blob: 5262f16b45acfd5d9eef11c5c63f4b44d7eea7a5 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/string_helpers.h>
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display.h"
#include "intel_display_types.h"
#include "intel_dpll.h"
#include "intel_lvds.h"
#include "intel_panel.h"
#include "intel_pps.h"
#include "intel_snps_phy.h"
#include "vlv_sideband.h"
struct intel_dpll_funcs {
int (*crtc_compute_clock)(struct intel_atomic_state *state,
struct intel_crtc *crtc);
int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
struct intel_crtc *crtc);
};
struct intel_limit {
struct {
int min, max;
} dot, vco, n, m, m1, m2, p, p1;
struct {
int dot_limit;
int p2_slow, p2_fast;
} p2;
};
static const struct intel_limit intel_limits_i8xx_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 2 },
};
static const struct intel_limit intel_limits_i8xx_dvo = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 4 },
};
static const struct intel_limit intel_limits_i8xx_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 1, .max = 6 },
.p2 = { .dot_limit = 165000,
.p2_slow = 14, .p2_fast = 7 },
};
static const struct intel_limit intel_limits_i9xx_sdvo = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit intel_limits_i9xx_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 7, .max = 98 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 7 },
};
static const struct intel_limit intel_limits_g4x_sdvo = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 1, .max = 3},
.p2 = { .dot_limit = 270000,
.p2_slow = 10,
.p2_fast = 10
},
};
static const struct intel_limit intel_limits_g4x_hdmi = {
.dot = { .min = 22000, .max = 400000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 16, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8},
.p2 = { .dot_limit = 165000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
.dot = { .min = 20000, .max = 115000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 0,
.p2_slow = 14, .p2_fast = 14
},
};
static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = 80000, .max = 224000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 0,
.p2_slow = 7, .p2_fast = 7
},
};
static const struct intel_limit pnv_limits_sdvo = {
.dot = { .min = 20000, .max = 400000},
.vco = { .min = 1700000, .max = 3500000 },
/* Pineview's Ncounter is a ring counter */
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
/* Pineview only has one combined m divider, which we treat as m2. */
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit pnv_limits_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1700000, .max = 3500000 },
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 7, .max = 112 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 14 },
};
/* Ironlake / Sandybridge
*
* We calculate clock using (register_value + 2) for N/M1/M2, so here
* the range value for them is (actual_value - 2).
*/
static const struct intel_limit ilk_limits_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 5 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit ilk_limits_single_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 118 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const struct intel_limit ilk_limits_dual_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 56 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
/* LVDS 100mhz refclk limits. */
static const struct intel_limit ilk_limits_single_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 2 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const struct intel_limit ilk_limits_dual_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
static const struct intel_limit intel_limits_vlv = {
/*
* These are based on the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 4000000, .max = 6000000 },
.n = { .min = 1, .max = 7 },
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
};
static const struct intel_limit intel_limits_chv = {
/*
* These are based on the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000, .max = 540000 },
.vco = { .min = 4800000, .max = 6480000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
.m2 = { .min = 24 << 22, .max = 175 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 14 },
};
static const struct intel_limit intel_limits_bxt = {
.dot = { .min = 25000, .max = 594000 },
.vco = { .min = 4800000, .max = 6700000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
/* FIXME: find real m2 limits */
.m2 = { .min = 2 << 22, .max = 255 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 20 },
};
/*
* Platform specific helpers to calculate the port PLL loopback- (clock.m),
* and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
* (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
* The helpers' return value is the rate of the clock that is fed to the
* display engine's pipe which can be the above fast dot clock rate or a
* divided-down version of it.
