| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright IBM Corp. 2007 |
| * |
| * Authors: Hollis Blanchard <hollisb@us.ibm.com> |
| * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/kvm_host.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hrtimer.h> |
| #include <linux/sched/signal.h> |
| #include <linux/fs.h> |
| #include <linux/slab.h> |
| #include <linux/file.h> |
| #include <linux/module.h> |
| #include <linux/irqbypass.h> |
| #include <linux/kvm_irqfd.h> |
| #include <linux/of.h> |
| #include <asm/cputable.h> |
| #include <linux/uaccess.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/cputhreads.h> |
| #include <asm/irqflags.h> |
| #include <asm/iommu.h> |
| #include <asm/switch_to.h> |
| #include <asm/xive.h> |
| #ifdef CONFIG_PPC_PSERIES |
| #include <asm/hvcall.h> |
| #include <asm/plpar_wrappers.h> |
| #endif |
| #include <asm/ultravisor.h> |
| #include <asm/setup.h> |
| |
| #include "timing.h" |
| #include "../mm/mmu_decl.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| struct kvmppc_ops *kvmppc_hv_ops; |
| EXPORT_SYMBOL_GPL(kvmppc_hv_ops); |
| struct kvmppc_ops *kvmppc_pr_ops; |
| EXPORT_SYMBOL_GPL(kvmppc_pr_ops); |
| |
| |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) |
| { |
| return !!(v->arch.pending_exceptions) || kvm_request_pending(v); |
| } |
| |
| bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) |
| { |
| return kvm_arch_vcpu_runnable(vcpu); |
| } |
| |
| bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
| { |
| return false; |
| } |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return 1; |
| } |
| |
| /* |
| * Common checks before entering the guest world. Call with interrupts |
| * disabled. |
| * |
| * returns: |
| * |
| * == 1 if we're ready to go into guest state |
| * <= 0 if we need to go back to the host with return value |
| */ |
| int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| WARN_ON(irqs_disabled()); |
| hard_irq_disable(); |
| |
| while (true) { |
| if (need_resched()) { |
| local_irq_enable(); |
| cond_resched(); |
| hard_irq_disable(); |
| continue; |
| } |
| |
| if (signal_pending(current)) { |
| kvmppc_account_exit(vcpu, SIGNAL_EXITS); |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| r = -EINTR; |
| break; |
| } |
| |
| vcpu->mode = IN_GUEST_MODE; |
| |
| /* |
| * Reading vcpu->requests must happen after setting vcpu->mode, |
| * so we don't miss a request because the requester sees |
| * OUTSIDE_GUEST_MODE and assumes we'll be checking requests |
| * before next entering the guest (and thus doesn't IPI). |
| * This also orders the write to mode from any reads |
| * to the page tables done while the VCPU is running. |
| * Please see the comment in kvm_flush_remote_tlbs. |
| */ |
| smp_mb(); |
| |
| if (kvm_request_pending(vcpu)) { |
| /* Make sure we process requests preemptable */ |
| local_irq_enable(); |
| trace_kvm_check_requests(vcpu); |
| r = kvmppc_core_check_requests(vcpu); |
| hard_irq_disable(); |
| if (r > 0) |
| continue; |
| break; |
| } |
| |
| if (kvmppc_core_prepare_to_enter(vcpu)) { |
| /* interrupts got enabled in between, so we |
| are back at square 1 */ |
| continue; |
| } |
| |
| guest_enter_irqoff(); |
| return 1; |
| } |
| |
| /* return to host */ |
| local_irq_enable(); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); |
| |
| #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) |
| static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; |
| int i; |
| |
| shared->sprg0 = swab64(shared->sprg0); |
| shared->sprg1 = swab64(shared->sprg1); |
| shared->sprg2 = swab64(shared->sprg2); |
| shared->sprg3 = swab64(shared->sprg3); |
| shared->srr0 = swab64(shared->srr0); |
| shared->srr1 = swab64(shared->srr1); |
| shared->dar = swab64(shared->dar); |
| shared->msr = swab64(shared->msr); |
| shared->dsisr = swab32(shared->dsisr); |
| shared->int_pending = swab32(shared->int_pending); |
| for (i = 0; i < ARRAY_SIZE(shared->sr); i++) |
| shared->sr[i] = swab32(shared->sr[i]); |
| } |
| #endif |
| |
| int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) |
| { |
| int nr = kvmppc_get_gpr(vcpu, 11); |
| int r; |
| unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); |
| unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); |
| unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); |
| unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); |
| unsigned long r2 = 0; |
| |
| if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { |
| /* 32 bit mode */ |
| param1 &= 0xffffffff; |
| param2 &= 0xffffffff; |
| param3 &= 0xffffffff; |
| param4 &= 0xffffffff; |
| } |
| |
| switch (nr) { |
| case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): |
| { |
| #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) |
| /* Book3S can be little endian, find it out here */ |
| int shared_big_endian = true; |
| if (vcpu->arch.intr_msr & MSR_LE) |
| shared_big_endian = false; |
| if (shared_big_endian != vcpu->arch.shared_big_endian) |
| kvmppc_swab_shared(vcpu); |
| vcpu->arch.shared_big_endian = shared_big_endian; |
| #endif |
| |
| if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { |
| /* |
| * Older versions of the Linux magic page code had |
| * a bug where they would map their trampoline code |
| * NX. If that's the case, remove !PR NX capability. |
| */ |
| vcpu->arch.disable_kernel_nx = true; |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| } |
| |
| vcpu->arch.magic_page_pa = param1 & ~0xfffULL; |
| vcpu->arch.magic_page_ea = param2 & ~0xfffULL; |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* |
| * Make sure our 4k magic page is in the same window of a 64k |
| * page within the guest and within the host's page. |
| */ |
| if ((vcpu->arch.magic_page_pa & 0xf000) != |
| ((ulong)vcpu->arch.shared & 0xf000)) { |
| void *old_shared = vcpu->arch.shared; |
| ulong shared = (ulong)vcpu->arch.shared; |
| void *new_shared; |
| |
| shared &= PAGE_MASK; |
| shared |= vcpu->arch.magic_page_pa & 0xf000; |
| new_shared = (void*)shared; |
| memcpy(new_shared, old_shared, 0x1000); |
| vcpu->arch.shared = new_shared; |
| } |
| #endif |
| |
| r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; |
| |
| r = EV_SUCCESS; |
| break; |
| } |
| case KVM_HCALL_TOKEN(KVM_HC_FEATURES): |
| r = EV_SUCCESS; |
| #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) |
| r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); |
| #endif |
| |
| /* Second return value is in r4 */ |
| break; |
| case EV_HCALL_TOKEN(EV_IDLE): |
| r = EV_SUCCESS; |
| kvm_vcpu_halt(vcpu); |
| break; |
| default: |
| r = EV_UNIMPLEMENTED; |
| break; |
| } |
| |
| kvmppc_set_gpr(vcpu, 4, r2); |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); |
| |
| int kvmppc_sanity_check(struct kvm_vcpu *vcpu) |
| { |
| int r = false; |
| |
| /* We have to know what CPU to virtualize */ |
| if (!vcpu->arch.pvr) |
| goto out; |
| |
