| /* |
| * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_log.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_mount.h" |
| #include "xfs_error.h" |
| #include "xfs_alloc.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_discard.h" |
| |
| /* |
| * Allocate a new ticket. Failing to get a new ticket makes it really hard to |
| * recover, so we don't allow failure here. Also, we allocate in a context that |
| * we don't want to be issuing transactions from, so we need to tell the |
| * allocation code this as well. |
| * |
| * We don't reserve any space for the ticket - we are going to steal whatever |
| * space we require from transactions as they commit. To ensure we reserve all |
| * the space required, we need to set the current reservation of the ticket to |
| * zero so that we know to steal the initial transaction overhead from the |
| * first transaction commit. |
| */ |
| static struct xlog_ticket * |
| xlog_cil_ticket_alloc( |
| struct xlog *log) |
| { |
| struct xlog_ticket *tic; |
| |
| tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0, |
| KM_SLEEP|KM_NOFS); |
| tic->t_trans_type = XFS_TRANS_CHECKPOINT; |
| |
| /* |
| * set the current reservation to zero so we know to steal the basic |
| * transaction overhead reservation from the first transaction commit. |
| */ |
| tic->t_curr_res = 0; |
| return tic; |
| } |
| |
| /* |
| * After the first stage of log recovery is done, we know where the head and |
| * tail of the log are. We need this log initialisation done before we can |
| * initialise the first CIL checkpoint context. |
| * |
| * Here we allocate a log ticket to track space usage during a CIL push. This |
| * ticket is passed to xlog_write() directly so that we don't slowly leak log |
| * space by failing to account for space used by log headers and additional |
| * region headers for split regions. |
| */ |
| void |
| xlog_cil_init_post_recovery( |
| struct xlog *log) |
| { |
| log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); |
| log->l_cilp->xc_ctx->sequence = 1; |
| log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle, |
| log->l_curr_block); |
| } |
| |
| STATIC int |
| xlog_cil_lv_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| int index; |
| char *ptr; |
| |
| /* format new vectors into array */ |
| lip->li_ops->iop_format(lip, lv->lv_iovecp); |
| |
| /* copy data into existing array */ |
| ptr = lv->lv_buf; |
| for (index = 0; index < lv->lv_niovecs; index++) { |
| struct xfs_log_iovec *vec = &lv->lv_iovecp[index]; |
| |
| memcpy(ptr, vec->i_addr, vec->i_len); |
| vec->i_addr = ptr; |
| ptr += vec->i_len; |
| } |
| |
| /* |
| * some size calculations for log vectors over-estimate, so the caller |
| * doesn't know the amount of space actually used by the item. Return |
| * the byte count to the caller so they can check and store it |
| * appropriately. |
| */ |
| return ptr - lv->lv_buf; |
| } |
| |
| /* |
| * Prepare the log item for insertion into the CIL. Calculate the difference in |
| * log space and vectors it will consume, and if it is a new item pin it as |
| * well. |
| */ |
| STATIC void |
| xfs_cil_prepare_item( |
| struct xlog *log, |
| struct xfs_log_vec *lv, |
| struct xfs_log_vec *old_lv, |
| int *diff_len, |
| int *diff_iovecs) |
| { |
| /* Account for the new LV being passed in */ |
| if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) { |
| *diff_len += lv->lv_buf_len; |
| *diff_iovecs += lv->lv_niovecs; |
| } |
| |
| /* |
| * If there is no old LV, this is the first time we've seen the item in |
| * this CIL context and so we need to pin it. If we are replacing the |
