| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * alternative runtime patching |
| * inspired by the x86 version |
| * |
| * Copyright (C) 2014 ARM Ltd. |
| */ |
| |
| #define pr_fmt(fmt) "alternatives: " fmt |
| |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <asm/cacheflush.h> |
| #include <asm/alternative.h> |
| #include <asm/cpufeature.h> |
| #include <asm/insn.h> |
| #include <asm/sections.h> |
| #include <linux/stop_machine.h> |
| |
| #define __ALT_PTR(a,f) ((void *)&(a)->f + (a)->f) |
| #define ALT_ORIG_PTR(a) __ALT_PTR(a, orig_offset) |
| #define ALT_REPL_PTR(a) __ALT_PTR(a, alt_offset) |
| |
| /* Volatile, as we may be patching the guts of READ_ONCE() */ |
| static volatile int all_alternatives_applied; |
| |
| static DECLARE_BITMAP(applied_alternatives, ARM64_NCAPS); |
| |
| struct alt_region { |
| struct alt_instr *begin; |
| struct alt_instr *end; |
| }; |
| |
| bool alternative_is_applied(u16 cpufeature) |
| { |
| if (WARN_ON(cpufeature >= ARM64_NCAPS)) |
| return false; |
| |
| return test_bit(cpufeature, applied_alternatives); |
| } |
| |
| /* |
| * Check if the target PC is within an alternative block. |
| */ |
| static bool branch_insn_requires_update(struct alt_instr *alt, unsigned long pc) |
| { |
| unsigned long replptr = (unsigned long)ALT_REPL_PTR(alt); |
| return !(pc >= replptr && pc <= (replptr + alt->alt_len)); |
| } |
| |
| #define align_down(x, a) ((unsigned long)(x) & ~(((unsigned long)(a)) - 1)) |
| |
| static u32 get_alt_insn(struct alt_instr *alt, __le32 *insnptr, __le32 *altinsnptr) |
| { |
| u32 insn; |
| |
| insn = le32_to_cpu(*altinsnptr); |
| |
| if (aarch64_insn_is_branch_imm(insn)) { |
| s32 offset = aarch64_get_branch_offset(insn); |
| unsigned long target; |
| |
| target = (unsigned long)altinsnptr + offset; |
| |
| /* |
| * If we're branching inside the alternate sequence, |
| * do not rewrite the instruction, as it is already |
| * correct. Otherwise, generate the new instruction. |
| */ |
| if (branch_insn_requires_update(alt, target)) { |
| offset = target - (unsigned long)insnptr; |
| insn = aarch64_set_branch_offset(insn, offset); |
| } |
| } else if (aarch64_insn_is_adrp(insn)) { |
| s32 orig_offset, new_offset; |
| unsigned long target; |
| |
| /* |
| * If we're replacing an adrp instruction, which uses PC-relative |
| * immediate addressing, adjust the offset to reflect the new |
| * PC. adrp operates on 4K aligned addresses. |
| */ |
| orig_offset = aarch64_insn_adrp_get_offset(insn); |
| target = align_down(altinsnptr, SZ_4K) + orig_offset; |
| new_offset = target - align_down(insnptr, SZ_4K); |
| insn = aarch64_insn_adrp_set_offset(insn, new_offset); |
| } else if (aarch64_insn_uses_literal(insn)) { |
| /* |
| * Disallow patching unhandled instructions using PC relative |
| * literal addresses |
| */ |
| BUG(); |
| } |
| |
| return insn; |
| } |
| |
| static void patch_alternative(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst) |
| { |
| __le32 *replptr; |
| int i; |
| |
| replptr = ALT_REPL_PTR(alt); |
| for (i = 0; i < nr_inst; i++) { |
| u32 insn; |
| |
| insn = get_alt_insn(alt, origptr + i, replptr + i); |
| updptr[i] = cpu_to_le32(insn); |
| } |
| } |
| |
| /* |
| * We provide our own, private D-cache cleaning function so that we don't |
| * accidentally call into the cache.S code, which is patched by us at |
| * runtime. |
| */ |
| static void clean_dcache_range_nopatch(u64 start, u64 end) |
| { |
| u64 cur, d_size, ctr_el0; |
| |
| ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| d_size = 4 << cpuid_feature_extract_unsigned_field(ctr_el0, |
| CTR_DMINLINE_SHIFT); |
| cur = start & ~(d_size - 1); |
| do { |
| /* |
| * We must clean+invalidate to the PoC in order to avoid |
| * Cortex-A53 errata 826319, 827319, 824069 and 819472 |
