mode list.
*/
if (mode->vscan > 1)
return MODE_NO_VSCAN;
if (mode->flags & DRM_MODE_FLAG_HSKEW)
return MODE_H_ILLEGAL;
if (mode->flags & (DRM_MODE_FLAG_CSYNC |
DRM_MODE_FLAG_NCSYNC |
DRM_MODE_FLAG_PCSYNC))
return MODE_HSYNC;
if (mode->flags & (DRM_MODE_FLAG_BCAST |
DRM_MODE_FLAG_PIXMUX |
DRM_MODE_FLAG_CLKDIV2))
return MODE_BAD;
/* Transcoder timing limits */
if (DISPLAY_VER(dev_priv) >= 11) {
hdisplay_max = 16384;
vdisplay_max = 8192;
htotal_max = 16384;
vtotal_max = 8192;
} else if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else if (DISPLAY_VER(dev_priv) >= 3) {
hdisplay_max = 4096;
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else {
hdisplay_max = 2048;
vdisplay_max = 2048;
htotal_max = 4096;
vtotal_max = 4096;
}
if (mode->hdisplay > hdisplay_max ||
mode->hsync_start > htotal_max ||
mode->hsync_end > htotal_max ||
mode->htotal > htotal_max)
return MODE_H_ILLEGAL;
if (mode->vdisplay > vdisplay_max ||
mode->vsync_start > vtotal_max ||
mode->vsync_end > vtotal_max ||
mode->vtotal > vtotal_max)
return MODE_V_ILLEGAL;
if (DISPLAY_VER(dev_priv) >= 5) {
if (mode->hdisplay < 64 ||
mode->htotal - mode->hdisplay < 32)
return MODE_H_ILLEGAL;
if (mode->vtotal - mode->vdisplay < 5)
return MODE_V_ILLEGAL;
} else {
if (mode->htotal - mode->hdisplay < 32)
return MODE_H_ILLEGAL;
if (mode->vtotal - mode->vdisplay < 3)
return MODE_V_ILLEGAL;
}
/*
* Cantiga+ cannot handle modes with a hsync front porch of 0.
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
*/
if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) &&
mode->hsync_start == mode->hdisplay)
return MODE_H_ILLEGAL;
return MODE_OK;
}
enum drm_mode_status
intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
const struct drm_display_mode *mode,
bool bigjoiner)
{
int plane_width_max, plane_height_max;
/*
* intel_mode_valid() should be
* sufficient on older platforms.
*/
if (DISPLAY_VER(dev_priv) < 9)
return MODE_OK;
/*
* Most people will probably want a fullscreen
* plane so let's not advertize modes that are
* too big for that.
*/
if (DISPLAY_VER(dev_priv) >= 11) {
plane_width_max = 5120 << bigjoiner;
plane_height_max = 4320;
} else {
plane_width_max = 5120;
plane_height_max = 4096;
}
if (mode->hdisplay > plane_width_max)
return MODE_H_ILLEGAL;
if (mode->vdisplay > plane_height_max)
return MODE_V_ILLEGAL;
return MODE_OK;
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.get_format_info = intel_fb_get_format_info,
.output_poll_changed = intel_fbdev_output_poll_changed,
.mode_valid = intel_mode_valid,
.atomic_check = intel_atomic_check,
.atomic_commit = intel_atomic_commit,
.atomic_state_alloc = intel_atomic_state_alloc,
.atomic_state_clear = intel_atomic_state_clear,
.atomic_state_free = intel_atomic_state_free,
};
static const struct intel_display_funcs skl_display_funcs = {
.get_pipe_config = hsw_get_pipe_config,
.crtc_enable = hsw_crtc_enable,
.crtc_disable = hsw_crtc_disable,
.commit_modeset_enables = skl_commit_modeset_enables,
.get_initial_plane_config = skl_get_initial_plane_config,
};
static const struct intel_display_funcs ddi_display_funcs = {
.get_pipe_config = hsw_get_pipe_config,
.crtc_enable = hsw_crtc_enable,
.crtc_disable = hsw_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
static const struct intel_display_funcs pch_split_display_funcs = {
.get_pipe_config = ilk_get_pipe_config,
.crtc_enable = ilk_crtc_enable,
