blob: f773efe24e3eff1a39252bc3005c3e62fb6b5c47 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include <drm/drm_blend.h>
#include "intel_atomic.h"
#include "intel_atomic_plane.h"
#include "intel_bw.h"
#include "intel_de.h"
#include "intel_display.h"
#include "intel_display_power.h"
#include "intel_display_types.h"
#include "intel_fb.h"
#include "skl_watermark.h"
#include "i915_drv.h"
#include "i915_fixed.h"
#include "i915_reg.h"
#include "intel_pcode.h"
#include "intel_pm.h"
static void skl_sagv_disable(struct drm_i915_private *i915);
/* Stores plane specific WM parameters */
struct skl_wm_params {
bool x_tiled, y_tiled;
bool rc_surface;
bool is_planar;
u32 width;
u8 cpp;
u32 plane_pixel_rate;
u32 y_min_scanlines;
u32 plane_bytes_per_line;
uint_fixed_16_16_t plane_blocks_per_line;
uint_fixed_16_16_t y_tile_minimum;
u32 linetime_us;
u32 dbuf_block_size;
};
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915)
{
u8 enabled_slices = 0;
enum dbuf_slice slice;
for_each_dbuf_slice(i915, slice) {
if (intel_uncore_read(&i915->uncore,
DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
enabled_slices |= BIT(slice);
}
return enabled_slices;
}
/*
* FIXME: We still don't have the proper code detect if we need to apply the WA,
* so assume we'll always need it in order to avoid underruns.
*/
static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) == 9;
}
static bool
intel_has_sagv(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 9 && !IS_LP(i915) &&
i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED;
}
static u32
intel_sagv_block_time(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 14) {
u32 val;
val = intel_uncore_read(&i915->uncore, MTL_LATENCY_SAGV);
return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
} else if (DISPLAY_VER(i915) >= 12) {
u32 val = 0;
int ret;
ret = snb_pcode_read(&i915->uncore,
GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
&val, NULL);
if (ret) {
drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n");
return 0;
}
return val;
} else if (DISPLAY_VER(i915) == 11) {
return 10;
} else if (DISPLAY_VER(i915) == 9 && !IS_LP(i915)) {
return 30;
} else {
return 0;
}
}
static void intel_sagv_init(struct drm_i915_private *i915)
{
if (!intel_has_sagv(i915))
i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
/*
* Probe to see if we have working SAGV control.
* For icl+ this was already determined by intel_bw_init_hw().
*/
if (DISPLAY_VER(i915) < 11)
skl_sagv_disable(i915);
drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN);
i915->display.sagv.block_time_us = intel_sagv_block_time(i915);
drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us);
/* avoid overflow when adding with wm0 latency/etc. */
if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX,
"Excessive SAGV block time %u, ignoring\n",
i915->display.sagv.block_time_us))
i915->display.sagv.block_time_us = 0;
if (!intel_has_sagv(i915))
i915->display.sagv.block_time_us = 0;
}
/*
* SAGV dynamically adjusts the system agent voltage and clock frequencies
* depending on power and performance requirements. The display engine access
* to system memory is blocked during the adjustment time. Because of the
* blocking time, having this enabled can cause full system hangs and/or pipe
* underruns if we don't meet all of the following requirements:
*
* - <= 1 pipe enabled
* - All planes can enable watermarks for latencies >= SAGV engine block time
* - We're not using an interlaced display configuration
*/
static void skl_sagv_enable(struct drm_i915_private *i915)
{
int ret;
if (!intel_has_sagv(i915))
return;
if (i915->display.sagv.status == I915_SAGV_ENABLED)
return;
drm_dbg_kms(&i915->drm, "Enabling SAGV\n");
ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
GEN9_SAGV_ENABLE);
/* We don't need to wait for SAGV when enabling */
/*
* Some skl systems, pre-release machines in particular,
* don't actually have SAGV.
*/
if (IS_SKYLAKE(i915) && ret == -ENXIO) {
drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
return;
} else if (ret < 0) {
drm_err(&i915->drm, "Failed to enable SAGV\n");
return;
}
i915->display.sagv.status = I915_SAGV_ENABLED;
}
static void skl_sagv_disable(struct drm_i915_private *i915)
{
int ret;
if (!intel_has_sagv(i915))
return;
if (i915->display.sagv.status == I915_SAGV_DISABLED)
return;
drm_dbg_kms(&i915->drm, "Disabling SAGV\n");
/* bspec says to keep retrying for at least 1 ms */
ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
GEN9_SAGV_DISABLE,
GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
1);
/*
* Some skl systems, pre-release machines in particular,
* don't actually have SAGV.
*/
if (IS_SKYLAKE(i915) && ret == -ENXIO) {
drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
return;
} else if (ret < 0) {
drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret);
return;
}
i915->display.sagv.status = I915_SAGV_DISABLED;
}
static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_bw_state *new_bw_state =
intel_atomic_get_new_bw_state(state);
if (!new_bw_state)
return;
if (!intel_can_enable_sagv(i915, new_bw_state))
skl_sagv_disable(i915);
}
static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_bw_state *new_bw_state =
intel_atomic_get_new_bw_state(state);
if (!new_bw_state)
return;
if (intel_can_enable_sagv(i915, new_bw_state))
skl_sagv_enable(i915);
}
static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_bw_state *old_bw_state =
intel_atomic_get_old_bw_state(state);
const struct intel_bw_state *new_bw_state =
intel_atomic_get_new_bw_state(state);
u16 old_mask, new_mask;
if (!new_bw_state)
return;
old_mask = old_bw_state->qgv_points_mask;
new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
if (old_mask == new_mask)
return;
WARN_ON(!new_bw_state->base.changed);
drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
old_mask, new_mask);
/*
* Restrict required qgv points before updating the configuration.
* According to BSpec we can't mask and unmask qgv points at the same
* time. Also masking should be done before updating the configuration
* and unmasking afterwards.
*/
icl_pcode_restrict_qgv_points(i915, new_mask);
}
static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_bw_state *old_bw_state =
intel_atomic_get_old_bw_state(state);
const struct intel_bw_state *new_bw_state =
intel_atomic_get_new_bw_state(state);
u16 old_mask, new_mask;
if (!new_bw_state)
return;
old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
new_mask = new_bw_state->qgv_points_mask;
if (old_mask == new_mask)
return;
WARN_ON(!new_bw_state->base.changed);
drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
old_mask, new_mask);
/*
* Allow required qgv points after updating the configuration.
* According to BSpec we can't mask and unmask qgv points at the same
* time. Also masking should be done before updating the configuration
* and unmasking afterwards.
*/
icl_pcode_restrict_qgv_points(i915, new_mask);
}
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
/*
* Just return if we can't control SAGV or don't have it.
* This is different from situation when we have SAGV but just can't
* afford it due to DBuf limitation - in case if SAGV is completely
* disabled in a BIOS, we are not even allowed to send a PCode request,
* as it will throw an error. So have to check it here.
*/
if (!intel_has_sagv(i915))
return;
if (DISPLAY_VER(i915) >= 11)
icl_sagv_pre_plane_update(state);
else
skl_sagv_pre_plane_update(state);
}
void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
/*
* Just return if we can't control SAGV or don't have it.
* This is different from situation when we have SAGV but just can't
* afford it due to DBuf limitation - in case if SAGV is completely
* disabled in a BIOS, we are not even allowed to send a PCode request,
* as it will throw an error. So have to check it here.
