|  | /* | 
|  | *  Derived from "arch/i386/kernel/process.c" | 
|  | *    Copyright (C) 1995  Linus Torvalds | 
|  | * | 
|  | *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and | 
|  | *  Paul Mackerras (paulus@cs.anu.edu.au) | 
|  | * | 
|  | *  PowerPC version | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or | 
|  | *  modify it under the terms of the GNU General Public License | 
|  | *  as published by the Free Software Foundation; either version | 
|  | *  2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/prctl.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/mqueue.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/hw_breakpoint.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/elf-randomize.h> | 
|  | #include <linux/pkeys.h> | 
|  | #include <linux/seq_buf.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/runlatch.h> | 
|  | #include <asm/syscalls.h> | 
|  | #include <asm/switch_to.h> | 
|  | #include <asm/tm.h> | 
|  | #include <asm/debug.h> | 
|  | #ifdef CONFIG_PPC64 | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #endif | 
|  | #include <asm/code-patching.h> | 
|  | #include <asm/exec.h> | 
|  | #include <asm/livepatch.h> | 
|  | #include <asm/cpu_has_feature.h> | 
|  | #include <asm/asm-prototypes.h> | 
|  | #include <asm/stacktrace.h> | 
|  |  | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/kdebug.h> | 
|  |  | 
|  | /* Transactional Memory debug */ | 
|  | #ifdef TM_DEBUG_SW | 
|  | #define TM_DEBUG(x...) printk(KERN_INFO x) | 
|  | #else | 
|  | #define TM_DEBUG(x...) do { } while(0) | 
|  | #endif | 
|  |  | 
|  | extern unsigned long _get_SP(void); | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | /* | 
|  | * Are we running in "Suspend disabled" mode? If so we have to block any | 
|  | * sigreturn that would get us into suspended state, and we also warn in some | 
|  | * other paths that we should never reach with suspend disabled. | 
|  | */ | 
|  | bool tm_suspend_disabled __ro_after_init = false; | 
|  |  | 
|  | static void check_if_tm_restore_required(struct task_struct *tsk) | 
|  | { | 
|  | /* | 
|  | * If we are saving the current thread's registers, and the | 
|  | * thread is in a transactional state, set the TIF_RESTORE_TM | 
|  | * bit so that we know to restore the registers before | 
|  | * returning to userspace. | 
|  | */ | 
|  | if (tsk == current && tsk->thread.regs && | 
|  | MSR_TM_ACTIVE(tsk->thread.regs->msr) && | 
|  | !test_thread_flag(TIF_RESTORE_TM)) { | 
|  | tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; | 
|  | set_thread_flag(TIF_RESTORE_TM); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool tm_active_with_fp(struct task_struct *tsk) | 
|  | { | 
|  | return MSR_TM_ACTIVE(tsk->thread.regs->msr) && | 
|  | (tsk->thread.ckpt_regs.msr & MSR_FP); | 
|  | } | 
|  |  | 
|  | static bool tm_active_with_altivec(struct task_struct *tsk) | 
|  | { | 
|  | return MSR_TM_ACTIVE(tsk->thread.regs->msr) && | 
|  | (tsk->thread.ckpt_regs.msr & MSR_VEC); | 
|  | } | 
|  | #else | 
|  | static inline void check_if_tm_restore_required(struct task_struct *tsk) { } | 
|  | static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } | 
|  | static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } | 
|  | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ | 
|  |  | 
|  | bool strict_msr_control; | 
|  | EXPORT_SYMBOL(strict_msr_control); | 
|  |  | 
|  | static int __init enable_strict_msr_control(char *str) | 
|  | { | 
|  | strict_msr_control = true; | 
|  | pr_info("Enabling strict facility control\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("ppc_strict_facility_enable", enable_strict_msr_control); | 
|  |  | 
|  | unsigned long msr_check_and_set(unsigned long bits) | 
|  | { | 
|  | unsigned long oldmsr = mfmsr(); | 
|  | unsigned long newmsr; | 
|  |  | 
|  | newmsr = oldmsr | bits; | 
|  |  | 
|  | #ifdef CONFIG_VSX | 
|  | if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) | 
|  | newmsr |= MSR_VSX; | 
|  | #endif | 
|  |  | 
|  | if (oldmsr != newmsr) | 
|  | mtmsr_isync(newmsr); | 
|  |  | 
|  | return newmsr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(msr_check_and_set); | 
|  |  | 
|  | void __msr_check_and_clear(unsigned long bits) | 
|  | { | 
|  | unsigned long oldmsr = mfmsr(); | 
|  | unsigned long newmsr; | 
|  |  | 
|  | newmsr = oldmsr & ~bits; | 
|  |  | 
|  | #ifdef CONFIG_VSX | 
|  | if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) | 
|  | newmsr &= ~MSR_VSX; | 
|  | #endif | 
|  |  | 
|  | if (oldmsr != newmsr) | 
|  | mtmsr_isync(newmsr); | 
|  | } | 
|  | EXPORT_SYMBOL(__msr_check_and_clear); | 
|  |  | 
|  | #ifdef CONFIG_PPC_FPU | 
|  | static void __giveup_fpu(struct task_struct *tsk) | 
|  | { | 
|  | unsigned long msr; | 
|  |  | 
|  | save_fpu(tsk); | 
|  | msr = tsk->thread.regs->msr; | 
|  | msr &= ~MSR_FP; | 
|  | #ifdef CONFIG_VSX | 
|  | if (cpu_has_feature(CPU_FTR_VSX)) | 
|  | msr &= ~MSR_VSX; | 
|  | #endif | 
|  | tsk->thread.regs->msr = msr; | 
|  | } | 
|  |  | 
|  | void giveup_fpu(struct task_struct *tsk) | 
|  | { | 
|  | check_if_tm_restore_required(tsk); | 
|  |  | 
|  | msr_check_and_set(MSR_FP); | 
|  | __giveup_fpu(tsk); | 
|  | msr_check_and_clear(MSR_FP); | 
|  | } | 
|  | EXPORT_SYMBOL(giveup_fpu); | 
|  |  | 
|  | /* | 
|  | * Make sure the floating-point register state in the | 
|  | * the thread_struct is up to date for task tsk. | 
|  | */ | 
|  | void flush_fp_to_thread(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->thread.regs) { | 
|  | /* | 
|  | * We need to disable preemption here because if we didn't, | 
|  | * another process could get scheduled after the regs->msr | 
|  | * test but before we have finished saving the FP registers | 
|  | * to the thread_struct.  That process could take over the | 
|  | * FPU, and then when we get scheduled again we would store | 
|  | * bogus values for the remaining FP registers. | 
|  | */ | 
|  | preempt_disable(); | 
|  | if (tsk->thread.regs->msr & MSR_FP) { | 
|  | /* | 
|  | * This should only ever be called for current or | 
|  | * for a stopped child process.  Since we save away | 
|  | * the FP register state on context switch, | 
|  | * there is something wrong if a stopped child appears | 
|  | * to still have its FP state in the CPU registers. | 
|  | */ | 
|  | BUG_ON(tsk != current); | 
|  | giveup_fpu(tsk); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(flush_fp_to_thread); | 
|  |  | 
|  | void enable_kernel_fp(void) | 
|  | { | 
|  | unsigned long cpumsr; | 
|  |  | 
|  | WARN_ON(preemptible()); | 
|  |  | 
|  | cpumsr = msr_check_and_set(MSR_FP); | 
|  |  | 
|  | if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { | 
|  | check_if_tm_restore_required(current); | 
|  | /* | 
|  | * If a thread has already been reclaimed then the | 
|  | * checkpointed registers are on the CPU but have definitely | 
|  | * been saved by the reclaim code. Don't need to and *cannot* | 
|  | * giveup as this would save  to the 'live' structure not the | 
|  | * checkpointed structure. | 
|  | */ | 
|  | if (!MSR_TM_ACTIVE(cpumsr) && | 
|  | MSR_TM_ACTIVE(current->thread.regs->msr)) | 
|  | return; | 
|  | __giveup_fpu(current); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(enable_kernel_fp); | 
|  |  | 
|  | static int restore_fp(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { | 
|  | load_fp_state(¤t->thread.fp_state); | 
|  | current->thread.load_fp++; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int restore_fp(struct task_struct *tsk) { return 0; } | 
|  | #endif /* CONFIG_PPC_FPU */ | 
|  |  | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | #define loadvec(thr) ((thr).load_vec) | 
|  |  | 
|  | static void __giveup_altivec(struct task_struct *tsk) | 
|  | { | 
|  | unsigned long msr; | 
|  |  | 
|  | save_altivec(tsk); | 
|  | msr = tsk->thread.regs->msr; | 
|  | msr &= ~MSR_VEC; | 
|  | #ifdef CONFIG_VSX | 
|  | if (cpu_has_feature(CPU_FTR_VSX)) | 
|  | msr &= ~MSR_VSX; | 
|  | #endif | 
|  | tsk->thread.regs->msr = msr; | 
|  | } | 
|  |  | 
|  | void giveup_altivec(struct task_struct *tsk) | 
|  | { | 
|  | check_if_tm_restore_required(tsk); | 
|  |  | 
|  | msr_check_and_set(MSR_VEC); | 
|  | __giveup_altivec(tsk); | 
|  | msr_check_and_clear(MSR_VEC); | 
|  | } | 
|  | EXPORT_SYMBOL(giveup_altivec); | 
|  |  | 
|  | void enable_kernel_altivec(void) | 
|  | { | 
|  | unsigned long cpumsr; | 
|  |  | 
|  | WARN_ON(preemptible()); | 
|  |  | 
|  | cpumsr = msr_check_and_set(MSR_VEC); | 
|  |  | 
|  | if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { | 
|  | check_if_tm_restore_required(current); | 
|  | /* | 
|  | * If a thread has already been reclaimed then the | 
