blob: 8a7aea041ee13a43fd73718c0af4558b041f6fbd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Christoph Hellwig.
*/
#include <linux/cache.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "xfs.h"
#include "xfs_format.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_inode.h"
#include "xfs_inode_fork.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_trace.h"
/*
* In-core extent record layout:
*
* +-------+----------------------------+
* | 00:53 | all 54 bits of startoff |
* | 54:63 | low 10 bits of startblock |
* +-------+----------------------------+
* | 00:20 | all 21 bits of length |
* | 21 | unwritten extent bit |
* | 22:63 | high 42 bits of startblock |
* +-------+----------------------------+
*/
#define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
#define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
#define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
struct xfs_iext_rec {
uint64_t lo;
uint64_t hi;
};
/*
* Given that the length can't be a zero, only an empty hi value indicates an
* unused record.
*/
static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
{
return rec->hi == 0;
}
static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
{
rec->lo = 0;
rec->hi = 0;
}
static void
xfs_iext_set(
struct xfs_iext_rec *rec,
struct xfs_bmbt_irec *irec)
{
ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
rec->lo |= (irec->br_startblock << 54);
rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
if (irec->br_state == XFS_EXT_UNWRITTEN)
rec->hi |= (1 << 21);
}
static void
xfs_iext_get(
struct xfs_bmbt_irec *irec,
struct xfs_iext_rec *rec)
{
irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
irec->br_startblock = rec->lo >> 54;
irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
if (rec->hi & (1 << 21))
irec->br_state = XFS_EXT_UNWRITTEN;
else
irec->br_state = XFS_EXT_NORM;
}
enum {
NODE_SIZE = 256,
KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
sizeof(struct xfs_iext_rec),
};
/*
* In-core extent btree block layout:
*
* There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
*
* The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
* contain the startoffset, blockcount, startblock and unwritten extent flag.
* See above for the exact format, followed by pointers to the previous and next
* leaf blocks (if there are any).
*
* The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
* by an equal number of pointers to the btree blocks at the next lower level.
*
* +-------+-------+-------+-------+-------+----------+----------+
* Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
* +-------+-------+-------+-------+-------+----------+----------+
*
* +-------+-------+-------+-------+-------+-------+------+-------+
* Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
* +-------+-------+-------+-------+-------+-------+------+-------+
*/
struct xfs_iext_node {
uint64_t keys[KEYS_PER_NODE];
#define XFS_IEXT_KEY_INVALID (1ULL << 63)
void *ptrs[KEYS_PER_NODE];
};
struct xfs_iext_leaf {
struct xfs_iext_rec recs[RECS_PER_LEAF];
struct xfs_iext_leaf *prev;
struct xfs_iext_leaf *next;
};
inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
{
return ifp->if_bytes / sizeof(struct xfs_iext_rec);
}
static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
{
if (ifp->if_height == 1)
return xfs_iext_count(ifp);
return RECS_PER_LEAF;
}
static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
{
return &cur->leaf->recs[cur->pos];
}
static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
if (!cur->leaf)
return false;
if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
return false;
if (xfs_iext_rec_is_empty(cur_rec(cur)))
return false;
return true;
}
static void *
xfs_iext_find_first_leaf(
struct xfs_ifork *ifp)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height;
if (!ifp->if_height)
return NULL;
for (height = ifp->if_height; height > 1; height--) {
node = node->ptrs[0];
ASSERT(node);
}
return node;
}
static void *
xfs_iext_find_last_leaf(
struct xfs_ifork *ifp)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height, i;
if (!ifp->if_height)
return NULL;
for (height = ifp->if_height; height > 1; height--) {
for (i = 1; i < KEYS_PER_NODE; i++)
if (!node->ptrs[i])
break;
node = node->ptrs[i - 1];
ASSERT(node);
}
return node;
}
void
xfs_iext_first(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
cur->pos = 0;
cur->leaf = xfs_iext_find_first_leaf(ifp);
}
void
xfs_iext_last(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
int i;
cur->leaf = xfs_iext_find_last_leaf(ifp);
if (!cur->leaf) {
cur->pos = 0;
return;
}
for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
break;
}
cur->pos = i - 1;
}
void
xfs_iext_next(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
if (!cur->leaf) {
ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
xfs_iext_first(ifp, cur);
return;
}
ASSERT(cur->pos >= 0);