| /* PAPR only works with book3s_64 */ |
| if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) |
| goto out; |
| |
| /* HV KVM can only do PAPR mode for now */ |
| if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) |
| goto out; |
| |
| #ifdef CONFIG_KVM_BOOKE_HV |
| if (!cpu_has_feature(CPU_FTR_EMB_HV)) |
| goto out; |
| #endif |
| |
| r = true; |
| |
| out: |
| vcpu->arch.sane = r; |
| return r ? 0 : -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_sanity_check); |
| |
| int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er; |
| int r; |
| |
| er = kvmppc_emulate_loadstore(vcpu); |
| switch (er) { |
| case EMULATE_DONE: |
| /* Future optimization: only reload non-volatiles if they were |
| * actually modified. */ |
| r = RESUME_GUEST_NV; |
| break; |
| case EMULATE_AGAIN: |
| r = RESUME_GUEST; |
| break; |
| case EMULATE_DO_MMIO: |
| vcpu->run->exit_reason = KVM_EXIT_MMIO; |
| /* We must reload nonvolatiles because "update" load/store |
| * instructions modify register state. */ |
| /* Future optimization: only reload non-volatiles if they were |
| * actually modified. */ |
| r = RESUME_HOST_NV; |
| break; |
| case EMULATE_FAIL: |
| { |
| ppc_inst_t last_inst; |
| |
| kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); |
| kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n", |
| ppc_inst_val(last_inst)); |
| |
| /* |
| * Injecting a Data Storage here is a bit more |
| * accurate since the instruction that caused the |
| * access could still be a valid one. |
| */ |
| if (!IS_ENABLED(CONFIG_BOOKE)) { |
| ulong dsisr = DSISR_BADACCESS; |
| |
| if (vcpu->mmio_is_write) |
| dsisr |= DSISR_ISSTORE; |
| |
| kvmppc_core_queue_data_storage(vcpu, |
| kvmppc_get_msr(vcpu) & SRR1_PREFIXED, |
| vcpu->arch.vaddr_accessed, dsisr); |
| } else { |
| /* |
| * BookE does not send a SIGBUS on a bad |
| * fault, so use a Program interrupt instead |
| * to avoid a fault loop. |
| */ |
| kvmppc_core_queue_program(vcpu, 0); |
| } |
| |
| r = RESUME_GUEST; |
| break; |
| } |
| default: |
| WARN_ON(1); |
| r = RESUME_GUEST; |
| } |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); |
| |
| int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, |
| bool data) |
| { |
| ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; |
| struct kvmppc_pte pte; |
| int r = -EINVAL; |
| |
| vcpu->stat.st++; |
| |
| if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) |
| r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, |
| size); |
| |
| if ((!r) || (r == -EAGAIN)) |
| return r; |
| |
| r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, |
| XLATE_WRITE, &pte); |
| if (r < 0) |
| return r; |
| |
| *eaddr = pte.raddr; |
| |
| if (!pte.may_write) |
| return -EPERM; |
| |
| /* Magic page override */ |
| if (kvmppc_supports_magic_page(vcpu) && mp_pa && |
| ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && |
| !(kvmppc_get_msr(vcpu) & MSR_PR)) { |
| void *magic = vcpu->arch.shared; |
| magic += pte.eaddr & 0xfff; |
| memcpy(magic, ptr, size); |
| return EMULATE_DONE; |
| } |
| |
| if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) |
| return EMULATE_DO_MMIO; |
| |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_st); |
| |
| int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, |
| bool data) |
| { |
| ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; |
| struct kvmppc_pte pte; |
| int rc = -EINVAL; |
| |
| vcpu->stat.ld++; |
| |
| if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) |
| rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, |
| size); |
| |
| if ((!rc) || (rc == -EAGAIN)) |
| return rc; |
| |
| rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, |
| XLATE_READ, &pte); |
| if (rc) |
| return rc; |
| |
| *eaddr = pte.raddr; |
| |
| if (!pte.may_read) |
| return -EPERM; |
| |
| if (!data && !pte.may_execute) |
| return -ENOEXEC; |
| |
| /* Magic page override */ |
| if (kvmppc_supports_magic_page(vcpu) && mp_pa && |
| ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && |
| !(kvmppc_get_msr(vcpu) & MSR_PR)) { |
| void *magic = vcpu->arch.shared; |
| magic += pte.eaddr & 0xfff; |
| memcpy(ptr, magic, size); |
| return EMULATE_DONE; |
| } |
| |
| kvm_vcpu_srcu_read_lock(vcpu); |
| rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| if (rc) |
| return EMULATE_DO_MMIO; |
| |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_ld); |
| |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| struct kvmppc_ops *kvm_ops = NULL; |
| int r; |
| |
| /* |
| * if we have both HV and PR enabled, default is HV |
| */ |
| if (type == 0) { |
| if (kvmppc_hv_ops) |
| kvm_ops = kvmppc_hv_ops; |
| else |
| kvm_ops = kvmppc_pr_ops; |
| if (!kvm_ops) |
| goto err_out; |
| } else if (type == KVM_VM_PPC_HV) { |
| if (!kvmppc_hv_ops) |
| goto err_out; |
| kvm_ops = kvmppc_hv_ops; |
| } else if (type == KVM_VM_PPC_PR) { |
| if (!kvmppc_pr_ops) |
| goto err_out; |
| kvm_ops = kvmppc_pr_ops; |
| } else |
| goto err_out; |
| |
| if (!try_module_get(kvm_ops->owner)) |
| return -ENOENT; |
| |
| kvm->arch.kvm_ops = kvm_ops; |
| r = kvmppc_core_init_vm(kvm); |
| if (r) |
| module_put(kvm_ops->owner); |
| return r; |
| err_out: |
| return -EINVAL; |
| } |
| |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| #ifdef CONFIG_KVM_XICS |
| /* |
| * We call kick_all_cpus_sync() to ensure that all |
| * CPUs have executed any pending IPIs before we |
| * continue and free VCPUs structures below. |
| */ |
| if (is_kvmppc_hv_enabled(kvm)) |
| kick_all_cpus_sync(); |
| #endif |
| |
| kvm_destroy_vcpus(kvm); |
| |
| mutex_lock(&kvm->lock); |
| |
| kvmppc_core_destroy_vm(kvm); |
| |
| mutex_unlock(&kvm->lock); |
| |
| /* drop the module reference */ |
| module_put(kvm->arch.kvm_ops->owner); |
| } |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| /* Assume we're using HV mode when the HV module is loaded */ |
| int hv_enabled = kvmppc_hv_ops ? 1 : 0; |
| |
| if (kvm) { |
| /* |
| * Hooray - we know which VM type we're running on. Depend on |
| * that rather than the guess above. |
| */ |
| hv_enabled = is_kvmppc_hv_enabled(kvm); |
| } |
| |
| switch (ext) { |
| #ifdef CONFIG_BOOKE |
| case KVM_CAP_PPC_BOOKE_SREGS: |
| case KVM_CAP_PPC_BOOKE_WATCHDOG: |
| case KVM_CAP_PPC_EPR: |
| #else |
| case KVM_CAP_PPC_SEGSTATE: |
| case KVM_CAP_PPC_HIOR: |
| case KVM_CAP_PPC_PAPR: |
| #endif |
| case KVM_CAP_PPC_UNSET_IRQ: |
| case KVM_CAP_PPC_IRQ_LEVEL: |
| case KVM_CAP_ENABLE_CAP: |
| case KVM_CAP_ONE_REG: |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_DEVICE_CTRL: |
| case KVM_CAP_IMMEDIATE_EXIT: |
| case KVM_CAP_SET_GUEST_DEBUG: |
| r = 1; |
| break; |
| case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: |
| case KVM_CAP_PPC_PAIRED_SINGLES: |
| case KVM_CAP_PPC_OSI: |
| case KVM_CAP_PPC_GET_PVINFO: |
| #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) |
| case KVM_CAP_SW_TLB: |
| #endif |