|  | * checkpointed registers are on the CPU but have definitely | 
|  | * been saved by the reclaim code. Don't need to and *cannot* | 
|  | * giveup as this would save  to the 'live' structure not the | 
|  | * checkpointed structure. | 
|  | */ | 
|  | if (!MSR_TM_ACTIVE(cpumsr) && | 
|  | MSR_TM_ACTIVE(current->thread.regs->msr)) | 
|  | return; | 
|  | __giveup_altivec(current); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(enable_kernel_altivec); | 
|  |  | 
|  | /* | 
|  | * Make sure the VMX/Altivec register state in the | 
|  | * the thread_struct is up to date for task tsk. | 
|  | */ | 
|  | void flush_altivec_to_thread(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->thread.regs) { | 
|  | preempt_disable(); | 
|  | if (tsk->thread.regs->msr & MSR_VEC) { | 
|  | BUG_ON(tsk != current); | 
|  | giveup_altivec(tsk); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(flush_altivec_to_thread); | 
|  |  | 
|  | static int restore_altivec(struct task_struct *tsk) | 
|  | { | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC) && | 
|  | (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { | 
|  | load_vr_state(&tsk->thread.vr_state); | 
|  | tsk->thread.used_vr = 1; | 
|  | tsk->thread.load_vec++; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define loadvec(thr) 0 | 
|  | static inline int restore_altivec(struct task_struct *tsk) { return 0; } | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  |  | 
|  | #ifdef CONFIG_VSX | 
|  | static void __giveup_vsx(struct task_struct *tsk) | 
|  | { | 
|  | unsigned long msr = tsk->thread.regs->msr; | 
|  |  | 
|  | /* | 
|  | * We should never be ssetting MSR_VSX without also setting | 
|  | * MSR_FP and MSR_VEC | 
|  | */ | 
|  | WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); | 
|  |  | 
|  | /* __giveup_fpu will clear MSR_VSX */ | 
|  | if (msr & MSR_FP) | 
|  | __giveup_fpu(tsk); | 
|  | if (msr & MSR_VEC) | 
|  | __giveup_altivec(tsk); | 
|  | } | 
|  |  | 
|  | static void giveup_vsx(struct task_struct *tsk) | 
|  | { | 
|  | check_if_tm_restore_required(tsk); | 
|  |  | 
|  | msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); | 
|  | __giveup_vsx(tsk); | 
|  | msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); | 
|  | } | 
|  |  | 
|  | void enable_kernel_vsx(void) | 
|  | { | 
|  | unsigned long cpumsr; | 
|  |  | 
|  | WARN_ON(preemptible()); | 
|  |  | 
|  | cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); | 
|  |  | 
|  | if (current->thread.regs && | 
|  | (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { | 
|  | check_if_tm_restore_required(current); | 
|  | /* | 
|  | * If a thread has already been reclaimed then the | 
|  | * checkpointed registers are on the CPU but have definitely | 
|  | * been saved by the reclaim code. Don't need to and *cannot* | 
|  | * giveup as this would save  to the 'live' structure not the | 
|  | * checkpointed structure. | 
|  | */ | 
|  | if (!MSR_TM_ACTIVE(cpumsr) && | 
|  | MSR_TM_ACTIVE(current->thread.regs->msr)) | 
|  | return; | 
|  | __giveup_vsx(current); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(enable_kernel_vsx); | 
|  |  | 
|  | void flush_vsx_to_thread(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->thread.regs) { | 
|  | preempt_disable(); | 
|  | if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { | 
|  | BUG_ON(tsk != current); | 
|  | giveup_vsx(tsk); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(flush_vsx_to_thread); | 
|  |  | 
|  | static int restore_vsx(struct task_struct *tsk) | 
|  | { | 
|  | if (cpu_has_feature(CPU_FTR_VSX)) { | 
|  | tsk->thread.used_vsr = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int restore_vsx(struct task_struct *tsk) { return 0; } | 
|  | #endif /* CONFIG_VSX */ | 
|  |  | 
|  | #ifdef CONFIG_SPE | 
|  | void giveup_spe(struct task_struct *tsk) | 
|  | { | 
|  | check_if_tm_restore_required(tsk); | 
|  |  | 
|  | msr_check_and_set(MSR_SPE); | 
|  | __giveup_spe(tsk); | 
|  | msr_check_and_clear(MSR_SPE); | 
|  | } | 
|  | EXPORT_SYMBOL(giveup_spe); | 
|  |  | 
|  | void enable_kernel_spe(void) | 
|  | { | 
|  | WARN_ON(preemptible()); | 
|  |  | 
|  | msr_check_and_set(MSR_SPE); | 
|  |  | 
|  | if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { | 
|  | check_if_tm_restore_required(current); | 
|  | __giveup_spe(current); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(enable_kernel_spe); | 
|  |  | 
|  | void flush_spe_to_thread(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->thread.regs) { | 
|  | preempt_disable(); | 
|  | if (tsk->thread.regs->msr & MSR_SPE) { | 
|  | BUG_ON(tsk != current); | 
|  | tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); | 
|  | giveup_spe(tsk); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_SPE */ | 
|  |  | 
|  | static unsigned long msr_all_available; | 
|  |  | 
|  | static int __init init_msr_all_available(void) | 
|  | { | 
|  | #ifdef CONFIG_PPC_FPU | 
|  | msr_all_available |= MSR_FP; | 
|  | #endif | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | 
|  | msr_all_available |= MSR_VEC; | 
|  | #endif | 
|  | #ifdef CONFIG_VSX | 
|  | if (cpu_has_feature(CPU_FTR_VSX)) | 
|  | msr_all_available |= MSR_VSX; | 
|  | #endif | 
|  | #ifdef CONFIG_SPE | 
|  | if (cpu_has_feature(CPU_FTR_SPE)) | 
|  | msr_all_available |= MSR_SPE; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_initcall(init_msr_all_available); | 
|  |  | 
|  | void giveup_all(struct task_struct *tsk) | 
|  | { | 
|  | unsigned long usermsr; | 
|  |  | 
|  | if (!tsk->thread.regs) | 
|  | return; | 
|  |  | 
|  | usermsr = tsk->thread.regs->msr; | 
|  |  | 
|  | if ((usermsr & msr_all_available) == 0) | 
|  | return; | 
|  |  | 
|  | msr_check_and_set(msr_all_available); | 
|  | check_if_tm_restore_required(tsk); | 
|  |  | 
|  | WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); | 
|  |  | 
|  | #ifdef CONFIG_PPC_FPU | 
|  | if (usermsr & MSR_FP) | 
|  | __giveup_fpu(tsk); | 
|  | #endif | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (usermsr & MSR_VEC) | 
|  | __giveup_altivec(tsk); | 
|  | #endif | 
|  | #ifdef CONFIG_SPE | 
|  | if (usermsr & MSR_SPE) | 
|  | __giveup_spe(tsk); | 
|  | #endif | 
|  |  | 
|  | msr_check_and_clear(msr_all_available); | 
|  | } | 
|  | EXPORT_SYMBOL(giveup_all); | 
|  |  | 
|  | void restore_math(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long msr; | 
|  |  | 
|  | if (!MSR_TM_ACTIVE(regs->msr) && | 
|  | !current->thread.load_fp && !loadvec(current->thread)) | 
|  | return; | 
|  |  | 
|  | msr = regs->msr; | 
|  | msr_check_and_set(msr_all_available); | 
|  |  | 
|  | /* | 
|  | * Only reload if the bit is not set in the user MSR, the bit BEING set | 
|  | * indicates that the registers are hot | 
|  | */ | 
|  | if ((!(msr & MSR_FP)) && restore_fp(current)) | 
|  | msr |= MSR_FP | current->thread.fpexc_mode; | 
|  |  | 
|  | if ((!(msr & MSR_VEC)) && restore_altivec(current)) | 
|  | msr |= MSR_VEC; | 
|  |  | 
|  | if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && | 
|  | restore_vsx(current)) { | 
|  | msr |= MSR_VSX; | 
|  | } | 
|  |  | 
|  | msr_check_and_clear(msr_all_available); | 
|  |  | 
|  | regs->msr = msr; | 
|  | } | 
|  |  | 
|  | static void save_all(struct task_struct *tsk) | 
|  | { | 
|  | unsigned long usermsr; | 
|  |  | 
|  | if (!tsk->thread.regs) | 
|  | return; | 
|  |  | 
|  | usermsr = tsk->thread.regs->msr; | 
|  |  | 
|  | if ((usermsr & msr_all_available) == 0) | 
|  | return; | 
|  |  | 
|  | msr_check_and_set(msr_all_available); | 
|  |  | 
|  | WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); | 
|  |  | 
|  | if (usermsr & MSR_FP) | 
|  | save_fpu(tsk); | 
|  |  | 
|  | if (usermsr & MSR_VEC) | 
|  | save_altivec(tsk); | 
|  |  | 
|  | if (usermsr & MSR_SPE) | 
|  | __giveup_spe(tsk); | 
|  |  | 
|  | msr_check_and_clear(msr_all_available); | 
|  | thread_pkey_regs_save(&tsk->thread); | 
|  | } | 
|  |  | 
|  | void flush_all_to_thread(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->thread.regs) { | 
|  | preempt_disable(); | 
|  | BUG_ON(tsk != current); | 
|  | #ifdef CONFIG_SPE | 
|  | if (tsk->thread.regs->msr & MSR_SPE) | 
|  | tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); | 
|  | #endif | 
|  | save_all(tsk); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(flush_all_to_thread); | 
|  |  | 
|  | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
|  | void do_send_trap(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code, int breakpt) | 
|  | { | 
|  | current->thread.trap_nr = TRAP_HWBKPT; | 
|  | if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, | 
|  | 11, SIGSEGV) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | /* Deliver the signal to userspace */ | 