*/
/* m1 is reserved as 0 in Pineview, n is a ring counter */
int pnv_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot;
}
static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
{
return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
}
int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = i9xx_dpll_compute_m(clock);
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot;
}
int vlv_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2 * 5;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot;
}
int chv_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2 * 5;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
clock->n << 22);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot;
}
/*
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
const struct intel_limit *limit,
const struct dpll *clock)
{
if (clock->n < limit->n.min || limit->n.max < clock->n)
return false;
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
return false;
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
return false;
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
return false;
if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
if (clock->m1 <= clock->m2)
return false;
if (!IS_LP(dev_priv)) {
if (clock->p < limit->p.min || limit->p.max < clock->p)
return false;
if (clock->m < limit->m.min || limit->m.max < clock->m)
return false;
}
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
return false;
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
return false;
return true;
}
static int
i9xx_select_p2_div(const struct intel_limit *limit,
const struct intel_crtc_state *crtc_state,
int target)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev_priv))
return limit->p2.p2_fast;
else
return limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
return limit->p2.p2_slow;
else
return limit->p2.p2_fast;
}
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE.
*
* Target and reference clocks are specified in kHz.
*
* If match_clock is provided, then best_clock P divider must match the P
* divider from @match_clock used for LVDS downclocking.
*/
static bool
i9xx_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk,
const struct dpll *match_clock,
struct dpll *best_clock)
{
struct drm_device *dev = crtc_state->uapi.crtc->dev;
struct dpll clock;
int err = target;
memset(best_clock, 0, sizeof(*best_clock));
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
if (clock.m2 >= clock.m1)
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
i9xx_calc_dpll_params(refclk, &clock);
if (!intel_pll_is_valid(to_i915(dev),
limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE.
*
* Target and reference clocks are specified in kHz.
*
* If match_clock is provided, then best_clock P divider must match the P
* divider from @match_clock used for LVDS downclocking.
*/
static bool
pnv_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk,
const struct dpll *match_clock,
struct dpll *best_clock)
{
struct drm_device *dev = crtc_state->uapi.crtc->dev;
struct dpll clock;
int err = target;
memset(best_clock, 0, sizeof(*best_clock));
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
pnv_calc_dpll_params(refclk, &clock);
if (!intel_pll_is_valid(to_i915(dev),
limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE.
*
* Target and reference clocks are specified in kHz.
*
* If match_clock is provided, then best_clock P divider must match the P
* divider from @match_clock used for LVDS downclocking.
*/
static bool
g4x_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk,
const struct dpll *match_clock,
struct dpll *best_clock)
{
struct drm_device *dev = crtc_state->uapi.crtc->dev;
struct dpll clock;
int max_n;
bool found = false;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
memset(best_clock, 0, sizeof(*best_clock));
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
i9xx_calc_dpll_params(refclk, &clock);
if (!intel_pll_is_valid(to_i915(dev),
limit,
&clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
/*
* Check if the calculated PLL configuration is more optimal compared to the
* best configuration and error found so far. Return the calculated error.
*/
static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
const struct dpll *calculated_clock,
const struct dpll *best_clock,
unsigned int best_error_ppm,
unsigned int *error_ppm)
{
/*
* For CHV ignore the error and consider only the P value.
* Prefer a bigger P value based on HW requirements.
*/
if (IS_CHERRYVIEW(to_i915(dev))) {
*error_ppm = 0;
return calculated_clock->p > best_clock->p;
}
if (drm_WARN_ON_ONCE(dev, !target_freq))
return false;
*error_ppm = div_u64(1000000ULL *
abs(target_freq - calculated_clock->dot),
target_freq);
/*
* Prefer a better P value over a better (smaller) error if the error
* is small. Ensure this preference for future configurations too by
* setting the error to 0.
*/
if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
*error_ppm = 0;
return true;
}
return *error_ppm + 10 < best_error_ppm;
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE.