ASSERT(cur->pos < xfs_iext_max_recs(ifp));
cur->pos++;
if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
cur->leaf->next) {
cur->leaf = cur->leaf->next;
cur->pos = 0;
}
}
void
xfs_iext_prev(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
if (!cur->leaf) {
ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
xfs_iext_last(ifp, cur);
return;
}
ASSERT(cur->pos >= 0);
ASSERT(cur->pos <= RECS_PER_LEAF);
recurse:
do {
cur->pos--;
if (xfs_iext_valid(ifp, cur))
return;
} while (cur->pos > 0);
if (ifp->if_height > 1 && cur->leaf->prev) {
cur->leaf = cur->leaf->prev;
cur->pos = RECS_PER_LEAF;
goto recurse;
}
}
static inline int
xfs_iext_key_cmp(
struct xfs_iext_node *node,
int n,
xfs_fileoff_t offset)
{
if (node->keys[n] > offset)
return 1;
if (node->keys[n] < offset)
return -1;
return 0;
}
static inline int
xfs_iext_rec_cmp(
struct xfs_iext_rec *rec,
xfs_fileoff_t offset)
{
uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
if (rec_offset > offset)
return 1;
if (rec_offset + rec_len <= offset)
return -1;
return 0;
}
static void *
xfs_iext_find_level(
struct xfs_ifork *ifp,
xfs_fileoff_t offset,
int level)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height, i;
if (!ifp->if_height)
return NULL;
for (height = ifp->if_height; height > level; height--) {
for (i = 1; i < KEYS_PER_NODE; i++)
if (xfs_iext_key_cmp(node, i, offset) > 0)
break;
node = node->ptrs[i - 1];
if (!node)
break;
}
return node;
}
static int
xfs_iext_node_pos(
struct xfs_iext_node *node,
xfs_fileoff_t offset)
{
int i;
for (i = 1; i < KEYS_PER_NODE; i++) {
if (xfs_iext_key_cmp(node, i, offset) > 0)
break;
}
return i - 1;
}
static int
xfs_iext_node_insert_pos(
struct xfs_iext_node *node,
xfs_fileoff_t offset)
{
int i;
for (i = 0; i < KEYS_PER_NODE; i++) {
if (xfs_iext_key_cmp(node, i, offset) > 0)
return i;
}
return KEYS_PER_NODE;
}
static int
xfs_iext_node_nr_entries(
struct xfs_iext_node *node,
int start)
{
int i;
for (i = start; i < KEYS_PER_NODE; i++) {
if (node->keys[i] == XFS_IEXT_KEY_INVALID)
break;
}
return i;
}
static int
xfs_iext_leaf_nr_entries(
struct xfs_ifork *ifp,
struct xfs_iext_leaf *leaf,
int start)
{
int i;
for (i = start; i < xfs_iext_max_recs(ifp); i++) {
if (xfs_iext_rec_is_empty(&leaf->recs[i]))
break;
}
return i;
}
static inline uint64_t
xfs_iext_leaf_key(
struct xfs_iext_leaf *leaf,
int n)
{
return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
}
static void
xfs_iext_grow(
struct xfs_ifork *ifp)
{
struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
int i;
if (ifp->if_height == 1) {
struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
node->keys[0] = xfs_iext_leaf_key(prev, 0);
node->ptrs[0] = prev;
} else {
struct xfs_iext_node *prev = ifp->if_u1.if_root;
ASSERT(ifp->if_height > 1);
node->keys[0] = prev->keys[0];
node->ptrs[0] = prev;
}
for (i = 1; i < KEYS_PER_NODE; i++)
node->keys[i] = XFS_IEXT_KEY_INVALID;
ifp->if_u1.if_root = node;
ifp->if_height++;
}
static void
xfs_iext_update_node(
struct xfs_ifork *ifp,
xfs_fileoff_t old_offset,
xfs_fileoff_t new_offset,
int level,
void *ptr)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height, i;
for (height = ifp->if_height; height > level; height--) {
for (i = 0; i < KEYS_PER_NODE; i++) {
if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
break;
if (node->keys[i] == old_offset)
node->keys[i] = new_offset;
}
node = node->ptrs[i - 1];
ASSERT(node);
}
ASSERT(node == ptr);
}
static struct xfs_iext_node *
xfs_iext_split_node(
struct xfs_iext_node **nodep,
int *pos,
int *nr_entries)
{
struct xfs_iext_node *node = *nodep;
struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
const int nr_move = KEYS_PER_NODE / 2;
int nr_keep = nr_move + (KEYS_PER_NODE & 1);
int i = 0;
/* for sequential append operations just spill over into the new node */
if (*pos == KEYS_PER_NODE) {
*nodep = new;
*pos = 0;
*nr_entries = 0;
goto done;
}
for (i = 0; i < nr_move; i++) {
new->keys[i] = node->keys[nr_keep + i];
new->ptrs[i] = node->ptrs[nr_keep + i];
node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
node->ptrs[nr_keep + i] = NULL;
}
if (*pos >= nr_keep) {
*nodep = new;
*pos -= nr_keep;
*nr_entries = nr_move;
} else {
*nr_entries = nr_keep;
}
done:
for (; i < KEYS_PER_NODE; i++)
new->keys[i] = XFS_IEXT_KEY_INVALID;
return new;
}
static void
xfs_iext_insert_node(
struct xfs_ifork *ifp,
uint64_t offset,
void *ptr,
int level)
{
struct xfs_iext_node *node, *new;
int i, pos, nr_entries;
again:
if (ifp->if_height < level)
xfs_iext_grow(ifp);
new = NULL;
node = xfs_iext_find_level(ifp, offset, level);
pos = xfs_iext_node_insert_pos(node, offset);
nr_entries = xfs_iext_node_nr_entries(node, pos);
ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
ASSERT(nr_entries <= KEYS_PER_NODE);
if (nr_entries == KEYS_PER_NODE)
new = xfs_iext_split_node(&node, &pos, &nr_entries);
/*
* Update the pointers in higher levels if the first entry changes
* in an existing node.
