| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* Copyright (C) 2023 Intel Corporation */ |
| |
| #ifndef _IDPF_TXRX_H_ |
| #define _IDPF_TXRX_H_ |
| |
| #include <net/page_pool/helpers.h> |
| #include <net/tcp.h> |
| #include <net/netdev_queues.h> |
| |
| #include "virtchnl2_lan_desc.h" |
| |
| #define IDPF_LARGE_MAX_Q 256 |
| #define IDPF_MAX_Q 16 |
| #define IDPF_MIN_Q 2 |
| /* Mailbox Queue */ |
| #define IDPF_MAX_MBXQ 1 |
| |
| #define IDPF_MIN_TXQ_DESC 64 |
| #define IDPF_MIN_RXQ_DESC 64 |
| #define IDPF_MIN_TXQ_COMPLQ_DESC 256 |
| #define IDPF_MAX_QIDS 256 |
| |
| /* Number of descriptors in a queue should be a multiple of 32. RX queue |
| * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE |
| * to achieve BufQ descriptors aligned to 32 |
| */ |
| #define IDPF_REQ_DESC_MULTIPLE 32 |
| #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32) |
| #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6) |
| #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2) |
| |
| #define IDPF_MAX_DESCS 8160 |
| #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE) |
| #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE) |
| #define MIN_SUPPORT_TXDID (\ |
| VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\ |
| VIRTCHNL2_TXDID_FLEX_TSO_CTX) |
| |
| #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1 |
| #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1 |
| #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4 |
| #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4 |
| |
| #define IDPF_COMPLQ_PER_GROUP 1 |
| #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1 |
| #define IDPF_MAX_BUFQS_PER_RXQ_GRP 2 |
| #define IDPF_BUFQ2_ENA 1 |
| #define IDPF_NUMQ_PER_CHUNK 1 |
| |
| #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1 |
| #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1 |
| |
| /* Default vector sharing */ |
| #define IDPF_MBX_Q_VEC 1 |
| #define IDPF_MIN_Q_VEC 1 |
| |
| #define IDPF_DFLT_TX_Q_DESC_COUNT 512 |
| #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512 |
| #define IDPF_DFLT_RX_Q_DESC_COUNT 512 |
| |
| /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a |
| * given RX completion queue has descriptors. This includes _ALL_ buffer |
| * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers, |
| * you have a total of 1024 buffers so your RX queue _must_ have at least that |
| * many descriptors. This macro divides a given number of RX descriptors by |
| * number of buffer queues to calculate how many descriptors each buffer queue |
| * can have without overrunning the RX queue. |
| * |
| * If you give hardware more buffers than completion descriptors what will |
| * happen is that if hardware gets a chance to post more than ring wrap of |
| * descriptors before SW gets an interrupt and overwrites SW head, the gen bit |
| * in the descriptor will be wrong. Any overwritten descriptors' buffers will |
| * be gone forever and SW has no reasonable way to tell that this has happened. |
| * From SW perspective, when we finally get an interrupt, it looks like we're |
| * still waiting for descriptor to be done, stalling forever. |
| */ |
| #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ)) |
| |
| #define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1) |
| |
| #define IDPF_RX_BUMP_NTC(rxq, ntc) \ |
| do { \ |
| if (unlikely(++(ntc) == (rxq)->desc_count)) { \ |
| ntc = 0; \ |
| change_bit(__IDPF_Q_GEN_CHK, (rxq)->flags); \ |
| } \ |
| } while (0) |
| |
| #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \ |
| do { \ |
| if (unlikely(++(idx) == (q)->desc_count)) \ |
| idx = 0; \ |
| } while (0) |
| |
| #define IDPF_RX_HDR_SIZE 256 |
| #define IDPF_RX_BUF_2048 2048 |
| #define IDPF_RX_BUF_4096 4096 |
| #define IDPF_RX_BUF_STRIDE 32 |
| #define IDPF_RX_BUF_POST_STRIDE 16 |
| #define IDPF_LOW_WATERMARK 64 |
| /* Size of header buffer specifically for header split */ |
| #define IDPF_HDR_BUF_SIZE 256 |
| #define IDPF_PACKET_HDR_PAD \ |
| (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN * 2) |
| #define IDPF_TX_TSO_MIN_MSS 88 |
| |
| /* Minimum number of descriptors between 2 descriptors with the RE bit set; |
| * only relevant in flow scheduling mode |
| */ |
| #define IDPF_TX_SPLITQ_RE_MIN_GAP 64 |
| |
| #define IDPF_RX_BI_BUFID_S 0 |
| #define IDPF_RX_BI_BUFID_M GENMASK(14, 0) |
| #define IDPF_RX_BI_GEN_S 15 |
| #define IDPF_RX_BI_GEN_M BIT(IDPF_RX_BI_GEN_S) |
| #define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M |