| /* We support this only for PR */ |
| r = !hv_enabled; |
| break; |
| #ifdef CONFIG_KVM_MPIC |
| case KVM_CAP_IRQ_MPIC: |
| r = 1; |
| break; |
| #endif |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| case KVM_CAP_SPAPR_TCE: |
| case KVM_CAP_SPAPR_TCE_64: |
| r = 1; |
| break; |
| case KVM_CAP_SPAPR_TCE_VFIO: |
| r = !!cpu_has_feature(CPU_FTR_HVMODE); |
| break; |
| case KVM_CAP_PPC_RTAS: |
| case KVM_CAP_PPC_FIXUP_HCALL: |
| case KVM_CAP_PPC_ENABLE_HCALL: |
| #ifdef CONFIG_KVM_XICS |
| case KVM_CAP_IRQ_XICS: |
| #endif |
| case KVM_CAP_PPC_GET_CPU_CHAR: |
| r = 1; |
| break; |
| #ifdef CONFIG_KVM_XIVE |
| case KVM_CAP_PPC_IRQ_XIVE: |
| /* |
| * We need XIVE to be enabled on the platform (implies |
| * a POWER9 processor) and the PowerNV platform, as |
| * nested is not yet supported. |
| */ |
| r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && |
| kvmppc_xive_native_supported(); |
| break; |
| #endif |
| |
| #ifdef CONFIG_HAVE_KVM_IRQFD |
| case KVM_CAP_IRQFD_RESAMPLE: |
| r = !xive_enabled(); |
| break; |
| #endif |
| |
| case KVM_CAP_PPC_ALLOC_HTAB: |
| r = hv_enabled; |
| break; |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| case KVM_CAP_PPC_SMT: |
| r = 0; |
| if (kvm) { |
| if (kvm->arch.emul_smt_mode > 1) |
| r = kvm->arch.emul_smt_mode; |
| else |
| r = kvm->arch.smt_mode; |
| } else if (hv_enabled) { |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| r = 1; |
| else |
| r = threads_per_subcore; |
| } |
| break; |
| case KVM_CAP_PPC_SMT_POSSIBLE: |
| r = 1; |
| if (hv_enabled) { |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| r = ((threads_per_subcore << 1) - 1); |
| else |
| /* P9 can emulate dbells, so allow any mode */ |
| r = 8 | 4 | 2 | 1; |
| } |
| break; |
| case KVM_CAP_PPC_RMA: |
| r = 0; |
| break; |
| case KVM_CAP_PPC_HWRNG: |
| r = kvmppc_hwrng_present(); |
| break; |
| case KVM_CAP_PPC_MMU_RADIX: |
| r = !!(hv_enabled && radix_enabled()); |
| break; |
| case KVM_CAP_PPC_MMU_HASH_V3: |
| r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && |
| kvmppc_hv_ops->hash_v3_possible()); |
| break; |
| case KVM_CAP_PPC_NESTED_HV: |
| r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && |
| !kvmppc_hv_ops->enable_nested(NULL)); |
| break; |
| #endif |
| case KVM_CAP_SYNC_MMU: |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| r = hv_enabled; |
| #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
| r = 1; |
| #else |
| r = 0; |
| #endif |
| break; |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| case KVM_CAP_PPC_HTAB_FD: |
| r = hv_enabled; |
| break; |
| #endif |
| case KVM_CAP_NR_VCPUS: |
| /* |
| * Recommending a number of CPUs is somewhat arbitrary; we |
| * return the number of present CPUs for -HV (since a host |
| * will have secondary threads "offline"), and for other KVM |
| * implementations just count online CPUs. |
| */ |
| if (hv_enabled) |
| r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); |
| else |
| r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); |
| break; |
| case KVM_CAP_MAX_VCPUS: |
| r = KVM_MAX_VCPUS; |
| break; |
| case KVM_CAP_MAX_VCPU_ID: |
| r = KVM_MAX_VCPU_IDS; |
| break; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| case KVM_CAP_PPC_GET_SMMU_INFO: |
| r = 1; |
| break; |
| case KVM_CAP_SPAPR_MULTITCE: |
| r = 1; |
| break; |
| case KVM_CAP_SPAPR_RESIZE_HPT: |
| r = !!hv_enabled; |
| break; |
| #endif |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| case KVM_CAP_PPC_FWNMI: |
| r = hv_enabled; |
| break; |
| #endif |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| case KVM_CAP_PPC_HTM: |
| r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || |
| (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); |
| break; |
| #endif |
| #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) |
| case KVM_CAP_PPC_SECURE_GUEST: |
| r = hv_enabled && kvmppc_hv_ops->enable_svm && |
| !kvmppc_hv_ops->enable_svm(NULL); |
| break; |
| case KVM_CAP_PPC_DAWR1: |
| r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && |
| !kvmppc_hv_ops->enable_dawr1(NULL)); |
| break; |
| case KVM_CAP_PPC_RPT_INVALIDATE: |
| r = 1; |
| break; |
| #endif |
| case KVM_CAP_PPC_AIL_MODE_3: |
| r = 0; |
| /* |
| * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode. |
| * The POWER9s can support it if the guest runs in hash mode, |
| * but QEMU doesn't necessarily query the capability in time. |
| */ |
| if (hv_enabled) { |
| if (kvmhv_on_pseries()) { |
| if (pseries_reloc_on_exception()) |
| r = 1; |
| } else if (cpu_has_feature(CPU_FTR_ARCH_207S) && |
| !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { |
| r = 1; |
| } |
| } |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| return r; |
| |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| return -EINVAL; |
| } |
| |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) |
| { |
| kvmppc_core_free_memslot(kvm, slot); |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| const struct kvm_memory_slot *old, |
| struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| return kvmppc_core_prepare_memory_region(kvm, old, new, change); |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| kvmppc_core_commit_memory_region(kvm, old, new, change); |
| } |
| |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| kvmppc_core_flush_memslot(kvm, slot); |
| } |
| |
| int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) |
| { |
| return 0; |
| } |
| |
| static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) |
| { |
| struct kvm_vcpu *vcpu; |
| |
| vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); |
| kvmppc_decrementer_func(vcpu); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) |
| { |
| int err; |
| |
| hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); |
| vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; |
| |
| #ifdef CONFIG_KVM_EXIT_TIMING |
| mutex_init(&vcpu->arch.exit_timing_lock); |
| #endif |
| err = kvmppc_subarch_vcpu_init(vcpu); |
| if (err) |
| return err; |
| |
| err = kvmppc_core_vcpu_create(vcpu); |
| if (err) |
| goto out_vcpu_uninit; |
| |
| rcuwait_init(&vcpu->arch.wait); |
| vcpu->arch.waitp = &vcpu->arch.wait; |
| return 0; |
| |
| out_vcpu_uninit: |
| kvmppc_subarch_vcpu_uninit(vcpu); |
| return err; |
| } |
| |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| /* Make sure we're not using the vcpu anymore */ |
| hrtimer_cancel(&vcpu->arch.dec_timer); |
| |
| switch (vcpu->arch.irq_type) { |
| case KVMPPC_IRQ_MPIC: |
| kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); |
| break; |
| case KVMPPC_IRQ_XICS: |
| if (xics_on_xive()) |
| kvmppc_xive_cleanup_vcpu(vcpu); |
| else |
| kvmppc_xics_free_icp(vcpu); |
| break; |
| case KVMPPC_IRQ_XIVE: |
| kvmppc_xive_native_cleanup_vcpu(vcpu); |
| break; |
| } |
| |
| kvmppc_core_vcpu_free(vcpu); |
| |
| kvmppc_subarch_vcpu_uninit(vcpu); |
| } |