| * old_lv, then remove the space it accounts for and free it. |
| */ |
| if (!old_lv) |
| lv->lv_item->li_ops->iop_pin(lv->lv_item); |
| else if (old_lv != lv) { |
| ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); |
| |
| *diff_len -= old_lv->lv_buf_len; |
| *diff_iovecs -= old_lv->lv_niovecs; |
| kmem_free(old_lv); |
| } |
| |
| /* attach new log vector to log item */ |
| lv->lv_item->li_lv = lv; |
| |
| /* |
| * If this is the first time the item is being committed to the |
| * CIL, store the sequence number on the log item so we can |
| * tell in future commits whether this is the first checkpoint |
| * the item is being committed into. |
| */ |
| if (!lv->lv_item->li_seq) |
| lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; |
| } |
| |
| /* |
| * Format log item into a flat buffers |
| * |
| * For delayed logging, we need to hold a formatted buffer containing all the |
| * changes on the log item. This enables us to relog the item in memory and |
| * write it out asynchronously without needing to relock the object that was |
| * modified at the time it gets written into the iclog. |
| * |
| * This function builds a vector for the changes in each log item in the |
| * transaction. It then works out the length of the buffer needed for each log |
| * item, allocates them and formats the vector for the item into the buffer. |
| * The buffer is then attached to the log item are then inserted into the |
| * Committed Item List for tracking until the next checkpoint is written out. |
| * |
| * We don't set up region headers during this process; we simply copy the |
| * regions into the flat buffer. We can do this because we still have to do a |
| * formatting step to write the regions into the iclog buffer. Writing the |
| * ophdrs during the iclog write means that we can support splitting large |
| * regions across iclog boundares without needing a change in the format of the |
| * item/region encapsulation. |
| * |
| * Hence what we need to do now is change the rewrite the vector array to point |
| * to the copied region inside the buffer we just allocated. This allows us to |
| * format the regions into the iclog as though they are being formatted |
| * directly out of the objects themselves. |
| */ |
| static void |
| xlog_cil_insert_format_items( |
| struct xlog *log, |
| struct xfs_trans *tp, |
| int *diff_len, |
| int *diff_iovecs) |
| { |
| struct xfs_log_item_desc *lidp; |
| |
| |
| /* Bail out if we didn't find a log item. */ |
| if (list_empty(&tp->t_items)) { |
| ASSERT(0); |
| return; |
| } |
| |
| list_for_each_entry(lidp, &tp->t_items, lid_trans) { |
| struct xfs_log_item *lip = lidp->lid_item; |
| struct xfs_log_vec *lv; |
| struct xfs_log_vec *old_lv; |
| int niovecs = 0; |
| int nbytes = 0; |
| int buf_size; |
| bool ordered = false; |
| |
| /* Skip items which aren't dirty in this transaction. */ |
| if (!(lidp->lid_flags & XFS_LID_DIRTY)) |
| continue; |
| |
| /* get number of vecs and size of data to be stored */ |
| lip->li_ops->iop_size(lip, &niovecs, &nbytes); |
| |
| /* Skip items that do not have any vectors for writing */ |
| if (!niovecs) |
| continue; |
| |
| /* |
| * Ordered items need to be tracked but we do not wish to write |
| * them. We need a logvec to track the object, but we do not |
| * need an iovec or buffer to be allocated for copying data. |
| */ |
| if (niovecs == XFS_LOG_VEC_ORDERED) { |
| ordered = true; |
| niovecs = 0; |
| nbytes = 0; |
| } |
| |
| /* grab the old item if it exists for reservation accounting */ |
| old_lv = lip->li_lv; |
| |
| /* calc buffer size */ |