*/
static bool
vlv_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk,
const struct dpll *match_clock,
struct dpll *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_device *dev = crtc->base.dev;
struct dpll clock;
unsigned int bestppm = 1000000;
/* min update 19.2 MHz */
int max_n = min(limit->n.max, refclk / 19200);
bool found = false;
memset(best_clock, 0, sizeof(*best_clock));
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
clock.p = clock.p1 * clock.p2 * 5;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
unsigned int ppm;
clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
refclk * clock.m1);
vlv_calc_dpll_params(refclk, &clock);
if (!intel_pll_is_valid(to_i915(dev),
limit,
&clock))
continue;
if (!vlv_PLL_is_optimal(dev, target,
&clock,
best_clock,
bestppm, &ppm))
continue;
*best_clock = clock;
bestppm = ppm;
found = true;
}
}
}
}
return found;
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE.
*/
static bool
chv_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk,
const struct dpll *match_clock,
struct dpll *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_device *dev = crtc->base.dev;
unsigned int best_error_ppm;
struct dpll clock;
u64 m2;
int found = false;
memset(best_clock, 0, sizeof(*best_clock));
best_error_ppm = 1000000;
/*
* Based on hardware doc, the n always set to 1, and m1 always
* set to 2. If requires to support 200Mhz refclk, we need to
* revisit this because n may not 1 anymore.
*/
clock.n = 1;
clock.m1 = 2;
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast;
clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
unsigned int error_ppm;
clock.p = clock.p1 * clock.p2 * 5;
m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
refclk * clock.m1);
if (m2 > INT_MAX/clock.m1)
continue;
clock.m2 = m2;
chv_calc_dpll_params(refclk, &clock);
if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
continue;
if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
best_error_ppm, &error_ppm))
continue;
*best_clock = clock;
best_error_ppm = error_ppm;
found = true;
}
}
return found;
}
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
struct dpll *best_clock)
{
const struct intel_limit *limit = &intel_limits_bxt;
int refclk = 100000;
return chv_find_best_dpll(limit, crtc_state,
crtc_state->port_clock, refclk,
NULL, best_clock);
}
u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
{
return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
}
static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
{
return (1 << dpll->n) << 16 | dpll->m2;
}
static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
const struct dpll *clock,
const struct dpll *reduced_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 fp, fp2;
if (IS_PINEVIEW(dev_priv)) {
fp = pnv_dpll_compute_fp(clock);
fp2 = pnv_dpll_compute_fp(reduced_clock);
} else {
fp = i9xx_dpll_compute_fp(clock);
fp2 = i9xx_dpll_compute_fp(reduced_clock);
}
crtc_state->dpll_hw_state.fp0 = fp;
crtc_state->dpll_hw_state.fp1 = fp2;
}
static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
const struct dpll *clock,
const struct dpll *reduced_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 dpll;
i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
dpll = DPLL_VGA_MODE_DIS;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
dpll |= (crtc_state->pixel_multiplier - 1)
<< SDVO_MULTIPLIER_SHIFT_HIRES;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
dpll |= DPLL_SDVO_HIGH_SPEED;
if (intel_crtc_has_dp_encoder(crtc_state))
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_G4X(dev_priv)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
} else if (IS_PINEVIEW(dev_priv)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
WARN_ON(reduced_clock->p1 != clock->p1);
} else {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
WARN_ON(reduced_clock->p1 != clock->p1);
}
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
WARN_ON(reduced_clock->p2 != clock->p2);
if (DISPLAY_VER(dev_priv) >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
if (crtc_state->sdvo_tv_clock)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv))
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
if (DISPLAY_VER(dev_priv) >= 4) {
u32 dpll_md = (crtc_state->pixel_multiplier - 1)
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
crtc_state->dpll_hw_state.dpll_md = dpll_md;
}
}
static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
const struct dpll *clock,
const struct dpll *reduced_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 dpll;
i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
dpll = DPLL_VGA_MODE_DIS;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
WARN_ON(reduced_clock->p1 != clock->p1);
WARN_ON(reduced_clock->p2 != clock->p2);
/*
* Bspec:
* "[Almador Errata}: For the correct operation of the muxed DVO pins
* (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
* GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
* Enable) must be set to “1” in both the DPLL A Control Register
* (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
*
* For simplicity We simply keep both bits always enabled in
* both DPLLS. The spec says we should disable the DVO 2X clock
* when not needed, but this seems to work fine in practice.