| |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| return kvmppc_core_pending_dec(vcpu); |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| #ifdef CONFIG_BOOKE |
| /* |
| * vrsave (formerly usprg0) isn't used by Linux, but may |
| * be used by the guest. |
| * |
| * On non-booke this is associated with Altivec and |
| * is handled by code in book3s.c. |
| */ |
| mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); |
| #endif |
| kvmppc_core_vcpu_load(vcpu, cpu); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvmppc_core_vcpu_put(vcpu); |
| #ifdef CONFIG_BOOKE |
| vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); |
| #endif |
| } |
| |
| /* |
| * irq_bypass_add_producer and irq_bypass_del_producer are only |
| * useful if the architecture supports PCI passthrough. |
| * irq_bypass_stop and irq_bypass_start are not needed and so |
| * kvm_ops are not defined for them. |
| */ |
| bool kvm_arch_has_irq_bypass(void) |
| { |
| return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || |
| (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); |
| } |
| |
| int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| struct kvm *kvm = irqfd->kvm; |
| |
| if (kvm->arch.kvm_ops->irq_bypass_add_producer) |
| return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); |
| |
| return 0; |
| } |
| |
| void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| struct kvm *kvm = irqfd->kvm; |
| |
| if (kvm->arch.kvm_ops->irq_bypass_del_producer) |
| kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); |
| } |
| |
| #ifdef CONFIG_VSX |
| static inline int kvmppc_get_vsr_dword_offset(int index) |
| { |
| int offset; |
| |
| if ((index != 0) && (index != 1)) |
| return -1; |
| |
| #ifdef __BIG_ENDIAN |
| offset = index; |
| #else |
| offset = 1 - index; |
| #endif |
| |
| return offset; |
| } |
| |
| static inline int kvmppc_get_vsr_word_offset(int index) |
| { |
| int offset; |
| |
| if ((index > 3) || (index < 0)) |
| return -1; |
| |
| #ifdef __BIG_ENDIAN |
| offset = index; |
| #else |
| offset = 3 - index; |
| #endif |
| return offset; |
| } |
| |
| static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, |
| u64 gpr) |
| { |
| union kvmppc_one_reg val; |
| int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| |
| if (offset == -1) |
| return; |
| |
| if (index >= 32) { |
| val.vval = VCPU_VSX_VR(vcpu, index - 32); |
| val.vsxval[offset] = gpr; |
| VCPU_VSX_VR(vcpu, index - 32) = val.vval; |
| } else { |
| VCPU_VSX_FPR(vcpu, index, offset) = gpr; |
| } |
| } |
| |
| static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, |
| u64 gpr) |
| { |
| union kvmppc_one_reg val; |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| |
| if (index >= 32) { |
| val.vval = VCPU_VSX_VR(vcpu, index - 32); |
| val.vsxval[0] = gpr; |
| val.vsxval[1] = gpr; |
| VCPU_VSX_VR(vcpu, index - 32) = val.vval; |
| } else { |
| VCPU_VSX_FPR(vcpu, index, 0) = gpr; |
| VCPU_VSX_FPR(vcpu, index, 1) = gpr; |
| } |
| } |
| |
| static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, |
| u32 gpr) |
| { |
| union kvmppc_one_reg val; |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| |
| if (index >= 32) { |
| val.vsx32val[0] = gpr; |
| val.vsx32val[1] = gpr; |
| val.vsx32val[2] = gpr; |
| val.vsx32val[3] = gpr; |
| VCPU_VSX_VR(vcpu, index - 32) = val.vval; |
| } else { |
| val.vsx32val[0] = gpr; |
| val.vsx32val[1] = gpr; |
| VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; |
| VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; |
| } |
| } |
| |
| static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, |
| u32 gpr32) |
| { |
| union kvmppc_one_reg val; |
| int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| int dword_offset, word_offset; |
| |
| if (offset == -1) |
| return; |
| |
| if (index >= 32) { |
| val.vval = VCPU_VSX_VR(vcpu, index - 32); |
| val.vsx32val[offset] = gpr32; |
| VCPU_VSX_VR(vcpu, index - 32) = val.vval; |
| } else { |
| dword_offset = offset / 2; |
| word_offset = offset % 2; |
| val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); |
| val.vsx32val[word_offset] = gpr32; |
| VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; |
| } |
| } |
| #endif /* CONFIG_VSX */ |
| |
| #ifdef CONFIG_ALTIVEC |
| static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, |
| int index, int element_size) |
| { |
| int offset; |
| int elts = sizeof(vector128)/element_size; |
| |
| if ((index < 0) || (index >= elts)) |
| return -1; |
| |
| if (kvmppc_need_byteswap(vcpu)) |
| offset = elts - index - 1; |
| else |
| offset = index; |
| |
| return offset; |
| } |
| |
| static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, |
| int index) |
| { |
| return kvmppc_get_vmx_offset_generic(vcpu, index, 8); |
| } |
| |
| static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, |
| int index) |
| { |
| return kvmppc_get_vmx_offset_generic(vcpu, index, 4); |
| } |
| |
| static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, |
| int index) |
| { |
| return kvmppc_get_vmx_offset_generic(vcpu, index, 2); |
| } |
| |
| static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, |
| int index) |
| { |
| return kvmppc_get_vmx_offset_generic(vcpu, index, 1); |
| } |
| |
| |
| static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, |
| u64 gpr) |
| { |
| union kvmppc_one_reg val; |
| int offset = kvmppc_get_vmx_dword_offset(vcpu, |
| vcpu->arch.mmio_vmx_offset); |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| |
| if (offset == -1) |
| return; |
| |
| val.vval = VCPU_VSX_VR(vcpu, index); |
| val.vsxval[offset] = gpr; |
| VCPU_VSX_VR(vcpu, index) = val.vval; |
| } |
| |
| static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, |
| u32 gpr32) |
| { |
| union kvmppc_one_reg val; |
| int offset = kvmppc_get_vmx_word_offset(vcpu, |
| vcpu->arch.mmio_vmx_offset); |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| |
| if (offset == -1) |
| return; |
| |
| val.vval = VCPU_VSX_VR(vcpu, index); |
| val.vsx32val[offset] = gpr32; |
| VCPU_VSX_VR(vcpu, index) = val.vval; |
| } |
| |
| static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, |
| u16 gpr16) |
| { |
| union kvmppc_one_reg val; |
| int offset = kvmppc_get_vmx_hword_offset(vcpu, |
| vcpu->arch.mmio_vmx_offset); |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| |
| if (offset == -1) |
| return; |
| |
| val.vval = VCPU_VSX_VR(vcpu, index); |
| val.vsx16val[offset] = gpr16; |
| VCPU_VSX_VR(vcpu, index) = val.vval; |
| } |
| |
| static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, |
| u8 gpr8) |
| { |
| union kvmppc_one_reg val; |
| int offset = kvmppc_get_vmx_byte_offset(vcpu, |
| vcpu->arch.mmio_vmx_offset); |
| int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; |
| |
| if (offset == -1) |
| return; |
| |
| val.vval = VCPU_VSX_VR(vcpu, index); |
| val.vsx8val[offset] = gpr8; |
| VCPU_VSX_VR(vcpu, index) = val.vval; |
| } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| #ifdef CONFIG_PPC_FPU |
| static inline u64 sp_to_dp(u32 fprs) |
| { |
| u64 fprd; |
| |
| preempt_disable(); |
| enable_kernel_fp(); |
| asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) |
| : "fr0"); |
| preempt_enable(); |
| return fprd; |
| } |
| |
| static inline u32 dp_to_sp(u64 fprd) |
| { |
| u32 fprs; |
| |
| preempt_disable(); |
| enable_kernel_fp(); |
| asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) |
| : "fr0"); |
| preempt_enable(); |
| return fprs; |
| } |
| |
| #else |
| #define sp_to_dp(x) (x) |
| #define dp_to_sp(x) (x) |
| #endif /* CONFIG_PPC_FPU */ |
| |
| static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u64 gpr; |
| |
| if (run->mmio.len > sizeof(gpr)) |
| return; |
| |
| if (!vcpu->arch.mmio_host_swabbed) { |
| switch (run->mmio.len) { |
| case 8: gpr = *(u64 *)run->mmio.data; break; |
| case 4: gpr = *(u32 *)run->mmio.data; break; |
| case 2: gpr = *(u16 *)run->mmio.data; break; |
| case 1: gpr = *(u8 *)run->mmio.data; break; |
| } |
| } else { |
| switch (run->mmio.len) { |
| case 8: gpr = swab64(*(u64 *)run->mmio.data); break; |
| case 4: gpr = swab32(*(u32 *)run->mmio.data); break; |
| case 2: gpr = swab16(*(u16 *)run->mmio.data); break; |
| case 1: gpr = *(u8 *)run->mmio.data; break; |
| } |
| } |
| |
| /* conversion between single and double precision */ |
| if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) |
| gpr = sp_to_dp(gpr); |
| |
| if (vcpu->arch.mmio_sign_extend) { |
| switch (run->mmio.len) { |
| #ifdef CONFIG_PPC64 |
| case 4: |
| gpr = (s64)(s32)gpr; |
| break; |
| #endif |
| case 2: |
| gpr = (s64)(s16)gpr; |
| break; |
| case 1: |
| gpr = (s64)(s8)gpr; |
| break; |
| } |
| } |
| |
| switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { |
| case KVM_MMIO_REG_GPR: |
| kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); |
| break; |
| case KVM_MMIO_REG_FPR: |
| if (vcpu->kvm->arch.kvm_ops->giveup_ext) |
| vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); |
| |
| VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; |
| break; |
| #ifdef CONFIG_PPC_BOOK3S |
| case KVM_MMIO_REG_QPR: |
| vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; |
| break; |
| case KVM_MMIO_REG_FQPR: |
| VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; |
| vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; |
| break; |
| #endif |
| #ifdef CONFIG_VSX |
| case KVM_MMIO_REG_VSX: |
| if (vcpu->kvm->arch.kvm_ops->giveup_ext) |
| vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); |
| |
| if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) |
| kvmppc_set_vsr_dword(vcpu, gpr); |
| else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) |
| kvmppc_set_vsr_word(vcpu, gpr); |
| else if (vcpu->arch.mmio_copy_type == |
| KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) |
| kvmppc_set_vsr_dword_dump(vcpu, gpr); |
| else if (vcpu->arch.mmio_copy_type == |
| KVMPPC_VSX_COPY_WORD_LOAD_DUMP) |
| kvmppc_set_vsr_word_dump(vcpu, gpr); |
| break; |
| #endif |
| #ifdef CONFIG_ALTIVEC |
| case KVM_MMIO_REG_VMX: |
| if (vcpu->kvm->arch.kvm_ops->giveup_ext) |
| vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); |
| |
| if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) |
| kvmppc_set_vmx_dword(vcpu, gpr); |
| else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) |
| kvmppc_set_vmx_word(vcpu, gpr); |
| else if (vcpu->arch.mmio_copy_type == |
| KVMPPC_VMX_COPY_HWORD) |
| kvmppc_set_vmx_hword(vcpu, gpr); |
| else if (vcpu->arch.mmio_copy_type == |
| KVMPPC_VMX_COPY_BYTE) |
| kvmppc_set_vmx_byte(vcpu, gpr); |
| break; |
| #endif |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| case KVM_MMIO_REG_NESTED_GPR: |
| if (kvmppc_need_byteswap(vcpu)) |
| gpr = swab64(gpr); |
| kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, |
| sizeof(gpr)); |
| break; |
| #endif |
| default: |
| BUG(); |
| } |
| } |
| |
| static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, |
| unsigned int rt, unsigned int bytes, |
| int is_default_endian, int sign_extend) |
| { |
| struct kvm_run *run = vcpu->run; |
| int idx, ret; |
| bool host_swabbed; |
| |
| /* Pity C doesn't have a logical XOR operator */ |
| if (kvmppc_need_byteswap(vcpu)) { |
| host_swabbed = is_default_endian; |
| } else { |
| host_swabbed = !is_default_endian; |
| } |
| |
| if (bytes > sizeof(run->mmio.data)) |
| return EMULATE_FAIL; |
| |
| run->mmio.phys_addr = vcpu->arch.paddr_accessed; |
| run->mmio.len = bytes; |
| run->mmio.is_write = 0; |
| |
| vcpu->arch.io_gpr = rt; |
| vcpu->arch.mmio_host_swabbed = host_swabbed; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_is_write = 0; |
| vcpu->arch.mmio_sign_extend = sign_extend; |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| |
| ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, |
| bytes, &run->mmio.data); |
| |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| |
| if (!ret) { |
| kvmppc_complete_mmio_load(vcpu); |
| vcpu->mmio_needed = 0; |
| return EMULATE_DONE; |
| } |
| |
| return EMULATE_DO_MMIO; |
| } |
| |
| int kvmppc_handle_load(struct kvm_vcpu *vcpu, |
| unsigned int rt, unsigned int bytes, |
| int is_default_endian) |
| { |
| return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_handle_load); |
| |
| /* Same as above, but sign extends */ |
| int kvmppc_handle_loads(struct kvm_vcpu *vcpu, |
| unsigned int rt, unsigned int bytes, |
| int is_default_endian) |
| { |
| return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); |
| } |
| |
| #ifdef CONFIG_VSX |
| int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, |
| unsigned int rt, unsigned int bytes, |
| int is_default_endian, int mmio_sign_extend) |
| { |
| enum emulation_result emulated = EMULATE_DONE; |
| |
| /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ |
| if (vcpu->arch.mmio_vsx_copy_nums > 4) |
| return EMULATE_FAIL; |
| |
| while (vcpu->arch.mmio_vsx_copy_nums) { |
| emulated = __kvmppc_handle_load(vcpu, rt, bytes, |
| is_default_endian, mmio_sign_extend); |
| |
| if (emulated != EMULATE_DONE) |
| break; |
| |
| vcpu->arch.paddr_accessed += vcpu->run->mmio.len; |
| |
| vcpu->arch.mmio_vsx_copy_nums--; |
| vcpu->arch.mmio_vsx_offset++; |
| } |
| return emulated; |
| } |
| #endif /* CONFIG_VSX */ |
| |
| int kvmppc_handle_store(struct kvm_vcpu *vcpu, |
| u64 val, unsigned int bytes, int is_default_endian) |
| { |
| struct kvm_run *run = vcpu->run; |
| void *data = run->mmio.data; |
| int idx, ret; |
| bool host_swabbed; |
| |
| /* Pity C doesn't have a logical XOR operator */ |
| if (kvmppc_need_byteswap(vcpu)) { |
| host_swabbed = is_default_endian; |
| } else { |
| host_swabbed = !is_default_endian; |
| } |
| |
| if (bytes > sizeof(run->mmio.data)) |
| return EMULATE_FAIL; |
| |
| run->mmio.phys_addr = vcpu->arch.paddr_accessed; |
| run->mmio.len = bytes; |