| * (this corresponds to ARM64_WORKAROUND_CLEAN_CACHE) |
| */ |
| asm volatile("dc civac, %0" : : "r" (cur) : "memory"); |
| } while (cur += d_size, cur < end); |
| } |
| |
| static void __nocfi __apply_alternatives(void *alt_region, bool is_module, |
| unsigned long *feature_mask) |
| { |
| struct alt_instr *alt; |
| struct alt_region *region = alt_region; |
| __le32 *origptr, *updptr; |
| alternative_cb_t alt_cb; |
| |
| for (alt = region->begin; alt < region->end; alt++) { |
| int nr_inst; |
| |
| if (!test_bit(alt->cpufeature, feature_mask)) |
| continue; |
| |
| /* Use ARM64_CB_PATCH as an unconditional patch */ |
| if (alt->cpufeature < ARM64_CB_PATCH && |
| !cpus_have_cap(alt->cpufeature)) |
| continue; |
| |
| if (alt->cpufeature == ARM64_CB_PATCH) |
| BUG_ON(alt->alt_len != 0); |
| else |
| BUG_ON(alt->alt_len != alt->orig_len); |
| |
| pr_info_once("patching kernel code\n"); |
| |
| origptr = ALT_ORIG_PTR(alt); |
| updptr = is_module ? origptr : lm_alias(origptr); |
| nr_inst = alt->orig_len / AARCH64_INSN_SIZE; |
| |
| if (alt->cpufeature < ARM64_CB_PATCH) |
| alt_cb = patch_alternative; |
| else |
| alt_cb = ALT_REPL_PTR(alt); |
| |
| alt_cb(alt, origptr, updptr, nr_inst); |
| |
| if (!is_module) { |
| clean_dcache_range_nopatch((u64)origptr, |
| (u64)(origptr + nr_inst)); |
| } |
| } |
| |
| /* |
| * The core module code takes care of cache maintenance in |
| * flush_module_icache(). |
| */ |
| if (!is_module) { |
| dsb(ish); |
| icache_inval_all_pou(); |
| isb(); |
| |
| /* Ignore ARM64_CB bit from feature mask */ |
| bitmap_or(applied_alternatives, applied_alternatives, |
| feature_mask, ARM64_NCAPS); |
| bitmap_and(applied_alternatives, applied_alternatives, |
| cpu_hwcaps, ARM64_NCAPS); |
| } |
| } |
| |
| /* |
| * We might be patching the stop_machine state machine, so implement a |
| * really simple polling protocol here. |
| */ |
| static int __apply_alternatives_multi_stop(void *unused) |
| { |
| struct alt_region region = { |
| .begin = (struct alt_instr *)__alt_instructions, |
| .end = (struct alt_instr *)__alt_instructions_end, |
| }; |
| |
| /* We always have a CPU 0 at this point (__init) */ |
| if (smp_processor_id()) { |
| while (!all_alternatives_applied) |
| cpu_relax(); |
| isb(); |
| } else { |
| DECLARE_BITMAP(remaining_capabilities, ARM64_NPATCHABLE); |
| |
| bitmap_complement(remaining_capabilities, boot_capabilities, |
| ARM64_NPATCHABLE); |
| |
| BUG_ON(all_alternatives_applied); |
| __apply_alternatives(®ion, false, remaining_capabilities); |
| /* Barriers provided by the cache flushing */ |
| all_alternatives_applied = 1; |
| } |
| |
| return 0; |
| } |
| |
| void __init apply_alternatives_all(void) |
| { |
| /* better not try code patching on a live SMP system */ |
| stop_machine(__apply_alternatives_multi_stop, NULL, cpu_online_mask); |
| } |
| |
| /* |
| * This is called very early in the boot process (directly after we run |
| * a feature detect on the boot CPU). No need to worry about other CPUs |
| * here. |
| */ |
| void __init apply_boot_alternatives(void) |
| { |
| struct alt_region region = { |
| .begin = (struct alt_instr *)__alt_instructions, |
| .end = (struct alt_instr *)__alt_instructions_end, |
| }; |
| |
| /* If called on non-boot cpu things could go wrong */ |
| WARN_ON(smp_processor_id() != 0); |
| |
| __apply_alternatives(®ion, false, &boot_capabilities[0]); |
| } |
| |
| #ifdef CONFIG_MODULES |
| void apply_alternatives_module(void *start, size_t length) |
| { |
| struct alt_region region = { |
| .begin = start, |
| .end = start + length, |
| }; |
| DECLARE_BITMAP(all_capabilities, ARM64_NPATCHABLE); |
| |
| bitmap_fill(all_capabilities, ARM64_NPATCHABLE); |
| |
| __apply_alternatives(®ion, true, &all_capabilities[0]); |
| } |
| #endif |