| buf_size = sizeof(struct xfs_log_vec) + nbytes + |
| niovecs * sizeof(struct xfs_log_iovec); |
| |
| /* compare to existing item size */ |
| if (lip->li_lv && buf_size <= lip->li_lv->lv_size) { |
| /* same or smaller, optimise common overwrite case */ |
| lv = lip->li_lv; |
| lv->lv_next = NULL; |
| |
| if (ordered) |
| goto insert; |
| |
| /* |
| * set the item up as though it is a new insertion so |
| * that the space reservation accounting is correct. |
| */ |
| *diff_iovecs -= lv->lv_niovecs; |
| *diff_len -= lv->lv_buf_len; |
| |
| /* Ensure the lv is set up according to ->iop_size */ |
| lv->lv_niovecs = niovecs; |
| lv->lv_buf = (char *)lv + buf_size - nbytes; |
| |
| lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv); |
| goto insert; |
| } |
| |
| /* allocate new data chunk */ |
| lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS); |
| lv->lv_item = lip; |
| lv->lv_size = buf_size; |
| lv->lv_niovecs = niovecs; |
| if (ordered) { |
| /* track as an ordered logvec */ |
| ASSERT(lip->li_lv == NULL); |
| lv->lv_buf_len = XFS_LOG_VEC_ORDERED; |
| goto insert; |
| } |
| |
| /* The allocated iovec region lies beyond the log vector. */ |
| lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; |
| |
| /* The allocated data region lies beyond the iovec region */ |
| lv->lv_buf = (char *)lv + buf_size - nbytes; |
| |
| lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv); |
| insert: |
| ASSERT(lv->lv_buf_len <= nbytes); |
| xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs); |
| } |
| } |
| |
| /* |
| * Insert the log items into the CIL and calculate the difference in space |
| * consumed by the item. Add the space to the checkpoint ticket and calculate |
| * if the change requires additional log metadata. If it does, take that space |
| * as well. Remove the amount of space we added to the checkpoint ticket from |
| * the current transaction ticket so that the accounting works out correctly. |
| */ |
| static void |
| xlog_cil_insert_items( |
| struct xlog *log, |
| struct xfs_trans *tp) |
| { |
| struct xfs_cil *cil = log->l_cilp; |
| struct xfs_cil_ctx *ctx = cil->xc_ctx; |
| struct xfs_log_item_desc *lidp; |
| int len = 0; |
| int diff_iovecs = 0; |
| int iclog_space; |
| |
| ASSERT(tp); |
| |
| /* |
| * We can do this safely because the context can't checkpoint until we |
| * are done so it doesn't matter exactly how we update the CIL. |
| */ |
| xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs); |
| |
| /* |
| * Now (re-)position everything modified at the tail of the CIL. |
| * We do this here so we only need to take the CIL lock once during |
| * the transaction commit. |
| */ |
| spin_lock(&cil->xc_cil_lock); |
| list_for_each_entry(lidp, &tp->t_items, lid_trans) { |
| struct xfs_log_item *lip = lidp->lid_item; |
| |
| /* Skip items which aren't dirty in this transaction. */ |
| if (!(lidp->lid_flags & XFS_LID_DIRTY)) |
| continue; |
| |
| list_move_tail(&lip->li_cil, &cil->xc_cil); |
| } |
| |
| /* account for space used by new iovec headers */ |
| len += diff_iovecs * sizeof(xlog_op_header_t); |
| ctx->nvecs += diff_iovecs; |
| |
| /* attach the transaction to the CIL if it has any busy extents */ |
| if (!list_empty(&tp->t_busy)) |
| list_splice_init(&tp->t_busy, &ctx->busy_extents); |
| |
| /* |
| * Now transfer enough transaction reservation to the context ticket |
| * for the checkpoint. The context ticket is special - the unit |
| * reservation has to grow as well as the current reservation as we |
| * steal from tickets so we can correctly determine the space used |
| * during the transaction commit. |
| */ |