| #define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M |
| |
| #define IDPF_SINGLEQ_RX_BUF_DESC(rxq, i) \ |
| (&(((struct virtchnl2_singleq_rx_buf_desc *)((rxq)->desc_ring))[i])) |
| #define IDPF_SPLITQ_RX_BUF_DESC(rxq, i) \ |
| (&(((struct virtchnl2_splitq_rx_buf_desc *)((rxq)->desc_ring))[i])) |
| #define IDPF_SPLITQ_RX_BI_DESC(rxq, i) ((((rxq)->ring))[i]) |
| |
| #define IDPF_BASE_TX_DESC(txq, i) \ |
| (&(((struct idpf_base_tx_desc *)((txq)->desc_ring))[i])) |
| #define IDPF_BASE_TX_CTX_DESC(txq, i) \ |
| (&(((struct idpf_base_tx_ctx_desc *)((txq)->desc_ring))[i])) |
| #define IDPF_SPLITQ_TX_COMPLQ_DESC(txcq, i) \ |
| (&(((struct idpf_splitq_tx_compl_desc *)((txcq)->desc_ring))[i])) |
| |
| #define IDPF_FLEX_TX_DESC(txq, i) \ |
| (&(((union idpf_tx_flex_desc *)((txq)->desc_ring))[i])) |
| #define IDPF_FLEX_TX_CTX_DESC(txq, i) \ |
| (&(((struct idpf_flex_tx_ctx_desc *)((txq)->desc_ring))[i])) |
| |
| #define IDPF_DESC_UNUSED(txq) \ |
| ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \ |
| (txq)->next_to_clean - (txq)->next_to_use - 1) |
| |
| #define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->buf_stack.top) |
| #define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \ |
| (txq)->desc_count >> 2) |
| |
| #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1) |
| /* Determine the absolute number of completions pending, i.e. the number of |
| * completions that are expected to arrive on the TX completion queue. |
| */ |
| #define IDPF_TX_COMPLQ_PENDING(txq) \ |
| (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \ |
| 0 : U64_MAX) + \ |
| (txq)->num_completions_pending - (txq)->complq->num_completions) |
| |
| #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16 |
| #define IDPF_SPLITQ_TX_INVAL_COMPL_TAG -1 |
| /* Adjust the generation for the completion tag and wrap if necessary */ |
| #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \ |
| ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \ |
| 0 : (txq)->compl_tag_cur_gen) |
| |
| #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS) |
| |
| #define IDPF_TX_FLAGS_TSO BIT(0) |
| #define IDPF_TX_FLAGS_IPV4 BIT(1) |
| #define IDPF_TX_FLAGS_IPV6 BIT(2) |
| #define IDPF_TX_FLAGS_TUNNEL BIT(3) |
| |
| union idpf_tx_flex_desc { |
| struct idpf_flex_tx_desc q; /* queue based scheduling */ |
| struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */ |
| }; |
| |
| /** |
| * struct idpf_tx_buf |
| * @next_to_watch: Next descriptor to clean |
| * @skb: Pointer to the skb |
| * @dma: DMA address |
| * @len: DMA length |
| * @bytecount: Number of bytes |
| * @gso_segs: Number of GSO segments |
| * @compl_tag: Splitq only, unique identifier for a buffer. Used to compare |
| * with completion tag returned in buffer completion event. |
| * Because the completion tag is expected to be the same in all |
| * data descriptors for a given packet, and a single packet can |
| * span multiple buffers, we need this field to track all |
| * buffers associated with this completion tag independently of |
| * the buf_id. The tag consists of a N bit buf_id and M upper |
| * order "generation bits". See compl_tag_bufid_m and |
| * compl_tag_gen_s in struct idpf_queue. We'll use a value of -1 |
| * to indicate the tag is not valid. |
| * @ctx_entry: Singleq only. Used to indicate the corresponding entry |
| * in the descriptor ring was used for a context descriptor and |
| * this buffer entry should be skipped. |
| */ |
| struct idpf_tx_buf { |
| void *next_to_watch; |
| struct sk_buff *skb; |
| DEFINE_DMA_UNMAP_ADDR(dma); |
| DEFINE_DMA_UNMAP_LEN(len); |
| unsigned int bytecount; |
| unsigned short gso_segs; |
| |
| union { |
| int compl_tag; |
| |
| bool ctx_entry; |
| }; |
| }; |
| |
| struct idpf_tx_stash { |
| struct hlist_node hlist; |
| struct idpf_tx_buf buf; |
| }; |
| |
| /** |
| * struct idpf_buf_lifo - LIFO for managing OOO completions |
| * @top: Used to know how many buffers are left |
| * @size: Total size of LIFO |
| * @bufs: Backing array |
| */ |
| struct idpf_buf_lifo { |
| u16 top; |
| u16 size; |
| struct idpf_tx_stash **bufs; |
| }; |
| |
| /** |
| * struct idpf_tx_offload_params - Offload parameters for a given packet |
| * @tx_flags: Feature flags enabled for this packet |
| * @hdr_offsets: Offset parameter for single queue model |
| * @cd_tunneling: Type of tunneling enabled for single queue model |
| * @tso_len: Total length of payload to segment |