*/
if (!intel_has_sagv(i915))
return;
if (DISPLAY_VER(i915) >= 11)
icl_sagv_post_plane_update(state);
else
skl_sagv_post_plane_update(state);
}
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum plane_id plane_id;
int max_level = INT_MAX;
if (!intel_has_sagv(i915))
return false;
if (!crtc_state->hw.active)
return true;
if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
return false;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
int level;
/* Skip this plane if it's not enabled */
if (!wm->wm[0].enable)
continue;
/* Find the highest enabled wm level for this plane */
for (level = ilk_wm_max_level(i915);
!wm->wm[level].enable; --level)
{ }
/* Highest common enabled wm level for all planes */
max_level = min(level, max_level);
}
/* No enabled planes? */
if (max_level == INT_MAX)
return true;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
/*
* All enabled planes must have enabled a common wm level that
* can tolerate memory latencies higher than sagv_block_time_us
*/
if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
return false;
}
return true;
}
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum plane_id plane_id;
if (!crtc_state->hw.active)
return true;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (wm->wm[0].enable && !wm->sagv.wm0.enable)
return false;
}
return true;
}
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (DISPLAY_VER(i915) >= 12)
return tgl_crtc_can_enable_sagv(crtc_state);
else
return skl_crtc_can_enable_sagv(crtc_state);
}
bool intel_can_enable_sagv(struct drm_i915_private *i915,
const struct intel_bw_state *bw_state)
{
if (DISPLAY_VER(i915) < 11 &&
bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
return false;
return bw_state->pipe_sagv_reject == 0;
}
static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
int ret;
struct intel_crtc *crtc;
struct intel_crtc_state *new_crtc_state;
struct intel_bw_state *new_bw_state = NULL;
const struct intel_bw_state *old_bw_state = NULL;
int i;
for_each_new_intel_crtc_in_state(state, crtc,
new_crtc_state, i) {
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
old_bw_state = intel_atomic_get_old_bw_state(state);
if (intel_crtc_can_enable_sagv(new_crtc_state))
new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
else
new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
}
if (!new_bw_state)
return 0;
new_bw_state->active_pipes =
intel_calc_active_pipes(state, old_bw_state->active_pipes);
if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
if (intel_can_enable_sagv(i915, new_bw_state) !=
intel_can_enable_sagv(i915, old_bw_state)) {
ret = intel_atomic_serialize_global_state(&new_bw_state->base);
if (ret)
return ret;
} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
for_each_new_intel_crtc_in_state(state, crtc,
new_crtc_state, i) {
struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
/*
* We store use_sagv_wm in the crtc state rather than relying on
* that bw state since we have no convenient way to get at the
* latter from the plane commit hooks (especially in the legacy
* cursor case)
*/
pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) &&
DISPLAY_VER(i915) >= 12 &&
intel_can_enable_sagv(i915, new_bw_state);
}
return 0;
}
static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
u16 start, u16 end)
{
entry->start = start;
entry->end = end;
return end;
}
static int intel_dbuf_slice_size(struct drm_i915_private *i915)
{
return INTEL_INFO(i915)->display.dbuf.size /
hweight8(INTEL_INFO(i915)->display.dbuf.slice_mask);
}
static void
skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask,
struct skl_ddb_entry *ddb)
{
int slice_size = intel_dbuf_slice_size(i915);
if (!slice_mask) {
ddb->start = 0;
ddb->end = 0;
return;
}
ddb->start = (ffs(slice_mask) - 1) * slice_size;
ddb->end = fls(slice_mask) * slice_size;
WARN_ON(ddb->start >= ddb->end);
WARN_ON(ddb->end > INTEL_INFO(i915)->display.dbuf.size);
}
static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
{
struct skl_ddb_entry ddb;
if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
slice_mask = BIT(DBUF_S1);
else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
slice_mask = BIT(DBUF_S3);
skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
return ddb.start;
}
u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915,
const struct skl_ddb_entry *entry)
{
int slice_size = intel_dbuf_slice_size(i915);
enum dbuf_slice start_slice, end_slice;
u8 slice_mask = 0;
if (!skl_ddb_entry_size(entry))
return 0;
start_slice = entry->start / slice_size;
end_slice = (entry->end - 1) / slice_size;
/*
* Per plane DDB entry can in a really worst case be on multiple slices
* but single entry is anyway contigious.
*/
while (start_slice <= end_slice) {
slice_mask |= BIT(start_slice);
start_slice++;
}
return slice_mask;
}
static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int hdisplay, vdisplay;
if (!crtc_state->hw.active)
return 0;
/*
* Watermark/ddb requirement highly depends upon width of the
* framebuffer, So instead of allocating DDB equally among pipes
* distribute DDB based on resolution/width of the display.
*/
drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
return hdisplay;
}
static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
enum pipe for_pipe,
unsigned int *weight_start,
unsigned int *weight_end,
unsigned int *weight_total)
{
struct drm_i915_private *i915 =
to_i915(dbuf_state->base.state->base.dev);
enum pipe pipe;
*weight_start = 0;
*weight_end = 0;
*weight_total = 0;
for_each_pipe(i915, pipe) {
int weight = dbuf_state->weight[pipe];
/*
* Do not account pipes using other slice sets
* luckily as of current BSpec slice sets do not partially
* intersect(pipes share either same one slice or same slice set
* i.e no partial intersection), so it is enough to check for
* equality for now.
*/
if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
continue;
*weight_total += weight;
if (pipe < for_pipe) {
*weight_start += weight;
*weight_end += weight;
} else if (pipe == for_pipe) {
*weight_end += weight;
}
}
}
static int
skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
unsigned int weight_total, weight_start, weight_end;
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
struct intel_crtc_state *crtc_state;
struct skl_ddb_entry ddb_slices;
enum pipe pipe = crtc->pipe;
unsigned int mbus_offset = 0;
u32 ddb_range_size;
u32 dbuf_slice_mask;
u32 start, end;
int ret;
if (new_dbuf_state->weight[pipe] == 0) {
skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
goto out;
}
dbuf_slice_mask = new_dbuf_state->slices[pipe];
skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices);
mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask);
ddb_range_size = skl_ddb_entry_size(&ddb_slices);
intel_crtc_dbuf_weights(new_dbuf_state, pipe,
&weight_start, &weight_end, &weight_total);
start = ddb_range_size * weight_start / weight_total;
end = ddb_range_size * weight_end / weight_total;
skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
ddb_slices.start - mbus_offset + start,
ddb_slices.start - mbus_offset + end);
out:
if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
&new_dbuf_state->ddb[pipe]))
return 0;
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
/*
* Used for checking overlaps, so we need absolute
* offsets instead of MBUS relative offsets.
*/
crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
crtc->base.base.id, crtc->base.name,
old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
return 0;
}
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
int width, const struct drm_format_info *format,
u64 modifier, unsigned int rotation,
u32 plane_pixel_rate, struct skl_wm_params *wp,
int color_plane);
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
struct intel_plane *plane,
int level,
unsigned int latency,
const struct skl_wm_params *wp,
const struct skl_wm_level *result_prev,
struct skl_wm_level *result /* out */);
static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
int num_active)
{
struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
int level, max_level = ilk_wm_max_level(i915);
struct skl_wm_level wm = {};
int ret, min_ddb_alloc = 0;
struct skl_wm_params wp;
ret = skl_compute_wm_params(crtc_state, 256,
drm_format_info(DRM_FORMAT_ARGB8888),
DRM_FORMAT_MOD_LINEAR,
DRM_MODE_ROTATE_0,
crtc_state->pixel_rate, &wp, 0);
drm_WARN_ON(&i915->drm, ret);
for (level = 0; level <= max_level; level++) {
unsigned int latency = i915->display.wm.skl_latency[level];
skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
if (wm.min_ddb_alloc == U16_MAX)
break;
min_ddb_alloc = wm.min_ddb_alloc;
}
return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
}
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
skl_ddb_entry_init(entry,
REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
if (entry->end)
entry->end++;
}
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *i915,
const enum pipe pipe,
const enum plane_id plane_id,
struct skl_ddb_entry *ddb,
struct skl_ddb_entry *ddb_y)
{
u32 val;
/* Cursor doesn't support NV12/planar, so no extra calculation needed */
if (plane_id == PLANE_CURSOR) {
val = intel_uncore_read(&i915->uncore, CUR_BUF_CFG(pipe));
skl_ddb_entry_init_from_hw(ddb, val);
return;
}
val = intel_uncore_read(&i915->uncore, PLANE_BUF_CFG(pipe, plane_id));
skl_ddb_entry_init_from_hw(ddb, val);
if (DISPLAY_VER(i915) >= 11)
return;
val = intel_uncore_read(&i915->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
skl_ddb_entry_init_from_hw(ddb_y, val);
}
static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
struct skl_ddb_entry *ddb,
struct skl_ddb_entry *ddb_y)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
enum plane_id plane_id;
power_domain = POWER_DOMAIN_PIPE(pipe);
wakeref = intel_display_power_get_if_enabled(i915, power_domain);
if (!wakeref)
return;
for_each_plane_id_on_crtc(crtc, plane_id)
skl_ddb_get_hw_plane_state(i915, pipe,
plane_id,
&ddb[plane_id],
&ddb_y[plane_id]);
intel_display_power_put(i915, power_domain, wakeref);
}
struct dbuf_slice_conf_entry {
u8 active_pipes;
u8 dbuf_mask[I915_MAX_PIPES];
bool join_mbus;
};
/*
* Table taken from Bspec 12716
* Pipes do have some preferred DBuf slice affinity,
* plus there are some hardcoded requirements on how
* those should be distributed for multipipe scenarios.
