| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1996 David S. Miller (davem@davemloft.net) |
| * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) |
| * Copyright (C) 1999, 2000 Silicon Graphics, Inc. |
| */ |
| #include <linux/cpu_pm.h> |
| #include <linux/hardirq.h> |
| #include <linux/init.h> |
| #include <linux/highmem.h> |
| #include <linux/kernel.h> |
| #include <linux/linkage.h> |
| #include <linux/preempt.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/mm.h> |
| #include <linux/export.h> |
| #include <linux/bitops.h> |
| #include <linux/dma-map-ops.h> /* for dma_default_coherent */ |
| |
| #include <asm/bcache.h> |
| #include <asm/bootinfo.h> |
| #include <asm/cache.h> |
| #include <asm/cacheops.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu-features.h> |
| #include <asm/cpu-type.h> |
| #include <asm/io.h> |
| #include <asm/page.h> |
| #include <asm/r4kcache.h> |
| #include <asm/sections.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cacheflush.h> /* for run_uncached() */ |
| #include <asm/traps.h> |
| #include <asm/mips-cps.h> |
| |
| /* |
| * Bits describing what cache ops an SMP callback function may perform. |
| * |
| * R4K_HIT - Virtual user or kernel address based cache operations. The |
| * active_mm must be checked before using user addresses, falling |
| * back to kmap. |
| * R4K_INDEX - Index based cache operations. |
| */ |
| |
| #define R4K_HIT BIT(0) |
| #define R4K_INDEX BIT(1) |
| |
| /** |
| * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core. |
| * @type: Type of cache operations (R4K_HIT or R4K_INDEX). |
| * |
| * Decides whether a cache op needs to be performed on every core in the system. |
| * This may change depending on the @type of cache operation, as well as the set |
| * of online CPUs, so preemption should be disabled by the caller to prevent CPU |
| * hotplug from changing the result. |
| * |
| * Returns: 1 if the cache operation @type should be done on every core in |
| * the system. |
| * 0 if the cache operation @type is globalized and only needs to |
| * be performed on a simple CPU. |
| */ |
| static inline bool r4k_op_needs_ipi(unsigned int type) |
| { |
| /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */ |
| if (type == R4K_HIT && mips_cm_present()) |
| return false; |
| |
| /* |
| * Hardware doesn't globalize the required cache ops, so SMP calls may |
| * be needed, but only if there are foreign CPUs (non-siblings with |
| * separate caches). |
| */ |
| /* cpu_foreign_map[] undeclared when !CONFIG_SMP */ |
| #ifdef CONFIG_SMP |
| return !cpumask_empty(&cpu_foreign_map[0]); |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Special Variant of smp_call_function for use by cache functions: |
| * |
| * o No return value |
| * o collapses to normal function call on UP kernels |
| * o collapses to normal function call on systems with a single shared |
| * primary cache. |
| * o doesn't disable interrupts on the local CPU |
| */ |
| static inline void r4k_on_each_cpu(unsigned int type, |
| void (*func)(void *info), void *info) |
| { |
| preempt_disable(); |
| if (r4k_op_needs_ipi(type)) |
| smp_call_function_many(&cpu_foreign_map[smp_processor_id()], |
| func, info, 1); |
| func(info); |
| preempt_enable(); |
| } |
| |
| /* |
| * Must die. |
| */ |
| static unsigned long icache_size __read_mostly; |
| static unsigned long dcache_size __read_mostly; |
| static unsigned long vcache_size __read_mostly; |
| static unsigned long scache_size __read_mostly; |
| |
| #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) |
| #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) |
| |
| #define R4600_HIT_CACHEOP_WAR_IMPL \ |
| do { \ |
| if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \ |
| cpu_is_r4600_v2_x()) \ |
| *(volatile unsigned long *)CKSEG1; \ |
| if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \ |
| __asm__ __volatile__("nop;nop;nop;nop"); \ |
| } while (0) |
| |
| static void (*r4k_blast_dcache_page)(unsigned long addr); |
| |
| static inline void r4k_blast_dcache_page_dc32(unsigned long addr) |
| { |
| R4600_HIT_CACHEOP_WAR_IMPL; |
| blast_dcache32_page(addr); |
| } |
| |
| static inline void r4k_blast_dcache_page_dc64(unsigned long addr) |
| { |
| blast_dcache64_page(addr); |
| } |
| |
| static inline void r4k_blast_dcache_page_dc128(unsigned long addr) |
| { |
| blast_dcache128_page(addr); |
| } |
| |
| static void r4k_blast_dcache_page_setup(void) |
| { |
| unsigned long dc_lsize = cpu_dcache_line_size(); |
| |
| switch (dc_lsize) { |
| case 0: |
| r4k_blast_dcache_page = (void *)cache_noop; |
| break; |
| case 16: |
| r4k_blast_dcache_page = blast_dcache16_page; |
| break; |
| case 32: |
| r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; |
| break; |
| case 64: |
| r4k_blast_dcache_page = r4k_blast_dcache_page_dc64; |
| break; |
| case 128: |
| r4k_blast_dcache_page = r4k_blast_dcache_page_dc128; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| #ifndef CONFIG_EVA |
| #define r4k_blast_dcache_user_page r4k_blast_dcache_page |
| #else |
| |
| static void (*r4k_blast_dcache_user_page)(unsigned long addr); |
| |
| static void r4k_blast_dcache_user_page_setup(void) |
| { |
| unsigned long dc_lsize = cpu_dcache_line_size(); |
| |
| if (dc_lsize == 0) |
| r4k_blast_dcache_user_page = (void *)cache_noop; |
| else if (dc_lsize == 16) |
| r4k_blast_dcache_user_page = blast_dcache16_user_page; |
| else if (dc_lsize == 32) |
| r4k_blast_dcache_user_page = blast_dcache32_user_page; |
| else if (dc_lsize == 64) |
| r4k_blast_dcache_user_page = blast_dcache64_user_page; |
| } |
| |
| #endif |
| |
| void (* r4k_blast_dcache)(void); |
| EXPORT_SYMBOL(r4k_blast_dcache); |
| |
| static void r4k_blast_dcache_setup(void) |
| { |
| unsigned long dc_lsize = cpu_dcache_line_size(); |
| |
| if (dc_lsize == 0) |
| r4k_blast_dcache = (void *)cache_noop; |
| else if (dc_lsize == 16) |
| r4k_blast_dcache = blast_dcache16; |
| else if (dc_lsize == 32) |
| r4k_blast_dcache = blast_dcache32; |
| else if (dc_lsize == 64) |
| r4k_blast_dcache = blast_dcache64; |
| else if (dc_lsize == 128) |
| r4k_blast_dcache = blast_dcache128; |
| } |
| |
| /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */ |
| #define JUMP_TO_ALIGN(order) \ |
| __asm__ __volatile__( \ |
| "b\t1f\n\t" \ |
| ".align\t" #order "\n\t" \ |
| "1:\n\t" \ |
| ) |
| #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ |
| #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) |
| |
| static inline void blast_r4600_v1_icache32(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| blast_icache32(); |