*/
if (node != new && pos == 0 && nr_entries > 0)
xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
for (i = nr_entries; i > pos; i--) {
node->keys[i] = node->keys[i - 1];
node->ptrs[i] = node->ptrs[i - 1];
}
node->keys[pos] = offset;
node->ptrs[pos] = ptr;
if (new) {
offset = new->keys[0];
ptr = new;
level++;
goto again;
}
}
static struct xfs_iext_leaf *
xfs_iext_split_leaf(
struct xfs_iext_cursor *cur,
int *nr_entries)
{
struct xfs_iext_leaf *leaf = cur->leaf;
struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
const int nr_move = RECS_PER_LEAF / 2;
int nr_keep = nr_move + (RECS_PER_LEAF & 1);
int i;
/* for sequential append operations just spill over into the new node */
if (cur->pos == RECS_PER_LEAF) {
cur->leaf = new;
cur->pos = 0;
*nr_entries = 0;
goto done;
}
for (i = 0; i < nr_move; i++) {
new->recs[i] = leaf->recs[nr_keep + i];
xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
}
if (cur->pos >= nr_keep) {
cur->leaf = new;
cur->pos -= nr_keep;
*nr_entries = nr_move;
} else {
*nr_entries = nr_keep;
}
done:
if (leaf->next)
leaf->next->prev = new;
new->next = leaf->next;
new->prev = leaf;
leaf->next = new;
return new;
}
static void
xfs_iext_alloc_root(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
ASSERT(ifp->if_bytes == 0);
ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
ifp->if_height = 1;
/* now that we have a node step into it */
cur->leaf = ifp->if_u1.if_root;
cur->pos = 0;
}
static void
xfs_iext_realloc_root(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
void *new;
/* account for the prev/next pointers */
if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
new_size = NODE_SIZE;
new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
ifp->if_u1.if_root = new;
cur->leaf = new;
}
void
xfs_iext_insert(
struct xfs_inode *ip,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *irec,
int state)
{
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
xfs_fileoff_t offset = irec->br_startoff;
struct xfs_iext_leaf *new = NULL;
int nr_entries, i;
ifp->if_seq++;
if (ifp->if_height == 0)
xfs_iext_alloc_root(ifp, cur);
else if (ifp->if_height == 1)
xfs_iext_realloc_root(ifp, cur);
nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
ASSERT(nr_entries <= RECS_PER_LEAF);
ASSERT(cur->pos >= nr_entries ||
xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
if (nr_entries == RECS_PER_LEAF)
new = xfs_iext_split_leaf(cur, &nr_entries);
/*
* Update the pointers in higher levels if the first entry changes
* in an existing node.
*/
if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
offset, 1, cur->leaf);
}
for (i = nr_entries; i > cur->pos; i--)
cur->leaf->recs[i] = cur->leaf->recs[i - 1];
xfs_iext_set(cur_rec(cur), irec);
ifp->if_bytes += sizeof(struct xfs_iext_rec);
trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
if (new)
xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
}
static struct xfs_iext_node *
xfs_iext_rebalance_node(
struct xfs_iext_node *parent,
int *pos,
struct xfs_iext_node *node,
int nr_entries)
{
/*
* If the neighbouring nodes are completely full, or have different
* parents, we might never be able to merge our node, and will only
* delete it once the number of entries hits zero.