| * @mss: Segment size |
| * @tso_segs: Number of segments to be sent |
| * @tso_hdr_len: Length of headers to be duplicated |
| * @td_cmd: Command field to be inserted into descriptor |
| */ |
| struct idpf_tx_offload_params { |
| u32 tx_flags; |
| |
| u32 hdr_offsets; |
| u32 cd_tunneling; |
| |
| u32 tso_len; |
| u16 mss; |
| u16 tso_segs; |
| u16 tso_hdr_len; |
| |
| u16 td_cmd; |
| }; |
| |
| /** |
| * struct idpf_tx_splitq_params |
| * @dtype: General descriptor info |
| * @eop_cmd: Type of EOP |
| * @compl_tag: Associated tag for completion |
| * @td_tag: Descriptor tunneling tag |
| * @offload: Offload parameters |
| */ |
| struct idpf_tx_splitq_params { |
| enum idpf_tx_desc_dtype_value dtype; |
| u16 eop_cmd; |
| union { |
| u16 compl_tag; |
| u16 td_tag; |
| }; |
| |
| struct idpf_tx_offload_params offload; |
| }; |
| |
| enum idpf_tx_ctx_desc_eipt_offload { |
| IDPF_TX_CTX_EXT_IP_NONE = 0x0, |
| IDPF_TX_CTX_EXT_IP_IPV6 = 0x1, |
| IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2, |
| IDPF_TX_CTX_EXT_IP_IPV4 = 0x3 |
| }; |
| |
| /* Checksum offload bits decoded from the receive descriptor. */ |
| struct idpf_rx_csum_decoded { |
| u32 l3l4p : 1; |
| u32 ipe : 1; |
| u32 eipe : 1; |
| u32 eudpe : 1; |
| u32 ipv6exadd : 1; |
| u32 l4e : 1; |
| u32 pprs : 1; |
| u32 nat : 1; |
| u32 raw_csum_inv : 1; |
| u32 raw_csum : 16; |
| }; |
| |
| struct idpf_rx_extracted { |
| unsigned int size; |
| u16 rx_ptype; |
| }; |
| |
| #define IDPF_TX_COMPLQ_CLEAN_BUDGET 256 |
| #define IDPF_TX_MIN_PKT_LEN 17 |
| #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1 |
| #define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \ |
| sizeof(struct idpf_flex_tx_desc)) |
| #define IDPF_TX_DESCS_FOR_CTX 1 |
| /* TX descriptors needed, worst case */ |
| #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \ |
| IDPF_TX_DESCS_PER_CACHE_LINE + \ |
| IDPF_TX_DESCS_FOR_SKB_DATA_PTR) |
| |
| /* The size limit for a transmit buffer in a descriptor is (16K - 1). |
| * In order to align with the read requests we will align the value to |
| * the nearest 4K which represents our maximum read request size. |
| */ |
| #define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K |
| #define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1) |
| #define IDPF_TX_MAX_DESC_DATA_ALIGNED \ |
| ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE) |
| |
| #define IDPF_RX_DMA_ATTR \ |
| (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) |
| #define IDPF_RX_DESC(rxq, i) \ |
| (&(((union virtchnl2_rx_desc *)((rxq)->desc_ring))[i])) |
| |
| struct idpf_rx_buf { |
| struct page *page; |
| unsigned int page_offset; |
| u16 truesize; |
| }; |
| |
| #define IDPF_RX_MAX_PTYPE_PROTO_IDS 32 |
| #define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \ |
| (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS)) |
| #define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info) |
| #define IDPF_RX_MAX_PTYPES_PER_BUF \ |
| DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \ |
| IDPF_RX_MAX_PTYPE_SZ) |
| |
| #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count) |
| |
| #define IDPF_TUN_IP_GRE (\ |
| IDPF_PTYPE_TUNNEL_IP |\ |
| IDPF_PTYPE_TUNNEL_IP_GRENAT) |
| |
| #define IDPF_TUN_IP_GRE_MAC (\ |
| IDPF_TUN_IP_GRE |\ |
| IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC) |
| |
| #define IDPF_RX_MAX_PTYPE 1024 |
| #define IDPF_RX_MAX_BASE_PTYPE 256 |
| #define IDPF_INVALID_PTYPE_ID 0xFFFF |
| |
| /* Packet type non-ip values */ |
| enum idpf_rx_ptype_l2 { |
| IDPF_RX_PTYPE_L2_RESERVED = 0, |
| IDPF_RX_PTYPE_L2_MAC_PAY2 = 1, |
| IDPF_RX_PTYPE_L2_TIMESYNC_PAY2 = 2, |
| IDPF_RX_PTYPE_L2_FIP_PAY2 = 3, |
| IDPF_RX_PTYPE_L2_OUI_PAY2 = 4, |
| IDPF_RX_PTYPE_L2_MACCNTRL_PAY2 = 5, |
| IDPF_RX_PTYPE_L2_LLDP_PAY2 = 6, |
| IDPF_RX_PTYPE_L2_ECP_PAY2 = 7, |
| IDPF_RX_PTYPE_L2_EVB_PAY2 = 8, |
| IDPF_RX_PTYPE_L2_QCN_PAY2 = 9, |
| IDPF_RX_PTYPE_L2_EAPOL_PAY2 = 10, |
| IDPF_RX_PTYPE_L2_ARP = 11, |
| }; |
| |
| enum idpf_rx_ptype_outer_ip { |
| IDPF_RX_PTYPE_OUTER_L2 = 0, |
| IDPF_RX_PTYPE_OUTER_IP = 1, |
| }; |
| |
| #define IDPF_RX_PTYPE_TO_IPV(ptype, ipv) \ |
| (((ptype)->outer_ip == IDPF_RX_PTYPE_OUTER_IP) && \ |
| ((ptype)->outer_ip_ver == (ipv))) |
| |
| enum idpf_rx_ptype_outer_ip_ver { |
| IDPF_RX_PTYPE_OUTER_NONE = 0, |
| IDPF_RX_PTYPE_OUTER_IPV4 = 1, |
| IDPF_RX_PTYPE_OUTER_IPV6 = 2, |
| }; |
| |
| enum idpf_rx_ptype_outer_fragmented { |
| IDPF_RX_PTYPE_NOT_FRAG = 0, |
| IDPF_RX_PTYPE_FRAG = 1, |