| local_irq_restore(flags); |
| } |
| |
| static inline void tx49_blast_icache32(void) |
| { |
| unsigned long start = INDEX_BASE; |
| unsigned long end = start + current_cpu_data.icache.waysize; |
| unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; |
| unsigned long ws_end = current_cpu_data.icache.ways << |
| current_cpu_data.icache.waybit; |
| unsigned long ws, addr; |
| |
| CACHE32_UNROLL32_ALIGN2; |
| /* I'm in even chunk. blast odd chunks */ |
| for (ws = 0; ws < ws_end; ws += ws_inc) |
| for (addr = start + 0x400; addr < end; addr += 0x400 * 2) |
| cache_unroll(32, kernel_cache, Index_Invalidate_I, |
| addr | ws, 32); |
| CACHE32_UNROLL32_ALIGN; |
| /* I'm in odd chunk. blast even chunks */ |
| for (ws = 0; ws < ws_end; ws += ws_inc) |
| for (addr = start; addr < end; addr += 0x400 * 2) |
| cache_unroll(32, kernel_cache, Index_Invalidate_I, |
| addr | ws, 32); |
| } |
| |
| static void (* r4k_blast_icache_page)(unsigned long addr); |
| |
| static void r4k_blast_icache_page_setup(void) |
| { |
| unsigned long ic_lsize = cpu_icache_line_size(); |
| |
| if (ic_lsize == 0) |
| r4k_blast_icache_page = (void *)cache_noop; |
| else if (ic_lsize == 16) |
| r4k_blast_icache_page = blast_icache16_page; |
| else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF) |
| r4k_blast_icache_page = loongson2_blast_icache32_page; |
| else if (ic_lsize == 32) |
| r4k_blast_icache_page = blast_icache32_page; |
| else if (ic_lsize == 64) |
| r4k_blast_icache_page = blast_icache64_page; |
| else if (ic_lsize == 128) |
| r4k_blast_icache_page = blast_icache128_page; |
| } |
| |
| #ifndef CONFIG_EVA |
| #define r4k_blast_icache_user_page r4k_blast_icache_page |
| #else |
| |
| static void (*r4k_blast_icache_user_page)(unsigned long addr); |
| |
| static void r4k_blast_icache_user_page_setup(void) |
| { |
| unsigned long ic_lsize = cpu_icache_line_size(); |
| |
| if (ic_lsize == 0) |
| r4k_blast_icache_user_page = (void *)cache_noop; |
| else if (ic_lsize == 16) |
| r4k_blast_icache_user_page = blast_icache16_user_page; |
| else if (ic_lsize == 32) |
| r4k_blast_icache_user_page = blast_icache32_user_page; |
| else if (ic_lsize == 64) |
| r4k_blast_icache_user_page = blast_icache64_user_page; |
| } |
| |
| #endif |
| |
| void (* r4k_blast_icache)(void); |
| EXPORT_SYMBOL(r4k_blast_icache); |
| |
| static void r4k_blast_icache_setup(void) |
| { |
| unsigned long ic_lsize = cpu_icache_line_size(); |
| |
| if (ic_lsize == 0) |
| r4k_blast_icache = (void *)cache_noop; |
| else if (ic_lsize == 16) |
| r4k_blast_icache = blast_icache16; |
| else if (ic_lsize == 32) { |
| if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) && |
| cpu_is_r4600_v1_x()) |
| r4k_blast_icache = blast_r4600_v1_icache32; |
| else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV)) |
| r4k_blast_icache = tx49_blast_icache32; |
| else if (current_cpu_type() == CPU_LOONGSON2EF) |
| r4k_blast_icache = loongson2_blast_icache32; |
| else |
| r4k_blast_icache = blast_icache32; |
| } else if (ic_lsize == 64) |
| r4k_blast_icache = blast_icache64; |
| else if (ic_lsize == 128) |
| r4k_blast_icache = blast_icache128; |
| } |
| |
| static void (* r4k_blast_scache_page)(unsigned long addr); |
| |
| static void r4k_blast_scache_page_setup(void) |
| { |
| unsigned long sc_lsize = cpu_scache_line_size(); |
| |
| if (scache_size == 0) |
| r4k_blast_scache_page = (void *)cache_noop; |
| else if (sc_lsize == 16) |
| r4k_blast_scache_page = blast_scache16_page; |
| else if (sc_lsize == 32) |
| r4k_blast_scache_page = blast_scache32_page; |
| else if (sc_lsize == 64) |
| r4k_blast_scache_page = blast_scache64_page; |
| else if (sc_lsize == 128) |
| r4k_blast_scache_page = blast_scache128_page; |
| } |
| |
| static void (* r4k_blast_scache)(void); |
| |
| static void r4k_blast_scache_setup(void) |
| { |
| unsigned long sc_lsize = cpu_scache_line_size(); |
| |
| if (scache_size == 0) |
| r4k_blast_scache = (void *)cache_noop; |
| else if (sc_lsize == 16) |
| r4k_blast_scache = blast_scache16; |
| else if (sc_lsize == 32) |
| r4k_blast_scache = blast_scache32; |
| else if (sc_lsize == 64) |
| r4k_blast_scache = blast_scache64; |
| else if (sc_lsize == 128) |
| r4k_blast_scache = blast_scache128; |
| } |
| |
| static void (*r4k_blast_scache_node)(long node); |
| |
| static void r4k_blast_scache_node_setup(void) |
| { |
| unsigned long sc_lsize = cpu_scache_line_size(); |
| |
| if (current_cpu_type() != CPU_LOONGSON64) |
| r4k_blast_scache_node = (void *)cache_noop; |
| else if (sc_lsize == 16) |
| r4k_blast_scache_node = blast_scache16_node; |
| else if (sc_lsize == 32) |
| r4k_blast_scache_node = blast_scache32_node; |
| else if (sc_lsize == 64) |
| r4k_blast_scache_node = blast_scache64_node; |
| else if (sc_lsize == 128) |
| r4k_blast_scache_node = blast_scache128_node; |
| } |
| |
| static inline void local_r4k___flush_cache_all(void * args) |
| { |
| switch (current_cpu_type()) { |
| case CPU_LOONGSON2EF: |
| case CPU_R4000SC: |
| case CPU_R4000MC: |
| case CPU_R4400SC: |
| case CPU_R4400MC: |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_R16000: |
| /* |
| * These caches are inclusive caches, that is, if something |
| * is not cached in the S-cache, we know it also won't be |
| * in one of the primary caches. |
| */ |
| r4k_blast_scache(); |
| break; |
| |
| case CPU_LOONGSON64: |
| /* Use get_ebase_cpunum() for both NUMA=y/n */ |
| r4k_blast_scache_node(get_ebase_cpunum() >> 2); |
| break; |
| |
| case CPU_BMIPS5000: |
| r4k_blast_scache(); |
| __sync(); |
| break; |
| |
| default: |
| r4k_blast_dcache(); |
| r4k_blast_icache(); |
| break; |
| } |
| } |
| |
| static void r4k___flush_cache_all(void) |
| { |
| r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL); |
| } |
| |
| /** |
| * has_valid_asid() - Determine if an mm already has an ASID. |
| * @mm: Memory map. |
| * @type: R4K_HIT or R4K_INDEX, type of cache op. |
| * |
| * Determines whether @mm already has an ASID on any of the CPUs which cache ops |
| * of type @type within an r4k_on_each_cpu() call will affect. If |
| * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the |
| * scope of the operation is confined to sibling CPUs, otherwise all online CPUs |
| * will need to be checked. |
| * |
| * Must be called in non-preemptive context. |
| * |
| * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm. |
| * 0 otherwise. |
| */ |
| static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type) |
| { |
| unsigned int i; |
| const cpumask_t *mask = cpu_present_mask; |