* For more DBuf slices algorithm can get even more messy
* and less readable, so decided to use a table almost
* as is from BSpec itself - that way it is at least easier
* to compare, change and check.
*/
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{}
};
/*
* Table taken from Bspec 49255
* Pipes do have some preferred DBuf slice affinity,
* plus there are some hardcoded requirements on how
* those should be distributed for multipipe scenarios.
* For more DBuf slices algorithm can get even more messy
* and less readable, so decided to use a table almost
* as is from BSpec itself - that way it is at least easier
* to compare, change and check.
*/
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_D),
.dbuf_mask = {
[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{}
};
static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_D),
.dbuf_mask = {
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{}
};
static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
/*
* Keep the join_mbus cases first so check_mbus_joined()
* will prefer them over the !join_mbus cases.
*/
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
},
.join_mbus = true,
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
},
.join_mbus = true,
},
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
.join_mbus = false,
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
.join_mbus = false,
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_D),
.dbuf_mask = {
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{}
};
static bool check_mbus_joined(u8 active_pipes,
const struct dbuf_slice_conf_entry *dbuf_slices)
{
int i;
for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
if (dbuf_slices[i].active_pipes == active_pipes)
return dbuf_slices[i].join_mbus;
}
return false;
}
static bool adlp_check_mbus_joined(u8 active_pipes)
{
return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
}
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
const struct dbuf_slice_conf_entry *dbuf_slices)
{
int i;
for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
if (dbuf_slices[i].active_pipes == active_pipes &&
dbuf_slices[i].join_mbus == join_mbus)
return dbuf_slices[i].dbuf_mask[pipe];
}
return 0;
}
/*
* This function finds an entry with same enabled pipe configuration and
* returns correspondent DBuf slice mask as stated in BSpec for particular
* platform.
*/
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
/*
* FIXME: For ICL this is still a bit unclear as prev BSpec revision
* required calculating "pipe ratio" in order to determine
* if one or two slices can be used for single pipe configurations
* as additional constraint to the existing table.
* However based on recent info, it should be not "pipe ratio"
* but rather ratio between pixel_rate and cdclk with additional
* constants, so for now we are using only table until this is
* clarified. Also this is the reason why crtc_state param is
* still here - we will need it once those additional constraints
* pop up.
*/
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
icl_allowed_dbufs);
}
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
tgl_allowed_dbufs);
}
static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
adlp_allowed_dbufs);
}
static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
dg2_allowed_dbufs);
}
static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (IS_DG2(i915))
return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
else if (DISPLAY_VER(i915) >= 13)
return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
else if (DISPLAY_VER(i915) == 12)
return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
else if (DISPLAY_VER(i915) == 11)
return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
/*
* For anything else just return one slice yet.
* Should be extended for other platforms.
*/
return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
}
static bool
use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
struct intel_plane *plane)
{
struct drm_i915_private *i915 = to_i915(plane->base.dev);
return DISPLAY_VER(i915) >= 13 &&
crtc_state->uapi.async_flip &&
plane->async_flip;
}
static u64
skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum plane_id plane_id;
u64 data_rate = 0;
for_each_plane_id_on_crtc(crtc, plane_id) {
if (plane_id == PLANE_CURSOR)
continue;
data_rate += crtc_state->rel_data_rate[plane_id];
if (DISPLAY_VER(i915) < 11)
data_rate += crtc_state->rel_data_rate_y[plane_id];
}
return data_rate;
}
static const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
enum plane_id plane_id,
int level)
{
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
if (level == 0 && pipe_wm->use_sagv_wm)
return &wm->sagv.wm0;
return &wm->wm[level];
}
static const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
enum plane_id plane_id)
{
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
if (pipe_wm->use_sagv_wm)
return &wm->sagv.trans_wm;
return &wm->trans_wm;
}
/*
* We only disable the watermarks for each plane if
* they exceed the ddb allocation of said plane. This
* is done so that we don't end up touching cursor
* watermarks needlessly when some other plane reduces
* our max possible watermark level.
*
* Bspec has this to say about the PLANE_WM enable bit:
* "All the watermarks at this level for all enabled
* planes must be enabled before the level will be used."
* So this is actually safe to do.
*/
static void
skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
{
if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
memset(wm, 0, sizeof(*wm));
}
static void
skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
{
if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
memset(wm, 0, sizeof(*wm));
memset(uv_wm, 0, sizeof(*uv_wm));
}
}
static bool icl_need_wm1_wa(struct drm_i915_private *i915,
enum plane_id plane_id)
{
/*
* Wa_1408961008:icl, ehl
* Wa_14012656716:tgl, adl
* Underruns with WM1+ disabled
*/
return DISPLAY_VER(i915) == 11 ||
(IS_DISPLAY_VER(i915, 12, 13) && plane_id == PLANE_CURSOR);
}
struct skl_plane_ddb_iter {
u64 data_rate;
u16 start, size;
};
static void
skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
struct skl_ddb_entry *ddb,
const struct skl_wm_level *wm,
u64 data_rate)
{
u16 size, extra = 0;
if (data_rate) {
extra = min_t(u16, iter->size,
DIV64_U64_ROUND_UP(iter->size * data_rate,
iter->data_rate));
iter->size -= extra;
iter->data_rate -= data_rate;
}
/*
* Keep ddb entry of all disabled planes explicitly zeroed
* to avoid skl_ddb_add_affected_planes() adding them to
* the state when other planes change their allocations.
*/
size = wm->min_ddb_alloc + extra;
if (size)
iter->start = skl_ddb_entry_init(ddb, iter->start,
iter->start + size);
}
static int
skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_dbuf_state *dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
int num_active = hweight8(dbuf_state->active_pipes);
struct skl_plane_ddb_iter iter;
enum plane_id plane_id;
u16 cursor_size;
u32 blocks;
int level;
/* Clear the partitioning for disabled planes. */
memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
if (!crtc_state->hw.active)
return 0;
iter.start = alloc->start;
iter.size = skl_ddb_entry_size(alloc);
if (iter.size == 0)
return 0;
/* Allocate fixed number of blocks for cursor. */
cursor_size = skl_cursor_allocation(crtc_state, num_active);
iter.size -= cursor_size;
skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
alloc->end - cursor_size, alloc->end);
iter.data_rate = skl_total_relative_data_rate(crtc_state);
/*
* Find the highest watermark level for which we can satisfy the block
* requirement of active planes.
*/
for (level = ilk_wm_max_level(i915); level >= 0; level--) {
blocks = 0;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (plane_id == PLANE_CURSOR) {
const struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb[plane_id];
if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
drm_WARN_ON(&i915->drm,
wm->wm[level].min_ddb_alloc != U16_MAX);
blocks = U32_MAX;
break;
}
continue;
}
blocks += wm->wm[level].min_ddb_alloc;
blocks += wm->uv_wm[level].min_ddb_alloc;
}
if (blocks <= iter.size) {
iter.size -= blocks;
break;
}
}
if (level < 0) {
drm_dbg_kms(&i915->drm,
"Requested display configuration exceeds system DDB limitations");
drm_dbg_kms(&i915->drm, "minimum required %d/%d\n",
blocks, iter.size);
return -EINVAL;
}
/* avoid the WARN later when we don't allocate any extra DDB */
if (iter.data_rate == 0)
iter.size = 0;
/*
* Grant each plane the blocks it requires at the highest achievable
* watermark level, plus an extra share of the leftover blocks
* proportional to its relative data rate.