.crtc_disable = ilk_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
static const struct intel_display_funcs vlv_display_funcs = {
.get_pipe_config = i9xx_get_pipe_config,
.crtc_enable = valleyview_crtc_enable,
.crtc_disable = i9xx_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
static const struct intel_display_funcs i9xx_display_funcs = {
.get_pipe_config = i9xx_get_pipe_config,
.crtc_enable = i9xx_crtc_enable,
.crtc_disable = i9xx_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
/**
* intel_init_display_hooks - initialize the display modesetting hooks
* @dev_priv: device private
*/
void intel_init_display_hooks(struct drm_i915_private *dev_priv)
{
if (!HAS_DISPLAY(dev_priv))
return;
intel_init_cdclk_hooks(dev_priv);
intel_audio_hooks_init(dev_priv);
intel_dpll_init_clock_hook(dev_priv);
if (DISPLAY_VER(dev_priv) >= 9) {
dev_priv->display.funcs.display = &skl_display_funcs;
} else if (HAS_DDI(dev_priv)) {
dev_priv->display.funcs.display = &ddi_display_funcs;
} else if (HAS_PCH_SPLIT(dev_priv)) {
dev_priv->display.funcs.display = &pch_split_display_funcs;
} else if (IS_CHERRYVIEW(dev_priv) ||
IS_VALLEYVIEW(dev_priv)) {
dev_priv->display.funcs.display = &vlv_display_funcs;
} else {
dev_priv->display.funcs.display = &i9xx_display_funcs;
}
intel_fdi_init_hook(dev_priv);
}
void intel_modeset_init_hw(struct drm_i915_private *i915)
{
struct intel_cdclk_state *cdclk_state;
if (!HAS_DISPLAY(i915))
return;
cdclk_state = to_intel_cdclk_state(i915->display.cdclk.obj.state);
intel_update_cdclk(i915);
intel_cdclk_dump_config(i915, &i915->display.cdclk.hw, "Current CDCLK");
cdclk_state->logical = cdclk_state->actual = i915->display.cdclk.hw;
}
static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
{
struct drm_plane *plane;
struct intel_crtc *crtc;
for_each_intel_crtc(state->dev, crtc) {
struct intel_crtc_state *crtc_state;
crtc_state = intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (crtc_state->hw.active) {
/*
* Preserve the inherited flag to avoid
* taking the full modeset path.
*/
crtc_state->inherited = true;
}
}
drm_for_each_plane(plane, state->dev) {
struct drm_plane_state *plane_state;
plane_state = drm_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
}
return 0;
}
/*
* Calculate what we think the watermarks should be for the state we've read
* out of the hardware and then immediately program those watermarks so that
* we ensure the hardware settings match our internal state.
*
* We can calculate what we think WM's should be by creating a duplicate of the
* current state (which was constructed during hardware readout) and running it
* through the atomic check code to calculate new watermark values in the
* state object.
*/
static void sanitize_watermarks(struct drm_i915_private *dev_priv)
{
struct drm_atomic_state *state;
struct intel_atomic_state *intel_state;
struct intel_crtc *crtc;
struct intel_crtc_state *crtc_state;
struct drm_modeset_acquire_ctx ctx;
int ret;
int i;
/* Only supported on platforms that use atomic watermark design */
if (!dev_priv->display.funcs.wm->optimize_watermarks)
return;
state = drm_atomic_state_alloc(&dev_priv->drm);
if (drm_WARN_ON(&dev_priv->drm, !state))
return;
intel_state = to_intel_atomic_state(state);
drm_modeset_acquire_init(&ctx, 0);
retry:
state->acquire_ctx = &ctx;
/*
* Hardware readout is the only time we don't want to calculate
* intermediate watermarks (since we don't trust the current
* watermarks).