| if (ctx->ticket->t_curr_res == 0) { |
| ctx->ticket->t_curr_res = ctx->ticket->t_unit_res; |
| tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res; |
| } |
| |
| /* do we need space for more log record headers? */ |
| iclog_space = log->l_iclog_size - log->l_iclog_hsize; |
| if (len > 0 && (ctx->space_used / iclog_space != |
| (ctx->space_used + len) / iclog_space)) { |
| int hdrs; |
| |
| hdrs = (len + iclog_space - 1) / iclog_space; |
| /* need to take into account split region headers, too */ |
| hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header); |
| ctx->ticket->t_unit_res += hdrs; |
| ctx->ticket->t_curr_res += hdrs; |
| tp->t_ticket->t_curr_res -= hdrs; |
| ASSERT(tp->t_ticket->t_curr_res >= len); |
| } |
| tp->t_ticket->t_curr_res -= len; |
| ctx->space_used += len; |
| |
| spin_unlock(&cil->xc_cil_lock); |
| } |
| |
| static void |
| xlog_cil_free_logvec( |
| struct xfs_log_vec *log_vector) |
| { |
| struct xfs_log_vec *lv; |
| |
| for (lv = log_vector; lv; ) { |
| struct xfs_log_vec *next = lv->lv_next; |
| kmem_free(lv); |
| lv = next; |
| } |
| } |
| |
| /* |
| * Mark all items committed and clear busy extents. We free the log vector |
| * chains in a separate pass so that we unpin the log items as quickly as |
| * possible. |
| */ |
| static void |
| xlog_cil_committed( |
| void *args, |
| int abort) |
| { |
| struct xfs_cil_ctx *ctx = args; |
| struct xfs_mount *mp = ctx->cil->xc_log->l_mp; |
| |
| xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain, |
| ctx->start_lsn, abort); |
| |
| xfs_extent_busy_sort(&ctx->busy_extents); |
| xfs_extent_busy_clear(mp, &ctx->busy_extents, |
| (mp->m_flags & XFS_MOUNT_DISCARD) && !abort); |
| |
| spin_lock(&ctx->cil->xc_push_lock); |
| list_del(&ctx->committing); |
| spin_unlock(&ctx->cil->xc_push_lock); |
| |
| xlog_cil_free_logvec(ctx->lv_chain); |
| |
| if (!list_empty(&ctx->busy_extents)) { |
| ASSERT(mp->m_flags & XFS_MOUNT_DISCARD); |
| |
| xfs_discard_extents(mp, &ctx->busy_extents); |
| xfs_extent_busy_clear(mp, &ctx->busy_extents, false); |
| } |
| |
| kmem_free(ctx); |
| } |
| |
| /* |
| * Push the Committed Item List to the log. If @push_seq flag is zero, then it |
| * is a background flush and so we can chose to ignore it. Otherwise, if the |
| * current sequence is the same as @push_seq we need to do a flush. If |
| * @push_seq is less than the current sequence, then it has already been |
| * flushed and we don't need to do anything - the caller will wait for it to |
| * complete if necessary. |
| * |
| * @push_seq is a value rather than a flag because that allows us to do an |
| * unlocked check of the sequence number for a match. Hence we can allows log |
| * forces to run racily and not issue pushes for the same sequence twice. If we |
| * get a race between multiple pushes for the same sequence they will block on |
| * the first one and then abort, hence avoiding needless pushes. |
| */ |
| STATIC int |
| xlog_cil_push( |
| struct xlog *log) |
| { |
| struct xfs_cil *cil = log->l_cilp; |
| struct xfs_log_vec *lv; |
| struct xfs_cil_ctx *ctx; |
| struct xfs_cil_ctx *new_ctx; |
| struct xlog_in_core *commit_iclog; |
| struct xlog_ticket *tic; |
| int num_iovecs; |
| int error = 0; |
| struct xfs_trans_header thdr; |
| struct xfs_log_iovec lhdr; |
| struct xfs_log_vec lvhdr = { NULL }; |
| xfs_lsn_t commit_lsn; |
| xfs_lsn_t push_seq; |
| |
| if (!cil) |
| return 0; |
| |
| new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS); |
| new_ctx->ticket = xlog_cil_ticket_alloc(log); |
| |
| down_write(&cil->xc_ctx_lock); |
| ctx = cil->xc_ctx; |
| |