| |
| if (cpu_has_mmid) |
| return cpu_context(0, mm) != 0; |
| |
| /* cpu_sibling_map[] undeclared when !CONFIG_SMP */ |
| #ifdef CONFIG_SMP |
| /* |
| * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in |
| * each foreign core, so we only need to worry about siblings. |
| * Otherwise we need to worry about all present CPUs. |
| */ |
| if (r4k_op_needs_ipi(type)) |
| mask = &cpu_sibling_map[smp_processor_id()]; |
| #endif |
| for_each_cpu(i, mask) |
| if (cpu_context(i, mm)) |
| return 1; |
| return 0; |
| } |
| |
| static void r4k__flush_cache_vmap(void) |
| { |
| r4k_blast_dcache(); |
| } |
| |
| static void r4k__flush_cache_vunmap(void) |
| { |
| r4k_blast_dcache(); |
| } |
| |
| /* |
| * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes |
| * whole caches when vma is executable. |
| */ |
| static inline void local_r4k_flush_cache_range(void * args) |
| { |
| struct vm_area_struct *vma = args; |
| int exec = vma->vm_flags & VM_EXEC; |
| |
| if (!has_valid_asid(vma->vm_mm, R4K_INDEX)) |
| return; |
| |
| /* |
| * If dcache can alias, we must blast it since mapping is changing. |
| * If executable, we must ensure any dirty lines are written back far |
| * enough to be visible to icache. |
| */ |
| if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) |
| r4k_blast_dcache(); |
| /* If executable, blast stale lines from icache */ |
| if (exec) |
| r4k_blast_icache(); |
| } |
| |
| static void r4k_flush_cache_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end) |
| { |
| int exec = vma->vm_flags & VM_EXEC; |
| |
| if (cpu_has_dc_aliases || exec) |
| r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma); |
| } |
| |
| static inline void local_r4k_flush_cache_mm(void * args) |
| { |
| struct mm_struct *mm = args; |
| |
| if (!has_valid_asid(mm, R4K_INDEX)) |
| return; |
| |
| /* |
| * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we |
| * only flush the primary caches but R1x000 behave sane ... |
| * R4000SC and R4400SC indexed S-cache ops also invalidate primary |
| * caches, so we can bail out early. |
| */ |
| if (current_cpu_type() == CPU_R4000SC || |
| current_cpu_type() == CPU_R4000MC || |
| current_cpu_type() == CPU_R4400SC || |
| current_cpu_type() == CPU_R4400MC) { |
| r4k_blast_scache(); |
| return; |
| } |
| |
| r4k_blast_dcache(); |
| } |
| |
| static void r4k_flush_cache_mm(struct mm_struct *mm) |
| { |
| if (!cpu_has_dc_aliases) |
| return; |
| |
| r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm); |
| } |
| |
| struct flush_cache_page_args { |
| struct vm_area_struct *vma; |
| unsigned long addr; |
| unsigned long pfn; |
| }; |
| |
| static inline void local_r4k_flush_cache_page(void *args) |
| { |
| struct flush_cache_page_args *fcp_args = args; |
| struct vm_area_struct *vma = fcp_args->vma; |
| unsigned long addr = fcp_args->addr; |
| struct page *page = pfn_to_page(fcp_args->pfn); |
| int exec = vma->vm_flags & VM_EXEC; |
| struct mm_struct *mm = vma->vm_mm; |
| int map_coherent = 0; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| void *vaddr; |
| |
| /* |
| * If owns no valid ASID yet, cannot possibly have gotten |
| * this page into the cache. |
| */ |
| if (!has_valid_asid(mm, R4K_HIT)) |
| return; |
| |
| addr &= PAGE_MASK; |
| pmdp = pmd_off(mm, addr); |
| ptep = pte_offset_kernel(pmdp, addr); |
| |
| /* |
| * If the page isn't marked valid, the page cannot possibly be |
| * in the cache. |
| */ |
| if (!(pte_present(*ptep))) |
| return; |
| |
| if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) |
| vaddr = NULL; |
| else { |
| /* |
| * Use kmap_coherent or kmap_atomic to do flushes for |
| * another ASID than the current one. |
| */ |
| map_coherent = (cpu_has_dc_aliases && |
| page_mapcount(page) && |
| !Page_dcache_dirty(page)); |
| if (map_coherent) |
| vaddr = kmap_coherent(page, addr); |
| else |
| vaddr = kmap_atomic(page); |
| addr = (unsigned long)vaddr; |
| } |
| |
| if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { |
| vaddr ? r4k_blast_dcache_page(addr) : |
| r4k_blast_dcache_user_page(addr); |
| if (exec && !cpu_icache_snoops_remote_store) |
| r4k_blast_scache_page(addr); |
| } |
| if (exec) { |
| if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) { |
| drop_mmu_context(mm); |
| } else |
| vaddr ? r4k_blast_icache_page(addr) : |
| r4k_blast_icache_user_page(addr); |
| } |
| |
| if (vaddr) { |
| if (map_coherent) |
| kunmap_coherent(); |
| else |
| kunmap_atomic(vaddr); |
| } |
| } |
| |
| static void r4k_flush_cache_page(struct vm_area_struct *vma, |
| unsigned long addr, unsigned long pfn) |
| { |
| struct flush_cache_page_args args; |
| |
| args.vma = vma; |
| args.addr = addr; |
| args.pfn = pfn; |
| |
| r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args); |
| } |
| |
| static inline void local_r4k_flush_data_cache_page(void * addr) |
| { |
| r4k_blast_dcache_page((unsigned long) addr); |
| } |
| |
| static void r4k_flush_data_cache_page(unsigned long addr) |
| { |
| if (in_atomic()) |
| local_r4k_flush_data_cache_page((void *)addr); |
| else |
| r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page, |
| (void *) addr); |
| } |
| |
| struct flush_icache_range_args { |
| unsigned long start; |
| unsigned long end; |
| unsigned int type; |
| bool user; |
| }; |
| |
| static inline void __local_r4k_flush_icache_range(unsigned long start, |
| unsigned long end, |
| unsigned int type, |
| bool user) |
| { |
| if (!cpu_has_ic_fills_f_dc) { |
| if (type == R4K_INDEX || |
| (type & R4K_INDEX && end - start >= dcache_size)) { |
| r4k_blast_dcache(); |
| } else { |
| R4600_HIT_CACHEOP_WAR_IMPL; |
| if (user) |
| protected_blast_dcache_range(start, end); |
| else |
| blast_dcache_range(start, end); |
| } |
| } |
| |
| if (type == R4K_INDEX || |
| (type & R4K_INDEX && end - start > icache_size)) |
| r4k_blast_icache(); |
| else { |
| switch (boot_cpu_type()) { |
| case CPU_LOONGSON2EF: |
| protected_loongson2_blast_icache_range(start, end); |
| break; |
| |
| default: |
| if (user) |
| protected_blast_icache_range(start, end); |
| else |
| blast_icache_range(start, end); |
| break; |
| } |
| } |
| } |
| |
| static inline void local_r4k_flush_icache_range(unsigned long start, |
| unsigned long end) |
| { |
| __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false); |
| } |
| |
| static inline void local_r4k_flush_icache_user_range(unsigned long start, |
| unsigned long end) |
| { |
| __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true); |
| } |
| |
| static inline void local_r4k_flush_icache_range_ipi(void *args) |