*/
if (!HAS_GMCH(dev_priv))
intel_state->skip_intermediate_wm = true;
ret = sanitize_watermarks_add_affected(state);
if (ret)
goto fail;
ret = intel_atomic_check(&dev_priv->drm, state);
if (ret)
goto fail;
/* Write calculated watermark values back */
for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
crtc_state->wm.need_postvbl_update = true;
intel_optimize_watermarks(intel_state, crtc);
to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
}
fail:
if (ret == -EDEADLK) {
drm_atomic_state_clear(state);
drm_modeset_backoff(&ctx);
goto retry;
}
/*
* If we fail here, it means that the hardware appears to be
* programmed in a way that shouldn't be possible, given our
* understanding of watermark requirements. This might mean a
* mistake in the hardware readout code or a mistake in the
* watermark calculations for a given platform. Raise a WARN
* so that this is noticeable.
*
* If this actually happens, we'll have to just leave the
* BIOS-programmed watermarks untouched and hope for the best.
*/
drm_WARN(&dev_priv->drm, ret,
"Could not determine valid watermarks for inherited state\n");
drm_atomic_state_put(state);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
}
static int intel_initial_commit(struct drm_device *dev)
{
struct drm_atomic_state *state = NULL;
struct drm_modeset_acquire_ctx ctx;
struct intel_crtc *crtc;
int ret = 0;
state = drm_atomic_state_alloc(dev);
if (!state)
return -ENOMEM;
drm_modeset_acquire_init(&ctx, 0);
retry:
state->acquire_ctx = &ctx;
for_each_intel_crtc(dev, crtc) {
struct intel_crtc_state *crtc_state =
intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
if (crtc_state->hw.active) {
struct intel_encoder *encoder;
/*
* We've not yet detected sink capabilities
* (audio,infoframes,etc.) and thus we don't want to
* force a full state recomputation yet. We want that to
* happen only for the first real commit from userspace.
* So preserve the inherited flag for the time being.
*/
crtc_state->inherited = true;
ret = drm_atomic_add_affected_planes(state, &crtc->base);
if (ret)
goto out;
/*
* FIXME hack to force a LUT update to avoid the
* plane update forcing the pipe gamma on without
* having a proper LUT loaded. Remove once we
* have readout for pipe gamma enable.
*/
crtc_state->uapi.color_mgmt_changed = true;
for_each_intel_encoder_mask(dev, encoder,
crtc_state->uapi.encoder_mask) {
if (encoder->initial_fastset_check &&
!encoder->initial_fastset_check(encoder, crtc_state)) {
ret = drm_atomic_add_affected_connectors(state,
&crtc->base);
if (ret)
goto out;
}
}
}
}
ret = drm_atomic_commit(state);
out:
if (ret == -EDEADLK) {
drm_atomic_state_clear(state);
drm_modeset_backoff(&ctx);
goto retry;
}
drm_atomic_state_put(state);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return ret;
}
static const struct drm_mode_config_helper_funcs intel_mode_config_funcs = {
.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
};
static void intel_mode_config_init(struct drm_i915_private *i915)
{
struct drm_mode_config *mode_config = &i915->drm.mode_config;
drm_mode_config_init(&i915->drm);
INIT_LIST_HEAD(&i915->global_obj_list);
mode_config->min_width = 0;
mode_config->min_height = 0;
mode_config->preferred_depth = 24;
mode_config->prefer_shadow = 1;
mode_config->funcs = &intel_mode_funcs;
mode_config->helper_private = &intel_mode_config_funcs;
mode_config->async_page_flip = HAS_ASYNC_FLIPS(i915);
/*
* Maximum framebuffer dimensions, chosen to match
* the maximum render engine surface size on gen4+.