| spin_lock(&cil->xc_push_lock); |
| push_seq = cil->xc_push_seq; |
| ASSERT(push_seq <= ctx->sequence); |
| |
| /* |
| * Check if we've anything to push. If there is nothing, then we don't |
| * move on to a new sequence number and so we have to be able to push |
| * this sequence again later. |
| */ |
| if (list_empty(&cil->xc_cil)) { |
| cil->xc_push_seq = 0; |
| spin_unlock(&cil->xc_push_lock); |
| goto out_skip; |
| } |
| spin_unlock(&cil->xc_push_lock); |
| |
| |
| /* check for a previously pushed seqeunce */ |
| if (push_seq < cil->xc_ctx->sequence) |
| goto out_skip; |
| |
| /* |
| * pull all the log vectors off the items in the CIL, and |
| * remove the items from the CIL. We don't need the CIL lock |
| * here because it's only needed on the transaction commit |
| * side which is currently locked out by the flush lock. |
| */ |
| lv = NULL; |
| num_iovecs = 0; |
| while (!list_empty(&cil->xc_cil)) { |
| struct xfs_log_item *item; |
| |
| item = list_first_entry(&cil->xc_cil, |
| struct xfs_log_item, li_cil); |
| list_del_init(&item->li_cil); |
| if (!ctx->lv_chain) |
| ctx->lv_chain = item->li_lv; |
| else |
| lv->lv_next = item->li_lv; |
| lv = item->li_lv; |
| item->li_lv = NULL; |
| num_iovecs += lv->lv_niovecs; |
| } |
| |
| /* |
| * initialise the new context and attach it to the CIL. Then attach |
| * the current context to the CIL committing lsit so it can be found |
| * during log forces to extract the commit lsn of the sequence that |
| * needs to be forced. |
| */ |
| INIT_LIST_HEAD(&new_ctx->committing); |
| INIT_LIST_HEAD(&new_ctx->busy_extents); |
| new_ctx->sequence = ctx->sequence + 1; |
| new_ctx->cil = cil; |
| cil->xc_ctx = new_ctx; |
| |
| /* |
| * mirror the new sequence into the cil structure so that we can do |
| * unlocked checks against the current sequence in log forces without |
| * risking deferencing a freed context pointer. |
| */ |
| cil->xc_current_sequence = new_ctx->sequence; |
| |
| /* |
| * The switch is now done, so we can drop the context lock and move out |
| * of a shared context. We can't just go straight to the commit record, |
| * though - we need to synchronise with previous and future commits so |
| * that the commit records are correctly ordered in the log to ensure |
| * that we process items during log IO completion in the correct order. |
| * |
| * For example, if we get an EFI in one checkpoint and the EFD in the |
| * next (e.g. due to log forces), we do not want the checkpoint with |
| * the EFD to be committed before the checkpoint with the EFI. Hence |
| * we must strictly order the commit records of the checkpoints so |
| * that: a) the checkpoint callbacks are attached to the iclogs in the |
| * correct order; and b) the checkpoints are replayed in correct order |
| * in log recovery. |
| * |
| * Hence we need to add this context to the committing context list so |
| * that higher sequences will wait for us to write out a commit record |
| * before they do. |
| */ |
| spin_lock(&cil->xc_push_lock); |
| list_add(&ctx->committing, &cil->xc_committing); |
| spin_unlock(&cil->xc_push_lock); |
| up_write(&cil->xc_ctx_lock); |
| |
| /* |
| * Build a checkpoint transaction header and write it to the log to |
| * begin the transaction. We need to account for the space used by the |
| * transaction header here as it is not accounted for in xlog_write(). |
| * |
| * The LSN we need to pass to the log items on transaction commit is |
| * the LSN reported by the first log vector write. If we use the commit |
| * record lsn then we can move the tail beyond the grant write head. |
| */ |
| tic = ctx->ticket; |