| { |
| struct flush_icache_range_args *fir_args = args; |
| unsigned long start = fir_args->start; |
| unsigned long end = fir_args->end; |
| unsigned int type = fir_args->type; |
| bool user = fir_args->user; |
| |
| __local_r4k_flush_icache_range(start, end, type, user); |
| } |
| |
| static void __r4k_flush_icache_range(unsigned long start, unsigned long end, |
| bool user) |
| { |
| struct flush_icache_range_args args; |
| unsigned long size, cache_size; |
| |
| args.start = start; |
| args.end = end; |
| args.type = R4K_HIT | R4K_INDEX; |
| args.user = user; |
| |
| /* |
| * Indexed cache ops require an SMP call. |
| * Consider if that can or should be avoided. |
| */ |
| preempt_disable(); |
| if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) { |
| /* |
| * If address-based cache ops don't require an SMP call, then |
| * use them exclusively for small flushes. |
| */ |
| size = end - start; |
| cache_size = icache_size; |
| if (!cpu_has_ic_fills_f_dc) { |
| size *= 2; |
| cache_size += dcache_size; |
| } |
| if (size <= cache_size) |
| args.type &= ~R4K_INDEX; |
| } |
| r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args); |
| preempt_enable(); |
| instruction_hazard(); |
| } |
| |
| static void r4k_flush_icache_range(unsigned long start, unsigned long end) |
| { |
| return __r4k_flush_icache_range(start, end, false); |
| } |
| |
| static void r4k_flush_icache_user_range(unsigned long start, unsigned long end) |
| { |
| return __r4k_flush_icache_range(start, end, true); |
| } |
| |
| #ifdef CONFIG_DMA_NONCOHERENT |
| |
| static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) |
| { |
| /* Catch bad driver code */ |
| if (WARN_ON(size == 0)) |
| return; |
| |
| preempt_disable(); |
| if (cpu_has_inclusive_pcaches) { |
| if (size >= scache_size) { |
| if (current_cpu_type() != CPU_LOONGSON64) |
| r4k_blast_scache(); |
| else |
| r4k_blast_scache_node(pa_to_nid(addr)); |
| } else { |
| blast_scache_range(addr, addr + size); |
| } |
| preempt_enable(); |
| __sync(); |
| return; |
| } |
| |
| /* |
| * Either no secondary cache or the available caches don't have the |
| * subset property so we have to flush the primary caches |
| * explicitly. |
| * If we would need IPI to perform an INDEX-type operation, then |
| * we have to use the HIT-type alternative as IPI cannot be used |
| * here due to interrupts possibly being disabled. |
| */ |
| if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { |
| r4k_blast_dcache(); |
| } else { |
| R4600_HIT_CACHEOP_WAR_IMPL; |
| blast_dcache_range(addr, addr + size); |
| } |
| preempt_enable(); |
| |
| bc_wback_inv(addr, size); |
| __sync(); |
| } |
| |
| static void prefetch_cache_inv(unsigned long addr, unsigned long size) |
| { |
| unsigned int linesz = cpu_scache_line_size(); |
| unsigned long addr0 = addr, addr1; |
| |
| addr0 &= ~(linesz - 1); |
| addr1 = (addr0 + size - 1) & ~(linesz - 1); |
| |
| protected_writeback_scache_line(addr0); |
| if (likely(addr1 != addr0)) |
| protected_writeback_scache_line(addr1); |
| else |
| return; |
| |
| addr0 += linesz; |
| if (likely(addr1 != addr0)) |
| protected_writeback_scache_line(addr0); |
| else |
| return; |
| |
| addr1 -= linesz; |
| if (likely(addr1 > addr0)) |
| protected_writeback_scache_line(addr0); |
| } |
| |
| static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) |
| { |
| /* Catch bad driver code */ |
| if (WARN_ON(size == 0)) |
| return; |
| |
| preempt_disable(); |
| |
| if (current_cpu_type() == CPU_BMIPS5000) |
| prefetch_cache_inv(addr, size); |
| |
| if (cpu_has_inclusive_pcaches) { |
| if (size >= scache_size) { |
| if (current_cpu_type() != CPU_LOONGSON64) |
| r4k_blast_scache(); |
| else |
| r4k_blast_scache_node(pa_to_nid(addr)); |
| } else { |
| /* |
| * There is no clearly documented alignment requirement |
| * for the cache instruction on MIPS processors and |
| * some processors, among them the RM5200 and RM7000 |
| * QED processors will throw an address error for cache |
| * hit ops with insufficient alignment. Solved by |
| * aligning the address to cache line size. |
| */ |
| blast_inv_scache_range(addr, addr + size); |
| } |
| preempt_enable(); |
| __sync(); |
| return; |
| } |
| |
| if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { |
| r4k_blast_dcache(); |
| } else { |
| R4600_HIT_CACHEOP_WAR_IMPL; |
| blast_inv_dcache_range(addr, addr + size); |
| } |
| preempt_enable(); |
| |
| bc_inv(addr, size); |
| __sync(); |
| } |
| #endif /* CONFIG_DMA_NONCOHERENT */ |
| |
| static void r4k_flush_icache_all(void) |
| { |
| if (cpu_has_vtag_icache) |
| r4k_blast_icache(); |
| } |
| |
| struct flush_kernel_vmap_range_args { |
| unsigned long vaddr; |
| int size; |
| }; |
| |
| static inline void local_r4k_flush_kernel_vmap_range_index(void *args) |
| { |
| /* |
| * Aliases only affect the primary caches so don't bother with |
| * S-caches or T-caches. |
| */ |
| r4k_blast_dcache(); |
| } |
| |
| static inline void local_r4k_flush_kernel_vmap_range(void *args) |
| { |
| struct flush_kernel_vmap_range_args *vmra = args; |
| unsigned long vaddr = vmra->vaddr; |
| int size = vmra->size; |
| |
| /* |
| * Aliases only affect the primary caches so don't bother with |
| * S-caches or T-caches. |
| */ |
| R4600_HIT_CACHEOP_WAR_IMPL; |
| blast_dcache_range(vaddr, vaddr + size); |
| } |
| |
| static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size) |
| { |
| struct flush_kernel_vmap_range_args args; |
| |
| args.vaddr = (unsigned long) vaddr; |
| args.size = size; |
| |
| if (size >= dcache_size) |
| r4k_on_each_cpu(R4K_INDEX, |
| local_r4k_flush_kernel_vmap_range_index, NULL); |
| else |
| r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range, |
| &args); |
| } |
| |
| static inline void rm7k_erratum31(void) |
| { |
| const unsigned long ic_lsize = 32; |
| unsigned long addr; |
| |
| /* RM7000 erratum #31. The icache is screwed at startup. */ |
| write_c0_taglo(0); |
| write_c0_taghi(0); |
| |
| for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { |
| __asm__ __volatile__ ( |
| ".set push\n\t" |
| ".set noreorder\n\t" |
| ".set mips3\n\t" |
| "cache\t%1, 0(%0)\n\t" |
| "cache\t%1, 0x1000(%0)\n\t" |
| "cache\t%1, 0x2000(%0)\n\t" |
| "cache\t%1, 0x3000(%0)\n\t" |
| "cache\t%2, 0(%0)\n\t" |
| "cache\t%2, 0x1000(%0)\n\t" |
| "cache\t%2, 0x2000(%0)\n\t" |
| "cache\t%2, 0x3000(%0)\n\t" |
| "cache\t%1, 0(%0)\n\t" |
| "cache\t%1, 0x1000(%0)\n\t" |
| "cache\t%1, 0x2000(%0)\n\t" |
| "cache\t%1, 0x3000(%0)\n\t" |
| ".set pop\n" |
| : |
| : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I)); |