*/
if (IS_I830(dev_priv) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
dpll |= DPLL_DVO_2X_MODE;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv))
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
}
static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_encoder *encoder =
intel_get_crtc_new_encoder(state, crtc_state);
if (DISPLAY_VER(dev_priv) < 11 &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
return 0;
return intel_compute_shared_dplls(state, crtc, encoder);
}
static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_encoder *encoder =
intel_get_crtc_new_encoder(state, crtc_state);
if (DISPLAY_VER(dev_priv) < 11 &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
return 0;
return intel_reserve_shared_dplls(state, crtc, encoder);
}
static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_encoder *encoder =
intel_get_crtc_new_encoder(state, crtc_state);
return intel_mpllb_calc_state(crtc_state, encoder);
}
static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
{
return dpll->m < factor * dpll->n;
}
static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
const struct dpll *clock,
const struct dpll *reduced_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 fp, fp2;
int factor;
/* Enable autotuning of the PLL clock (if permissible) */
factor = 21;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if ((intel_panel_use_ssc(dev_priv) &&
dev_priv->vbt.lvds_ssc_freq == 100000) ||
(HAS_PCH_IBX(dev_priv) &&
intel_is_dual_link_lvds(dev_priv)))
factor = 25;
} else if (crtc_state->sdvo_tv_clock) {
factor = 20;
}
fp = i9xx_dpll_compute_fp(clock);
if (ilk_needs_fb_cb_tune(clock, factor))
fp |= FP_CB_TUNE;
fp2 = i9xx_dpll_compute_fp(reduced_clock);
if (ilk_needs_fb_cb_tune(reduced_clock, factor))
fp2 |= FP_CB_TUNE;
crtc_state->dpll_hw_state.fp0 = fp;
crtc_state->dpll_hw_state.fp1 = fp2;
}
static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
const struct dpll *clock,
const struct dpll *reduced_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 dpll;
ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
dpll = 0;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
dpll |= (crtc_state->pixel_multiplier - 1)
<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
dpll |= DPLL_SDVO_HIGH_SPEED;
if (intel_crtc_has_dp_encoder(crtc_state))
dpll |= DPLL_SDVO_HIGH_SPEED;
/*
* The high speed IO clock is only really required for
* SDVO/HDMI/DP, but we also enable it for CRT to make it
* possible to share the DPLL between CRT and HDMI. Enabling
* the clock needlessly does no real harm, except use up a
* bit of power potentially.
*
* We'll limit this to IVB with 3 pipes, since it has only two
* DPLLs and so DPLL sharing is the only way to get three pipes
* driving PCH ports at the same time. On SNB we could do this,
* and potentially avoid enabling the second DPLL, but it's not
* clear if it''s a win or loss power wise. No point in doing
* this on ILK at all since it has a fixed DPLL<->pipe mapping.