| }; |
| |
| enum idpf_rx_ptype_tunnel_type { |
| IDPF_RX_PTYPE_TUNNEL_NONE = 0, |
| IDPF_RX_PTYPE_TUNNEL_IP_IP = 1, |
| IDPF_RX_PTYPE_TUNNEL_IP_GRENAT = 2, |
| IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC = 3, |
| IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC_VLAN = 4, |
| }; |
| |
| enum idpf_rx_ptype_tunnel_end_prot { |
| IDPF_RX_PTYPE_TUNNEL_END_NONE = 0, |
| IDPF_RX_PTYPE_TUNNEL_END_IPV4 = 1, |
| IDPF_RX_PTYPE_TUNNEL_END_IPV6 = 2, |
| }; |
| |
| enum idpf_rx_ptype_inner_prot { |
| IDPF_RX_PTYPE_INNER_PROT_NONE = 0, |
| IDPF_RX_PTYPE_INNER_PROT_UDP = 1, |
| IDPF_RX_PTYPE_INNER_PROT_TCP = 2, |
| IDPF_RX_PTYPE_INNER_PROT_SCTP = 3, |
| IDPF_RX_PTYPE_INNER_PROT_ICMP = 4, |
| IDPF_RX_PTYPE_INNER_PROT_TIMESYNC = 5, |
| }; |
| |
| enum idpf_rx_ptype_payload_layer { |
| IDPF_RX_PTYPE_PAYLOAD_LAYER_NONE = 0, |
| IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY2 = 1, |
| IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY3 = 2, |
| IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY4 = 3, |
| }; |
| |
| enum idpf_tunnel_state { |
| IDPF_PTYPE_TUNNEL_IP = BIT(0), |
| IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1), |
| IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2), |
| }; |
| |
| struct idpf_ptype_state { |
| bool outer_ip; |
| bool outer_frag; |
| u8 tunnel_state; |
| }; |
| |
| struct idpf_rx_ptype_decoded { |
| u32 ptype:10; |
| u32 known:1; |
| u32 outer_ip:1; |
| u32 outer_ip_ver:2; |
| u32 outer_frag:1; |
| u32 tunnel_type:3; |
| u32 tunnel_end_prot:2; |
| u32 tunnel_end_frag:1; |
| u32 inner_prot:4; |
| u32 payload_layer:3; |
| }; |
| |
| /** |
| * enum idpf_queue_flags_t |
| * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to |
| * identify new descriptor writebacks on the ring. HW sets |
| * the gen bit to 1 on the first writeback of any given |
| * descriptor. After the ring wraps, HW sets the gen bit of |
| * those descriptors to 0, and continues flipping |
| * 0->1 or 1->0 on each ring wrap. SW maintains its own |
| * gen bit to know what value will indicate writebacks on |
| * the next pass around the ring. E.g. it is initialized |
| * to 1 and knows that reading a gen bit of 1 in any |
| * descriptor on the initial pass of the ring indicates a |
| * writeback. It also flips on every ring wrap. |
| * @__IDPF_RFLQ_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW bit |
| * and RFLGQ_GEN is the SW bit. |
| * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling |
| * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions |
| * @__IDPF_Q_POLL_MODE: Enable poll mode |
| * @__IDPF_Q_FLAGS_NBITS: Must be last |
| */ |
| enum idpf_queue_flags_t { |
| __IDPF_Q_GEN_CHK, |
| __IDPF_RFLQ_GEN_CHK, |
| __IDPF_Q_FLOW_SCH_EN, |
| __IDPF_Q_SW_MARKER, |
| __IDPF_Q_POLL_MODE, |
| |
| __IDPF_Q_FLAGS_NBITS, |
| }; |
| |
| /** |
| * struct idpf_vec_regs |
| * @dyn_ctl_reg: Dynamic control interrupt register offset |
| * @itrn_reg: Interrupt Throttling Rate register offset |
| * @itrn_index_spacing: Register spacing between ITR registers of the same |
| * vector |
| */ |
| struct idpf_vec_regs { |
| u32 dyn_ctl_reg; |
| u32 itrn_reg; |
| u32 itrn_index_spacing; |
| }; |
| |
| /** |
| * struct idpf_intr_reg |
| * @dyn_ctl: Dynamic control interrupt register |
| * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable |
| * @dyn_ctl_itridx_s: Register bit offset for ITR index |
| * @dyn_ctl_itridx_m: Mask for ITR index |
| * @dyn_ctl_intrvl_s: Register bit offset for ITR interval |
| * @rx_itr: RX ITR register |
| * @tx_itr: TX ITR register |
| * @icr_ena: Interrupt cause register offset |
| * @icr_ena_ctlq_m: Mask for ICR |
| */ |
| struct idpf_intr_reg { |
| void __iomem *dyn_ctl; |
| u32 dyn_ctl_intena_m; |
| u32 dyn_ctl_itridx_s; |
| u32 dyn_ctl_itridx_m; |
| u32 dyn_ctl_intrvl_s; |
| void __iomem *rx_itr; |
| void __iomem *tx_itr; |
| void __iomem *icr_ena; |
| u32 icr_ena_ctlq_m; |
| }; |
| |
| /** |
| * struct idpf_q_vector |
| * @vport: Vport back pointer |
| * @affinity_mask: CPU affinity mask |
| * @napi: napi handler |
| * @v_idx: Vector index |
| * @intr_reg: See struct idpf_intr_reg |
| * @num_txq: Number of TX queues |
| * @tx: Array of TX queues to service |
| * @tx_dim: Data for TX net_dim algorithm |
| * @tx_itr_value: TX interrupt throttling rate |
| * @tx_intr_mode: Dynamic ITR or not |
| * @tx_itr_idx: TX ITR index |
| * @num_rxq: Number of RX queues |
| * @rx: Array of RX queues to service |