|  | force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ | 
|  | (void __user *)address); | 
|  | } | 
|  | #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */ | 
|  | void do_break (struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | current->thread.trap_nr = TRAP_HWBKPT; | 
|  | if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, | 
|  | 11, SIGSEGV) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | if (debugger_break_match(regs)) | 
|  | return; | 
|  |  | 
|  | /* Clear the breakpoint */ | 
|  | hw_breakpoint_disable(); | 
|  |  | 
|  | /* Deliver the signal to userspace */ | 
|  | force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); | 
|  | } | 
|  | #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */ | 
|  |  | 
|  | static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); | 
|  |  | 
|  | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
|  | /* | 
|  | * Set the debug registers back to their default "safe" values. | 
|  | */ | 
|  | static void set_debug_reg_defaults(struct thread_struct *thread) | 
|  | { | 
|  | thread->debug.iac1 = thread->debug.iac2 = 0; | 
|  | #if CONFIG_PPC_ADV_DEBUG_IACS > 2 | 
|  | thread->debug.iac3 = thread->debug.iac4 = 0; | 
|  | #endif | 
|  | thread->debug.dac1 = thread->debug.dac2 = 0; | 
|  | #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 | 
|  | thread->debug.dvc1 = thread->debug.dvc2 = 0; | 
|  | #endif | 
|  | thread->debug.dbcr0 = 0; | 
|  | #ifdef CONFIG_BOOKE | 
|  | /* | 
|  | * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) | 
|  | */ | 
|  | thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | | 
|  | DBCR1_IAC3US | DBCR1_IAC4US; | 
|  | /* | 
|  | * Force Data Address Compare User/Supervisor bits to be User-only | 
|  | * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. | 
|  | */ | 
|  | thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; | 
|  | #else | 
|  | thread->debug.dbcr1 = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void prime_debug_regs(struct debug_reg *debug) | 
|  | { | 
|  | /* | 
|  | * We could have inherited MSR_DE from userspace, since | 
|  | * it doesn't get cleared on exception entry.  Make sure | 
|  | * MSR_DE is clear before we enable any debug events. | 
|  | */ | 
|  | mtmsr(mfmsr() & ~MSR_DE); | 
|  |  | 
|  | mtspr(SPRN_IAC1, debug->iac1); | 
|  | mtspr(SPRN_IAC2, debug->iac2); | 
|  | #if CONFIG_PPC_ADV_DEBUG_IACS > 2 | 
|  | mtspr(SPRN_IAC3, debug->iac3); | 
|  | mtspr(SPRN_IAC4, debug->iac4); | 
|  | #endif | 
|  | mtspr(SPRN_DAC1, debug->dac1); | 
|  | mtspr(SPRN_DAC2, debug->dac2); | 
|  | #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 | 
|  | mtspr(SPRN_DVC1, debug->dvc1); | 
|  | mtspr(SPRN_DVC2, debug->dvc2); | 
|  | #endif | 
|  | mtspr(SPRN_DBCR0, debug->dbcr0); | 
|  | mtspr(SPRN_DBCR1, debug->dbcr1); | 
|  | #ifdef CONFIG_BOOKE | 
|  | mtspr(SPRN_DBCR2, debug->dbcr2); | 
|  | #endif | 
|  | } | 
|  | /* | 
|  | * Unless neither the old or new thread are making use of the | 
|  | * debug registers, set the debug registers from the values | 
|  | * stored in the new thread. | 
|  | */ | 
|  | void switch_booke_debug_regs(struct debug_reg *new_debug) | 
|  | { | 
|  | if ((current->thread.debug.dbcr0 & DBCR0_IDM) | 
|  | || (new_debug->dbcr0 & DBCR0_IDM)) | 
|  | prime_debug_regs(new_debug); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(switch_booke_debug_regs); | 
|  | #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */ | 
|  | #ifndef CONFIG_HAVE_HW_BREAKPOINT | 
|  | static void set_breakpoint(struct arch_hw_breakpoint *brk) | 
|  | { | 
|  | preempt_disable(); | 
|  | __set_breakpoint(brk); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void set_debug_reg_defaults(struct thread_struct *thread) | 
|  | { | 
|  | thread->hw_brk.address = 0; | 
|  | thread->hw_brk.type = 0; | 
|  | if (ppc_breakpoint_available()) | 
|  | set_breakpoint(&thread->hw_brk); | 
|  | } | 
|  | #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ | 
|  | #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
|  | static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) | 
|  | { | 
|  | mtspr(SPRN_DAC1, dabr); | 
|  | #ifdef CONFIG_PPC_47x | 
|  | isync(); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | #elif defined(CONFIG_PPC_BOOK3S) | 
|  | static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) | 
|  | { | 
|  | mtspr(SPRN_DABR, dabr); | 
|  | if (cpu_has_feature(CPU_FTR_DABRX)) | 
|  | mtspr(SPRN_DABRX, dabrx); | 
|  | return 0; | 
|  | } | 
|  | #elif defined(CONFIG_PPC_8xx) | 
|  | static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) | 
|  | { | 
|  | unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; | 
|  | unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ | 
|  | unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ | 
|  |  | 
|  | if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) | 
|  | lctrl1 |= 0xa0000; | 
|  | else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) | 
|  | lctrl1 |= 0xf0000; | 
|  | else if ((dabr & HW_BRK_TYPE_RDWR) == 0) | 
|  | lctrl2 = 0; | 
|  |  | 
|  | mtspr(SPRN_LCTRL2, 0); | 
|  | mtspr(SPRN_CMPE, addr); | 
|  | mtspr(SPRN_CMPF, addr + 4); | 
|  | mtspr(SPRN_LCTRL1, lctrl1); | 
|  | mtspr(SPRN_LCTRL2, lctrl2); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int set_dabr(struct arch_hw_breakpoint *brk) | 
|  | { | 
|  | unsigned long dabr, dabrx; | 
|  |  | 
|  | dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); | 
|  | dabrx = ((brk->type >> 3) & 0x7); | 
|  |  | 
|  | if (ppc_md.set_dabr) | 
|  | return ppc_md.set_dabr(dabr, dabrx); | 
|  |  | 
|  | return __set_dabr(dabr, dabrx); | 
|  | } | 
|  |  | 
|  | static inline int set_dawr(struct arch_hw_breakpoint *brk) | 
|  | { | 
|  | unsigned long dawr, dawrx, mrd; | 
|  |  | 
|  | dawr = brk->address; | 
|  |  | 
|  | dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ | 
|  | << (63 - 58); //* read/write bits */ | 
|  | dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ | 
|  | << (63 - 59); //* translate */ | 
|  | dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ | 
|  | >> 3; //* PRIM bits */ | 
|  | /* dawr length is stored in field MDR bits 48:53.  Matches range in | 
|  | doublewords (64 bits) baised by -1 eg. 0b000000=1DW and | 
|  | 0b111111=64DW. | 
|  | brk->len is in bytes. | 
|  | This aligns up to double word size, shifts and does the bias. | 
|  | */ | 
|  | mrd = ((brk->len + 7) >> 3) - 1; | 
|  | dawrx |= (mrd & 0x3f) << (63 - 53); | 
|  |  | 
|  | if (ppc_md.set_dawr) | 
|  | return ppc_md.set_dawr(dawr, dawrx); | 
|  | mtspr(SPRN_DAWR, dawr); | 
|  | mtspr(SPRN_DAWRX, dawrx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __set_breakpoint(struct arch_hw_breakpoint *brk) | 
|  | { | 
|  | memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_DAWR)) | 
|  | // Power8 or later | 
|  | set_dawr(brk); | 
|  | else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) | 
|  | // Power7 or earlier | 
|  | set_dabr(brk); | 
|  | else | 
|  | // Shouldn't happen due to higher level checks | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | /* Check if we have DAWR or DABR hardware */ | 
|  | bool ppc_breakpoint_available(void) | 
|  | { | 
|  | if (cpu_has_feature(CPU_FTR_DAWR)) | 
|  | return true; /* POWER8 DAWR */ | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) | 
|  | return false; /* POWER9 with DAWR disabled */ | 
|  | /* DABR: Everything but POWER8 and POWER9 */ | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ppc_breakpoint_available); | 
|  |  | 
|  | static inline bool hw_brk_match(struct arch_hw_breakpoint *a, | 
|  | struct arch_hw_breakpoint *b) | 
|  | { | 
|  | if (a->address != b->address) | 
|  | return false; | 
|  | if (a->type != b->type) | 
|  | return false; | 
|  | if (a->len != b->len) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  |  | 
|  | static inline bool tm_enabled(struct task_struct *tsk) | 
|  | { | 
|  | return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); | 
|  | } | 
|  |  | 
|  | static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) | 
|  | { | 
|  | /* | 
|  | * Use the current MSR TM suspended bit to track if we have | 
|  | * checkpointed state outstanding. | 
|  | * On signal delivery, we'd normally reclaim the checkpointed | 
|  | * state to obtain stack pointer (see:get_tm_stackpointer()). | 
|  | * This will then directly return to userspace without going | 
|  | * through __switch_to(). However, if the stack frame is bad, | 
|  | * we need to exit this thread which calls __switch_to() which | 
|  | * will again attempt to reclaim the already saved tm state. | 
|  | * Hence we need to check that we've not already reclaimed | 
|  | * this state. | 