*/
if (INTEL_NUM_PIPES(dev_priv) == 3 &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
WARN_ON(reduced_clock->p2 != clock->p2);
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv))
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
}
static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_limit *limit;
int refclk = 120000;
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
if (!crtc_state->has_pch_encoder)
return 0;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"using SSC reference clock of %d kHz\n",
dev_priv->vbt.lvds_ssc_freq);
refclk = dev_priv->vbt.lvds_ssc_freq;
}
if (intel_is_dual_link_lvds(dev_priv)) {
if (refclk == 100000)
limit = &ilk_limits_dual_lvds_100m;
else
limit = &ilk_limits_dual_lvds;
} else {
if (refclk == 100000)
limit = &ilk_limits_single_lvds_100m;
else
limit = &ilk_limits_single_lvds;
}
} else {
limit = &ilk_limits_dac;
}
if (!crtc_state->clock_set &&
!g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll))
return -EINVAL;
ilk_compute_dpll(crtc_state, &crtc_state->dpll,
&crtc_state->dpll);
return intel_compute_shared_dplls(state, crtc, NULL);
}
static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
if (!crtc_state->has_pch_encoder)
return 0;
return intel_reserve_shared_dplls(state, crtc, NULL);
}
void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (crtc->pipe != PIPE_A)
crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
/* DPLL not used with DSI, but still need the rest set up */
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
DPLL_EXT_BUFFER_ENABLE_VLV;
crtc_state->dpll_hw_state.dpll_md =
(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
}
void chv_compute_dpll(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (crtc->pipe != PIPE_A)
crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
/* DPLL not used with DSI, but still need the rest set up */
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll_md =
(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
}
static int chv_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_limit *limit = &intel_limits_chv;
int refclk = 100000;
if (!crtc_state->clock_set &&
!chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll))
return -EINVAL;
chv_compute_dpll(crtc_state);
return 0;
}
static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_limit *limit = &intel_limits_vlv;
int refclk = 100000;
if (!crtc_state->clock_set &&
!vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
return -EINVAL;
}
vlv_compute_dpll(crtc_state);
return 0;
}
static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_limit *limit;
int refclk = 96000;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
drm_dbg_kms(&dev_priv->drm,
"using SSC reference clock of %d kHz\n",
refclk);
}
if (intel_is_dual_link_lvds(dev_priv))
limit = &intel_limits_g4x_dual_channel_lvds;
else
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else {
/* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
}
if (!crtc_state->clock_set &&
!g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll))
return -EINVAL;
i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
&crtc_state->dpll);
return 0;
}
static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_limit *limit;
int refclk = 96000;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
drm_dbg_kms(&dev_priv->drm,
"using SSC reference clock of %d kHz\n",
refclk);
}
limit = &pnv_limits_lvds;
} else {
limit = &pnv_limits_sdvo;
}
if (!crtc_state->clock_set &&
!pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll))
return -EINVAL;
i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
&crtc_state->dpll);
return 0;
}
static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_limit *limit;
int refclk = 96000;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
drm_dbg_kms(&dev_priv->drm,
"using SSC reference clock of %d kHz\n",
refclk);
}
limit = &intel_limits_i9xx_lvds;
} else {
limit = &intel_limits_i9xx_sdvo;
}
if (!crtc_state->clock_set &&
!i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll))
return -EINVAL;
i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
&crtc_state->dpll);
return 0;
}
static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_limit *limit;
int refclk = 48000;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
drm_dbg_kms(&dev_priv->drm,
"using SSC reference clock of %d kHz\n",
refclk);
}
limit = &intel_limits_i8xx_lvds;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