*/
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb[plane_id];
struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (plane_id == PLANE_CURSOR)
continue;
if (DISPLAY_VER(i915) < 11 &&
crtc_state->nv12_planes & BIT(plane_id)) {
skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
crtc_state->rel_data_rate_y[plane_id]);
skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
crtc_state->rel_data_rate[plane_id]);
} else {
skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
crtc_state->rel_data_rate[plane_id]);
}
}
drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0);
/*
* When we calculated watermark values we didn't know how high
* of a level we'd actually be able to hit, so we just marked
* all levels as "enabled." Go back now and disable the ones
* that aren't actually possible.
*/
for (level++; level <= ilk_wm_max_level(i915); level++) {
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb[plane_id];
const struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (DISPLAY_VER(i915) < 11 &&
crtc_state->nv12_planes & BIT(plane_id))
skl_check_nv12_wm_level(&wm->wm[level],
&wm->uv_wm[level],
ddb_y, ddb);
else
skl_check_wm_level(&wm->wm[level], ddb);
if (icl_need_wm1_wa(i915, plane_id) &&
level == 1 && wm->wm[0].enable) {
wm->wm[level].blocks = wm->wm[0].blocks;
wm->wm[level].lines = wm->wm[0].lines;
wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
}
}
}
/*
* Go back and disable the transition and SAGV watermarks
* if it turns out we don't have enough DDB blocks for them.
*/
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb[plane_id];
const struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (DISPLAY_VER(i915) < 11 &&
crtc_state->nv12_planes & BIT(plane_id)) {
skl_check_wm_level(&wm->trans_wm, ddb_y);
} else {
WARN_ON(skl_ddb_entry_size(ddb_y));
skl_check_wm_level(&wm->trans_wm, ddb);
}
skl_check_wm_level(&wm->sagv.wm0, ddb);
skl_check_wm_level(&wm->sagv.trans_wm, ddb);
}
return 0;
}
/*
* The max latency should be 257 (max the punit can code is 255 and we add 2us
* for the read latency) and cpp should always be <= 8, so that
* should allow pixel_rate up to ~2 GHz which seems sufficient since max
* 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate,
u8 cpp, u32 latency, u32 dbuf_block_size)
{
u32 wm_intermediate_val;
uint_fixed_16_16_t ret;
if (latency == 0)
return FP_16_16_MAX;
wm_intermediate_val = latency * pixel_rate * cpp;
ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
if (DISPLAY_VER(i915) >= 10)
ret = add_fixed16_u32(ret, 1);
return ret;
}
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
uint_fixed_16_16_t plane_blocks_per_line)
{
u32 wm_intermediate_val;
uint_fixed_16_16_t ret;
if (latency == 0)
return FP_16_16_MAX;
wm_intermediate_val = latency * pixel_rate;
wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
pipe_htotal * 1000);
ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
return ret;
}
static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
u32 pixel_rate;
u32 crtc_htotal;
uint_fixed_16_16_t linetime_us;
if (!crtc_state->hw.active)
return u32_to_fixed16(0);
pixel_rate = crtc_state->pixel_rate;
if (drm_WARN_ON(&i915->drm, pixel_rate == 0))
return u32_to_fixed16(0);
crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
return linetime_us;
}
static int
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
int width, const struct drm_format_info *format,
u64 modifier, unsigned int rotation,
u32 plane_pixel_rate, struct skl_wm_params *wp,
int color_plane)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
u32 interm_pbpl;
/* only planar format has two planes */
if (color_plane == 1 &&
!intel_format_info_is_yuv_semiplanar(format, modifier)) {
drm_dbg_kms(&i915->drm,
"Non planar format have single plane\n");
return -EINVAL;
}
wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
modifier == I915_FORMAT_MOD_4_TILED ||
modifier == I915_FORMAT_MOD_Yf_TILED ||
modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
wp->width = width;
if (color_plane == 1 && wp->is_planar)
wp->width /= 2;
wp->cpp = format->cpp[color_plane];
wp->plane_pixel_rate = plane_pixel_rate;
if (DISPLAY_VER(i915) >= 11 &&
modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
wp->dbuf_block_size = 256;
else
wp->dbuf_block_size = 512;
if (drm_rotation_90_or_270(rotation)) {
switch (wp->cpp) {
case 1:
wp->y_min_scanlines = 16;
break;
case 2:
wp->y_min_scanlines = 8;
break;
case 4:
wp->y_min_scanlines = 4;
break;
default:
MISSING_CASE(wp->cpp);
return -EINVAL;
}
} else {
wp->y_min_scanlines = 4;
}
if (skl_needs_memory_bw_wa(i915))
wp->y_min_scanlines *= 2;
wp->plane_bytes_per_line = wp->width * wp->cpp;
if (wp->y_tiled) {
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
wp->y_min_scanlines,
wp->dbuf_block_size);
if (DISPLAY_VER(i915) >= 10)
interm_pbpl++;
wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
wp->y_min_scanlines);
} else {
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
wp->dbuf_block_size);
if (!wp->x_tiled || DISPLAY_VER(i915) >= 10)
interm_pbpl++;
wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
}
wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
wp->plane_blocks_per_line);
wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
return 0;
}
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
struct skl_wm_params *wp, int color_plane)
{
const struct drm_framebuffer *fb = plane_state->hw.fb;
int width;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
width = drm_rect_width(&plane_state->uapi.src) >> 16;
return skl_compute_wm_params(crtc_state, width,
fb->format, fb->modifier,
plane_state->hw.rotation,
intel_plane_pixel_rate(crtc_state, plane_state),
wp, color_plane);
}
static bool skl_wm_has_lines(struct drm_i915_private *i915, int level)
{
if (DISPLAY_VER(i915) >= 10)
return true;
/* The number of lines are ignored for the level 0 watermark. */
return level > 0;
}
static int skl_wm_max_lines(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 13)
return 255;
else
return 31;
}
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
struct intel_plane *plane,
int level,
unsigned int latency,
const struct skl_wm_params *wp,
const struct skl_wm_level *result_prev,
struct skl_wm_level *result /* out */)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
uint_fixed_16_16_t method1, method2;
uint_fixed_16_16_t selected_result;
u32 blocks, lines, min_ddb_alloc = 0;
if (latency == 0 ||
(use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
/* reject it */
result->min_ddb_alloc = U16_MAX;
return;
}
/*
* WaIncreaseLatencyIPCEnabled: kbl,cfl
* Display WA #1141: kbl,cfl
*/
if ((IS_KABYLAKE(i915) ||
IS_COFFEELAKE(i915) ||
IS_COMETLAKE(i915)) &&
i915->ipc_enabled)
latency += 4;
if (skl_needs_memory_bw_wa(i915) && wp->x_tiled)
latency += 15;
method1 = skl_wm_method1(i915, wp->plane_pixel_rate,
wp->cpp, latency, wp->dbuf_block_size);
method2 = skl_wm_method2(wp->plane_pixel_rate,
crtc_state->hw.pipe_mode.crtc_htotal,
latency,
wp->plane_blocks_per_line);
if (wp->y_tiled) {
selected_result = max_fixed16(method2, wp->y_tile_minimum);
} else {
if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
wp->dbuf_block_size < 1) &&
(wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
selected_result = method2;
} else if (latency >= wp->linetime_us) {
if (DISPLAY_VER(i915) == 9)
selected_result = min_fixed16(method1, method2);
else
selected_result = method2;
} else {
selected_result = method1;
}
}
blocks = fixed16_to_u32_round_up(selected_result) + 1;
/*
* Lets have blocks at minimum equivalent to plane_blocks_per_line
* as there will be at minimum one line for lines configuration. This
* is a work around for FIFO underruns observed with resolutions like
* 4k 60 Hz in single channel DRAM configurations.
*
* As per the Bspec 49325, if the ddb allocation can hold at least
* one plane_blocks_per_line, we should have selected method2 in
* the above logic. Assuming that modern versions have enough dbuf
* and method2 guarantees blocks equivalent to at least 1 line,
* select the blocks as plane_blocks_per_line.
*
* TODO: Revisit the logic when we have better understanding on DRAM
* channels' impact on the level 0 memory latency and the relevant
* wm calculations.