|  | * We do this using the current MSR, rather tracking it in | 
|  | * some specific thread_struct bit, as it has the additional | 
|  | * benefit of checking for a potential TM bad thing exception. | 
|  | */ | 
|  | if (!MSR_TM_SUSPENDED(mfmsr())) | 
|  | return; | 
|  |  | 
|  | giveup_all(container_of(thr, struct task_struct, thread)); | 
|  |  | 
|  | tm_reclaim(thr, cause); | 
|  |  | 
|  | /* | 
|  | * If we are in a transaction and FP is off then we can't have | 
|  | * used FP inside that transaction. Hence the checkpointed | 
|  | * state is the same as the live state. We need to copy the | 
|  | * live state to the checkpointed state so that when the | 
|  | * transaction is restored, the checkpointed state is correct | 
|  | * and the aborted transaction sees the correct state. We use | 
|  | * ckpt_regs.msr here as that's what tm_reclaim will use to | 
|  | * determine if it's going to write the checkpointed state or | 
|  | * not. So either this will write the checkpointed registers, | 
|  | * or reclaim will. Similarly for VMX. | 
|  | */ | 
|  | if ((thr->ckpt_regs.msr & MSR_FP) == 0) | 
|  | memcpy(&thr->ckfp_state, &thr->fp_state, | 
|  | sizeof(struct thread_fp_state)); | 
|  | if ((thr->ckpt_regs.msr & MSR_VEC) == 0) | 
|  | memcpy(&thr->ckvr_state, &thr->vr_state, | 
|  | sizeof(struct thread_vr_state)); | 
|  | } | 
|  |  | 
|  | void tm_reclaim_current(uint8_t cause) | 
|  | { | 
|  | tm_enable(); | 
|  | tm_reclaim_thread(¤t->thread, cause); | 
|  | } | 
|  |  | 
|  | static inline void tm_reclaim_task(struct task_struct *tsk) | 
|  | { | 
|  | /* We have to work out if we're switching from/to a task that's in the | 
|  | * middle of a transaction. | 
|  | * | 
|  | * In switching we need to maintain a 2nd register state as | 
|  | * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the | 
|  | * checkpointed (tbegin) state in ckpt_regs, ckfp_state and | 
|  | * ckvr_state | 
|  | * | 
|  | * We also context switch (save) TFHAR/TEXASR/TFIAR in here. | 
|  | */ | 
|  | struct thread_struct *thr = &tsk->thread; | 
|  |  | 
|  | if (!thr->regs) | 
|  | return; | 
|  |  | 
|  | if (!MSR_TM_ACTIVE(thr->regs->msr)) | 
|  | goto out_and_saveregs; | 
|  |  | 
|  | WARN_ON(tm_suspend_disabled); | 
|  |  | 
|  | TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " | 
|  | "ccr=%lx, msr=%lx, trap=%lx)\n", | 
|  | tsk->pid, thr->regs->nip, | 
|  | thr->regs->ccr, thr->regs->msr, | 
|  | thr->regs->trap); | 
|  |  | 
|  | tm_reclaim_thread(thr, TM_CAUSE_RESCHED); | 
|  |  | 
|  | TM_DEBUG("--- tm_reclaim on pid %d complete\n", | 
|  | tsk->pid); | 
|  |  | 
|  | out_and_saveregs: | 
|  | /* Always save the regs here, even if a transaction's not active. | 
|  | * This context-switches a thread's TM info SPRs.  We do it here to | 
|  | * be consistent with the restore path (in recheckpoint) which | 
|  | * cannot happen later in _switch(). | 
|  | */ | 
|  | tm_save_sprs(thr); | 
|  | } | 
|  |  | 
|  | extern void __tm_recheckpoint(struct thread_struct *thread); | 
|  |  | 
|  | void tm_recheckpoint(struct thread_struct *thread) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!(thread->regs->msr & MSR_TM)) | 
|  | return; | 
|  |  | 
|  | /* We really can't be interrupted here as the TEXASR registers can't | 
|  | * change and later in the trecheckpoint code, we have a userspace R1. | 
|  | * So let's hard disable over this region. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | hard_irq_disable(); | 
|  |  | 
|  | /* The TM SPRs are restored here, so that TEXASR.FS can be set | 
|  | * before the trecheckpoint and no explosion occurs. | 
|  | */ | 
|  | tm_restore_sprs(thread); | 
|  |  | 
|  | __tm_recheckpoint(thread); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline void tm_recheckpoint_new_task(struct task_struct *new) | 
|  | { | 
|  | if (!cpu_has_feature(CPU_FTR_TM)) | 
|  | return; | 
|  |  | 
|  | /* Recheckpoint the registers of the thread we're about to switch to. | 
|  | * | 
|  | * If the task was using FP, we non-lazily reload both the original and | 
|  | * the speculative FP register states.  This is because the kernel | 
|  | * doesn't see if/when a TM rollback occurs, so if we take an FP | 
|  | * unavailable later, we are unable to determine which set of FP regs | 
|  | * need to be restored. | 
|  | */ | 
|  | if (!tm_enabled(new)) | 
|  | return; | 
|  |  | 
|  | if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ | 
|  | tm_restore_sprs(&new->thread); | 
|  | return; | 
|  | } | 
|  | /* Recheckpoint to restore original checkpointed register state. */ | 
|  | TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", | 
|  | new->pid, new->thread.regs->msr); | 
|  |  | 
|  | tm_recheckpoint(&new->thread); | 
|  |  | 
|  | /* | 
|  | * The checkpointed state has been restored but the live state has | 
|  | * not, ensure all the math functionality is turned off to trigger | 
|  | * restore_math() to reload. | 
|  | */ | 
|  | new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); | 
|  |  | 
|  | TM_DEBUG("*** tm_recheckpoint of pid %d complete " | 
|  | "(kernel msr 0x%lx)\n", | 
|  | new->pid, mfmsr()); | 
|  | } | 
|  |  | 
|  | static inline void __switch_to_tm(struct task_struct *prev, | 
|  | struct task_struct *new) | 
|  | { | 
|  | if (cpu_has_feature(CPU_FTR_TM)) { | 
|  | if (tm_enabled(prev) || tm_enabled(new)) | 
|  | tm_enable(); | 
|  |  | 
|  | if (tm_enabled(prev)) { | 
|  | prev->thread.load_tm++; | 
|  | tm_reclaim_task(prev); | 
|  | if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) | 
|  | prev->thread.regs->msr &= ~MSR_TM; | 
|  | } | 
|  |  | 
|  | tm_recheckpoint_new_task(new); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called if we are on the way out to userspace and the | 
|  | * TIF_RESTORE_TM flag is set.  It checks if we need to reload | 
|  | * FP and/or vector state and does so if necessary. | 
|  | * If userspace is inside a transaction (whether active or | 
|  | * suspended) and FP/VMX/VSX instructions have ever been enabled | 
|  | * inside that transaction, then we have to keep them enabled | 
|  | * and keep the FP/VMX/VSX state loaded while ever the transaction | 
|  | * continues.  The reason is that if we didn't, and subsequently | 
|  | * got a FP/VMX/VSX unavailable interrupt inside a transaction, | 
|  | * we don't know whether it's the same transaction, and thus we | 
|  | * don't know which of the checkpointed state and the transactional | 
|  | * state to use. | 
|  | */ | 
|  | void restore_tm_state(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long msr_diff; | 
|  |  | 
|  | /* | 
|  | * This is the only moment we should clear TIF_RESTORE_TM as | 
|  | * it is here that ckpt_regs.msr and pt_regs.msr become the same | 
|  | * again, anything else could lead to an incorrect ckpt_msr being | 
|  | * saved and therefore incorrect signal contexts. | 
|  | */ | 
|  | clear_thread_flag(TIF_RESTORE_TM); | 
|  | if (!MSR_TM_ACTIVE(regs->msr)) | 
|  | return; | 
|  |  | 
|  | msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; | 
|  | msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; | 
|  |  | 
|  | /* Ensure that restore_math() will restore */ | 
|  | if (msr_diff & MSR_FP) | 
|  | current->thread.load_fp = 1; | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) | 
|  | current->thread.load_vec = 1; | 
|  | #endif | 
|  | restore_math(regs); | 
|  |  | 
|  | regs->msr |= msr_diff; | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define tm_recheckpoint_new_task(new) | 
|  | #define __switch_to_tm(prev, new) | 
|  | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ | 
|  |  | 
|  | static inline void save_sprs(struct thread_struct *t) | 
|  | { | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | 
|  | t->vrsave = mfspr(SPRN_VRSAVE); | 
|  | #endif | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (cpu_has_feature(CPU_FTR_DSCR)) | 
|  | t->dscr = mfspr(SPRN_DSCR); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) { | 
|  | t->bescr = mfspr(SPRN_BESCR); | 
|  | t->ebbhr = mfspr(SPRN_EBBHR); | 
|  | t->ebbrr = mfspr(SPRN_EBBRR); | 
|  |  | 
|  | t->fscr = mfspr(SPRN_FSCR); | 
|  |  | 
|  | /* | 
|  | * Note that the TAR is not available for use in the kernel. | 
|  | * (To provide this, the TAR should be backed up/restored on | 
|  | * exception entry/exit instead, and be in pt_regs.  FIXME, | 
|  | * this should be in pt_regs anyway (for debug).) | 
|  | */ | 
|  | t->tar = mfspr(SPRN_TAR); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | thread_pkey_regs_save(t); | 
|  | } | 
|  |  | 
|  | static inline void restore_sprs(struct thread_struct *old_thread, | 
|  | struct thread_struct *new_thread) | 