| run->mmio.is_write = 1; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_is_write = 1; |
| |
| if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) |
| val = dp_to_sp(val); |
| |
| /* Store the value at the lowest bytes in 'data'. */ |
| if (!host_swabbed) { |
| switch (bytes) { |
| case 8: *(u64 *)data = val; break; |
| case 4: *(u32 *)data = val; break; |
| case 2: *(u16 *)data = val; break; |
| case 1: *(u8 *)data = val; break; |
| } |
| } else { |
| switch (bytes) { |
| case 8: *(u64 *)data = swab64(val); break; |
| case 4: *(u32 *)data = swab32(val); break; |
| case 2: *(u16 *)data = swab16(val); break; |
| case 1: *(u8 *)data = val; break; |
| } |
| } |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| |
| ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, |
| bytes, &run->mmio.data); |
| |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| |
| if (!ret) { |
| vcpu->mmio_needed = 0; |
| return EMULATE_DONE; |
| } |
| |
| return EMULATE_DO_MMIO; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_handle_store); |
| |
| #ifdef CONFIG_VSX |
| static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) |
| { |
| u32 dword_offset, word_offset; |
| union kvmppc_one_reg reg; |
| int vsx_offset = 0; |
| int copy_type = vcpu->arch.mmio_copy_type; |
| int result = 0; |
| |
| switch (copy_type) { |
| case KVMPPC_VSX_COPY_DWORD: |
| vsx_offset = |
| kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); |
| |
| if (vsx_offset == -1) { |
| result = -1; |
| break; |
| } |
| |
| if (rs < 32) { |
| *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); |
| } else { |
| reg.vval = VCPU_VSX_VR(vcpu, rs - 32); |
| *val = reg.vsxval[vsx_offset]; |
| } |
| break; |
| |
| case KVMPPC_VSX_COPY_WORD: |
| vsx_offset = |
| kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); |
| |
| if (vsx_offset == -1) { |
| result = -1; |
| break; |
| } |
| |
| if (rs < 32) { |
| dword_offset = vsx_offset / 2; |
| word_offset = vsx_offset % 2; |
| reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); |
| *val = reg.vsx32val[word_offset]; |
| } else { |
| reg.vval = VCPU_VSX_VR(vcpu, rs - 32); |
| *val = reg.vsx32val[vsx_offset]; |
| } |
| break; |
| |
| default: |
| result = -1; |
| break; |
| } |
| |
| return result; |
| } |
| |
| int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, |
| int rs, unsigned int bytes, int is_default_endian) |
| { |
| u64 val; |
| enum emulation_result emulated = EMULATE_DONE; |
| |
| vcpu->arch.io_gpr = rs; |
| |
| /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ |
| if (vcpu->arch.mmio_vsx_copy_nums > 4) |
| return EMULATE_FAIL; |
| |
| while (vcpu->arch.mmio_vsx_copy_nums) { |
| if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) |
| return EMULATE_FAIL; |
| |
| emulated = kvmppc_handle_store(vcpu, |
| val, bytes, is_default_endian); |
| |
| if (emulated != EMULATE_DONE) |
| break; |
| |
| vcpu->arch.paddr_accessed += vcpu->run->mmio.len; |
| |
| vcpu->arch.mmio_vsx_copy_nums--; |
| vcpu->arch.mmio_vsx_offset++; |
| } |
| |
| return emulated; |
| } |
| |
| static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| enum emulation_result emulated = EMULATE_FAIL; |
| int r; |
| |
| vcpu->arch.paddr_accessed += run->mmio.len; |
| |
| if (!vcpu->mmio_is_write) { |
| emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, |
| run->mmio.len, 1, vcpu->arch.mmio_sign_extend); |
| } else { |
| emulated = kvmppc_handle_vsx_store(vcpu, |
| vcpu->arch.io_gpr, run->mmio.len, 1); |
| } |
| |
| switch (emulated) { |
| case EMULATE_DO_MMIO: |
| run->exit_reason = KVM_EXIT_MMIO; |
| r = RESUME_HOST; |
| break; |
| case EMULATE_FAIL: |
| pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| r = RESUME_HOST; |
| break; |
| default: |
| r = RESUME_GUEST; |
| break; |
| } |
| return r; |
| } |
| #endif /* CONFIG_VSX */ |
| |
| #ifdef CONFIG_ALTIVEC |
| int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, |
| unsigned int rt, unsigned int bytes, int is_default_endian) |
| { |
| enum emulation_result emulated = EMULATE_DONE; |
| |
| if (vcpu->arch.mmio_vmx_copy_nums > 2) |
| return EMULATE_FAIL; |
| |
| while (vcpu->arch.mmio_vmx_copy_nums) { |
| emulated = __kvmppc_handle_load(vcpu, rt, bytes, |
| is_default_endian, 0); |
| |
| if (emulated != EMULATE_DONE) |
| break; |
| |
| vcpu->arch.paddr_accessed += vcpu->run->mmio.len; |
| vcpu->arch.mmio_vmx_copy_nums--; |
| vcpu->arch.mmio_vmx_offset++; |
| } |
| |
| return emulated; |
| } |
| |
| static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) |
| { |
| union kvmppc_one_reg reg; |
| int vmx_offset = 0; |
| int result = 0; |
| |
| vmx_offset = |
| kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); |
| |
| if (vmx_offset == -1) |
| return -1; |
| |
| reg.vval = VCPU_VSX_VR(vcpu, index); |
| *val = reg.vsxval[vmx_offset]; |
| |
| return result; |
| } |
| |
| static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) |
| { |
| union kvmppc_one_reg reg; |
| int vmx_offset = 0; |
| int result = 0; |
| |
| vmx_offset = |
| kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); |
| |
| if (vmx_offset == -1) |
| return -1; |
| |
| reg.vval = VCPU_VSX_VR(vcpu, index); |
| *val = reg.vsx32val[vmx_offset]; |
| |
| return result; |
| } |
| |
| static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) |
| { |
| union kvmppc_one_reg reg; |
| int vmx_offset = 0; |
| int result = 0; |
| |
| vmx_offset = |
| kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); |
| |
| if (vmx_offset == -1) |
| return -1; |
| |
| reg.vval = VCPU_VSX_VR(vcpu, index); |
| *val = reg.vsx16val[vmx_offset]; |
| |
| return result; |
| } |
| |
| static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) |
| { |
| union kvmppc_one_reg reg; |
| int vmx_offset = 0; |
| int result = 0; |
| |
| vmx_offset = |
| kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); |
| |
| if (vmx_offset == -1) |
| return -1; |
| |
| reg.vval = VCPU_VSX_VR(vcpu, index); |
| *val = reg.vsx8val[vmx_offset]; |
| |
| return result; |
| } |
| |
| int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, |
| unsigned int rs, unsigned int bytes, int is_default_endian) |
| { |
| u64 val = 0; |
| unsigned int index = rs & KVM_MMIO_REG_MASK; |
| enum emulation_result emulated = EMULATE_DONE; |
| |
| if (vcpu->arch.mmio_vmx_copy_nums > 2) |
| return EMULATE_FAIL; |
| |
| vcpu->arch.io_gpr = rs; |
| |
| while (vcpu->arch.mmio_vmx_copy_nums) { |
| switch (vcpu->arch.mmio_copy_type) { |
| case KVMPPC_VMX_COPY_DWORD: |
| if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) |
| return EMULATE_FAIL; |
| |
| break; |
| case KVMPPC_VMX_COPY_WORD: |
| if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) |
| return EMULATE_FAIL; |
| break; |
| case KVMPPC_VMX_COPY_HWORD: |
| if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) |
| return EMULATE_FAIL; |
| break; |
| case KVMPPC_VMX_COPY_BYTE: |
| if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) |