| } |
| } |
| |
| static inline int alias_74k_erratum(struct cpuinfo_mips *c) |
| { |
| unsigned int imp = c->processor_id & PRID_IMP_MASK; |
| unsigned int rev = c->processor_id & PRID_REV_MASK; |
| int present = 0; |
| |
| /* |
| * Early versions of the 74K do not update the cache tags on a |
| * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG |
| * aliases. In this case it is better to treat the cache as always |
| * having aliases. Also disable the synonym tag update feature |
| * where available. In this case no opportunistic tag update will |
| * happen where a load causes a virtual address miss but a physical |
| * address hit during a D-cache look-up. |
| */ |
| switch (imp) { |
| case PRID_IMP_74K: |
| if (rev <= PRID_REV_ENCODE_332(2, 4, 0)) |
| present = 1; |
| if (rev == PRID_REV_ENCODE_332(2, 4, 0)) |
| write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); |
| break; |
| case PRID_IMP_1074K: |
| if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) { |
| present = 1; |
| write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); |
| } |
| break; |
| default: |
| BUG(); |
| } |
| |
| return present; |
| } |
| |
| static void b5k_instruction_hazard(void) |
| { |
| __sync(); |
| __sync(); |
| __asm__ __volatile__( |
| " nop; nop; nop; nop; nop; nop; nop; nop\n" |
| " nop; nop; nop; nop; nop; nop; nop; nop\n" |
| " nop; nop; nop; nop; nop; nop; nop; nop\n" |
| " nop; nop; nop; nop; nop; nop; nop; nop\n" |
| : : : "memory"); |
| } |
| |
| static char *way_string[] = { NULL, "direct mapped", "2-way", |
| "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", |
| "9-way", "10-way", "11-way", "12-way", |
| "13-way", "14-way", "15-way", "16-way", |
| }; |
| |
| static void probe_pcache(void) |
| { |
| struct cpuinfo_mips *c = ¤t_cpu_data; |
| unsigned int config = read_c0_config(); |
| unsigned int prid = read_c0_prid(); |
| int has_74k_erratum = 0; |
| unsigned long config1; |
| unsigned int lsize; |
| |
| switch (current_cpu_type()) { |
| case CPU_R4600: /* QED style two way caches? */ |
| case CPU_R4700: |
| case CPU_R5000: |
| case CPU_NEVADA: |
| icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); |
| c->icache.linesz = 16 << ((config & CONF_IB) >> 5); |
| c->icache.ways = 2; |
| c->icache.waybit = __ffs(icache_size/2); |
| |
| dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); |
| c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); |
| c->dcache.ways = 2; |
| c->dcache.waybit= __ffs(dcache_size/2); |
| |
| c->options |= MIPS_CPU_CACHE_CDEX_P; |
| break; |
| |
| case CPU_R5500: |
| icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); |
| c->icache.linesz = 16 << ((config & CONF_IB) >> 5); |
| c->icache.ways = 2; |
| c->icache.waybit= 0; |
| |
| dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); |
| c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); |
| c->dcache.ways = 2; |
| c->dcache.waybit = 0; |
| |
| c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH; |
| break; |
| |
| case CPU_TX49XX: |
| icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); |
| c->icache.linesz = 16 << ((config & CONF_IB) >> 5); |
| c->icache.ways = 4; |
| c->icache.waybit= 0; |
| |
| dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); |
| c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); |
| c->dcache.ways = 4; |
| c->dcache.waybit = 0; |
| |
| c->options |= MIPS_CPU_CACHE_CDEX_P; |
| c->options |= MIPS_CPU_PREFETCH; |
| break; |
| |
| case CPU_R4000PC: |
| case CPU_R4000SC: |
| case CPU_R4000MC: |
| case CPU_R4400PC: |
| case CPU_R4400SC: |
| case CPU_R4400MC: |
| case CPU_R4300: |
| icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); |
| c->icache.linesz = 16 << ((config & CONF_IB) >> 5); |
| c->icache.ways = 1; |
| c->icache.waybit = 0; /* doesn't matter */ |
| |
| dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); |
| c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); |
| c->dcache.ways = 1; |
| c->dcache.waybit = 0; /* does not matter */ |
| |
| c->options |= MIPS_CPU_CACHE_CDEX_P; |
| break; |
| |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_R16000: |
| icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); |
| c->icache.linesz = 64; |
| c->icache.ways = 2; |
| c->icache.waybit = 0; |
| |
| dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); |
| c->dcache.linesz = 32; |
| c->dcache.ways = 2; |
| c->dcache.waybit = 0; |
| |
| c->options |= MIPS_CPU_PREFETCH; |
| break; |
| |
| case CPU_RM7000: |
| rm7k_erratum31(); |
| |
| icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); |
| c->icache.linesz = 16 << ((config & CONF_IB) >> 5); |
| c->icache.ways = 4; |
| c->icache.waybit = __ffs(icache_size / c->icache.ways); |
| |
| dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); |
| c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); |
| c->dcache.ways = 4; |
| c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); |
| |
| c->options |= MIPS_CPU_CACHE_CDEX_P; |
| c->options |= MIPS_CPU_PREFETCH; |
| break; |
| |
| case CPU_LOONGSON2EF: |
| icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); |
| c->icache.linesz = 16 << ((config & CONF_IB) >> 5); |
| if (prid & 0x3) |
| c->icache.ways = 4; |
| else |
| c->icache.ways = 2; |
| c->icache.waybit = 0; |
| |
| dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); |
| c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); |
| if (prid & 0x3) |
| c->dcache.ways = 4; |
| else |
| c->dcache.ways = 2; |
| c->dcache.waybit = 0; |
| break; |
| |
| case CPU_LOONGSON64: |
| config1 = read_c0_config1(); |
| lsize = (config1 >> 19) & 7; |
| if (lsize) |
| c->icache.linesz = 2 << lsize; |
| else |
| c->icache.linesz = 0; |
| c->icache.sets = 64 << ((config1 >> 22) & 7); |
| c->icache.ways = 1 + ((config1 >> 16) & 7); |
| icache_size = c->icache.sets * |
| c->icache.ways * |
| c->icache.linesz; |
| c->icache.waybit = 0; |
| |
| lsize = (config1 >> 10) & 7; |
| if (lsize) |
| c->dcache.linesz = 2 << lsize; |
| else |
| c->dcache.linesz = 0; |
| c->dcache.sets = 64 << ((config1 >> 13) & 7); |
| c->dcache.ways = 1 + ((config1 >> 7) & 7); |
| dcache_size = c->dcache.sets * |
| c->dcache.ways * |
| c->dcache.linesz; |
| c->dcache.waybit = 0; |
| if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >= |
| (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) || |
| (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) |
| c->options |= MIPS_CPU_PREFETCH; |
| break; |
| |
| case CPU_CAVIUM_OCTEON3: |
| /* For now lie about the number of ways. */ |