|  | { | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC) && | 
|  | old_thread->vrsave != new_thread->vrsave) | 
|  | mtspr(SPRN_VRSAVE, new_thread->vrsave); | 
|  | #endif | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (cpu_has_feature(CPU_FTR_DSCR)) { | 
|  | u64 dscr = get_paca()->dscr_default; | 
|  | if (new_thread->dscr_inherit) | 
|  | dscr = new_thread->dscr; | 
|  |  | 
|  | if (old_thread->dscr != dscr) | 
|  | mtspr(SPRN_DSCR, dscr); | 
|  | } | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) { | 
|  | if (old_thread->bescr != new_thread->bescr) | 
|  | mtspr(SPRN_BESCR, new_thread->bescr); | 
|  | if (old_thread->ebbhr != new_thread->ebbhr) | 
|  | mtspr(SPRN_EBBHR, new_thread->ebbhr); | 
|  | if (old_thread->ebbrr != new_thread->ebbrr) | 
|  | mtspr(SPRN_EBBRR, new_thread->ebbrr); | 
|  |  | 
|  | if (old_thread->fscr != new_thread->fscr) | 
|  | mtspr(SPRN_FSCR, new_thread->fscr); | 
|  |  | 
|  | if (old_thread->tar != new_thread->tar) | 
|  | mtspr(SPRN_TAR, new_thread->tar); | 
|  | } | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_P9_TIDR) && | 
|  | old_thread->tidr != new_thread->tidr) | 
|  | mtspr(SPRN_TIDR, new_thread->tidr); | 
|  | #endif | 
|  |  | 
|  | thread_pkey_regs_restore(new_thread, old_thread); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | #define CP_SIZE 128 | 
|  | static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); | 
|  | #endif | 
|  |  | 
|  | struct task_struct *__switch_to(struct task_struct *prev, | 
|  | struct task_struct *new) | 
|  | { | 
|  | struct thread_struct *new_thread, *old_thread; | 
|  | struct task_struct *last; | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | struct ppc64_tlb_batch *batch; | 
|  | #endif | 
|  |  | 
|  | new_thread = &new->thread; | 
|  | old_thread = ¤t->thread; | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | batch = this_cpu_ptr(&ppc64_tlb_batch); | 
|  | if (batch->active) { | 
|  | current_thread_info()->local_flags |= _TLF_LAZY_MMU; | 
|  | if (batch->index) | 
|  | __flush_tlb_pending(batch); | 
|  | batch->active = 0; | 
|  | } | 
|  | #endif /* CONFIG_PPC_BOOK3S_64 */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
|  | switch_booke_debug_regs(&new->thread.debug); | 
|  | #else | 
|  | /* | 
|  | * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would | 
|  | * schedule DABR | 
|  | */ | 
|  | #ifndef CONFIG_HAVE_HW_BREAKPOINT | 
|  | if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) | 
|  | __set_breakpoint(&new->thread.hw_brk); | 
|  | #endif /* CONFIG_HAVE_HW_BREAKPOINT */ | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We need to save SPRs before treclaim/trecheckpoint as these will | 
|  | * change a number of them. | 
|  | */ | 
|  | save_sprs(&prev->thread); | 
|  |  | 
|  | /* Save FPU, Altivec, VSX and SPE state */ | 
|  | giveup_all(prev); | 
|  |  | 
|  | __switch_to_tm(prev, new); | 
|  |  | 
|  | if (!radix_enabled()) { | 
|  | /* | 
|  | * We can't take a PMU exception inside _switch() since there | 
|  | * is a window where the kernel stack SLB and the kernel stack | 
|  | * are out of sync. Hard disable here. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call restore_sprs() before calling _switch(). If we move it after | 
|  | * _switch() then we miss out on calling it for new tasks. The reason | 
|  | * for this is we manually create a stack frame for new tasks that | 
|  | * directly returns through ret_from_fork() or | 
|  | * ret_from_kernel_thread(). See copy_thread() for details. | 
|  | */ | 
|  | restore_sprs(old_thread, new_thread); | 
|  |  | 
|  | last = _switch(old_thread, new_thread); | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { | 
|  | current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; | 
|  | batch = this_cpu_ptr(&ppc64_tlb_batch); | 
|  | batch->active = 1; | 
|  | } | 
|  |  | 
|  | if (current_thread_info()->task->thread.regs) { | 
|  | restore_math(current_thread_info()->task->thread.regs); | 
|  |  | 
|  | /* | 
|  | * The copy-paste buffer can only store into foreign real | 
|  | * addresses, so unprivileged processes can not see the | 
|  | * data or use it in any way unless they have foreign real | 
|  | * mappings. If the new process has the foreign real address | 
|  | * mappings, we must issue a cp_abort to clear any state and | 
|  | * prevent snooping, corruption or a covert channel. | 
|  | */ | 
|  | if (current_thread_info()->task->thread.used_vas) | 
|  | asm volatile(PPC_CP_ABORT); | 
|  | } | 
|  | #endif /* CONFIG_PPC_BOOK3S_64 */ | 
|  |  | 
|  | return last; | 
|  | } | 
|  |  | 
|  | #define NR_INSN_TO_PRINT	16 | 
|  |  | 
|  | static void show_instructions(struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); | 
|  |  | 
|  | printk("Instruction dump:"); | 
|  |  | 
|  | for (i = 0; i < NR_INSN_TO_PRINT; i++) { | 
|  | int instr; | 
|  |  | 
|  | if (!(i % 8)) | 
|  | pr_cont("\n"); | 
|  |  | 
|  | #if !defined(CONFIG_BOOKE) | 
|  | /* If executing with the IMMU off, adjust pc rather | 
|  | * than print XXXXXXXX. | 
|  | */ | 
|  | if (!(regs->msr & MSR_IR)) | 
|  | pc = (unsigned long)phys_to_virt(pc); | 
|  | #endif | 
|  |  | 
|  | if (!__kernel_text_address(pc) || | 
|  | probe_kernel_address((const void *)pc, instr)) { | 
|  | pr_cont("XXXXXXXX "); | 
|  | } else { | 
|  | if (regs->nip == pc) | 
|  | pr_cont("<%08x> ", instr); | 
|  | else | 
|  | pr_cont("%08x ", instr); | 
|  | } | 
|  |  | 
|  | pc += sizeof(int); | 
|  | } | 
|  |  | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | void show_user_instructions(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long pc; | 
|  | int n = NR_INSN_TO_PRINT; | 
|  | struct seq_buf s; | 
|  | char buf[96]; /* enough for 8 times 9 + 2 chars */ | 
|  |  | 
|  | pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); | 
|  |  | 
|  | /* | 
|  | * Make sure the NIP points at userspace, not kernel text/data or | 
|  | * elsewhere. | 
|  | */ | 
|  | if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { | 
|  | pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", | 
|  | current->comm, current->pid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | seq_buf_init(&s, buf, sizeof(buf)); | 
|  |  | 
|  | while (n) { | 
|  | int i; | 
|  |  | 
|  | seq_buf_clear(&s); | 
|  |  | 
|  | for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { | 
|  | int instr; | 
|  |  | 
|  | if (probe_kernel_address((const void *)pc, instr)) { | 
|  | seq_buf_printf(&s, "XXXXXXXX "); | 
|  | continue; | 
|  | } | 
|  | seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); | 
|  | } | 
|  |  | 
|  | if (!seq_buf_has_overflowed(&s)) | 
|  | pr_info("%s[%d]: code: %s\n", current->comm, | 
|  | current->pid, s.buffer); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct regbit { | 
|  | unsigned long bit; | 
|  | const char *name; | 
|  | }; | 
|  |  | 
|  | static struct regbit msr_bits[] = { | 
|  | #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) | 
|  | {MSR_SF,	"SF"}, | 
|  | {MSR_HV,	"HV"}, | 
|  | #endif | 
|  | {MSR_VEC,	"VEC"}, | 
|  | {MSR_VSX,	"VSX"}, | 
|  | #ifdef CONFIG_BOOKE | 
|  | {MSR_CE,	"CE"}, | 
|  | #endif | 
|  | {MSR_EE,	"EE"}, | 
|  | {MSR_PR,	"PR"}, | 
|  | {MSR_FP,	"FP"}, | 
|  | {MSR_ME,	"ME"}, | 
|  | #ifdef CONFIG_BOOKE | 
|  | {MSR_DE,	"DE"}, | 
|  | #else | 
|  | {MSR_SE,	"SE"}, | 
|  | {MSR_BE,	"BE"}, | 
|  | #endif | 
|  | {MSR_IR,	"IR"}, | 
|  | {MSR_DR,	"DR"}, | 
|  | {MSR_PMM,	"PMM"}, | 
|  | #ifndef CONFIG_BOOKE | 
|  | {MSR_RI,	"RI"}, | 
|  | {MSR_LE,	"LE"}, | 
|  | #endif | 
|  | {0,		NULL} | 
|  | }; | 
|  |  | 
|  | static void print_bits(unsigned long val, struct regbit *bits, const char *sep) | 
|  | { | 
|  | const char *s = ""; | 
|  |  | 
|  | for (; bits->bit; ++bits) | 
|  | if (val & bits->bit) { | 
|  | pr_cont("%s%s", s, bits->name); | 
|  | s = sep; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | static struct regbit msr_tm_bits[] = { | 
|  | {MSR_TS_T,	"T"}, | 
|  | {MSR_TS_S,	"S"}, | 
|  | {MSR_TM,	"E"}, | 
|  | {0,		NULL} | 
|  | }; | 
|  |  | 
|  | static void print_tm_bits(unsigned long val) | 
|  | { | 
|  | /* | 
|  | * This only prints something if at least one of the TM bit is set. | 
|  | * Inside the TM[], the output means: | 
|  | *   E: Enabled		(bit 32) | 
|  | *   S: Suspended	(bit 33) | 
|  | *   T: Transactional	(bit 34) | 
|  | */ | 
|  | if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { | 
|  | pr_cont(",TM["); | 
|  | print_bits(val, msr_tm_bits, ""); | 
|  | pr_cont("]"); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void print_tm_bits(unsigned long val) {} | 
|  | #endif | 
|  |  | 
|  | static void print_msr_bits(unsigned long val) | 
|  | { | 
|  | pr_cont("<"); | 
|  | print_bits(val, msr_bits, ","); | 