| return EMULATE_FAIL; |
| break; |
| default: |
| return EMULATE_FAIL; |
| } |
| |
| emulated = kvmppc_handle_store(vcpu, val, bytes, |
| is_default_endian); |
| if (emulated != EMULATE_DONE) |
| break; |
| |
| vcpu->arch.paddr_accessed += vcpu->run->mmio.len; |
| vcpu->arch.mmio_vmx_copy_nums--; |
| vcpu->arch.mmio_vmx_offset++; |
| } |
| |
| return emulated; |
| } |
| |
| static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| enum emulation_result emulated = EMULATE_FAIL; |
| int r; |
| |
| vcpu->arch.paddr_accessed += run->mmio.len; |
| |
| if (!vcpu->mmio_is_write) { |
| emulated = kvmppc_handle_vmx_load(vcpu, |
| vcpu->arch.io_gpr, run->mmio.len, 1); |
| } else { |
| emulated = kvmppc_handle_vmx_store(vcpu, |
| vcpu->arch.io_gpr, run->mmio.len, 1); |
| } |
| |
| switch (emulated) { |
| case EMULATE_DO_MMIO: |
| run->exit_reason = KVM_EXIT_MMIO; |
| r = RESUME_HOST; |
| break; |
| case EMULATE_FAIL: |
| pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| r = RESUME_HOST; |
| break; |
| default: |
| r = RESUME_GUEST; |
| break; |
| } |
| return r; |
| } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) |
| { |
| int r = 0; |
| union kvmppc_one_reg val; |
| int size; |
| |
| size = one_reg_size(reg->id); |
| if (size > sizeof(val)) |
| return -EINVAL; |
| |
| r = kvmppc_get_one_reg(vcpu, reg->id, &val); |
| if (r == -EINVAL) { |
| r = 0; |
| switch (reg->id) { |
| #ifdef CONFIG_ALTIVEC |
| case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: |
| if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { |
| r = -ENXIO; |
| break; |
| } |
| val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; |
| break; |
| case KVM_REG_PPC_VSCR: |
| if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { |
| r = -ENXIO; |
| break; |
| } |
| val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); |
| break; |
| case KVM_REG_PPC_VRSAVE: |
| val = get_reg_val(reg->id, vcpu->arch.vrsave); |
| break; |
| #endif /* CONFIG_ALTIVEC */ |
| default: |
| r = -EINVAL; |
| break; |
| } |
| } |
| |
| if (r) |
| return r; |
| |
| if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) |
| r = -EFAULT; |
| |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) |
| { |
| int r; |
| union kvmppc_one_reg val; |
| int size; |
| |
| size = one_reg_size(reg->id); |
| if (size > sizeof(val)) |
| return -EINVAL; |
| |
| if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) |
| return -EFAULT; |
| |
| r = kvmppc_set_one_reg(vcpu, reg->id, &val); |
| if (r == -EINVAL) { |
| r = 0; |
| switch (reg->id) { |
| #ifdef CONFIG_ALTIVEC |
| case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: |
| if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { |
| r = -ENXIO; |
| break; |
| } |
| vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; |
| break; |
| case KVM_REG_PPC_VSCR: |
| if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { |
| r = -ENXIO; |
| break; |
| } |
| vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); |
| break; |
| case KVM_REG_PPC_VRSAVE: |
| if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { |
| r = -ENXIO; |
| break; |
| } |
| vcpu->arch.vrsave = set_reg_val(reg->id, val); |
| break; |
| #endif /* CONFIG_ALTIVEC */ |
| default: |
| r = -EINVAL; |
| break; |
| } |
| } |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| int r; |
| |
| vcpu_load(vcpu); |
| |
| if (vcpu->mmio_needed) { |
| vcpu->mmio_needed = 0; |
| if (!vcpu->mmio_is_write) |
| kvmppc_complete_mmio_load(vcpu); |
| #ifdef CONFIG_VSX |
| if (vcpu->arch.mmio_vsx_copy_nums > 0) { |
| vcpu->arch.mmio_vsx_copy_nums--; |
| vcpu->arch.mmio_vsx_offset++; |
| } |
| |
| if (vcpu->arch.mmio_vsx_copy_nums > 0) { |
| r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); |
| if (r == RESUME_HOST) { |
| vcpu->mmio_needed = 1; |
| goto out; |
| } |
| } |
| #endif |
| #ifdef CONFIG_ALTIVEC |
| if (vcpu->arch.mmio_vmx_copy_nums > 0) { |
| vcpu->arch.mmio_vmx_copy_nums--; |
| vcpu->arch.mmio_vmx_offset++; |
| } |
| |
| if (vcpu->arch.mmio_vmx_copy_nums > 0) { |
| r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); |
| if (r == RESUME_HOST) { |
| vcpu->mmio_needed = 1; |
| goto out; |
| } |
| } |
| #endif |
| } else if (vcpu->arch.osi_needed) { |
| u64 *gprs = run->osi.gprs; |
| int i; |
| |
| for (i = 0; i < 32; i++) |
| kvmppc_set_gpr(vcpu, i, gprs[i]); |
| vcpu->arch.osi_needed = 0; |
| } else if (vcpu->arch.hcall_needed) { |
| int i; |
| |
| kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); |
| for (i = 0; i < 9; ++i) |
| kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); |
| vcpu->arch.hcall_needed = 0; |
| #ifdef CONFIG_BOOKE |
| } else if (vcpu->arch.epr_needed) { |
| kvmppc_set_epr(vcpu, run->epr.epr); |
| vcpu->arch.epr_needed = 0; |
| #endif |
| } |
| |
| kvm_sigset_activate(vcpu); |
| |
| if (run->immediate_exit) |
| r = -EINTR; |
| else |
| r = kvmppc_vcpu_run(vcpu); |
| |
| kvm_sigset_deactivate(vcpu); |
| |
| #ifdef CONFIG_ALTIVEC |
| out: |
| #endif |
| |
| /* |
| * We're already returning to userspace, don't pass the |
| * RESUME_HOST flags along. |
| */ |
| if (r > 0) |
| r = 0; |
| |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) |
| { |
| if (irq->irq == KVM_INTERRUPT_UNSET) { |
| kvmppc_core_dequeue_external(vcpu); |
| return 0; |
| } |
| |
| kvmppc_core_queue_external(vcpu, irq); |
| |
| kvm_vcpu_kick(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
| struct kvm_enable_cap *cap) |
| { |
| int r; |
| |
| if (cap->flags) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_PPC_OSI: |
| r = 0; |
| vcpu->arch.osi_enabled = true; |
| break; |
| case KVM_CAP_PPC_PAPR: |
| r = 0; |
| vcpu->arch.papr_enabled = true; |
| break; |
| case KVM_CAP_PPC_EPR: |
| r = 0; |
| if (cap->args[0]) |
| vcpu->arch.epr_flags |= KVMPPC_EPR_USER; |
| else |
| vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; |
| break; |
| #ifdef CONFIG_BOOKE |
| case KVM_CAP_PPC_BOOKE_WATCHDOG: |
| r = 0; |
| vcpu->arch.watchdog_enabled = true; |
| break; |
| #endif |
| #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) |
| case KVM_CAP_SW_TLB: { |
| struct kvm_config_tlb cfg; |
| void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) |
| break; |
| |
| r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); |
| break; |
| } |
| #endif |
| #ifdef CONFIG_KVM_MPIC |
| case KVM_CAP_IRQ_MPIC: { |
| struct fd f; |
| struct kvm_device *dev; |
| |
| r = -EBADF; |
| f = fdget(cap->args[0]); |
| if (!f.file) |
| break; |
| |
| r = -EPERM; |
| dev = kvm_device_from_filp(f.file); |
| if (dev) |
| r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); |
| |
| fdput(f); |
| break; |
| } |
| #endif |
| #ifdef CONFIG_KVM_XICS |
| case KVM_CAP_IRQ_XICS: { |
| struct fd f; |
| struct kvm_device *dev; |
| |
| r = -EBADF; |
| f = fdget(cap->args[0]); |
| if (!f.file) |
| break; |
| |
| r = -EPERM; |
| dev = kvm_device_from_filp(f.file); |