| thdr.th_magic = XFS_TRANS_HEADER_MAGIC; |
| thdr.th_type = XFS_TRANS_CHECKPOINT; |
| thdr.th_tid = tic->t_tid; |
| thdr.th_num_items = num_iovecs; |
| lhdr.i_addr = &thdr; |
| lhdr.i_len = sizeof(xfs_trans_header_t); |
| lhdr.i_type = XLOG_REG_TYPE_TRANSHDR; |
| tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t); |
| |
| lvhdr.lv_niovecs = 1; |
| lvhdr.lv_iovecp = &lhdr; |
| lvhdr.lv_next = ctx->lv_chain; |
| |
| error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0); |
| if (error) |
| goto out_abort_free_ticket; |
| |
| /* |
| * now that we've written the checkpoint into the log, strictly |
| * order the commit records so replay will get them in the right order. |
| */ |
| restart: |
| spin_lock(&cil->xc_push_lock); |
| list_for_each_entry(new_ctx, &cil->xc_committing, committing) { |
| /* |
| * Higher sequences will wait for this one so skip them. |
| * Don't wait for own own sequence, either. |
| */ |
| if (new_ctx->sequence >= ctx->sequence) |
| continue; |
| if (!new_ctx->commit_lsn) { |
| /* |
| * It is still being pushed! Wait for the push to |
| * complete, then start again from the beginning. |
| */ |
| xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); |
| goto restart; |
| } |
| } |
| spin_unlock(&cil->xc_push_lock); |
| |
| /* xfs_log_done always frees the ticket on error. */ |
| commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0); |
| if (commit_lsn == -1) |
| goto out_abort; |
| |
| /* attach all the transactions w/ busy extents to iclog */ |
| ctx->log_cb.cb_func = xlog_cil_committed; |
| ctx->log_cb.cb_arg = ctx; |
| error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb); |
| if (error) |
| goto out_abort; |
| |
| /* |
| * now the checkpoint commit is complete and we've attached the |
| * callbacks to the iclog we can assign the commit LSN to the context |
| * and wake up anyone who is waiting for the commit to complete. |
| */ |
| spin_lock(&cil->xc_push_lock); |
| ctx->commit_lsn = commit_lsn; |
| wake_up_all(&cil->xc_commit_wait); |
| spin_unlock(&cil->xc_push_lock); |
| |
| /* release the hounds! */ |
| return xfs_log_release_iclog(log->l_mp, commit_iclog); |
| |
| out_skip: |
| up_write(&cil->xc_ctx_lock); |
| xfs_log_ticket_put(new_ctx->ticket); |
| kmem_free(new_ctx); |
| return 0; |
| |
| out_abort_free_ticket: |
| xfs_log_ticket_put(tic); |
| out_abort: |
| xlog_cil_committed(ctx, XFS_LI_ABORTED); |
| return XFS_ERROR(EIO); |
| } |
| |
| static void |
| xlog_cil_push_work( |
| struct work_struct *work) |
| { |
| struct xfs_cil *cil = container_of(work, struct xfs_cil, |
| xc_push_work); |
| xlog_cil_push(cil->xc_log); |
| } |
| |
| /* |
| * We need to push CIL every so often so we don't cache more than we can fit in |
| * the log. The limit really is that a checkpoint can't be more than half the |
| * log (the current checkpoint is not allowed to overwrite the previous |
| * checkpoint), but commit latency and memory usage limit this to a smaller |
| * size. |
| */ |
| static void |
| xlog_cil_push_background( |
| struct xlog *log) |
| { |
| struct xfs_cil *cil = log->l_cilp; |
| |
| /* |
| * The cil won't be empty because we are called while holding the |
| * context lock so whatever we added to the CIL will still be there |
| */ |
| ASSERT(!list_empty(&cil->xc_cil)); |
| |
| /* |
| * don't do a background push if we haven't used up all the |
| * space available yet. |
| */ |
| if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) |
| return; |
| |
| spin_lock(&cil->xc_push_lock); |
| if (cil->xc_push_seq < cil->xc_current_sequence) { |
| cil->xc_push_seq = cil->xc_current_sequence; |
| queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work); |
| } |
| spin_unlock(&cil->xc_push_lock); |
| |
| } |
| |
| static void |
| xlog_cil_push_foreground( |
| struct xlog *log, |
| xfs_lsn_t push_seq) |
| { |
| struct xfs_cil *cil = log->l_cilp; |
| |
| if (!cil) |
| return; |
| |
| ASSERT(push_seq && push_seq <= cil->xc_current_sequence); |
| |
| /* start on any pending background push to minimise wait time on it */ |
| flush_work(&cil->xc_push_work); |
| |
| /* |
| * If the CIL is empty or we've already pushed the sequence then |
| * there's no work we need to do. |
| */ |
| spin_lock(&cil->xc_push_lock); |
| if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) { |
| spin_unlock(&cil->xc_push_lock); |
| return; |
| } |
| |
| cil->xc_push_seq = push_seq; |
| spin_unlock(&cil->xc_push_lock); |
| |
| /* do the push now */ |
| xlog_cil_push(log); |
| } |
| |
| bool |
| xlog_cil_empty( |
| struct xlog *log) |
| { |
| struct xfs_cil *cil = log->l_cilp; |
| bool empty = false; |
| |
| spin_lock(&cil->xc_push_lock); |
| if (list_empty(&cil->xc_cil)) |
| empty = true; |
| spin_unlock(&cil->xc_push_lock); |
| return empty; |
| } |
| |
| /* |
| * Commit a transaction with the given vector to the Committed Item List. |
| * |
| * To do this, we need to format the item, pin it in memory if required and |
| * account for the space used by the transaction. Once we have done that we |
| * need to release the unused reservation for the transaction, attach the |
| * transaction to the checkpoint context so we carry the busy extents through |
| * to checkpoint completion, and then unlock all the items in the transaction. |
| * |
| * Called with the context lock already held in read mode to lock out |
| * background commit, returns without it held once background commits are |
| * allowed again. |
| */ |
| int |
| xfs_log_commit_cil( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| xfs_lsn_t *commit_lsn, |
| int flags) |
| { |
| struct xlog *log = mp->m_log; |
| struct xfs_cil *cil = log->l_cilp; |
| int log_flags = 0; |
| |
| if (flags & XFS_TRANS_RELEASE_LOG_RES) |
| log_flags = XFS_LOG_REL_PERM_RESERV; |
| |
| /* lock out background commit */ |
| down_read(&cil->xc_ctx_lock); |
| |
| xlog_cil_insert_items(log, tp); |
| |
| /* check we didn't blow the reservation */ |
| if (tp->t_ticket->t_curr_res < 0) |
| xlog_print_tic_res(mp, tp->t_ticket); |
| |
| tp->t_commit_lsn = cil->xc_ctx->sequence; |
| if (commit_lsn) |
| *commit_lsn = tp->t_commit_lsn; |
| |
| xfs_log_done(mp, tp->t_ticket, NULL, log_flags); |
| xfs_trans_unreserve_and_mod_sb(tp); |
| |
| /* |
| * Once all the items of the transaction have been copied to the CIL, |
| * the items can be unlocked and freed. |
| * |
| * This needs to be done before we drop the CIL context lock because we |
| * have to update state in the log items and unlock them before they go |
| * to disk. If we don't, then the CIL checkpoint can race with us and |
| * we can run checkpoint completion before we've updated and unlocked |
| * the log items. This affects (at least) processing of stale buffers, |
| * inodes and EFIs. |
| */ |
| xfs_trans_free_items(tp, tp->t_commit_lsn, 0); |
| |
| xlog_cil_push_background(log); |
| |
| up_read(&cil->xc_ctx_lock); |
| return 0; |
| } |
| |
| /* |
| * Conditionally push the CIL based on the sequence passed in. |
| * |
| * We only need to push if we haven't already pushed the sequence |
| * number given. Hence the only time we will trigger a push here is |
| * if the push sequence is the same as the current context. |
| * |
| * We return the current commit lsn to allow the callers to determine if a |