limit = &intel_limits_i8xx_dvo;
} else {
limit = &intel_limits_i8xx_dac;
}
if (!crtc_state->clock_set &&
!i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll))
return -EINVAL;
i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
&crtc_state->dpll);
return 0;
}
static const struct intel_dpll_funcs dg2_dpll_funcs = {
.crtc_compute_clock = dg2_crtc_compute_clock,
};
static const struct intel_dpll_funcs hsw_dpll_funcs = {
.crtc_compute_clock = hsw_crtc_compute_clock,
.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
};
static const struct intel_dpll_funcs ilk_dpll_funcs = {
.crtc_compute_clock = ilk_crtc_compute_clock,
.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
};
static const struct intel_dpll_funcs chv_dpll_funcs = {
.crtc_compute_clock = chv_crtc_compute_clock,
};
static const struct intel_dpll_funcs vlv_dpll_funcs = {
.crtc_compute_clock = vlv_crtc_compute_clock,
};
static const struct intel_dpll_funcs g4x_dpll_funcs = {
.crtc_compute_clock = g4x_crtc_compute_clock,
};
static const struct intel_dpll_funcs pnv_dpll_funcs = {
.crtc_compute_clock = pnv_crtc_compute_clock,
};
static const struct intel_dpll_funcs i9xx_dpll_funcs = {
.crtc_compute_clock = i9xx_crtc_compute_clock,
};
static const struct intel_dpll_funcs i8xx_dpll_funcs = {
.crtc_compute_clock = i8xx_crtc_compute_clock,
};
int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
int ret;
drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
if (drm_WARN_ON(&i915->drm, crtc_state->shared_dpll))
return 0;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (!crtc_state->hw.enable)
return 0;
ret = i915->dpll_funcs->crtc_compute_clock(state, crtc);
if (ret) {
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
crtc->base.base.id, crtc->base.name);
return ret;
}
return 0;
}
int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
int ret;
drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
if (drm_WARN_ON(&i915->drm, crtc_state->shared_dpll))
return 0;
if (!crtc_state->hw.enable)
return 0;
if (!i915->dpll_funcs->crtc_get_shared_dpll)
return 0;
ret = i915->dpll_funcs->crtc_get_shared_dpll(state, crtc);
if (ret) {
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
crtc->base.base.id, crtc->base.name);
return ret;
}
return 0;
}
void
intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
{
if (IS_DG2(dev_priv))
dev_priv->dpll_funcs = &dg2_dpll_funcs;
else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
dev_priv->dpll_funcs = &hsw_dpll_funcs;
else if (HAS_PCH_SPLIT(dev_priv))
dev_priv->dpll_funcs = &ilk_dpll_funcs;
else if (IS_CHERRYVIEW(dev_priv))
dev_priv->dpll_funcs = &chv_dpll_funcs;
else if (IS_VALLEYVIEW(dev_priv))
dev_priv->dpll_funcs = &vlv_dpll_funcs;
else if (IS_G4X(dev_priv))
dev_priv->dpll_funcs = &g4x_dpll_funcs;
else if (IS_PINEVIEW(dev_priv))
dev_priv->dpll_funcs = &pnv_dpll_funcs;
else if (DISPLAY_VER(dev_priv) != 2)
dev_priv->dpll_funcs = &i9xx_dpll_funcs;
else
dev_priv->dpll_funcs = &i8xx_dpll_funcs;
}
static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
{
if (IS_I830(dev_priv))
return false;
return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
}
void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 dpll = crtc_state->dpll_hw_state.dpll;
enum pipe pipe = crtc->pipe;
int i;
assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
/* PLL is protected by panel, make sure we can write it */
if (i9xx_has_pps(dev_priv))
assert_pps_unlocked(dev_priv, pipe);
intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
/*
* Apparently we need to have VGA mode enabled prior to changing
* the P1/P2 dividers. Otherwise the DPLL will keep using the old
* dividers, even though the register value does change.
*/
intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
intel_de_write(dev_priv, DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
intel_de_posting_read(dev_priv, DPLL(pipe));
udelay(150);
if (DISPLAY_VER(dev_priv) >= 4) {
intel_de_write(dev_priv, DPLL_MD(pipe),
crtc_state->dpll_hw_state.dpll_md);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
intel_de_write(dev_priv, DPLL(pipe), dpll);
}
/* We do this three times for luck */
for (i = 0; i < 3; i++) {
intel_de_write(dev_priv, DPLL(pipe), dpll);
intel_de_posting_read(dev_priv, DPLL(pipe));
udelay(150); /* wait for warmup */
}
}
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 reg_val;
/*
* PLLB opamp always calibrates to max value of 0x3f, force enable it
* and set it to a reasonable value instead.