*/
if (skl_wm_has_lines(i915, level))
blocks = max(blocks,
fixed16_to_u32_round_up(wp->plane_blocks_per_line));
lines = div_round_up_fixed16(selected_result,
wp->plane_blocks_per_line);
if (DISPLAY_VER(i915) == 9) {
/* Display WA #1125: skl,bxt,kbl */
if (level == 0 && wp->rc_surface)
blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
/* Display WA #1126: skl,bxt,kbl */
if (level >= 1 && level <= 7) {
if (wp->y_tiled) {
blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
lines += wp->y_min_scanlines;
} else {
blocks++;
}
/*
* Make sure result blocks for higher latency levels are
* at least as high as level below the current level.
* Assumption in DDB algorithm optimization for special
* cases. Also covers Display WA #1125 for RC.
*/
if (result_prev->blocks > blocks)
blocks = result_prev->blocks;
}
}
if (DISPLAY_VER(i915) >= 11) {
if (wp->y_tiled) {
int extra_lines;
if (lines % wp->y_min_scanlines == 0)
extra_lines = wp->y_min_scanlines;
else
extra_lines = wp->y_min_scanlines * 2 -
lines % wp->y_min_scanlines;
min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
wp->plane_blocks_per_line);
} else {
min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
}
}
if (!skl_wm_has_lines(i915, level))
lines = 0;
if (lines > skl_wm_max_lines(i915)) {
/* reject it */
result->min_ddb_alloc = U16_MAX;
return;
}
/*
* If lines is valid, assume we can use this watermark level
* for now. We'll come back and disable it after we calculate the
* DDB allocation if it turns out we don't actually have enough
* blocks to satisfy it.
*/
result->blocks = blocks;
result->lines = lines;
/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
result->enable = true;
if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us)
result->can_sagv = latency >= i915->display.sagv.block_time_us;
}
static void
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
struct intel_plane *plane,
const struct skl_wm_params *wm_params,
struct skl_wm_level *levels)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
int level, max_level = ilk_wm_max_level(i915);
struct skl_wm_level *result_prev = &levels[0];
for (level = 0; level <= max_level; level++) {
struct skl_wm_level *result = &levels[level];
unsigned int latency = i915->display.wm.skl_latency[level];
skl_compute_plane_wm(crtc_state, plane, level, latency,
wm_params, result_prev, result);
result_prev = result;
}
}
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
struct intel_plane *plane,
const struct skl_wm_params *wm_params,
struct skl_plane_wm *plane_wm)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
struct skl_wm_level *levels = plane_wm->wm;
unsigned int latency = 0;
if (i915->display.sagv.block_time_us)
latency = i915->display.sagv.block_time_us + i915->display.wm.skl_latency[0];
skl_compute_plane_wm(crtc_state, plane, 0, latency,
wm_params, &levels[0],
sagv_wm);
}
static void skl_compute_transition_wm(struct drm_i915_private *i915,
struct skl_wm_level *trans_wm,
const struct skl_wm_level *wm0,
const struct skl_wm_params *wp)
{
u16 trans_min, trans_amount, trans_y_tile_min;
u16 wm0_blocks, trans_offset, blocks;
/* Transition WM don't make any sense if ipc is disabled */
if (!i915->ipc_enabled)
return;
/*
* WaDisableTWM:skl,kbl,cfl,bxt
* Transition WM are not recommended by HW team for GEN9
*/
if (DISPLAY_VER(i915) == 9)
return;
if (DISPLAY_VER(i915) >= 11)
trans_min = 4;
else
trans_min = 14;
/* Display WA #1140: glk,cnl */
if (DISPLAY_VER(i915) == 10)
trans_amount = 0;
else
trans_amount = 10; /* This is configurable amount */
trans_offset = trans_min + trans_amount;
/*
* The spec asks for Selected Result Blocks for wm0 (the real value),
* not Result Blocks (the integer value). Pay attention to the capital
* letters. The value wm_l0->blocks is actually Result Blocks, but
* since Result Blocks is the ceiling of Selected Result Blocks plus 1,
* and since we later will have to get the ceiling of the sum in the
* transition watermarks calculation, we can just pretend Selected
* Result Blocks is Result Blocks minus 1 and it should work for the
* current platforms.
*/
wm0_blocks = wm0->blocks - 1;
if (wp->y_tiled) {
trans_y_tile_min =
(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
} else {
blocks = wm0_blocks + trans_offset;
}
blocks++;
/*
* Just assume we can enable the transition watermark. After
* computing the DDB we'll come back and disable it if that
* assumption turns out to be false.
*/
trans_wm->blocks = blocks;
trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
trans_wm->enable = true;
}
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
struct intel_plane *plane, int color_plane)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
struct skl_wm_params wm_params;
int ret;
ret = skl_compute_plane_wm_params(crtc_state, plane_state,
&wm_params, color_plane);
if (ret)
return ret;
skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
skl_compute_transition_wm(i915, &wm->trans_wm,
&wm->wm[0], &wm_params);
if (DISPLAY_VER(i915) >= 12) {
tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
skl_compute_transition_wm(i915, &wm->sagv.trans_wm,
&wm->sagv.wm0, &wm_params);
}
return 0;
}
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
struct intel_plane *plane)
{
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
struct skl_wm_params wm_params;
int ret;
wm->is_planar = true;
/* uv plane watermarks must also be validated for NV12/Planar */
ret = skl_compute_plane_wm_params(crtc_state, plane_state,
&wm_params, 1);
if (ret)
return ret;
skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
return 0;
}
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
enum plane_id plane_id = plane->id;
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
const struct drm_framebuffer *fb = plane_state->hw.fb;
int ret;
memset(wm, 0, sizeof(*wm));
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane, 0);
if (ret)
return ret;
if (fb->format->is_yuv && fb->format->num_planes > 1) {
ret = skl_build_plane_wm_uv(crtc_state, plane_state,
plane);
if (ret)
return ret;
}
return 0;
}
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *i915 = to_i915(plane->base.dev);
enum plane_id plane_id = plane->id;
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
int ret;
/* Watermarks calculated in master */
if (plane_state->planar_slave)
return 0;
memset(wm, 0, sizeof(*wm));
if (plane_state->planar_linked_plane) {
const struct drm_framebuffer *fb = plane_state->hw.fb;
drm_WARN_ON(&i915->drm,
!intel_wm_plane_visible(crtc_state, plane_state));
drm_WARN_ON(&i915->drm, !fb->format->is_yuv ||
fb->format->num_planes == 1);
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane_state->planar_linked_plane, 0);
if (ret)
return ret;
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane, 1);
if (ret)
return ret;
} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane, 0);
if (ret)
return ret;
}
return 0;
}
static int skl_build_pipe_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
int ret, i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
/*
* FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
* instead but we don't populate that correctly for NV12 Y
* planes so for now hack this.