| c->icache.linesz = 128; |
| c->icache.sets = 16; |
| c->icache.ways = 8; |
| c->icache.flags |= MIPS_CACHE_VTAG; |
| icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; |
| |
| c->dcache.linesz = 128; |
| c->dcache.ways = 8; |
| c->dcache.sets = 8; |
| dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; |
| c->options |= MIPS_CPU_PREFETCH; |
| break; |
| |
| default: |
| if (!(config & MIPS_CONF_M)) |
| panic("Don't know how to probe P-caches on this cpu."); |
| |
| /* |
| * So we seem to be a MIPS32 or MIPS64 CPU |
| * So let's probe the I-cache ... |
| */ |
| config1 = read_c0_config1(); |
| |
| lsize = (config1 >> 19) & 7; |
| |
| /* IL == 7 is reserved */ |
| if (lsize == 7) |
| panic("Invalid icache line size"); |
| |
| c->icache.linesz = lsize ? 2 << lsize : 0; |
| |
| c->icache.sets = 32 << (((config1 >> 22) + 1) & 7); |
| c->icache.ways = 1 + ((config1 >> 16) & 7); |
| |
| icache_size = c->icache.sets * |
| c->icache.ways * |
| c->icache.linesz; |
| c->icache.waybit = __ffs(icache_size/c->icache.ways); |
| |
| if (config & MIPS_CONF_VI) |
| c->icache.flags |= MIPS_CACHE_VTAG; |
| |
| /* |
| * Now probe the MIPS32 / MIPS64 data cache. |
| */ |
| c->dcache.flags = 0; |
| |
| lsize = (config1 >> 10) & 7; |
| |
| /* DL == 7 is reserved */ |
| if (lsize == 7) |
| panic("Invalid dcache line size"); |
| |
| c->dcache.linesz = lsize ? 2 << lsize : 0; |
| |
| c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7); |
| c->dcache.ways = 1 + ((config1 >> 7) & 7); |
| |
| dcache_size = c->dcache.sets * |
| c->dcache.ways * |
| c->dcache.linesz; |
| c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); |
| |
| c->options |= MIPS_CPU_PREFETCH; |
| break; |
| } |
| |
| /* |
| * Processor configuration sanity check for the R4000SC erratum |
| * #5. With page sizes larger than 32kB there is no possibility |
| * to get a VCE exception anymore so we don't care about this |
| * misconfiguration. The case is rather theoretical anyway; |
| * presumably no vendor is shipping his hardware in the "bad" |
| * configuration. |
| */ |
| if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 && |
| (prid & PRID_REV_MASK) < PRID_REV_R4400 && |
| !(config & CONF_SC) && c->icache.linesz != 16 && |
| PAGE_SIZE <= 0x8000) |
| panic("Improper R4000SC processor configuration detected"); |
| |
| /* compute a couple of other cache variables */ |
| c->icache.waysize = icache_size / c->icache.ways; |
| c->dcache.waysize = dcache_size / c->dcache.ways; |
| |
| c->icache.sets = c->icache.linesz ? |
| icache_size / (c->icache.linesz * c->icache.ways) : 0; |
| c->dcache.sets = c->dcache.linesz ? |
| dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; |
| |
| /* |
| * R1x000 P-caches are odd in a positive way. They're 32kB 2-way |
| * virtually indexed so normally would suffer from aliases. So |
| * normally they'd suffer from aliases but magic in the hardware deals |
| * with that for us so we don't need to take care ourselves. |
| */ |
| switch (current_cpu_type()) { |
| case CPU_20KC: |
| case CPU_25KF: |
| case CPU_I6400: |
| case CPU_I6500: |
| case CPU_SB1: |
| case CPU_SB1A: |
| c->dcache.flags |= MIPS_CACHE_PINDEX; |
| break; |
| |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_R16000: |
| break; |
| |
| case CPU_74K: |
| case CPU_1074K: |
| has_74k_erratum = alias_74k_erratum(c); |
| fallthrough; |
| case CPU_M14KC: |
| case CPU_M14KEC: |
| case CPU_24K: |
| case CPU_34K: |
| case CPU_1004K: |
| case CPU_INTERAPTIV: |
| case CPU_P5600: |
| case CPU_PROAPTIV: |
| case CPU_M5150: |
| case CPU_QEMU_GENERIC: |
| case CPU_P6600: |
| case CPU_M6250: |
| if (!(read_c0_config7() & MIPS_CONF7_IAR) && |
| (c->icache.waysize > PAGE_SIZE)) |
| c->icache.flags |= MIPS_CACHE_ALIASES; |
| if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) { |
| /* |
| * Effectively physically indexed dcache, |
| * thus no virtual aliases. |
| */ |
| c->dcache.flags |= MIPS_CACHE_PINDEX; |
| break; |
| } |
| fallthrough; |
| default: |
| if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE) |
| c->dcache.flags |= MIPS_CACHE_ALIASES; |
| } |
| |
| /* Physically indexed caches don't suffer from virtual aliasing */ |
| if (c->dcache.flags & MIPS_CACHE_PINDEX) |
| c->dcache.flags &= ~MIPS_CACHE_ALIASES; |
| |
| /* |
| * In systems with CM the icache fills from L2 or closer caches, and |
| * thus sees remote stores without needing to write them back any |
| * further than that. |
| */ |
| if (mips_cm_present()) |
| c->icache.flags |= MIPS_IC_SNOOPS_REMOTE; |
| |
| switch (current_cpu_type()) { |
| case CPU_20KC: |
| /* |
| * Some older 20Kc chips doesn't have the 'VI' bit in |
| * the config register. |
| */ |
| c->icache.flags |= MIPS_CACHE_VTAG; |
| break; |
| |
| case CPU_ALCHEMY: |
| case CPU_I6400: |
| case CPU_I6500: |
| c->icache.flags |= MIPS_CACHE_IC_F_DC; |
| break; |
| |
| case CPU_BMIPS5000: |
| c->icache.flags |= MIPS_CACHE_IC_F_DC; |
| /* Cache aliases are handled in hardware; allow HIGHMEM */ |
| c->dcache.flags &= ~MIPS_CACHE_ALIASES; |
| break; |
| |
| case CPU_LOONGSON2EF: |
| /* |
| * LOONGSON2 has 4 way icache, but when using indexed cache op, |
| * one op will act on all 4 ways |
| */ |
| c->icache.ways = 1; |
| } |
| |
| pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", |
| icache_size >> 10, |
| c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT", |
| way_string[c->icache.ways], c->icache.linesz); |
| |
| pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n", |
| dcache_size >> 10, way_string[c->dcache.ways], |
| (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT", |
| (c->dcache.flags & MIPS_CACHE_ALIASES) ? |
| "cache aliases" : "no aliases", |
| c->dcache.linesz); |
| } |
| |
| static void probe_vcache(void) |
| { |
| struct cpuinfo_mips *c = ¤t_cpu_data; |
| unsigned int config2, lsize; |
| |
| if (current_cpu_type() != CPU_LOONGSON64) |
| return; |
| |
| config2 = read_c0_config2(); |
| if ((lsize = ((config2 >> 20) & 15))) |
| c->vcache.linesz = 2 << lsize; |
| else |
| c->vcache.linesz = lsize; |
| |
| c->vcache.sets = 64 << ((config2 >> 24) & 15); |
| c->vcache.ways = 1 + ((config2 >> 16) & 15); |
| |
| vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz; |
| |
| c->vcache.waybit = 0; |
| c->vcache.waysize = vcache_size / c->vcache.ways; |
| |
| pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n", |
| vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz); |
| } |
| |
| /* |
| * If you even _breathe_ on this function, look at the gcc output and make sure |
| * it does not pop things on and off the stack for the cache sizing loop that |