| * @rx_dim: Data for RX net_dim algorithm |
| * @rx_itr_value: RX interrupt throttling rate |
| * @rx_intr_mode: Dynamic ITR or not |
| * @rx_itr_idx: RX ITR index |
| * @num_bufq: Number of buffer queues |
| * @bufq: Array of buffer queues to service |
| * @total_events: Number of interrupts processed |
| * @name: Queue vector name |
| */ |
| struct idpf_q_vector { |
| struct idpf_vport *vport; |
| cpumask_t affinity_mask; |
| struct napi_struct napi; |
| u16 v_idx; |
| struct idpf_intr_reg intr_reg; |
| |
| u16 num_txq; |
| struct idpf_queue **tx; |
| struct dim tx_dim; |
| u16 tx_itr_value; |
| bool tx_intr_mode; |
| u32 tx_itr_idx; |
| |
| u16 num_rxq; |
| struct idpf_queue **rx; |
| struct dim rx_dim; |
| u16 rx_itr_value; |
| bool rx_intr_mode; |
| u32 rx_itr_idx; |
| |
| u16 num_bufq; |
| struct idpf_queue **bufq; |
| |
| u16 total_events; |
| char *name; |
| }; |
| |
| struct idpf_rx_queue_stats { |
| u64_stats_t packets; |
| u64_stats_t bytes; |
| u64_stats_t rsc_pkts; |
| u64_stats_t hw_csum_err; |
| u64_stats_t hsplit_pkts; |
| u64_stats_t hsplit_buf_ovf; |
| u64_stats_t bad_descs; |
| }; |
| |
| struct idpf_tx_queue_stats { |
| u64_stats_t packets; |
| u64_stats_t bytes; |
| u64_stats_t lso_pkts; |
| u64_stats_t linearize; |
| u64_stats_t q_busy; |
| u64_stats_t skb_drops; |
| u64_stats_t dma_map_errs; |
| }; |
| |
| struct idpf_cleaned_stats { |
| u32 packets; |
| u32 bytes; |
| }; |
| |
| union idpf_queue_stats { |
| struct idpf_rx_queue_stats rx; |
| struct idpf_tx_queue_stats tx; |
| }; |
| |
| #define IDPF_ITR_DYNAMIC 1 |
| #define IDPF_ITR_MAX 0x1FE0 |
| #define IDPF_ITR_20K 0x0032 |
| #define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */ |
| #define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */ |
| #define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK) |
| #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode) |
| #define IDPF_ITR_TX_DEF IDPF_ITR_20K |
| #define IDPF_ITR_RX_DEF IDPF_ITR_20K |
| /* Index used for 'No ITR' update in DYN_CTL register */ |
| #define IDPF_NO_ITR_UPDATE_IDX 3 |
| #define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt) |
| #define IDPF_DIM_DEFAULT_PROFILE_IX 1 |
| |
| /** |
| * struct idpf_queue |
| * @dev: Device back pointer for DMA mapping |
| * @vport: Back pointer to associated vport |
| * @txq_grp: See struct idpf_txq_group |
| * @rxq_grp: See struct idpf_rxq_group |
| * @idx: For buffer queue, it is used as group id, either 0 or 1. On clean, |
| * buffer queue uses this index to determine which group of refill queues |
| * to clean. |
| * For TX queue, it is used as index to map between TX queue group and |
| * hot path TX pointers stored in vport. Used in both singleq/splitq. |
| * For RX queue, it is used to index to total RX queue across groups and |
| * used for skb reporting. |
| * @tail: Tail offset. Used for both queue models single and split. In splitq |
| * model relevant only for TX queue and RX queue. |
| * @tx_buf: See struct idpf_tx_buf |
| * @rx_buf: Struct with RX buffer related members |
| * @rx_buf.buf: See struct idpf_rx_buf |
| * @rx_buf.hdr_buf_pa: DMA handle |
| * @rx_buf.hdr_buf_va: Virtual address |
| * @pp: Page pool pointer |
| * @skb: Pointer to the skb |
| * @q_type: Queue type (TX, RX, TX completion, RX buffer) |
| * @q_id: Queue id |
| * @desc_count: Number of descriptors |
| * @next_to_use: Next descriptor to use. Relevant in both split & single txq |
| * and bufq. |
| * @next_to_clean: Next descriptor to clean. In split queue model, only |
| * relevant to TX completion queue and RX queue. |
| * @next_to_alloc: RX buffer to allocate at. Used only for RX. In splitq model |
| * only relevant to RX queue. |
| * @flags: See enum idpf_queue_flags_t |
| * @q_stats: See union idpf_queue_stats |
| * @stats_sync: See struct u64_stats_sync |
| * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on |
| * the TX completion queue, it can be for any TXQ associated |
| * with that completion queue. This means we can clean up to |
| * N TXQs during a single call to clean the completion queue. |
| * cleaned_bytes|pkts tracks the clean stats per TXQ during |
| * that single call to clean the completion queue. By doing so, |
| * we can update BQL with aggregate cleaned stats for each TXQ |
| * only once at the end of the cleaning routine. |
| * @cleaned_pkts: Number of packets cleaned for the above said case |
| * @rx_hsplit_en: RX headsplit enable |
| * @rx_hbuf_size: Header buffer size |