*/
if (plane->pipe != crtc->pipe)
continue;
if (DISPLAY_VER(i915) >= 11)
ret = icl_build_plane_wm(crtc_state, plane_state);
else
ret = skl_build_plane_wm(crtc_state, plane_state);
if (ret)
return ret;
}
crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
return 0;
}
static void skl_ddb_entry_write(struct drm_i915_private *i915,
i915_reg_t reg,
const struct skl_ddb_entry *entry)
{
if (entry->end)
intel_de_write_fw(i915, reg,
PLANE_BUF_END(entry->end - 1) |
PLANE_BUF_START(entry->start));
else
intel_de_write_fw(i915, reg, 0);
}
static void skl_write_wm_level(struct drm_i915_private *i915,
i915_reg_t reg,
const struct skl_wm_level *level)
{
u32 val = 0;
if (level->enable)
val |= PLANE_WM_EN;
if (level->ignore_lines)
val |= PLANE_WM_IGNORE_LINES;
val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
intel_de_write_fw(i915, reg, val);
}
void skl_write_plane_wm(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(i915);
enum plane_id plane_id = plane->id;
enum pipe pipe = plane->pipe;
const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
const struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb[plane_id];
const struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
for (level = 0; level <= max_level; level++)
skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level),
skl_plane_wm_level(pipe_wm, plane_id, level));
skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id),
skl_plane_trans_wm(pipe_wm, plane_id));
if (HAS_HW_SAGV_WM(i915)) {
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id),
&wm->sagv.wm0);
skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id),
&wm->sagv.trans_wm);
}
skl_ddb_entry_write(i915,
PLANE_BUF_CFG(pipe, plane_id), ddb);
if (DISPLAY_VER(i915) < 11)
skl_ddb_entry_write(i915,
PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
}
void skl_write_cursor_wm(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(i915);
enum plane_id plane_id = plane->id;
enum pipe pipe = plane->pipe;
const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
const struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb[plane_id];
for (level = 0; level <= max_level; level++)
skl_write_wm_level(i915, CUR_WM(pipe, level),
skl_plane_wm_level(pipe_wm, plane_id, level));
skl_write_wm_level(i915, CUR_WM_TRANS(pipe),
skl_plane_trans_wm(pipe_wm, plane_id));
if (HAS_HW_SAGV_WM(i915)) {
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
skl_write_wm_level(i915, CUR_WM_SAGV(pipe),
&wm->sagv.wm0);
skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe),
&wm->sagv.trans_wm);
}
skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb);
}
static bool skl_wm_level_equals(const struct skl_wm_level *l1,
const struct skl_wm_level *l2)
{
return l1->enable == l2->enable &&
l1->ignore_lines == l2->ignore_lines &&
l1->lines == l2->lines &&
l1->blocks == l2->blocks;
}
static bool skl_plane_wm_equals(struct drm_i915_private *i915,
const struct skl_plane_wm *wm1,
const struct skl_plane_wm *wm2)
{
int level, max_level = ilk_wm_max_level(i915);
for (level = 0; level <= max_level; level++) {
/*
* We don't check uv_wm as the hardware doesn't actually
* use it. It only gets used for calculating the required
* ddb allocation.
*/
if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
return false;
}
return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
}
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
const struct skl_ddb_entry *b)
{
return a->start < b->end && b->start < a->end;
}
static void skl_ddb_entry_union(struct skl_ddb_entry *a,
const struct skl_ddb_entry *b)
{
if (a->end && b->end) {
a->start = min(a->start, b->start);
a->end = max(a->end, b->end);
} else if (b->end) {
a->start = b->start;
a->end = b->end;
}
}
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
const struct skl_ddb_entry *entries,
int num_entries, int ignore_idx)
{
int i;
for (i = 0; i < num_entries; i++) {
if (i != ignore_idx &&
skl_ddb_entries_overlap(ddb, &entries[i]))
return true;
}
return false;
}
static int
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state)
{
struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
struct intel_plane_state *plane_state;
enum plane_id plane_id = plane->id;
if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
&new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
&new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
new_crtc_state->update_planes |= BIT(plane_id);
}
return 0;
}
static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
{
struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev);
u8 enabled_slices;
enum pipe pipe;
/*
* FIXME: For now we always enable slice S1 as per
* the Bspec display initialization sequence.
*/
enabled_slices = BIT(DBUF_S1);
for_each_pipe(i915, pipe)
enabled_slices |= dbuf_state->slices[pipe];
return enabled_slices;
}
static int
skl_compute_ddb(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_dbuf_state *old_dbuf_state;
struct intel_dbuf_state *new_dbuf_state = NULL;
const struct intel_crtc_state *old_crtc_state;
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int ret, i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
new_dbuf_state = intel_atomic_get_dbuf_state(state);
if (IS_ERR(new_dbuf_state))
return PTR_ERR(new_dbuf_state);
old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
break;
}
if (!new_dbuf_state)
return 0;
new_dbuf_state->active_pipes =
intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
if (HAS_MBUS_JOINING(i915))
new_dbuf_state->joined_mbus =
adlp_check_mbus_joined(new_dbuf_state->active_pipes);
for_each_intel_crtc(&i915->drm, crtc) {
enum pipe pipe = crtc->pipe;
new_dbuf_state->slices[pipe] =
skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
new_dbuf_state->joined_mbus);
if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
continue;
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
if (ret)
return ret;
if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
/* TODO: Implement vblank synchronized MBUS joining changes */
ret = intel_modeset_all_pipes(state);
if (ret)
return ret;
}
drm_dbg_kms(&i915->drm,
"Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
old_dbuf_state->enabled_slices,
new_dbuf_state->enabled_slices,
INTEL_INFO(i915)->display.dbuf.slice_mask,
str_yes_no(old_dbuf_state->joined_mbus),
str_yes_no(new_dbuf_state->joined_mbus));
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
continue;
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
for_each_intel_crtc(&i915->drm, crtc) {
ret = skl_crtc_allocate_ddb(state, crtc);
if (ret)
return ret;
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
ret = skl_crtc_allocate_plane_ddb(state, crtc);
if (ret)
return ret;
ret = skl_ddb_add_affected_planes(old_crtc_state,
new_crtc_state);
if (ret)
return ret;
}
return 0;
}
static char enast(bool enable)
{
return enable ? '*' : ' ';
}
static void
skl_print_wm_changes(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state;
const struct intel_crtc_state *new_crtc_state;
struct intel_plane *plane;
struct intel_crtc *crtc;
int i;
if (!drm_debug_enabled(DRM_UT_KMS))
return;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
old_pipe_wm = &old_crtc_state->wm.skl.optimal;
new_pipe_wm = &new_crtc_state->wm.skl.optimal;
for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
enum plane_id plane_id = plane->id;
const struct skl_ddb_entry *old, *new;
old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
if (skl_ddb_entry_equal(old, new))
continue;
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
plane->base.base.id, plane->base.name,
old->start, old->end, new->start, new->end,
skl_ddb_entry_size(old), skl_ddb_entry_size(new));
}
for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
enum plane_id plane_id = plane->id;
const struct skl_plane_wm *old_wm, *new_wm;
old_wm = &old_pipe_wm->planes[plane_id];
new_wm = &new_pipe_wm->planes[plane_id];
if (skl_plane_wm_equals(i915, old_wm, new_wm))
continue;
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
" -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
plane->base.base.id, plane->base.name,
enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
enast(old_wm->trans_wm.enable),
enast(old_wm->sagv.wm0.enable),
enast(old_wm->sagv.trans_wm.enable),
enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
enast(new_wm->trans_wm.enable),
enast(new_wm->sagv.wm0.enable),
enast(new_wm->sagv.trans_wm.enable));
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
" -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
plane->base.base.id, plane->base.name,
enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
" -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
plane->base.base.id, plane->base.name,
old_wm->wm[0].blocks, old_wm->wm[1].blocks,
old_wm->wm[2].blocks, old_wm->wm[3].blocks,
old_wm->wm[4].blocks, old_wm->wm[5].blocks,
old_wm->wm[6].blocks, old_wm->wm[7].blocks,
old_wm->trans_wm.blocks,
old_wm->sagv.wm0.blocks,
old_wm->sagv.trans_wm.blocks,
new_wm->wm[0].blocks, new_wm->wm[1].blocks,
new_wm->wm[2].blocks, new_wm->wm[3].blocks,
new_wm->wm[4].blocks, new_wm->wm[5].blocks,
new_wm->wm[6].blocks, new_wm->wm[7].blocks,
new_wm->trans_wm.blocks,
new_wm->sagv.wm0.blocks,
new_wm->sagv.trans_wm.blocks);
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
" -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
plane->base.base.id, plane->base.name,
old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
old_wm->trans_wm.min_ddb_alloc,
old_wm->sagv.wm0.min_ddb_alloc,
old_wm->sagv.trans_wm.min_ddb_alloc,
new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
new_wm->trans_wm.min_ddb_alloc,
new_wm->sagv.wm0.min_ddb_alloc,
new_wm->sagv.trans_wm.min_ddb_alloc);
}
}
}
static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
const struct skl_pipe_wm *old_pipe_wm,
const struct skl_pipe_wm *new_pipe_wm)
{
struct drm_i915_private *i915 = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(i915);
for (level = 0; level <= max_level; level++) {
/*
* We don't check uv_wm as the hardware doesn't actually
* use it. It only gets used for calculating the required
* ddb allocation.