|  | print_tm_bits(val); | 
|  | pr_cont(">"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | #define REG		"%016lx" | 
|  | #define REGS_PER_LINE	4 | 
|  | #define LAST_VOLATILE	13 | 
|  | #else | 
|  | #define REG		"%08lx" | 
|  | #define REGS_PER_LINE	8 | 
|  | #define LAST_VOLATILE	12 | 
|  | #endif | 
|  |  | 
|  | void show_regs(struct pt_regs * regs) | 
|  | { | 
|  | int i, trap; | 
|  |  | 
|  | show_regs_print_info(KERN_DEFAULT); | 
|  |  | 
|  | printk("NIP:  "REG" LR: "REG" CTR: "REG"\n", | 
|  | regs->nip, regs->link, regs->ctr); | 
|  | printk("REGS: %px TRAP: %04lx   %s  (%s)\n", | 
|  | regs, regs->trap, print_tainted(), init_utsname()->release); | 
|  | printk("MSR:  "REG" ", regs->msr); | 
|  | print_msr_bits(regs->msr); | 
|  | pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer); | 
|  | trap = TRAP(regs); | 
|  | if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) | 
|  | pr_cont("CFAR: "REG" ", regs->orig_gpr3); | 
|  | if (trap == 0x200 || trap == 0x300 || trap == 0x600) | 
|  | #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) | 
|  | pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); | 
|  | #else | 
|  | pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); | 
|  | #endif | 
|  | #ifdef CONFIG_PPC64 | 
|  | pr_cont("IRQMASK: %lx ", regs->softe); | 
|  | #endif | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | if (MSR_TM_ACTIVE(regs->msr)) | 
|  | pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); | 
|  | #endif | 
|  |  | 
|  | for (i = 0;  i < 32;  i++) { | 
|  | if ((i % REGS_PER_LINE) == 0) | 
|  | pr_cont("\nGPR%02d: ", i); | 
|  | pr_cont(REG " ", regs->gpr[i]); | 
|  | if (i == LAST_VOLATILE && !FULL_REGS(regs)) | 
|  | break; | 
|  | } | 
|  | pr_cont("\n"); | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | /* | 
|  | * Lookup NIP late so we have the best change of getting the | 
|  | * above info out without failing | 
|  | */ | 
|  | printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); | 
|  | printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); | 
|  | #endif | 
|  | show_stack(current, (unsigned long *) regs->gpr[1]); | 
|  | if (!user_mode(regs)) | 
|  | show_instructions(regs); | 
|  | } | 
|  |  | 
|  | void flush_thread(void) | 
|  | { | 
|  | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
|  | flush_ptrace_hw_breakpoint(current); | 
|  | #else /* CONFIG_HAVE_HW_BREAKPOINT */ | 
|  | set_debug_reg_defaults(¤t->thread); | 
|  | #endif /* CONFIG_HAVE_HW_BREAKPOINT */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | void arch_setup_new_exec(void) | 
|  | { | 
|  | if (radix_enabled()) | 
|  | return; | 
|  | hash__setup_new_exec(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int set_thread_uses_vas(void) | 
|  | { | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | return -EINVAL; | 
|  |  | 
|  | current->thread.used_vas = 1; | 
|  |  | 
|  | /* | 
|  | * Even a process that has no foreign real address mapping can use | 
|  | * an unpaired COPY instruction (to no real effect). Issue CP_ABORT | 
|  | * to clear any pending COPY and prevent a covert channel. | 
|  | * | 
|  | * __switch_to() will issue CP_ABORT on future context switches. | 
|  | */ | 
|  | asm volatile(PPC_CP_ABORT); | 
|  |  | 
|  | #endif /* CONFIG_PPC_BOOK3S_64 */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | /** | 
|  | * Assign a TIDR (thread ID) for task @t and set it in the thread | 
|  | * structure. For now, we only support setting TIDR for 'current' task. | 
|  | * | 
|  | * Since the TID value is a truncated form of it PID, it is possible | 
|  | * (but unlikely) for 2 threads to have the same TID. In the unlikely event | 
|  | * that 2 threads share the same TID and are waiting, one of the following | 
|  | * cases will happen: | 
|  | * | 
|  | * 1. The correct thread is running, the wrong thread is not | 
|  | * In this situation, the correct thread is woken and proceeds to pass it's | 
|  | * condition check. | 
|  | * | 
|  | * 2. Neither threads are running | 
|  | * In this situation, neither thread will be woken. When scheduled, the waiting | 
|  | * threads will execute either a wait, which will return immediately, followed | 
|  | * by a condition check, which will pass for the correct thread and fail | 
|  | * for the wrong thread, or they will execute the condition check immediately. | 
|  | * | 
|  | * 3. The wrong thread is running, the correct thread is not | 
|  | * The wrong thread will be woken, but will fail it's condition check and | 
|  | * re-execute wait. The correct thread, when scheduled, will execute either | 
|  | * it's condition check (which will pass), or wait, which returns immediately | 
|  | * when called the first time after the thread is scheduled, followed by it's | 
|  | * condition check (which will pass). | 
|  | * | 
|  | * 4. Both threads are running | 
|  | * Both threads will be woken. The wrong thread will fail it's condition check | 
|  | * and execute another wait, while the correct thread will pass it's condition | 
|  | * check. | 
|  | * | 
|  | * @t: the task to set the thread ID for | 
|  | */ | 
|  | int set_thread_tidr(struct task_struct *t) | 
|  | { | 
|  | if (!cpu_has_feature(CPU_FTR_P9_TIDR)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (t != current) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (t->thread.tidr) | 
|  | return 0; | 
|  |  | 
|  | t->thread.tidr = (u16)task_pid_nr(t); | 
|  | mtspr(SPRN_TIDR, t->thread.tidr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_thread_tidr); | 
|  |  | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | void | 
|  | release_thread(struct task_struct *t) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this gets called so that we can store coprocessor state into memory and | 
|  | * copy the current task into the new thread. | 
|  | */ | 
|  | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) | 
|  | { | 
|  | flush_all_to_thread(src); | 
|  | /* | 
|  | * Flush TM state out so we can copy it.  __switch_to_tm() does this | 
|  | * flush but it removes the checkpointed state from the current CPU and | 
|  | * transitions the CPU out of TM mode.  Hence we need to call | 
|  | * tm_recheckpoint_new_task() (on the same task) to restore the | 
|  | * checkpointed state back and the TM mode. | 
|  | * | 
|  | * Can't pass dst because it isn't ready. Doesn't matter, passing | 
|  | * dst is only important for __switch_to() | 
|  | */ | 
|  | __switch_to_tm(src, src); | 
|  |  | 
|  | *dst = *src; | 
|  |  | 
|  | clear_task_ebb(dst); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) | 
|  | { | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | unsigned long sp_vsid; | 
|  | unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; | 
|  |  | 
|  | if (radix_enabled()) | 
|  | return; | 
|  |  | 
|  | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) | 
|  | sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) | 
|  | << SLB_VSID_SHIFT_1T; | 
|  | else | 
|  | sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) | 
|  | << SLB_VSID_SHIFT; | 
|  | sp_vsid |= SLB_VSID_KERNEL | llp; | 
|  | p->thread.ksp_vsid = sp_vsid; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy a thread.. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Copy architecture-specific thread state | 
|  | */ | 
|  | int copy_thread(unsigned long clone_flags, unsigned long usp, | 
|  | unsigned long kthread_arg, struct task_struct *p) | 
|  | { | 
|  | struct pt_regs *childregs, *kregs; | 
|  | extern void ret_from_fork(void); | 
|  | extern void ret_from_kernel_thread(void); | 
|  | void (*f)(void); | 
|  | unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; | 
|  | struct thread_info *ti = task_thread_info(p); | 
|  |  | 
|  | klp_init_thread_info(ti); | 
|  |  | 
|  | /* Copy registers */ | 
|  | sp -= sizeof(struct pt_regs); | 
|  | childregs = (struct pt_regs *) sp; | 
|  | if (unlikely(p->flags & PF_KTHREAD)) { | 
|  | /* kernel thread */ | 
|  | memset(childregs, 0, sizeof(struct pt_regs)); | 
|  | childregs->gpr[1] = sp + sizeof(struct pt_regs); | 
|  | /* function */ | 
|  | if (usp) | 
|  | childregs->gpr[14] = ppc_function_entry((void *)usp); | 
|  | #ifdef CONFIG_PPC64 | 
|  | clear_tsk_thread_flag(p, TIF_32BIT); | 
|  | childregs->softe = IRQS_ENABLED; | 
|  | #endif | 
|  | childregs->gpr[15] = kthread_arg; | 
|  | p->thread.regs = NULL;	/* no user register state */ | 
|  | ti->flags |= _TIF_RESTOREALL; | 
|  | f = ret_from_kernel_thread; | 
|  | } else { | 
|  | /* user thread */ | 
|  | struct pt_regs *regs = current_pt_regs(); | 
|  | CHECK_FULL_REGS(regs); | 
|  | *childregs = *regs; | 
|  | if (usp) | 
|  | childregs->gpr[1] = usp; | 
|  | p->thread.regs = childregs; | 