| * @rx_buf_size: Buffer size |
| * @rx_max_pkt_size: RX max packet size |
| * @rx_buf_stride: RX buffer stride |
| * @rx_buffer_low_watermark: RX buffer low watermark |
| * @rxdids: Supported RX descriptor ids |
| * @q_vector: Backreference to associated vector |
| * @size: Length of descriptor ring in bytes |
| * @dma: Physical address of ring |
| * @desc_ring: Descriptor ring memory |
| * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather |
| * @tx_min_pkt_len: Min supported packet length |
| * @num_completions: Only relevant for TX completion queue. It tracks the |
| * number of completions received to compare against the |
| * number of completions pending, as accumulated by the |
| * TX queues. |
| * @buf_stack: Stack of empty buffers to store buffer info for out of order |
| * buffer completions. See struct idpf_buf_lifo. |
| * @compl_tag_bufid_m: Completion tag buffer id mask |
| * @compl_tag_gen_s: Completion tag generation bit |
| * The format of the completion tag will change based on the TXQ |
| * descriptor ring size so that we can maintain roughly the same level |
| * of "uniqueness" across all descriptor sizes. For example, if the |
| * TXQ descriptor ring size is 64 (the minimum size supported), the |
| * completion tag will be formatted as below: |
| * 15 6 5 0 |
| * -------------------------------- |
| * | GEN=0-1023 |IDX = 0-63| |
| * -------------------------------- |
| * |
| * This gives us 64*1024 = 65536 possible unique values. Similarly, if |
| * the TXQ descriptor ring size is 8160 (the maximum size supported), |
| * the completion tag will be formatted as below: |
| * 15 13 12 0 |
| * -------------------------------- |
| * |GEN | IDX = 0-8159 | |
| * -------------------------------- |
| * |
| * This gives us 8*8160 = 65280 possible unique values. |
| * @compl_tag_cur_gen: Used to keep track of current completion tag generation |
| * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset |
| * @sched_buf_hash: Hash table to stores buffers |
| */ |
| struct idpf_queue { |
| struct device *dev; |
| struct idpf_vport *vport; |
| union { |
| struct idpf_txq_group *txq_grp; |
| struct idpf_rxq_group *rxq_grp; |
| }; |
| u16 idx; |
| void __iomem *tail; |
| union { |
| struct idpf_tx_buf *tx_buf; |
| struct { |
| struct idpf_rx_buf *buf; |
| dma_addr_t hdr_buf_pa; |
| void *hdr_buf_va; |
| } rx_buf; |
| }; |
| struct page_pool *pp; |
| struct sk_buff *skb; |
| u16 q_type; |
| u32 q_id; |
| u16 desc_count; |
| |
| u16 next_to_use; |
| u16 next_to_clean; |
| u16 next_to_alloc; |
| DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); |
| |
| union idpf_queue_stats q_stats; |
| struct u64_stats_sync stats_sync; |
| |
| u32 cleaned_bytes; |
| u16 cleaned_pkts; |
| |
| bool rx_hsplit_en; |
| u16 rx_hbuf_size; |
| u16 rx_buf_size; |
| u16 rx_max_pkt_size; |
| u16 rx_buf_stride; |
| u8 rx_buffer_low_watermark; |
| u64 rxdids; |
| struct idpf_q_vector *q_vector; |
| unsigned int size; |
| dma_addr_t dma; |
| void *desc_ring; |
| |
| u16 tx_max_bufs; |
| u8 tx_min_pkt_len; |
| |
| u32 num_completions; |
| |
| struct idpf_buf_lifo buf_stack; |
| |
| u16 compl_tag_bufid_m; |
| u16 compl_tag_gen_s; |
| |
| u16 compl_tag_cur_gen; |
| u16 compl_tag_gen_max; |
| |
| DECLARE_HASHTABLE(sched_buf_hash, 12); |
| } ____cacheline_internodealigned_in_smp; |
| |
| /** |
| * struct idpf_sw_queue |
| * @next_to_clean: Next descriptor to clean |
| * @next_to_alloc: Buffer to allocate at |
| * @flags: See enum idpf_queue_flags_t |
| * @ring: Pointer to the ring |
| * @desc_count: Descriptor count |
| * @dev: Device back pointer for DMA mapping |
| * |
| * Software queues are used in splitq mode to manage buffers between rxq |
| * producer and the bufq consumer. These are required in order to maintain a |
| * lockless buffer management system and are strictly software only constructs. |
| */ |
| struct idpf_sw_queue { |
| u16 next_to_clean; |
| u16 next_to_alloc; |
| DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); |
| u16 *ring; |
| u16 desc_count; |
| struct device *dev; |
| } ____cacheline_internodealigned_in_smp; |
| |
| /** |
| * struct idpf_rxq_set |
| * @rxq: RX queue |
| * @refillq0: Pointer to refill queue 0 |
| * @refillq1: Pointer to refill queue 1 |
| * |
| * Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs. |
| * Each rxq needs a refillq to return used buffers back to the respective bufq. |
| * Bufqs then clean these refillqs for buffers to give to hardware. |