*/
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
reg_val |= 0x00000030;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x00ffffff;
reg_val |= 0x8c000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x00ffffff;
reg_val |= 0xb0000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
}
static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 mdiv;
u32 bestn, bestm1, bestm2, bestp1, bestp2;
u32 coreclk, reg_val;
vlv_dpio_get(dev_priv);
bestn = crtc_state->dpll.n;
bestm1 = crtc_state->dpll.m1;
bestm2 = crtc_state->dpll.m2;
bestp1 = crtc_state->dpll.p1;
bestp2 = crtc_state->dpll.p2;
/* See eDP HDMI DPIO driver vbios notes doc */
/* PLL B needs special handling */
if (pipe == PIPE_B)
vlv_pllb_recal_opamp(dev_priv, pipe);
/* Set up Tx target for periodic Rcomp update */
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
/* Disable target IRef on PLL */
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
reg_val &= 0x00ffffff;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
/* Disable fast lock */
vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
/* Set idtafcrecal before PLL is enabled */
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
mdiv |= ((bestn << DPIO_N_SHIFT));
mdiv |= (1 << DPIO_K_SHIFT);
/*
* Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
* but we don't support that).
* Note: don't use the DAC post divider as it seems unstable.
*/
mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
mdiv |= DPIO_ENABLE_CALIBRATION;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
/* Set HBR and RBR LPF coefficients */
if (crtc_state->port_clock == 162000 ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x009f0003);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x00d0000f);
if (intel_crtc_has_dp_encoder(crtc_state)) {
/* Use SSC source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
} else { /* HDMI or VGA */
/* Use bend source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
}
coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
if (intel_crtc_has_dp_encoder(crtc_state))
coreclk |= 0x01000000;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
vlv_dpio_put(dev_priv);
}
static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
intel_de_posting_read(dev_priv, DPLL(pipe));
udelay(150);
if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
}
void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
/* PLL is protected by panel, make sure we can write it */
assert_pps_unlocked(dev_priv, pipe);
/* Enable Refclk */
intel_de_write(dev_priv, DPLL(pipe),
crtc_state->dpll_hw_state.dpll &
~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
vlv_prepare_pll(crtc_state);
_vlv_enable_pll(crtc_state);
}
intel_de_write(dev_priv, DPLL_MD(pipe),
crtc_state->dpll_hw_state.dpll_md);
intel_de_posting_read(dev_priv, DPLL_MD(pipe));
}
static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 loopfilter, tribuf_calcntr;
u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
u32 dpio_val;
int vco;
bestn = crtc_state->dpll.n;
bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
bestm1 = crtc_state->dpll.m1;
bestm2 = crtc_state->dpll.m2 >> 22;
bestp1 = crtc_state->dpll.p1;
bestp2 = crtc_state->dpll.p2;
vco = crtc_state->dpll.vco;
dpio_val = 0;
loopfilter = 0;
vlv_dpio_get(dev_priv);
/* p1 and p2 divider */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5 << DPIO_CHV_S1_DIV_SHIFT |
bestp1 << DPIO_CHV_P1_DIV_SHIFT |
bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1 << DPIO_CHV_K_DIV_SHIFT);
/* Feedback post-divider - m2 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
/* Feedback refclk divider - n and m1 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
DPIO_CHV_M1_DIV_BY_2 |
1 << DPIO_CHV_N_DIV_SHIFT);
/* M2 fraction division */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
/* M2 fraction division enable */
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
if (bestm2_frac)
dpio_val |= DPIO_CHV_FRAC_DIV_EN;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
/* Program digital lock detect threshold */
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
if (!bestm2_frac)
dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
/* Loop filter */
if (vco == 5400000) {
loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6200000) {
loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6480000) {
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x8;
} else {
/* Not supported. Apply the same limits as in the max case */
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0;
}
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
/* AFC Recal */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
DPIO_AFC_RECAL);
vlv_dpio_put(dev_priv);
}
static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 tmp;
vlv_dpio_get(dev_priv);
/* Enable back the 10bit clock to display controller */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
tmp |= DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
vlv_dpio_put(dev_priv);
/*
* Need to wait > 100ns between dclkp clock enable bit and PLL enable.