|  | childregs->gpr[3] = 0;  /* Result from fork() */ | 
|  | if (clone_flags & CLONE_SETTLS) { | 
|  | #ifdef CONFIG_PPC64 | 
|  | if (!is_32bit_task()) | 
|  | childregs->gpr[13] = childregs->gpr[6]; | 
|  | else | 
|  | #endif | 
|  | childregs->gpr[2] = childregs->gpr[6]; | 
|  | } | 
|  |  | 
|  | f = ret_from_fork; | 
|  | } | 
|  | childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); | 
|  | sp -= STACK_FRAME_OVERHEAD; | 
|  |  | 
|  | /* | 
|  | * The way this works is that at some point in the future | 
|  | * some task will call _switch to switch to the new task. | 
|  | * That will pop off the stack frame created below and start | 
|  | * the new task running at ret_from_fork.  The new task will | 
|  | * do some house keeping and then return from the fork or clone | 
|  | * system call, using the stack frame created above. | 
|  | */ | 
|  | ((unsigned long *)sp)[0] = 0; | 
|  | sp -= sizeof(struct pt_regs); | 
|  | kregs = (struct pt_regs *) sp; | 
|  | sp -= STACK_FRAME_OVERHEAD; | 
|  | p->thread.ksp = sp; | 
|  | #ifdef CONFIG_PPC32 | 
|  | p->thread.ksp_limit = (unsigned long)task_stack_page(p) + | 
|  | _ALIGN_UP(sizeof(struct thread_info), 16); | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
|  | p->thread.ptrace_bps[0] = NULL; | 
|  | #endif | 
|  |  | 
|  | p->thread.fp_save_area = NULL; | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | p->thread.vr_save_area = NULL; | 
|  | #endif | 
|  |  | 
|  | setup_ksp_vsid(p, sp); | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | if (cpu_has_feature(CPU_FTR_DSCR)) { | 
|  | p->thread.dscr_inherit = current->thread.dscr_inherit; | 
|  | p->thread.dscr = mfspr(SPRN_DSCR); | 
|  | } | 
|  | if (cpu_has_feature(CPU_FTR_HAS_PPR)) | 
|  | childregs->ppr = DEFAULT_PPR; | 
|  |  | 
|  | p->thread.tidr = 0; | 
|  | #endif | 
|  | kregs->nip = ppc_function_entry(f); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void preload_new_slb_context(unsigned long start, unsigned long sp); | 
|  |  | 
|  | /* | 
|  | * Set up a thread for executing a new program | 
|  | */ | 
|  | void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) | 
|  | { | 
|  | #ifdef CONFIG_PPC64 | 
|  | unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | preload_new_slb_context(start, sp); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If we exec out of a kernel thread then thread.regs will not be | 
|  | * set.  Do it now. | 
|  | */ | 
|  | if (!current->thread.regs) { | 
|  | struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; | 
|  | current->thread.regs = regs - 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | /* | 
|  | * Clear any transactional state, we're exec()ing. The cause is | 
|  | * not important as there will never be a recheckpoint so it's not | 
|  | * user visible. | 
|  | */ | 
|  | if (MSR_TM_SUSPENDED(mfmsr())) | 
|  | tm_reclaim_current(0); | 
|  | #endif | 
|  |  | 
|  | memset(regs->gpr, 0, sizeof(regs->gpr)); | 
|  | regs->ctr = 0; | 
|  | regs->link = 0; | 
|  | regs->xer = 0; | 
|  | regs->ccr = 0; | 
|  | regs->gpr[1] = sp; | 
|  |  | 
|  | /* | 
|  | * We have just cleared all the nonvolatile GPRs, so make | 
|  | * FULL_REGS(regs) return true.  This is necessary to allow | 
|  | * ptrace to examine the thread immediately after exec. | 
|  | */ | 
|  | regs->trap &= ~1UL; | 
|  |  | 
|  | #ifdef CONFIG_PPC32 | 
|  | regs->mq = 0; | 
|  | regs->nip = start; | 
|  | regs->msr = MSR_USER; | 
|  | #else | 
|  | if (!is_32bit_task()) { | 
|  | unsigned long entry; | 
|  |  | 
|  | if (is_elf2_task()) { | 
|  | /* Look ma, no function descriptors! */ | 
|  | entry = start; | 
|  |  | 
|  | /* | 
|  | * Ulrich says: | 
|  | *   The latest iteration of the ABI requires that when | 
|  | *   calling a function (at its global entry point), | 
|  | *   the caller must ensure r12 holds the entry point | 
|  | *   address (so that the function can quickly | 
|  | *   establish addressability). | 
|  | */ | 
|  | regs->gpr[12] = start; | 
|  | /* Make sure that's restored on entry to userspace. */ | 
|  | set_thread_flag(TIF_RESTOREALL); | 
|  | } else { | 
|  | unsigned long toc; | 
|  |  | 
|  | /* start is a relocated pointer to the function | 
|  | * descriptor for the elf _start routine.  The first | 
|  | * entry in the function descriptor is the entry | 
|  | * address of _start and the second entry is the TOC | 
|  | * value we need to use. | 
|  | */ | 
|  | __get_user(entry, (unsigned long __user *)start); | 
|  | __get_user(toc, (unsigned long __user *)start+1); | 
|  |  | 
|  | /* Check whether the e_entry function descriptor entries | 
|  | * need to be relocated before we can use them. | 
|  | */ | 
|  | if (load_addr != 0) { | 
|  | entry += load_addr; | 
|  | toc   += load_addr; | 
|  | } | 
|  | regs->gpr[2] = toc; | 
|  | } | 
|  | regs->nip = entry; | 
|  | regs->msr = MSR_USER64; | 
|  | } else { | 
|  | regs->nip = start; | 
|  | regs->gpr[2] = 0; | 
|  | regs->msr = MSR_USER32; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_VSX | 
|  | current->thread.used_vsr = 0; | 
|  | #endif | 
|  | current->thread.load_slb = 0; | 
|  | current->thread.load_fp = 0; | 
|  | memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); | 
|  | current->thread.fp_save_area = NULL; | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); | 
|  | current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ | 
|  | current->thread.vr_save_area = NULL; | 
|  | current->thread.vrsave = 0; | 
|  | current->thread.used_vr = 0; | 
|  | current->thread.load_vec = 0; | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  | #ifdef CONFIG_SPE | 
|  | memset(current->thread.evr, 0, sizeof(current->thread.evr)); | 
|  | current->thread.acc = 0; | 
|  | current->thread.spefscr = 0; | 
|  | current->thread.used_spe = 0; | 
|  | #endif /* CONFIG_SPE */ | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | current->thread.tm_tfhar = 0; | 
|  | current->thread.tm_texasr = 0; | 
|  | current->thread.tm_tfiar = 0; | 
|  | current->thread.load_tm = 0; | 
|  | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ | 
|  |  | 
|  | thread_pkey_regs_init(¤t->thread); | 
|  | } | 
|  | EXPORT_SYMBOL(start_thread); | 
|  |  | 
|  | #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ | 
|  | | PR_FP_EXC_RES | PR_FP_EXC_INV) | 
|  |  | 
|  | int set_fpexc_mode(struct task_struct *tsk, unsigned int val) | 
|  | { | 
|  | struct pt_regs *regs = tsk->thread.regs; | 
|  |  | 
|  | /* This is a bit hairy.  If we are an SPE enabled  processor | 
|  | * (have embedded fp) we store the IEEE exception enable flags in | 
|  | * fpexc_mode.  fpexc_mode is also used for setting FP exception | 
|  | * mode (asyn, precise, disabled) for 'Classic' FP. */ | 
|  | if (val & PR_FP_EXC_SW_ENABLE) { | 
|  | #ifdef CONFIG_SPE | 
|  | if (cpu_has_feature(CPU_FTR_SPE)) { | 
|  | /* | 
|  | * When the sticky exception bits are set | 
|  | * directly by userspace, it must call prctl | 
|  | * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE | 
|  | * in the existing prctl settings) or | 
|  | * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in | 
|  | * the bits being set).  <fenv.h> functions | 
|  | * saving and restoring the whole | 
|  | * floating-point environment need to do so | 
|  | * anyway to restore the prctl settings from | 
|  | * the saved environment. | 
|  | */ | 
|  | tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); | 
|  | tsk->thread.fpexc_mode = val & | 
|  | (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); | 
|  | return 0; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  | #else | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* on a CONFIG_SPE this does not hurt us.  The bits that | 
|  | * __pack_fe01 use do not overlap with bits used for | 
|  | * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits | 
|  | * on CONFIG_SPE implementations are reserved so writing to | 
|  | * them does not change anything */ | 
|  | if (val > PR_FP_EXC_PRECISE) | 
|  | return -EINVAL; | 
|  | tsk->thread.fpexc_mode = __pack_fe01(val); | 
|  | if (regs != NULL && (regs->msr & MSR_FP) != 0) | 
|  | regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) | 
|  | | tsk->thread.fpexc_mode; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) | 
|  | #ifdef CONFIG_SPE | 
|  | if (cpu_has_feature(CPU_FTR_SPE)) { | 
|  | /* | 
|  | * When the sticky exception bits are set | 
|  | * directly by userspace, it must call prctl | 
|  | * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE | 
|  | * in the existing prctl settings) or | 
|  | * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in | 
|  | * the bits being set).  <fenv.h> functions | 
|  | * saving and restoring the whole | 