| * executes in KSEG1 space or else you will crash and burn badly. You have |
| * been warned. |
| */ |
| static int probe_scache(void) |
| { |
| unsigned long flags, addr, begin, end, pow2; |
| unsigned int config = read_c0_config(); |
| struct cpuinfo_mips *c = ¤t_cpu_data; |
| |
| if (config & CONF_SC) |
| return 0; |
| |
| begin = (unsigned long) &_stext; |
| begin &= ~((4 * 1024 * 1024) - 1); |
| end = begin + (4 * 1024 * 1024); |
| |
| /* |
| * This is such a bitch, you'd think they would make it easy to do |
| * this. Away you daemons of stupidity! |
| */ |
| local_irq_save(flags); |
| |
| /* Fill each size-multiple cache line with a valid tag. */ |
| pow2 = (64 * 1024); |
| for (addr = begin; addr < end; addr = (begin + pow2)) { |
| unsigned long *p = (unsigned long *) addr; |
| __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ |
| pow2 <<= 1; |
| } |
| |
| /* Load first line with zero (therefore invalid) tag. */ |
| write_c0_taglo(0); |
| write_c0_taghi(0); |
| __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ |
| cache_op(Index_Store_Tag_I, begin); |
| cache_op(Index_Store_Tag_D, begin); |
| cache_op(Index_Store_Tag_SD, begin); |
| |
| /* Now search for the wrap around point. */ |
| pow2 = (128 * 1024); |
| for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { |
| cache_op(Index_Load_Tag_SD, addr); |
| __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ |
| if (!read_c0_taglo()) |
| break; |
| pow2 <<= 1; |
| } |
| local_irq_restore(flags); |
| addr -= begin; |
| |
| scache_size = addr; |
| c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); |
| c->scache.ways = 1; |
| c->scache.waybit = 0; /* does not matter */ |
| |
| return 1; |
| } |
| |
| static void loongson2_sc_init(void) |
| { |
| struct cpuinfo_mips *c = ¤t_cpu_data; |
| |
| scache_size = 512*1024; |
| c->scache.linesz = 32; |
| c->scache.ways = 4; |
| c->scache.waybit = 0; |
| c->scache.waysize = scache_size / (c->scache.ways); |
| c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); |
| pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", |
| scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); |
| |
| c->options |= MIPS_CPU_INCLUSIVE_CACHES; |
| } |
| |
| static void loongson3_sc_init(void) |
| { |
| struct cpuinfo_mips *c = ¤t_cpu_data; |
| unsigned int config2, lsize; |
| |
| config2 = read_c0_config2(); |
| lsize = (config2 >> 4) & 15; |
| if (lsize) |
| c->scache.linesz = 2 << lsize; |
| else |
| c->scache.linesz = 0; |
| c->scache.sets = 64 << ((config2 >> 8) & 15); |
| c->scache.ways = 1 + (config2 & 15); |
| |
| /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */ |
| if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) |
| c->scache.sets *= 2; |
| else |
| c->scache.sets *= 4; |
| |
| scache_size = c->scache.sets * c->scache.ways * c->scache.linesz; |
| |
| c->scache.waybit = 0; |
| c->scache.waysize = scache_size / c->scache.ways; |
| pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", |
| scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); |
| if (scache_size) |
| c->options |= MIPS_CPU_INCLUSIVE_CACHES; |
| return; |
| } |
| |
| extern int r5k_sc_init(void); |
| extern int rm7k_sc_init(void); |
| extern int mips_sc_init(void); |
| |
| static void setup_scache(void) |
| { |
| struct cpuinfo_mips *c = ¤t_cpu_data; |
| unsigned int config = read_c0_config(); |
| int sc_present = 0; |
| |
| /* |
| * Do the probing thing on R4000SC and R4400SC processors. Other |
| * processors don't have a S-cache that would be relevant to the |
| * Linux memory management. |
| */ |
| switch (current_cpu_type()) { |
| case CPU_R4000SC: |
| case CPU_R4000MC: |
| case CPU_R4400SC: |
| case CPU_R4400MC: |
| sc_present = run_uncached(probe_scache); |
| if (sc_present) |
| c->options |= MIPS_CPU_CACHE_CDEX_S; |
| break; |
| |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_R14000: |
| case CPU_R16000: |
| scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); |
| c->scache.linesz = 64 << ((config >> 13) & 1); |
| c->scache.ways = 2; |
| c->scache.waybit= 0; |
| sc_present = 1; |
| break; |
| |
| case CPU_R5000: |
| case CPU_NEVADA: |
| #ifdef CONFIG_R5000_CPU_SCACHE |
| r5k_sc_init(); |
| #endif |
| return; |
| |
| case CPU_RM7000: |
| #ifdef CONFIG_RM7000_CPU_SCACHE |
| rm7k_sc_init(); |
| #endif |
| return; |
| |
| case CPU_LOONGSON2EF: |
| loongson2_sc_init(); |
| return; |
| |
| case CPU_LOONGSON64: |
| loongson3_sc_init(); |
| return; |
| |
| case CPU_CAVIUM_OCTEON3: |
| /* don't need to worry about L2, fully coherent */ |
| return; |
| |
| default: |
| if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | |
| MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | |
| MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | |
| MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { |
| #ifdef CONFIG_MIPS_CPU_SCACHE |
| if (mips_sc_init ()) { |
| scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; |
| printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", |
| scache_size >> 10, |
| way_string[c->scache.ways], c->scache.linesz); |
| |
| if (current_cpu_type() == CPU_BMIPS5000) |
| c->options |= MIPS_CPU_INCLUSIVE_CACHES; |
| } |
| |
| #else |
| if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) |
| panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); |
| #endif |
| return; |
| } |
| sc_present = 0; |
| } |
| |
| if (!sc_present) |
| return; |
| |
| /* compute a couple of other cache variables */ |
| c->scache.waysize = scache_size / c->scache.ways; |
| |
| c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); |
| |
| printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", |
| scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); |
| |
| c->options |= MIPS_CPU_INCLUSIVE_CACHES; |
| } |
| |
| void au1x00_fixup_config_od(void) |
| { |
| /* |
| * c0_config.od (bit 19) was write only (and read as 0) |
| * on the early revisions of Alchemy SOCs. It disables the bus |
| * transaction overlapping and needs to be set to fix various errata. |
| */ |
| switch (read_c0_prid()) { |
| case 0x00030100: /* Au1000 DA */ |
| case 0x00030201: /* Au1000 HA */ |
| case 0x00030202: /* Au1000 HB */ |
| case 0x01030200: /* Au1500 AB */ |
| /* |
| * Au1100 errata actually keeps silence about this bit, so we set it |
| * just in case for those revisions that require it to be set according |
| * to the (now gone) cpu table. |
| */ |
| case 0x02030200: /* Au1100 AB */ |
| case 0x02030201: /* Au1100 BA */ |
| case 0x02030202: /* Au1100 BC */ |
| set_c0_config(1 << 19); |