| */ |
| struct idpf_rxq_set { |
| struct idpf_queue rxq; |
| struct idpf_sw_queue *refillq0; |
| struct idpf_sw_queue *refillq1; |
| }; |
| |
| /** |
| * struct idpf_bufq_set |
| * @bufq: Buffer queue |
| * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets |
| * in idpf_rxq_group. |
| * @refillqs: Pointer to refill queues array. |
| * |
| * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs. |
| * In this bufq_set, there will be one refillq for each rxq in this rxq_group. |
| * Used buffers received by rxqs will be put on refillqs which bufqs will |
| * clean to return new buffers back to hardware. |
| * |
| * Buffers needed by some number of rxqs associated in this rxq_group are |
| * managed by at most two bufqs (depending on performance configuration). |
| */ |
| struct idpf_bufq_set { |
| struct idpf_queue bufq; |
| int num_refillqs; |
| struct idpf_sw_queue *refillqs; |
| }; |
| |
| /** |
| * struct idpf_rxq_group |
| * @vport: Vport back pointer |
| * @singleq: Struct with single queue related members |
| * @singleq.num_rxq: Number of RX queues associated |
| * @singleq.rxqs: Array of RX queue pointers |
| * @splitq: Struct with split queue related members |
| * @splitq.num_rxq_sets: Number of RX queue sets |
| * @splitq.rxq_sets: Array of RX queue sets |
| * @splitq.bufq_sets: Buffer queue set pointer |
| * |
| * In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a |
| * rxq_group contains all the rxqs, bufqs and refillqs needed to |
| * manage buffers in splitq mode. |
| */ |
| struct idpf_rxq_group { |
| struct idpf_vport *vport; |
| |
| union { |
| struct { |
| u16 num_rxq; |
| struct idpf_queue *rxqs[IDPF_LARGE_MAX_Q]; |
| } singleq; |
| struct { |
| u16 num_rxq_sets; |
| struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q]; |
| struct idpf_bufq_set *bufq_sets; |
| } splitq; |
| }; |
| }; |
| |
| /** |
| * struct idpf_txq_group |
| * @vport: Vport back pointer |
| * @num_txq: Number of TX queues associated |
| * @txqs: Array of TX queue pointers |
| * @complq: Associated completion queue pointer, split queue only |
| * @num_completions_pending: Total number of completions pending for the |
| * completion queue, acculumated for all TX queues |
| * associated with that completion queue. |
| * |
| * Between singleq and splitq, a txq_group is largely the same except for the |
| * complq. In splitq a single complq is responsible for handling completions |
| * for some number of txqs associated in this txq_group. |
| */ |
| struct idpf_txq_group { |
| struct idpf_vport *vport; |
| |
| u16 num_txq; |
| struct idpf_queue *txqs[IDPF_LARGE_MAX_Q]; |
| |
| struct idpf_queue *complq; |
| |
| u32 num_completions_pending; |
| }; |
| |
| /** |
| * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag |
| * @size: transmit request size in bytes |
| * |
| * In the case where a large frag (>= 16K) needs to be split across multiple |
| * descriptors, we need to assume that we can have no more than 12K of data |
| * per descriptor due to hardware alignment restrictions (4K alignment). |
| */ |
| static inline u32 idpf_size_to_txd_count(unsigned int size) |
| { |
| return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED); |
| } |
| |
| /** |
| * idpf_tx_singleq_build_ctob - populate command tag offset and size |
| * @td_cmd: Command to be filled in desc |
| * @td_offset: Offset to be filled in desc |
| * @size: Size of the buffer |
| * @td_tag: td tag to be filled |
| * |
| * Returns the 64 bit value populated with the input parameters |
| */ |
| static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset, |
| unsigned int size, u64 td_tag) |
| { |
| return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA | |
| (td_cmd << IDPF_TXD_QW1_CMD_S) | |
| (td_offset << IDPF_TXD_QW1_OFFSET_S) | |
| ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) | |
| (td_tag << IDPF_TXD_QW1_L2TAG1_S)); |
| } |
| |
| void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, |
| struct idpf_tx_splitq_params *params, |
| u16 td_cmd, u16 size); |
| void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, |
| struct idpf_tx_splitq_params *params, |
| u16 td_cmd, u16 size); |
| /** |
| * idpf_tx_splitq_build_desc - determine which type of data descriptor to build |
| * @desc: descriptor to populate |
| * @params: pointer to tx params struct |
| * @td_cmd: command to be filled in desc |
| * @size: size of buffer |
| */ |
| static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc, |