|  | * floating-point environment need to do so | 
|  | * anyway to restore the prctl settings from | 
|  | * the saved environment. | 
|  | */ | 
|  | tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); | 
|  | val = tsk->thread.fpexc_mode; | 
|  | } else | 
|  | return -EINVAL; | 
|  | #else | 
|  | return -EINVAL; | 
|  | #endif | 
|  | else | 
|  | val = __unpack_fe01(tsk->thread.fpexc_mode); | 
|  | return put_user(val, (unsigned int __user *) adr); | 
|  | } | 
|  |  | 
|  | int set_endian(struct task_struct *tsk, unsigned int val) | 
|  | { | 
|  | struct pt_regs *regs = tsk->thread.regs; | 
|  |  | 
|  | if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || | 
|  | (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (regs == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (val == PR_ENDIAN_BIG) | 
|  | regs->msr &= ~MSR_LE; | 
|  | else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) | 
|  | regs->msr |= MSR_LE; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int get_endian(struct task_struct *tsk, unsigned long adr) | 
|  | { | 
|  | struct pt_regs *regs = tsk->thread.regs; | 
|  | unsigned int val; | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_PPC_LE) && | 
|  | !cpu_has_feature(CPU_FTR_REAL_LE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (regs == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (regs->msr & MSR_LE) { | 
|  | if (cpu_has_feature(CPU_FTR_REAL_LE)) | 
|  | val = PR_ENDIAN_LITTLE; | 
|  | else | 
|  | val = PR_ENDIAN_PPC_LITTLE; | 
|  | } else | 
|  | val = PR_ENDIAN_BIG; | 
|  |  | 
|  | return put_user(val, (unsigned int __user *)adr); | 
|  | } | 
|  |  | 
|  | int set_unalign_ctl(struct task_struct *tsk, unsigned int val) | 
|  | { | 
|  | tsk->thread.align_ctl = val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) | 
|  | { | 
|  | return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); | 
|  | } | 
|  |  | 
|  | static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, | 
|  | unsigned long nbytes) | 
|  | { | 
|  | unsigned long stack_page; | 
|  | unsigned long cpu = task_cpu(p); | 
|  |  | 
|  | /* | 
|  | * Avoid crashing if the stack has overflowed and corrupted | 
|  | * task_cpu(p), which is in the thread_info struct. | 
|  | */ | 
|  | if (cpu < NR_CPUS && cpu_possible(cpu)) { | 
|  | stack_page = (unsigned long) hardirq_ctx[cpu]; | 
|  | if (sp >= stack_page + sizeof(struct thread_struct) | 
|  | && sp <= stack_page + THREAD_SIZE - nbytes) | 
|  | return 1; | 
|  |  | 
|  | stack_page = (unsigned long) softirq_ctx[cpu]; | 
|  | if (sp >= stack_page + sizeof(struct thread_struct) | 
|  | && sp <= stack_page + THREAD_SIZE - nbytes) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int validate_sp(unsigned long sp, struct task_struct *p, | 
|  | unsigned long nbytes) | 
|  | { | 
|  | unsigned long stack_page = (unsigned long)task_stack_page(p); | 
|  |  | 
|  | if (sp >= stack_page + sizeof(struct thread_struct) | 
|  | && sp <= stack_page + THREAD_SIZE - nbytes) | 
|  | return 1; | 
|  |  | 
|  | return valid_irq_stack(sp, p, nbytes); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(validate_sp); | 
|  |  | 
|  | unsigned long get_wchan(struct task_struct *p) | 
|  | { | 
|  | unsigned long ip, sp; | 
|  | int count = 0; | 
|  |  | 
|  | if (!p || p == current || p->state == TASK_RUNNING) | 
|  | return 0; | 
|  |  | 
|  | sp = p->thread.ksp; | 
|  | if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) | 
|  | return 0; | 
|  |  | 
|  | do { | 
|  | sp = *(unsigned long *)sp; | 
|  | if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || | 
|  | p->state == TASK_RUNNING) | 
|  | return 0; | 
|  | if (count > 0) { | 
|  | ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; | 
|  | if (!in_sched_functions(ip)) | 
|  | return ip; | 
|  | } | 
|  | } while (count++ < 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; | 
|  |  | 
|  | void show_stack(struct task_struct *tsk, unsigned long *stack) | 
|  | { | 
|  | unsigned long sp, ip, lr, newsp; | 
|  | int count = 0; | 
|  | int firstframe = 1; | 
|  | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
|  | int curr_frame = current->curr_ret_stack; | 
|  | extern void return_to_handler(void); | 
|  | unsigned long rth = (unsigned long)return_to_handler; | 
|  | #endif | 
|  |  | 
|  | sp = (unsigned long) stack; | 
|  | if (tsk == NULL) | 
|  | tsk = current; | 
|  | if (sp == 0) { | 
|  | if (tsk == current) | 
|  | sp = current_stack_pointer(); | 
|  | else | 
|  | sp = tsk->thread.ksp; | 
|  | } | 
|  |  | 
|  | lr = 0; | 
|  | printk("Call Trace:\n"); | 
|  | do { | 
|  | if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) | 
|  | return; | 
|  |  | 
|  | stack = (unsigned long *) sp; | 
|  | newsp = stack[0]; | 
|  | ip = stack[STACK_FRAME_LR_SAVE]; | 
|  | if (!firstframe || ip != lr) { | 
|  | printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); | 
|  | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
|  | if ((ip == rth) && curr_frame >= 0) { | 
|  | pr_cont(" (%pS)", | 
|  | (void *)current->ret_stack[curr_frame].ret); | 
|  | curr_frame--; | 
|  | } | 
|  | #endif | 
|  | if (firstframe) | 
|  | pr_cont(" (unreliable)"); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | firstframe = 0; | 
|  |  | 
|  | /* | 
|  | * See if this is an exception frame. | 
|  | * We look for the "regshere" marker in the current frame. | 
|  | */ | 
|  | if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) | 
|  | && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { | 
|  | struct pt_regs *regs = (struct pt_regs *) | 
|  | (sp + STACK_FRAME_OVERHEAD); | 
|  | lr = regs->link; | 
|  | printk("--- interrupt: %lx at %pS\n    LR = %pS\n", | 
|  | regs->trap, (void *)regs->nip, (void *)lr); | 
|  | firstframe = 1; | 
|  | } | 
|  |  | 
|  | sp = newsp; | 
|  | } while (count++ < kstack_depth_to_print); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | /* Called with hard IRQs off */ | 
|  | void notrace __ppc64_runlatch_on(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_206)) { | 
|  | /* | 
|  | * Least significant bit (RUN) is the only writable bit of | 
|  | * the CTRL register, so we can avoid mfspr. 2.06 is not the | 
|  | * earliest ISA where this is the case, but it's convenient. | 
|  | */ | 
|  | mtspr(SPRN_CTRLT, CTRL_RUNLATCH); | 
|  | } else { | 
|  | unsigned long ctrl; | 
|  |  | 
|  | /* | 
|  | * Some architectures (e.g., Cell) have writable fields other | 
|  | * than RUN, so do the read-modify-write. | 
|  | */ | 
|  | ctrl = mfspr(SPRN_CTRLF); | 
|  | ctrl |= CTRL_RUNLATCH; | 
|  | mtspr(SPRN_CTRLT, ctrl); | 
|  | } | 
|  |  | 
|  | ti->local_flags |= _TLF_RUNLATCH; | 
|  | } | 
|  |  | 
|  | /* Called with hard IRQs off */ | 
|  | void notrace __ppc64_runlatch_off(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  |  | 
|  | ti->local_flags &= ~_TLF_RUNLATCH; | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_206)) { | 
|  | mtspr(SPRN_CTRLT, 0); | 
|  | } else { | 
|  | unsigned long ctrl; | 
|  |  | 
|  | ctrl = mfspr(SPRN_CTRLF); | 
|  | ctrl &= ~CTRL_RUNLATCH; | 
|  | mtspr(SPRN_CTRLT, ctrl); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | unsigned long arch_align_stack(unsigned long sp) | 
|  | { | 
|  | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
|  | sp -= get_random_int() & ~PAGE_MASK; | 
|  | return sp & ~0xf; | 
|  | } | 
|  |  | 
|  | static inline unsigned long brk_rnd(void) | 
|  | { | 
|  | unsigned long rnd = 0; | 
|  |  | 
|  | /* 8MB for 32bit, 1GB for 64bit */ | 
|  | if (is_32bit_task()) | 
|  | rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); | 
|  | else | 
|  | rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); | 
|  |  | 
|  | return rnd << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | unsigned long arch_randomize_brk(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long base = mm->brk; | 
|  | unsigned long ret; | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* | 
|  | * If we are using 1TB segments and we are allowed to randomise | 
|  | * the heap, we can put it above 1TB so it is backed by a 1TB | 
|  | * segment. Otherwise the heap will be in the bottom 1TB | 
|  | * which always uses 256MB segments and this may result in a | 
|  | * performance penalty. We don't need to worry about radix. For | 
|  | * radix, mmu_highuser_ssize remains unchanged from 256MB. | 
|  | */ | 
|  | if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) | 
|  | base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); | 
|  | #endif | 
|  |  | 
|  | ret = PAGE_ALIGN(base + brk_rnd()); | 
|  |  | 
|  | if (ret < mm->brk) | 
|  | return mm->brk; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  |