*/
if (DISPLAY_VER(i915) >= 7) {
mode_config->max_width = 16384;
mode_config->max_height = 16384;
} else if (DISPLAY_VER(i915) >= 4) {
mode_config->max_width = 8192;
mode_config->max_height = 8192;
} else if (DISPLAY_VER(i915) == 3) {
mode_config->max_width = 4096;
mode_config->max_height = 4096;
} else {
mode_config->max_width = 2048;
mode_config->max_height = 2048;
}
if (IS_I845G(i915) || IS_I865G(i915)) {
mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
mode_config->cursor_height = 1023;
} else if (IS_I830(i915) || IS_I85X(i915) ||
IS_I915G(i915) || IS_I915GM(i915)) {
mode_config->cursor_width = 64;
mode_config->cursor_height = 64;
} else {
mode_config->cursor_width = 256;
mode_config->cursor_height = 256;
}
}
static void intel_mode_config_cleanup(struct drm_i915_private *i915)
{
intel_atomic_global_obj_cleanup(i915);
drm_mode_config_cleanup(&i915->drm);
}
/* part #1: call before irq install */
int intel_modeset_init_noirq(struct drm_i915_private *i915)
{
int ret;
if (i915_inject_probe_failure(i915))
return -ENODEV;
if (HAS_DISPLAY(i915)) {
ret = drm_vblank_init(&i915->drm,
INTEL_NUM_PIPES(i915));
if (ret)
return ret;
}
intel_bios_init(i915);
ret = intel_vga_register(i915);
if (ret)
goto cleanup_bios;
/* FIXME: completely on the wrong abstraction layer */
intel_power_domains_init_hw(i915, false);
if (!HAS_DISPLAY(i915))
return 0;
intel_dmc_ucode_init(i915);
i915->display.wq.modeset = alloc_ordered_workqueue("i915_modeset", 0);
i915->display.wq.flip = alloc_workqueue("i915_flip", WQ_HIGHPRI |
WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
intel_mode_config_init(i915);
ret = intel_cdclk_init(i915);
if (ret)
goto cleanup_vga_client_pw_domain_dmc;
ret = intel_dbuf_init(i915);
if (ret)
goto cleanup_vga_client_pw_domain_dmc;
ret = intel_bw_init(i915);
if (ret)
goto cleanup_vga_client_pw_domain_dmc;
init_llist_head(&i915->display.atomic_helper.free_list);
INIT_WORK(&i915->display.atomic_helper.free_work,
intel_atomic_helper_free_state_worker);
intel_init_quirks(i915);
intel_fbc_init(i915);
return 0;
cleanup_vga_client_pw_domain_dmc:
intel_dmc_ucode_fini(i915);
intel_power_domains_driver_remove(i915);
intel_vga_unregister(i915);
cleanup_bios:
intel_bios_driver_remove(i915);
return ret;
}
/* part #2: call after irq install, but before gem init */
int intel_modeset_init_nogem(struct drm_i915_private *i915)
{
struct drm_device *dev = &i915->drm;
enum pipe pipe;
struct intel_crtc *crtc;
int ret;
if (!HAS_DISPLAY(i915))
return 0;
intel_init_pm(i915);
intel_panel_sanitize_ssc(i915);
intel_pps_setup(i915);
intel_gmbus_setup(i915);
drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
INTEL_NUM_PIPES(i915),
INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
for_each_pipe(i915, pipe) {
ret = intel_crtc_init(i915, pipe);
if (ret) {
intel_mode_config_cleanup(i915);
return ret;
}
}
intel_plane_possible_crtcs_init(i915);
intel_shared_dpll_init(i915);
intel_fdi_pll_freq_update(i915);
intel_update_czclk(i915);
intel_modeset_init_hw(i915);
intel_dpll_update_ref_clks(i915);
intel_hdcp_component_init(i915);
if (i915->display.cdclk.max_cdclk_freq == 0)
intel_update_max_cdclk(i915);
/*
* If the platform has HTI, we need to find out whether it has reserved
* any display resources before we create our display outputs.
*/
if (INTEL_INFO(i915)->display.has_hti)
i915->hti_state = intel_de_read(i915, HDPORT_STATE);
/* Just disable it once at startup */
intel_vga_disable(i915);
intel_setup_outputs(i915);
drm_modeset_lock_all(dev);
intel_modeset_setup_hw_state(i915, dev->mode_config.acquire_ctx);
intel_acpi_assign_connector_fwnodes(i915);
drm_modeset_unlock_all(dev);
for_each_intel_crtc(dev, crtc) {
if (!to_intel_crtc_state(crtc->base.state)->uapi.active)
continue;
intel_crtc_initial_plane_config(crtc);
}
/*
* Make sure hardware watermarks really match the state we read out.
* Note that we need to do this after reconstructing the BIOS fb's
* since the watermark calculation done here will use pstate->fb.