*/
if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
skl_plane_wm_level(new_pipe_wm, plane->id, level)))
return false;
}
if (HAS_HW_SAGV_WM(i915)) {
const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
!skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
return false;
}
return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
skl_plane_trans_wm(new_pipe_wm, plane->id));
}
/*
* To make sure the cursor watermark registers are always consistent
* with our computed state the following scenario needs special
* treatment:
*
* 1. enable cursor
* 2. move cursor entirely offscreen
* 3. disable cursor
*
* Step 2. does call .disable_plane() but does not zero the watermarks
* (since we consider an offscreen cursor still active for the purposes
* of watermarks). Step 3. would not normally call .disable_plane()
* because the actual plane visibility isn't changing, and we don't
* deallocate the cursor ddb until the pipe gets disabled. So we must
* force step 3. to call .disable_plane() to update the watermark
* registers properly.
*
* Other planes do not suffer from this issues as their watermarks are
* calculated based on the actual plane visibility. The only time this
* can trigger for the other planes is during the initial readout as the
* default value of the watermarks registers is not zero.
*/
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
struct intel_plane_state *plane_state;
enum plane_id plane_id = plane->id;
/*
* Force a full wm update for every plane on modeset.
* Required because the reset value of the wm registers
* is non-zero, whereas we want all disabled planes to
* have zero watermarks. So if we turn off the relevant
* power well the hardware state will go out of sync
* with the software state.
*/
if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
skl_plane_selected_wm_equals(plane,
&old_crtc_state->wm.skl.optimal,
&new_crtc_state->wm.skl.optimal))
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
new_crtc_state->update_planes |= BIT(plane_id);
}
return 0;
}
static int
skl_compute_wm(struct intel_atomic_state *state)
{
struct intel_crtc *crtc;
struct intel_crtc_state *new_crtc_state;
int ret, i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = skl_build_pipe_wm(state, crtc);
if (ret)
return ret;
}
ret = skl_compute_ddb(state);
if (ret)
return ret;
ret = intel_compute_sagv_mask(state);
if (ret)
return ret;
/*
* skl_compute_ddb() will have adjusted the final watermarks
* based on how much ddb is available. Now we can actually
* check if the final watermarks changed.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = skl_wm_add_affected_planes(state, crtc);
if (ret)
return ret;
}
skl_print_wm_changes(state);
return 0;
}
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
{
level->enable = val & PLANE_WM_EN;
level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
}
static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
struct skl_pipe_wm *out)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
int level, max_level;
enum plane_id plane_id;
u32 val;
max_level = ilk_wm_max_level(i915);
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_plane_wm *wm = &out->planes[plane_id];
for (level = 0; level <= max_level; level++) {
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&i915->uncore, PLANE_WM(pipe, plane_id, level));
else
val = intel_uncore_read(&i915->uncore, CUR_WM(pipe, level));
skl_wm_level_from_reg_val(val, &wm->wm[level]);
}
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&i915->uncore, PLANE_WM_TRANS(pipe, plane_id));
else
val = intel_uncore_read(&i915->uncore, CUR_WM_TRANS(pipe));
skl_wm_level_from_reg_val(val, &wm->trans_wm);
if (HAS_HW_SAGV_WM(i915)) {
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&i915->uncore,
PLANE_WM_SAGV(pipe, plane_id));
else
val = intel_uncore_read(&i915->uncore,
CUR_WM_SAGV(pipe));
skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&i915->uncore,
PLANE_WM_SAGV_TRANS(pipe, plane_id));
else
val = intel_uncore_read(&i915->uncore,
CUR_WM_SAGV_TRANS(pipe));
skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
} else if (DISPLAY_VER(i915) >= 12) {
wm->sagv.wm0 = wm->wm[0];
wm->sagv.trans_wm = wm->trans_wm;
}
}
}
void skl_wm_get_hw_state(struct drm_i915_private *i915)
{
struct intel_dbuf_state *dbuf_state =
to_intel_dbuf_state(i915->display.dbuf.obj.state);
struct intel_crtc *crtc;
if (HAS_MBUS_JOINING(i915))
dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN;
for_each_intel_crtc(&i915->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
enum pipe pipe = crtc->pipe;
unsigned int mbus_offset;
enum plane_id plane_id;
u8 slices;
memset(&crtc_state->wm.skl.optimal, 0,
sizeof(crtc_state->wm.skl.optimal));
if (crtc_state->hw.active)
skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb[plane_id];
struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
if (!crtc_state->hw.active)
continue;
skl_ddb_get_hw_plane_state(i915, crtc->pipe,
plane_id, ddb, ddb_y);
skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
}
dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
/*
* Used for checking overlaps, so we need absolute
* offsets instead of MBUS relative offsets.
*/
slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
dbuf_state->joined_mbus);
mbus_offset = mbus_ddb_offset(i915, slices);
crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
/* The slices actually used by the planes on the pipe */
dbuf_state->slices[pipe] =
skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb);
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
crtc->base.base.id, crtc->base.name,
dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
str_yes_no(dbuf_state->joined_mbus));
}
dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices;
}
static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
{
const struct intel_dbuf_state *dbuf_state =
to_intel_dbuf_state(i915->display.dbuf.obj.state);
struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
struct intel_crtc *crtc;
for_each_intel_crtc(&i915->drm, crtc) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
entries[crtc->pipe] = crtc_state->wm.skl.ddb;
}
for_each_intel_crtc(&i915->drm, crtc) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
u8 slices;
slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
dbuf_state->joined_mbus);
if (dbuf_state->slices[crtc->pipe] & ~slices)
return true;
if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
I915_MAX_PIPES, crtc->pipe))
return true;
}
return false;
}
void skl_wm_sanitize(struct drm_i915_private *i915)
{
struct intel_crtc *crtc;
/*
* On TGL/RKL (at least) the BIOS likes to assign the planes
* to the wrong DBUF slices. This will cause an infinite loop
* in skl_commit_modeset_enables() as it can't find a way to
* transition between the old bogus DBUF layout to the new
* proper DBUF layout without DBUF allocation overlaps between
* the planes (which cannot be allowed or else the hardware
* may hang). If we detect a bogus DBUF layout just turn off
* all the planes so that skl_commit_modeset_enables() can
* simply ignore them.