| break; |
| } |
| } |
| |
| /* CP0 hazard avoidance. */ |
| #define NXP_BARRIER() \ |
| __asm__ __volatile__( \ |
| ".set noreorder\n\t" \ |
| "nop; nop; nop; nop; nop; nop;\n\t" \ |
| ".set reorder\n\t") |
| |
| static void nxp_pr4450_fixup_config(void) |
| { |
| unsigned long config0; |
| |
| config0 = read_c0_config(); |
| |
| /* clear all three cache coherency fields */ |
| config0 &= ~(0x7 | (7 << 25) | (7 << 28)); |
| config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) | |
| ((_page_cachable_default >> _CACHE_SHIFT) << 25) | |
| ((_page_cachable_default >> _CACHE_SHIFT) << 28)); |
| write_c0_config(config0); |
| NXP_BARRIER(); |
| } |
| |
| static int cca = -1; |
| |
| static int __init cca_setup(char *str) |
| { |
| get_option(&str, &cca); |
| |
| return 0; |
| } |
| |
| early_param("cca", cca_setup); |
| |
| static void coherency_setup(void) |
| { |
| if (cca < 0 || cca > 7) |
| cca = read_c0_config() & CONF_CM_CMASK; |
| _page_cachable_default = cca << _CACHE_SHIFT; |
| |
| pr_debug("Using cache attribute %d\n", cca); |
| change_c0_config(CONF_CM_CMASK, cca); |
| |
| /* |
| * c0_status.cu=0 specifies that updates by the sc instruction use |
| * the coherency mode specified by the TLB; 1 means cachable |
| * coherent update on write will be used. Not all processors have |
| * this bit and; some wire it to zero, others like Toshiba had the |
| * silly idea of putting something else there ... |
| */ |
| switch (current_cpu_type()) { |
| case CPU_R4000PC: |
| case CPU_R4000SC: |
| case CPU_R4000MC: |
| case CPU_R4400PC: |
| case CPU_R4400SC: |
| case CPU_R4400MC: |
| clear_c0_config(CONF_CU); |
| break; |
| /* |
| * We need to catch the early Alchemy SOCs with |
| * the write-only co_config.od bit and set it back to one on: |
| * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB |
| */ |
| case CPU_ALCHEMY: |
| au1x00_fixup_config_od(); |
| break; |
| |
| case PRID_IMP_PR4450: |
| nxp_pr4450_fixup_config(); |
| break; |
| } |
| } |
| |
| static void r4k_cache_error_setup(void) |
| { |
| extern char __weak except_vec2_generic; |
| extern char __weak except_vec2_sb1; |
| |
| switch (current_cpu_type()) { |
| case CPU_SB1: |
| case CPU_SB1A: |
| set_uncached_handler(0x100, &except_vec2_sb1, 0x80); |
| break; |
| |
| default: |
| set_uncached_handler(0x100, &except_vec2_generic, 0x80); |
| break; |
| } |
| } |
| |
| void r4k_cache_init(void) |
| { |
| extern void build_clear_page(void); |
| extern void build_copy_page(void); |
| struct cpuinfo_mips *c = ¤t_cpu_data; |
| |
| probe_pcache(); |
| probe_vcache(); |
| setup_scache(); |
| |
| r4k_blast_dcache_page_setup(); |
| r4k_blast_dcache_setup(); |
| r4k_blast_icache_page_setup(); |
| r4k_blast_icache_setup(); |
| r4k_blast_scache_page_setup(); |
| r4k_blast_scache_setup(); |
| r4k_blast_scache_node_setup(); |
| #ifdef CONFIG_EVA |
| r4k_blast_dcache_user_page_setup(); |
| r4k_blast_icache_user_page_setup(); |
| #endif |
| |
| /* |
| * Some MIPS32 and MIPS64 processors have physically indexed caches. |
| * This code supports virtually indexed processors and will be |
| * unnecessarily inefficient on physically indexed processors. |
| */ |
| if (c->dcache.linesz && cpu_has_dc_aliases) |
| shm_align_mask = max_t( unsigned long, |
| c->dcache.sets * c->dcache.linesz - 1, |
| PAGE_SIZE - 1); |
| else |
| shm_align_mask = PAGE_SIZE-1; |
| |
| __flush_cache_vmap = r4k__flush_cache_vmap; |
| __flush_cache_vunmap = r4k__flush_cache_vunmap; |
| |
| flush_cache_all = cache_noop; |
| __flush_cache_all = r4k___flush_cache_all; |
| flush_cache_mm = r4k_flush_cache_mm; |
| flush_cache_page = r4k_flush_cache_page; |
| flush_cache_range = r4k_flush_cache_range; |
| |
| __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range; |
| |
| flush_icache_all = r4k_flush_icache_all; |
| flush_data_cache_page = r4k_flush_data_cache_page; |
| flush_icache_range = r4k_flush_icache_range; |
| local_flush_icache_range = local_r4k_flush_icache_range; |
| __flush_icache_user_range = r4k_flush_icache_user_range; |
| __local_flush_icache_user_range = local_r4k_flush_icache_user_range; |
| |
| #ifdef CONFIG_DMA_NONCOHERENT |
| _dma_cache_wback_inv = r4k_dma_cache_wback_inv; |
| _dma_cache_wback = r4k_dma_cache_wback_inv; |
| _dma_cache_inv = r4k_dma_cache_inv; |
| #endif /* CONFIG_DMA_NONCOHERENT */ |
| |
| build_clear_page(); |
| build_copy_page(); |
| |
| /* |
| * We want to run CMP kernels on core with and without coherent |
| * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether |
| * or not to flush caches. |
| */ |
| local_r4k___flush_cache_all(NULL); |
| |
| coherency_setup(); |
| board_cache_error_setup = r4k_cache_error_setup; |
| |
| /* |
| * Per-CPU overrides |
| */ |
| switch (current_cpu_type()) { |
| case CPU_BMIPS4350: |
| case CPU_BMIPS4380: |
| /* No IPI is needed because all CPUs share the same D$ */ |
| flush_data_cache_page = r4k_blast_dcache_page; |
| break; |
| case CPU_BMIPS5000: |
| /* We lose our superpowers if L2 is disabled */ |
| if (c->scache.flags & MIPS_CACHE_NOT_PRESENT) |
| break; |
| |
| /* I$ fills from D$ just by emptying the write buffers */ |
| flush_cache_page = (void *)b5k_instruction_hazard; |
| flush_cache_range = (void *)b5k_instruction_hazard; |
| flush_data_cache_page = (void *)b5k_instruction_hazard; |
| flush_icache_range = (void *)b5k_instruction_hazard; |
| local_flush_icache_range = (void *)b5k_instruction_hazard; |
| |
| |
| /* Optimization: an L2 flush implicitly flushes the L1 */ |
| current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES; |
| break; |
| case CPU_LOONGSON64: |
| /* Loongson-3 maintains cache coherency by hardware */ |
| __flush_cache_all = cache_noop; |
| __flush_cache_vmap = cache_noop; |
| __flush_cache_vunmap = cache_noop; |
| __flush_kernel_vmap_range = (void *)cache_noop; |
| flush_cache_mm = (void *)cache_noop; |
| flush_cache_page = (void *)cache_noop; |
| flush_cache_range = (void *)cache_noop; |
| flush_icache_all = (void *)cache_noop; |
| flush_data_cache_page = (void *)cache_noop; |
| break; |
| } |
| } |
| |
| static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd, |
| void *v) |
| { |
| switch (cmd) { |
| case CPU_PM_ENTER_FAILED: |
| case CPU_PM_EXIT: |
| coherency_setup(); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block r4k_cache_pm_notifier_block = { |
| .notifier_call = r4k_cache_pm_notifier, |
| }; |
| |
| int __init r4k_cache_init_pm(void) |
| { |
| return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block); |
| } |
| arch_initcall(r4k_cache_init_pm); |