*/
if (nr_entries == 0)
return node;
if (*pos > 0) {
struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
if (nr_prev + nr_entries <= KEYS_PER_NODE) {
for (i = 0; i < nr_entries; i++) {
prev->keys[nr_prev + i] = node->keys[i];
prev->ptrs[nr_prev + i] = node->ptrs[i];
}
return node;
}
}
if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
struct xfs_iext_node *next = parent->ptrs[*pos + 1];
int nr_next = xfs_iext_node_nr_entries(next, 0), i;
if (nr_entries + nr_next <= KEYS_PER_NODE) {
/*
* Merge the next node into this node so that we don't
* have to do an additional update of the keys in the
* higher levels.
*/
for (i = 0; i < nr_next; i++) {
node->keys[nr_entries + i] = next->keys[i];
node->ptrs[nr_entries + i] = next->ptrs[i];
}
++*pos;
return next;
}
}
return NULL;
}
static void
xfs_iext_remove_node(
struct xfs_ifork *ifp,
xfs_fileoff_t offset,
void *victim)
{
struct xfs_iext_node *node, *parent;
int level = 2, pos, nr_entries, i;
ASSERT(level <= ifp->if_height);
node = xfs_iext_find_level(ifp, offset, level);
pos = xfs_iext_node_pos(node, offset);
again:
ASSERT(node->ptrs[pos]);
ASSERT(node->ptrs[pos] == victim);
kmem_free(victim);
nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
offset = node->keys[0];
for (i = pos; i < nr_entries; i++) {
node->keys[i] = node->keys[i + 1];
node->ptrs[i] = node->ptrs[i + 1];
}
node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
node->ptrs[nr_entries] = NULL;
if (pos == 0 && nr_entries > 0) {
xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
offset = node->keys[0];
}
if (nr_entries >= KEYS_PER_NODE / 2)
return;
if (level < ifp->if_height) {
/*
* If we aren't at the root yet try to find a neighbour node to
* merge with (or delete the node if it is empty), and then
* recurse up to the next level.
*/
level++;
parent = xfs_iext_find_level(ifp, offset, level);
pos = xfs_iext_node_pos(parent, offset);
ASSERT(pos != KEYS_PER_NODE);
ASSERT(parent->ptrs[pos] == node);
node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
if (node) {
victim = node;
node = parent;
goto again;
}
} else if (nr_entries == 1) {
/*
* If we are at the root and only one entry is left we can just
* free this node and update the root pointer.
*/
ASSERT(node == ifp->if_u1.if_root);
ifp->if_u1.if_root = node->ptrs[0];
ifp->if_height--;
kmem_free(node);
}
}
static void
xfs_iext_rebalance_leaf(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur,
struct xfs_iext_leaf *leaf,
xfs_fileoff_t offset,
int nr_entries)
{
/*
* If the neighbouring nodes are completely full we might never be able
* to merge our node, and will only delete it once the number of
* entries hits zero.
*/
if (nr_entries == 0)
goto remove_node;
if (leaf->prev) {
int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
if (nr_prev + nr_entries <= RECS_PER_LEAF) {
for (i = 0; i < nr_entries; i++)
leaf->prev->recs[nr_prev + i] = leaf->recs[i];
if (cur->leaf == leaf) {
cur->leaf = leaf->prev;
cur->pos += nr_prev;
}
goto remove_node;
}
}
if (leaf->next) {
int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
if (nr_entries + nr_next <= RECS_PER_LEAF) {
/*
* Merge the next node into this node so that we don't
* have to do an additional update of the keys in the
* higher levels.