*/
if (!skl_dbuf_is_misconfigured(i915))
return;
drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
for_each_intel_crtc(&i915->drm, crtc) {
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
const struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
if (plane_state->uapi.visible)
intel_plane_disable_noatomic(crtc, plane);
drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
}
}
void intel_wm_state_verify(struct intel_crtc *crtc,
struct intel_crtc_state *new_crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct skl_hw_state {
struct skl_ddb_entry ddb[I915_MAX_PLANES];
struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
struct skl_pipe_wm wm;
} *hw;
const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
int level, max_level = ilk_wm_max_level(i915);
struct intel_plane *plane;
u8 hw_enabled_slices;
if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active)
return;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw)
return;
skl_pipe_wm_get_hw_state(crtc, &hw->wm);
skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y);
hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915);
if (DISPLAY_VER(i915) >= 11 &&
hw_enabled_slices != i915->display.dbuf.enabled_slices)
drm_err(&i915->drm,
"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
i915->display.dbuf.enabled_slices,
hw_enabled_slices);
for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
const struct skl_wm_level *hw_wm_level, *sw_wm_level;
/* Watermarks */
for (level = 0; level <= max_level; level++) {
hw_wm_level = &hw->wm.planes[plane->id].wm[level];
sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
continue;
drm_err(&i915->drm,
"[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
plane->base.base.id, plane->base.name, level,
sw_wm_level->enable,
sw_wm_level->blocks,
sw_wm_level->lines,
hw_wm_level->enable,
hw_wm_level->blocks,
hw_wm_level->lines);
}
hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
drm_err(&i915->drm,
"[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
plane->base.base.id, plane->base.name,
sw_wm_level->enable,
sw_wm_level->blocks,
sw_wm_level->lines,
hw_wm_level->enable,
hw_wm_level->blocks,
hw_wm_level->lines);
}
hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
if (HAS_HW_SAGV_WM(i915) &&
!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
drm_err(&i915->drm,
"[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
plane->base.base.id, plane->base.name,
sw_wm_level->enable,
sw_wm_level->blocks,
sw_wm_level->lines,
hw_wm_level->enable,
hw_wm_level->blocks,
hw_wm_level->lines);
}
hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
if (HAS_HW_SAGV_WM(i915) &&
!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
drm_err(&i915->drm,
"[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
plane->base.base.id, plane->base.name,
sw_wm_level->enable,
sw_wm_level->blocks,
sw_wm_level->lines,
hw_wm_level->enable,
hw_wm_level->blocks,
hw_wm_level->lines);
}
/* DDB */
hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
drm_err(&i915->drm,
"[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
plane->base.base.id, plane->base.name,
sw_ddb_entry->start, sw_ddb_entry->end,
hw_ddb_entry->start, hw_ddb_entry->end);
}
}
kfree(hw);
}
void intel_enable_ipc(struct drm_i915_private *i915)
{
u32 val;
if (!HAS_IPC(i915))
return;
val = intel_uncore_read(&i915->uncore, DISP_ARB_CTL2);
if (i915->ipc_enabled)
val |= DISP_IPC_ENABLE;
else
val &= ~DISP_IPC_ENABLE;
intel_uncore_write(&i915->uncore, DISP_ARB_CTL2, val);
}
static bool intel_can_enable_ipc(struct drm_i915_private *i915)
{
/* Display WA #0477 WaDisableIPC: skl */
if (IS_SKYLAKE(i915))
return false;
/* Display WA #1141: SKL:all KBL:all CFL */
if (IS_KABYLAKE(i915) ||
IS_COFFEELAKE(i915) ||
IS_COMETLAKE(i915))
return i915->dram_info.symmetric_memory;
return true;
}
void intel_init_ipc(struct drm_i915_private *i915)
{
if (!HAS_IPC(i915))
return;
i915->ipc_enabled = intel_can_enable_ipc(i915);
intel_enable_ipc(i915);
}
static void
adjust_wm_latency(struct drm_i915_private *i915,
u16 wm[], int max_level, int read_latency)
{
bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed;
int i, level;
/*
* If a level n (n > 1) has a 0us latency, all levels m (m >= n)
* need to be disabled. We make sure to sanitize the values out
* of the punit to satisfy this requirement.
*/
for (level = 1; level <= max_level; level++) {
if (wm[level] == 0) {
for (i = level + 1; i <= max_level; i++)
wm[i] = 0;
max_level = level - 1;
break;
}
}
/*
* WaWmMemoryReadLatency
*
* punit doesn't take into account the read latency so we need
* to add proper adjustement to each valid level we retrieve
* from the punit when level 0 response data is 0us.
*/
if (wm[0] == 0) {
for (level = 0; level <= max_level; level++)
wm[level] += read_latency;
}
/*
* WA Level-0 adjustment for 16GB DIMMs: SKL+
* If we could not get dimm info enable this WA to prevent from
* any underrun. If not able to get Dimm info assume 16GB dimm
* to avoid any underrun.
*/
if (wm_lv_0_adjust_needed)
wm[0] += 1;
}
static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
{
struct intel_uncore *uncore = &i915->uncore;
int max_level = ilk_wm_max_level(i915);
u32 val;
val = intel_uncore_read(uncore, MTL_LATENCY_LP0_LP1);
wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
val = intel_uncore_read(uncore, MTL_LATENCY_LP2_LP3);
wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
val = intel_uncore_read(uncore, MTL_LATENCY_LP4_LP5);
wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
adjust_wm_latency(i915, wm, max_level, 6);
}
static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
{
int max_level = ilk_wm_max_level(i915);
int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2;
int mult = IS_DG2(i915) ? 2 : 1;
u32 val;
int ret;
/* read the first set of memory latencies[0:3] */
val = 0; /* data0 to be programmed to 0 for first set */
ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
if (ret) {
drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
return;
}
wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
/* read the second set of memory latencies[4:7] */
val = 1; /* data0 to be programmed to 1 for second set */
ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
if (ret) {
drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
return;
}
wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
adjust_wm_latency(i915, wm, max_level, read_latency);
}
static void skl_setup_wm_latency(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 14)
mtl_read_wm_latency(i915, i915->display.wm.skl_latency);
else
skl_read_wm_latency(i915, i915->display.wm.skl_latency);
intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency);
}
static const struct intel_wm_funcs skl_wm_funcs = {
.compute_global_watermarks = skl_compute_wm,
};
void skl_wm_init(struct drm_i915_private *i915)
{
intel_sagv_init(i915);
skl_setup_wm_latency(i915);
i915->display.funcs.wm = &skl_wm_funcs;
}
static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
struct intel_dbuf_state *dbuf_state;
dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
if (!dbuf_state)
return NULL;
return &dbuf_state->base;
}
static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
struct intel_global_state *state)
{
kfree(state);
}
static const struct intel_global_state_funcs intel_dbuf_funcs = {
.atomic_duplicate_state = intel_dbuf_duplicate_state,
.atomic_destroy_state = intel_dbuf_destroy_state,
};
struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_global_state *dbuf_state;
dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj);
if (IS_ERR(dbuf_state))
return ERR_CAST(dbuf_state);
return to_intel_dbuf_state(dbuf_state);
}
int intel_dbuf_init(struct drm_i915_private *i915)
{
struct intel_dbuf_state *dbuf_state;
dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
if (!dbuf_state)
return -ENOMEM;
intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj,
&dbuf_state->base, &intel_dbuf_funcs);
return 0;
}
/*
* Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
* update the request state of all DBUS slices.
*/
static void update_mbus_pre_enable(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
u32 mbus_ctl, dbuf_min_tracker_val;
enum dbuf_slice slice;
const struct intel_dbuf_state *dbuf_state =
intel_atomic_get_new_dbuf_state(state);
if (!HAS_MBUS_JOINING(i915))
return;
/*
* TODO: Implement vblank synchronized MBUS joining changes.
* Must be properly coordinated with dbuf reprogramming.
*/
if (dbuf_state->joined_mbus) {
mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
MBUS_JOIN_PIPE_SELECT_NONE;
dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
} else {
mbus_ctl = MBUS_HASHING_MODE_2x2 |
MBUS_JOIN_PIPE_SELECT_NONE;
dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
}
intel_de_rmw(i915, MBUS_CTL,
MBUS_HASHING_MODE_MASK | MBUS_JOIN |
MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
for_each_dbuf_slice(i915, slice)
intel_de_rmw(i915, DBUF_CTL_S(slice),
DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
dbuf_min_tracker_val);
}
void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
if (!new_dbuf_state ||
(new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
return;
WARN_ON(!new_dbuf_state->base.changed);
update_mbus_pre_enable(state);
gen9_dbuf_slices_update(i915,
old_dbuf_state->enabled_slices |
new_dbuf_state->enabled_slices);
}
void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
if (!new_dbuf_state ||
(new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
return;
WARN_ON(!new_dbuf_state->base.changed);
gen9_dbuf_slices_update(i915,
new_dbuf_state->enabled_slices);
}
void intel_mbus_dbox_update(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
const struct intel_crtc_state *new_crtc_state;
const struct intel_crtc *crtc;
u32 val = 0;
int i;
if (DISPLAY_VER(i915) < 11)
return;
new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
if (!new_dbuf_state ||
(new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
return;
if (DISPLAY_VER(i915) >= 12) {
val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
}
/* Wa_22010947358:adl-p */
if (IS_ALDERLAKE_P(i915))
val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
MBUS_DBOX_A_CREDIT(4);
else
val |= MBUS_DBOX_A_CREDIT(2);
if (IS_ALDERLAKE_P(i915)) {
val |= MBUS_DBOX_BW_CREDIT(2);
val |= MBUS_DBOX_B_CREDIT(8);
} else if (DISPLAY_VER(i915) >= 12) {
val |= MBUS_DBOX_BW_CREDIT(2);
val |= MBUS_DBOX_B_CREDIT(12);
} else {
val |= MBUS_DBOX_BW_CREDIT(1);
val |= MBUS_DBOX_B_CREDIT(8);
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.active ||
!intel_crtc_needs_modeset(new_crtc_state))
continue;
intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), val);
}
}