*/
if (!HAS_GMCH(i915))
sanitize_watermarks(i915);
return 0;
}
/* part #3: call after gem init */
int intel_modeset_init(struct drm_i915_private *i915)
{
int ret;
if (!HAS_DISPLAY(i915))
return 0;
/*
* Force all active planes to recompute their states. So that on
* mode_setcrtc after probe, all the intel_plane_state variables
* are already calculated and there is no assert_plane warnings
* during bootup.
*/
ret = intel_initial_commit(&i915->drm);
if (ret)
drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret);
intel_overlay_setup(i915);
ret = intel_fbdev_init(&i915->drm);
if (ret)
return ret;
/* Only enable hotplug handling once the fbdev is fully set up. */
intel_hpd_init(i915);
intel_hpd_poll_disable(i915);
intel_init_ipc(i915);
return 0;
}
void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
/* 640x480@60Hz, ~25175 kHz */
struct dpll clock = {
.m1 = 18,
.m2 = 7,
.p1 = 13,
.p2 = 4,
.n = 2,
};
u32 dpll, fp;
int i;
drm_WARN_ON(&dev_priv->drm,
i9xx_calc_dpll_params(48000, &clock) != 25154);
drm_dbg_kms(&dev_priv->drm,
"enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
pipe_name(pipe), clock.vco, clock.dot);
fp = i9xx_dpll_compute_fp(&clock);
dpll = DPLL_DVO_2X_MODE |
DPLL_VGA_MODE_DIS |
((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
PLL_P2_DIVIDE_BY_4 |
PLL_REF_INPUT_DREFCLK |
DPLL_VCO_ENABLE;
intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
intel_de_write(dev_priv, FP0(pipe), fp);
intel_de_write(dev_priv, FP1(pipe), fp);
/*
* Apparently we need to have VGA mode enabled prior to changing
* the P1/P2 dividers. Otherwise the DPLL will keep using the old
* dividers, even though the register value does change.
*/
intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
intel_de_write(dev_priv, DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
intel_de_posting_read(dev_priv, DPLL(pipe));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
intel_de_write(dev_priv, DPLL(pipe), dpll);
/* We do this three times for luck */
for (i = 0; i < 3 ; i++) {
intel_de_write(dev_priv, DPLL(pipe), dpll);
intel_de_posting_read(dev_priv, DPLL(pipe));
udelay(150); /* wait for warmup */
}
intel_de_write(dev_priv, PIPECONF(pipe), PIPECONF_ENABLE);
intel_de_posting_read(dev_priv, PIPECONF(pipe));
intel_wait_for_pipe_scanline_moving(crtc);
}
void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
pipe_name(pipe));
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & DISP_ENABLE);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & DISP_ENABLE);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & DISP_ENABLE);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE_MASK);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE_MASK);
intel_de_write(dev_priv, PIPECONF(pipe), 0);
intel_de_posting_read(dev_priv, PIPECONF(pipe));
intel_wait_for_pipe_scanline_stopped(crtc);
intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
intel_de_posting_read(dev_priv, DPLL(pipe));
}
void intel_display_resume(struct drm_device *dev)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_atomic_state *state = i915->modeset_restore_state;
struct drm_modeset_acquire_ctx ctx;
int ret;
if (!HAS_DISPLAY(i915))
return;
i915->modeset_restore_state = NULL;
if (state)
state->acquire_ctx = &ctx;
drm_modeset_acquire_init(&ctx, 0);
while (1) {
ret = drm_modeset_lock_all_ctx(dev, &ctx);
if (ret != -EDEADLK)
break;
drm_modeset_backoff(&ctx);
}
if (!ret)
ret = __intel_display_resume(i915, state, &ctx);
intel_enable_ipc(i915);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
if (ret)
drm_err(&i915->drm,
"Restoring old state failed with %i\n", ret);
if (state)
drm_atomic_state_put(state);
}
static void intel_hpd_poll_fini(struct drm_i915_private *i915)
{
struct intel_connector *connector;
struct drm_connector_list_iter conn_iter;
/* Kill all the work that may have been queued by hpd. */
drm_connector_list_iter_begin(&i915->drm, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
if (connector->modeset_retry_work.func)
cancel_work_sync(&connector->modeset_retry_work);
if (connector->hdcp.shim) {
cancel_delayed_work_sync(&connector->hdcp.check_work);
cancel_work_sync(&connector->hdcp.prop_work);
}
}
drm_connector_list_iter_end(&conn_iter);
}
/* part #1: call before irq uninstall */
void intel_modeset_driver_remove(struct drm_i915_private *i915)
{
if (!HAS_DISPLAY(i915))
return;
flush_workqueue(i915->display.wq.flip);
flush_workqueue(i915->display.wq.modeset);
flush_work(&i915->display.atomic_helper.free_work);
drm_WARN_ON(&i915->drm, !llist_empty(&i915->display.atomic_helper.free_list));
/*
* MST topology needs to be suspended so we don't have any calls to
* fbdev after it's finalized. MST will be destroyed later as part of
* drm_mode_config_cleanup()
*/
intel_dp_mst_suspend(i915);
}
/* part #2: call after irq uninstall */
void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
{
if (!HAS_DISPLAY(i915))
return;
/*
* Due to the hpd irq storm handling the hotplug work can re-arm the
* poll handlers. Hence disable polling after hpd handling is shut down.