*/
udelay(1);
/* Enable PLL */
intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
/* Check PLL is locked */
if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
}
void chv_enable_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
/* PLL is protected by panel, make sure we can write it */
assert_pps_unlocked(dev_priv, pipe);
/* Enable Refclk and SSC */
intel_de_write(dev_priv, DPLL(pipe),
crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
chv_prepare_pll(crtc_state);
_chv_enable_pll(crtc_state);
}
if (pipe != PIPE_A) {
/*
* WaPixelRepeatModeFixForC0:chv
*
* DPLLCMD is AWOL. Use chicken bits to propagate
* the value from DPLLBMD to either pipe B or C.
*/
intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
intel_de_write(dev_priv, DPLL_MD(PIPE_B),
crtc_state->dpll_hw_state.dpll_md);
intel_de_write(dev_priv, CBR4_VLV, 0);
dev_priv->chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
/*
* DPLLB VGA mode also seems to cause problems.
* We should always have it disabled.
*/
drm_WARN_ON(&dev_priv->drm,
(intel_de_read(dev_priv, DPLL(PIPE_B)) &
DPLL_VGA_MODE_DIS) == 0);
} else {
intel_de_write(dev_priv, DPLL_MD(pipe),
crtc_state->dpll_hw_state.dpll_md);
intel_de_posting_read(dev_priv, DPLL_MD(pipe));
}
}
/**
* vlv_force_pll_on - forcibly enable just the PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
* @dpll: PLL configuration
*
* Enable the PLL for @pipe using the supplied @dpll config. To be used
* in cases where we need the PLL enabled even when @pipe is not going to
* be enabled.
*/
int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
const struct dpll *dpll)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
struct intel_crtc_state *crtc_state;
crtc_state = intel_crtc_state_alloc(crtc);
if (!crtc_state)
return -ENOMEM;
crtc_state->cpu_transcoder = (enum transcoder)pipe;
crtc_state->pixel_multiplier = 1;
crtc_state->dpll = *dpll;
crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
if (IS_CHERRYVIEW(dev_priv)) {
chv_compute_dpll(crtc_state);
chv_enable_pll(crtc_state);
} else {
vlv_compute_dpll(crtc_state);
vlv_enable_pll(crtc_state);
}
kfree(crtc_state);
return 0;
}
void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
u32 val;
/* Make sure the pipe isn't still relying on us */
assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
val = DPLL_INTEGRATED_REF_CLK_VLV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
intel_de_write(dev_priv, DPLL(pipe), val);
intel_de_posting_read(dev_priv, DPLL(pipe));
}
void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 val;
/* Make sure the pipe isn't still relying on us */
assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
val = DPLL_SSC_REF_CLK_CHV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
intel_de_write(dev_priv, DPLL(pipe), val);
intel_de_posting_read(dev_priv, DPLL(pipe));
vlv_dpio_get(dev_priv);
/* Disable 10bit clock to display controller */
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
val &= ~DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
vlv_dpio_put(dev_priv);
}
void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* Don't disable pipe or pipe PLLs if needed */
if (IS_I830(dev_priv))
return;
/* Make sure the pipe isn't still relying on us */
assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
intel_de_posting_read(dev_priv, DPLL(pipe));
}
/**
* vlv_force_pll_off - forcibly disable just the PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe. To be used in cases where we need
* the PLL enabled even when @pipe is not going to be enabled.
*/
void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
{
if (IS_CHERRYVIEW(dev_priv))
chv_disable_pll(dev_priv, pipe);
else
vlv_disable_pll(dev_priv, pipe);
}
/* Only for pre-ILK configs */
static void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
bool cur_state;
cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
I915_STATE_WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
str_on_off(state), str_on_off(cur_state));
}
void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_pll(i915, pipe, true);
}
void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_pll(i915, pipe, false);
}