| * iclog flush is necessary following this call. |
| */ |
| xfs_lsn_t |
| xlog_cil_force_lsn( |
| struct xlog *log, |
| xfs_lsn_t sequence) |
| { |
| struct xfs_cil *cil = log->l_cilp; |
| struct xfs_cil_ctx *ctx; |
| xfs_lsn_t commit_lsn = NULLCOMMITLSN; |
| |
| ASSERT(sequence <= cil->xc_current_sequence); |
| |
| /* |
| * check to see if we need to force out the current context. |
| * xlog_cil_push() handles racing pushes for the same sequence, |
| * so no need to deal with it here. |
| */ |
| xlog_cil_push_foreground(log, sequence); |
| |
| /* |
| * See if we can find a previous sequence still committing. |
| * We need to wait for all previous sequence commits to complete |
| * before allowing the force of push_seq to go ahead. Hence block |
| * on commits for those as well. |
| */ |
| restart: |
| spin_lock(&cil->xc_push_lock); |
| list_for_each_entry(ctx, &cil->xc_committing, committing) { |
| if (ctx->sequence > sequence) |
| continue; |
| if (!ctx->commit_lsn) { |
| /* |
| * It is still being pushed! Wait for the push to |
| * complete, then start again from the beginning. |
| */ |
| xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); |
| goto restart; |
| } |
| if (ctx->sequence != sequence) |
| continue; |
| /* found it! */ |
| commit_lsn = ctx->commit_lsn; |
| } |
| spin_unlock(&cil->xc_push_lock); |
| return commit_lsn; |
| } |
| |
| /* |
| * Check if the current log item was first committed in this sequence. |
| * We can't rely on just the log item being in the CIL, we have to check |
| * the recorded commit sequence number. |
| * |
| * Note: for this to be used in a non-racy manner, it has to be called with |
| * CIL flushing locked out. As a result, it should only be used during the |
| * transaction commit process when deciding what to format into the item. |
| */ |
| bool |
| xfs_log_item_in_current_chkpt( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_cil_ctx *ctx; |
| |
| if (list_empty(&lip->li_cil)) |
| return false; |
| |
| ctx = lip->li_mountp->m_log->l_cilp->xc_ctx; |
| |
| /* |
| * li_seq is written on the first commit of a log item to record the |
| * first checkpoint it is written to. Hence if it is different to the |
| * current sequence, we're in a new checkpoint. |
| */ |
| if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Perform initial CIL structure initialisation. |
| */ |
| int |
| xlog_cil_init( |
| struct xlog *log) |
| { |
| struct xfs_cil *cil; |
| struct xfs_cil_ctx *ctx; |
| |
| cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL); |
| if (!cil) |
| return ENOMEM; |
| |
| ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL); |
| if (!ctx) { |
| kmem_free(cil); |
| return ENOMEM; |
| } |
| |
| INIT_WORK(&cil->xc_push_work, xlog_cil_push_work); |
| INIT_LIST_HEAD(&cil->xc_cil); |
| INIT_LIST_HEAD(&cil->xc_committing); |
| spin_lock_init(&cil->xc_cil_lock); |
| spin_lock_init(&cil->xc_push_lock); |
| init_rwsem(&cil->xc_ctx_lock); |
| init_waitqueue_head(&cil->xc_commit_wait); |
| |
| INIT_LIST_HEAD(&ctx->committing); |
| INIT_LIST_HEAD(&ctx->busy_extents); |
| ctx->sequence = 1; |
| ctx->cil = cil; |
| cil->xc_ctx = ctx; |
| cil->xc_current_sequence = ctx->sequence; |
| |
| cil->xc_log = log; |
| log->l_cilp = cil; |
| return 0; |
| } |
| |
| void |
| xlog_cil_destroy( |
| struct xlog *log) |
| { |
| if (log->l_cilp->xc_ctx) { |
| if (log->l_cilp->xc_ctx->ticket) |
| xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); |
| kmem_free(log->l_cilp->xc_ctx); |
| } |
| |
| ASSERT(list_empty(&log->l_cilp->xc_cil)); |
| kmem_free(log->l_cilp); |
| } |
| |