*/
intel_hpd_poll_fini(i915);
/* poll work can call into fbdev, hence clean that up afterwards */
intel_fbdev_fini(i915);
intel_unregister_dsm_handler();
/* flush any delayed tasks or pending work */
flush_scheduled_work();
intel_hdcp_component_fini(i915);
intel_mode_config_cleanup(i915);
intel_overlay_cleanup(i915);
intel_gmbus_teardown(i915);
destroy_workqueue(i915->display.wq.flip);
destroy_workqueue(i915->display.wq.modeset);
intel_fbc_cleanup(i915);
}
/* part #3: call after gem init */
void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
{
intel_dmc_ucode_fini(i915);
intel_power_domains_driver_remove(i915);
intel_vga_unregister(i915);
intel_bios_driver_remove(i915);
}
bool intel_modeset_probe_defer(struct pci_dev *pdev)
{
struct drm_privacy_screen *privacy_screen;
/*
* apple-gmux is needed on dual GPU MacBook Pro
* to probe the panel if we're the inactive GPU.
*/
if (vga_switcheroo_client_probe_defer(pdev))
return true;
/* If the LCD panel has a privacy-screen, wait for it */
privacy_screen = drm_privacy_screen_get(&pdev->dev, NULL);
if (IS_ERR(privacy_screen) && PTR_ERR(privacy_screen) == -EPROBE_DEFER)
return true;
drm_privacy_screen_put(privacy_screen);
return false;
}
void intel_display_driver_register(struct drm_i915_private *i915)
{
if (!HAS_DISPLAY(i915))
return;
intel_display_debugfs_register(i915);
/* Must be done after probing outputs */
intel_opregion_register(i915);
acpi_video_register();
intel_audio_init(i915);
/*
* Some ports require correctly set-up hpd registers for
* detection to work properly (leading to ghost connected
* connector status), e.g. VGA on gm45. Hence we can only set
* up the initial fbdev config after hpd irqs are fully
* enabled. We do it last so that the async config cannot run
* before the connectors are registered.
*/
intel_fbdev_initial_config_async(&i915->drm);
/*
* We need to coordinate the hotplugs with the asynchronous
* fbdev configuration, for which we use the
* fbdev->async_cookie.
*/
drm_kms_helper_poll_init(&i915->drm);
}
void intel_display_driver_unregister(struct drm_i915_private *i915)
{
if (!HAS_DISPLAY(i915))
return;
intel_fbdev_unregister(i915);
intel_audio_deinit(i915);
/*
* After flushing the fbdev (incl. a late async config which
* will have delayed queuing of a hotplug event), then flush
* the hotplug events.
*/
drm_kms_helper_poll_fini(&i915->drm);
drm_atomic_helper_shutdown(&i915->drm);
acpi_video_unregister();
intel_opregion_unregister(i915);
}
bool intel_scanout_needs_vtd_wa(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 6 && i915_vtd_active(i915);
}