*/
for (i = 0; i < nr_next; i++) {
leaf->recs[nr_entries + i] =
leaf->next->recs[i];
}
if (cur->leaf == leaf->next) {
cur->leaf = leaf;
cur->pos += nr_entries;
}
offset = xfs_iext_leaf_key(leaf->next, 0);
leaf = leaf->next;
goto remove_node;
}
}
return;
remove_node:
if (leaf->prev)
leaf->prev->next = leaf->next;
if (leaf->next)
leaf->next->prev = leaf->prev;
xfs_iext_remove_node(ifp, offset, leaf);
}
static void
xfs_iext_free_last_leaf(
struct xfs_ifork *ifp)
{
ifp->if_height--;
kmem_free(ifp->if_u1.if_root);
ifp->if_u1.if_root = NULL;
}
void
xfs_iext_remove(
struct xfs_inode *ip,
struct xfs_iext_cursor *cur,
int state)
{
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
struct xfs_iext_leaf *leaf = cur->leaf;
xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0);
int i, nr_entries;
trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
ASSERT(ifp->if_height > 0);
ASSERT(ifp->if_u1.if_root != NULL);
ASSERT(xfs_iext_valid(ifp, cur));
ifp->if_seq++;
nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
for (i = cur->pos; i < nr_entries; i++)
leaf->recs[i] = leaf->recs[i + 1];
xfs_iext_rec_clear(&leaf->recs[nr_entries]);
ifp->if_bytes -= sizeof(struct xfs_iext_rec);
if (cur->pos == 0 && nr_entries > 0) {
xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
leaf);
offset = xfs_iext_leaf_key(leaf, 0);
} else if (cur->pos == nr_entries) {
if (ifp->if_height > 1 && leaf->next)
cur->leaf = leaf->next;
else
cur->leaf = NULL;
cur->pos = 0;
}
if (nr_entries >= RECS_PER_LEAF / 2)
return;
if (ifp->if_height > 1)
xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
else if (nr_entries == 0)
xfs_iext_free_last_leaf(ifp);
}
/*
* Lookup the extent covering bno.
*
* If there is an extent covering bno return the extent index, and store the
* expanded extent structure in *gotp, and the extent cursor in *cur.
* If there is no extent covering bno, but there is an extent after it (e.g.
* it lies in a hole) return that extent in *gotp and its cursor in *cur
* instead.
* If bno is beyond the last extent return false, and return an invalid
* cursor value.
*/
bool
xfs_iext_lookup_extent(
struct xfs_inode *ip,
struct xfs_ifork *ifp,
xfs_fileoff_t offset,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *gotp)
{
XFS_STATS_INC(ip->i_mount, xs_look_exlist);
cur->leaf = xfs_iext_find_level(ifp, offset, 1);
if (!cur->leaf) {
cur->pos = 0;
return false;
}
for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
struct xfs_iext_rec *rec = cur_rec(cur);
if (xfs_iext_rec_is_empty(rec))
break;
if (xfs_iext_rec_cmp(rec, offset) >= 0)
goto found;
}
/* Try looking in the next node for an entry > offset */
if (ifp->if_height == 1 || !cur->leaf->next)
return false;
cur->leaf = cur->leaf->next;
cur->pos = 0;
if (!xfs_iext_valid(ifp, cur))
return false;
found:
xfs_iext_get(gotp, cur_rec(cur));
return true;
}
/*
* Returns the last extent before end, and if this extent doesn't cover
* end, update end to the end of the extent.
*/
bool
xfs_iext_lookup_extent_before(
struct xfs_inode *ip,
struct xfs_ifork *ifp,
xfs_fileoff_t *end,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *gotp)
{
/* could be optimized to not even look up the next on a match.. */
if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
gotp->br_startoff <= *end - 1)
return true;
if (!xfs_iext_prev_extent(ifp, cur, gotp))
return false;
*end = gotp->br_startoff + gotp->br_blockcount;
return true;
}
void
xfs_iext_update_extent(
struct xfs_inode *ip,
int state,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *new)
{
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
ifp->if_seq++;
if (cur->pos == 0) {
struct xfs_bmbt_irec old;
xfs_iext_get(&old, cur_rec(cur));
if (new->br_startoff != old.br_startoff) {
xfs_iext_update_node(ifp, old.br_startoff,
new->br_startoff, 1, cur->leaf);
}
}
trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
xfs_iext_set(cur_rec(cur), new);
trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
}
/*
* Return true if the cursor points at an extent and return the extent structure
* in gotp. Else return false.
*/
bool
xfs_iext_get_extent(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *gotp)
{
if (!xfs_iext_valid(ifp, cur))
return false;
xfs_iext_get(gotp, cur_rec(cur));
return true;
}
/*
* This is a recursive function, because of that we need to be extremely
* careful with stack usage.
*/
static void
xfs_iext_destroy_node(
struct xfs_iext_node *node,
int level)
{
int i;
if (level > 1) {
for (i = 0; i < KEYS_PER_NODE; i++) {
if (node->keys[i] == XFS_IEXT_KEY_INVALID)
break;
xfs_iext_destroy_node(node->ptrs[i], level - 1);
}
}
kmem_free(node);
}
void
xfs_iext_destroy(
struct xfs_ifork *ifp)
{
xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
ifp->if_bytes = 0;
ifp->if_height = 0;
ifp->if_u1.if_root = NULL;
}