| struct idpf_tx_splitq_params *params, |
| u16 td_cmd, u16 size) |
| { |
| if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2) |
| idpf_tx_splitq_build_ctb(desc, params, td_cmd, size); |
| else |
| idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size); |
| } |
| |
| /** |
| * idpf_alloc_page - Allocate a new RX buffer from the page pool |
| * @pool: page_pool to allocate from |
| * @buf: metadata struct to populate with page info |
| * @buf_size: 2K or 4K |
| * |
| * Returns &dma_addr_t to be passed to HW for Rx, %DMA_MAPPING_ERROR otherwise. |
| */ |
| static inline dma_addr_t idpf_alloc_page(struct page_pool *pool, |
| struct idpf_rx_buf *buf, |
| unsigned int buf_size) |
| { |
| if (buf_size == IDPF_RX_BUF_2048) |
| buf->page = page_pool_dev_alloc_frag(pool, &buf->page_offset, |
| buf_size); |
| else |
| buf->page = page_pool_dev_alloc_pages(pool); |
| |
| if (!buf->page) |
| return DMA_MAPPING_ERROR; |
| |
| buf->truesize = buf_size; |
| |
| return page_pool_get_dma_addr(buf->page) + buf->page_offset + |
| pool->p.offset; |
| } |
| |
| /** |
| * idpf_rx_put_page - Return RX buffer page to pool |
| * @rx_buf: RX buffer metadata struct |
| */ |
| static inline void idpf_rx_put_page(struct idpf_rx_buf *rx_buf) |
| { |
| page_pool_put_page(rx_buf->page->pp, rx_buf->page, |
| rx_buf->truesize, true); |
| rx_buf->page = NULL; |
| } |
| |
| /** |
| * idpf_rx_sync_for_cpu - Synchronize DMA buffer |
| * @rx_buf: RX buffer metadata struct |
| * @len: frame length from descriptor |
| */ |
| static inline void idpf_rx_sync_for_cpu(struct idpf_rx_buf *rx_buf, u32 len) |
| { |
| struct page *page = rx_buf->page; |
| struct page_pool *pp = page->pp; |
| |
| dma_sync_single_range_for_cpu(pp->p.dev, |
| page_pool_get_dma_addr(page), |
| rx_buf->page_offset + pp->p.offset, len, |
| page_pool_get_dma_dir(pp)); |
| } |
| |
| int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget); |
| void idpf_vport_init_num_qs(struct idpf_vport *vport, |
| struct virtchnl2_create_vport *vport_msg); |
| void idpf_vport_calc_num_q_desc(struct idpf_vport *vport); |
| int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index, |
| struct virtchnl2_create_vport *vport_msg, |
| struct idpf_vport_max_q *max_q); |
| void idpf_vport_calc_num_q_groups(struct idpf_vport *vport); |
| int idpf_vport_queues_alloc(struct idpf_vport *vport); |
| void idpf_vport_queues_rel(struct idpf_vport *vport); |
| void idpf_vport_intr_rel(struct idpf_vport *vport); |
| int idpf_vport_intr_alloc(struct idpf_vport *vport); |
| void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector); |
| void idpf_vport_intr_deinit(struct idpf_vport *vport); |
| int idpf_vport_intr_init(struct idpf_vport *vport); |
| enum pkt_hash_types idpf_ptype_to_htype(const struct idpf_rx_ptype_decoded *decoded); |
| int idpf_config_rss(struct idpf_vport *vport); |
| int idpf_init_rss(struct idpf_vport *vport); |
| void idpf_deinit_rss(struct idpf_vport *vport); |
| int idpf_rx_bufs_init_all(struct idpf_vport *vport); |
| void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb, |
| unsigned int size); |
| struct sk_buff *idpf_rx_construct_skb(struct idpf_queue *rxq, |
| struct idpf_rx_buf *rx_buf, |
| unsigned int size); |
| bool idpf_init_rx_buf_hw_alloc(struct idpf_queue *rxq, struct idpf_rx_buf *buf); |
| void idpf_rx_buf_hw_update(struct idpf_queue *rxq, u32 val); |
| void idpf_tx_buf_hw_update(struct idpf_queue *tx_q, u32 val, |
| bool xmit_more); |
| unsigned int idpf_size_to_txd_count(unsigned int size); |
| netdev_tx_t idpf_tx_drop_skb(struct idpf_queue *tx_q, struct sk_buff *skb); |
| void idpf_tx_dma_map_error(struct idpf_queue *txq, struct sk_buff *skb, |
| struct idpf_tx_buf *first, u16 ring_idx); |
| unsigned int idpf_tx_desc_count_required(struct idpf_queue *txq, |
| struct sk_buff *skb); |
| bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs, |
| unsigned int count); |
| int idpf_tx_maybe_stop_common(struct idpf_queue *tx_q, unsigned int size); |
| void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue); |
| netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb, |
| struct net_device *netdev); |
| netdev_tx_t idpf_tx_singleq_start(struct sk_buff *skb, |
| struct net_device *netdev); |
| bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_queue *rxq, |
| u16 cleaned_count); |
| int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off); |
| |
| #endif /* !_IDPF_TXRX_H_ */ |