| if (dev) { |
| if (xics_on_xive()) |
| r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); |
| else |
| r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); |
| } |
| |
| fdput(f); |
| break; |
| } |
| #endif /* CONFIG_KVM_XICS */ |
| #ifdef CONFIG_KVM_XIVE |
| case KVM_CAP_PPC_IRQ_XIVE: { |
| struct fd f; |
| struct kvm_device *dev; |
| |
| r = -EBADF; |
| f = fdget(cap->args[0]); |
| if (!f.file) |
| break; |
| |
| r = -ENXIO; |
| if (!xive_enabled()) |
| break; |
| |
| r = -EPERM; |
| dev = kvm_device_from_filp(f.file); |
| if (dev) |
| r = kvmppc_xive_native_connect_vcpu(dev, vcpu, |
| cap->args[1]); |
| |
| fdput(f); |
| break; |
| } |
| #endif /* CONFIG_KVM_XIVE */ |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| case KVM_CAP_PPC_FWNMI: |
| r = -EINVAL; |
| if (!is_kvmppc_hv_enabled(vcpu->kvm)) |
| break; |
| r = 0; |
| vcpu->kvm->arch.fwnmi_enabled = true; |
| break; |
| #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| if (!r) |
| r = kvmppc_sanity_check(vcpu); |
| |
| return r; |
| } |
| |
| bool kvm_arch_intc_initialized(struct kvm *kvm) |
| { |
| #ifdef CONFIG_KVM_MPIC |
| if (kvm->arch.mpic) |
| return true; |
| #endif |
| #ifdef CONFIG_KVM_XICS |
| if (kvm->arch.xics || kvm->arch.xive) |
| return true; |
| #endif |
| return false; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| return -EINVAL; |
| } |
| |
| long kvm_arch_vcpu_async_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| |
| if (ioctl == KVM_INTERRUPT) { |
| struct kvm_interrupt irq; |
| if (copy_from_user(&irq, argp, sizeof(irq))) |
| return -EFAULT; |
| return kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| } |
| return -ENOIOCTLCMD; |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_ENABLE_CAP: |
| { |
| struct kvm_enable_cap cap; |
| r = -EFAULT; |
| if (copy_from_user(&cap, argp, sizeof(cap))) |
| goto out; |
| vcpu_load(vcpu); |
| r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); |
| vcpu_put(vcpu); |
| break; |
| } |
| |
| case KVM_SET_ONE_REG: |
| case KVM_GET_ONE_REG: |
| { |
| struct kvm_one_reg reg; |
| r = -EFAULT; |
| if (copy_from_user(®, argp, sizeof(reg))) |
| goto out; |
| if (ioctl == KVM_SET_ONE_REG) |
| r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); |
| else |
| r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); |
| break; |
| } |
| |
| #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) |
| case KVM_DIRTY_TLB: { |
| struct kvm_dirty_tlb dirty; |
| r = -EFAULT; |
| if (copy_from_user(&dirty, argp, sizeof(dirty))) |
| goto out; |
| vcpu_load(vcpu); |
| r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); |
| vcpu_put(vcpu); |
| break; |
| } |
| #endif |
| default: |
| r = -EINVAL; |
| } |
| |
| out: |
| return r; |
| } |
| |
| vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) |
| { |
| u32 inst_nop = 0x60000000; |
| #ifdef CONFIG_KVM_BOOKE_HV |
| u32 inst_sc1 = 0x44000022; |
| pvinfo->hcall[0] = cpu_to_be32(inst_sc1); |
| pvinfo->hcall[1] = cpu_to_be32(inst_nop); |
| pvinfo->hcall[2] = cpu_to_be32(inst_nop); |
| pvinfo->hcall[3] = cpu_to_be32(inst_nop); |
| #else |
| u32 inst_lis = 0x3c000000; |
| u32 inst_ori = 0x60000000; |
| u32 inst_sc = 0x44000002; |
| u32 inst_imm_mask = 0xffff; |
| |
| /* |
| * The hypercall to get into KVM from within guest context is as |
| * follows: |
| * |
| * lis r0, r0, KVM_SC_MAGIC_R0@h |
| * ori r0, KVM_SC_MAGIC_R0@l |
| * sc |
| * nop |
| */ |
| pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); |
| pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); |
| pvinfo->hcall[2] = cpu_to_be32(inst_sc); |
| pvinfo->hcall[3] = cpu_to_be32(inst_nop); |
| #endif |
| |
| pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; |
| |
| return 0; |
| } |
| |
| bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_KVM_MPIC |
| ret = ret || (kvm->arch.mpic != NULL); |
| #endif |
| #ifdef CONFIG_KVM_XICS |
| ret = ret || (kvm->arch.xics != NULL); |
| ret = ret || (kvm->arch.xive != NULL); |
| #endif |
| smp_rmb(); |
| return ret; |
| } |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
| bool line_status) |
| { |
| if (!kvm_arch_irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, |
| irq_event->irq, irq_event->level, |
| line_status); |
| return 0; |
| } |
| |
| |
| int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
| struct kvm_enable_cap *cap) |
| { |
| int r; |
| |
| if (cap->flags) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| #ifdef CONFIG_KVM_BOOK3S_64_HANDLER |
| case KVM_CAP_PPC_ENABLE_HCALL: { |
| unsigned long hcall = cap->args[0]; |
| |
| r = -EINVAL; |
| if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || |
| cap->args[1] > 1) |
| break; |
| if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) |
| break; |
| if (cap->args[1]) |
| set_bit(hcall / 4, kvm->arch.enabled_hcalls); |
| else |
| clear_bit(hcall / 4, kvm->arch.enabled_hcalls); |
| r = 0; |
| break; |
| } |
| case KVM_CAP_PPC_SMT: { |
| unsigned long mode = cap->args[0]; |
| unsigned long flags = cap->args[1]; |
| |
| r = -EINVAL; |
| if (kvm->arch.kvm_ops->set_smt_mode) |
| r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); |
| break; |
| } |
| |
| case KVM_CAP_PPC_NESTED_HV: |
| r = -EINVAL; |
| if (!is_kvmppc_hv_enabled(kvm) || |
| !kvm->arch.kvm_ops->enable_nested) |
| break; |
| r = kvm->arch.kvm_ops->enable_nested(kvm); |
| break; |
| #endif |
| #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) |
| case KVM_CAP_PPC_SECURE_GUEST: |
| r = -EINVAL; |
| if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) |
| break; |
| r = kvm->arch.kvm_ops->enable_svm(kvm); |
| break; |
| case KVM_CAP_PPC_DAWR1: |
| r = -EINVAL; |
| if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) |
| break; |
| r = kvm->arch.kvm_ops->enable_dawr1(kvm); |
| break; |
| #endif |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| /* |
| * These functions check whether the underlying hardware is safe |
| * against attacks based on observing the effects of speculatively |
| * executed instructions, and whether it supplies instructions for |
| * use in workarounds. The information comes from firmware, either |
| * via the device tree on powernv platforms or from an hcall on |
| * pseries platforms. |
| */ |
| #ifdef CONFIG_PPC_PSERIES |
| static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) |
| { |
| struct h_cpu_char_result c; |
| unsigned long rc; |
| |
| if (!machine_is(pseries)) |
| return -ENOTTY; |
| |
| rc = plpar_get_cpu_characteristics(&c); |
| if (rc == H_SUCCESS) { |
| cp->character = c.character; |
| cp->behaviour = c.behaviour; |
| cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | |
| KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | |
| KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | |
| KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | |
| KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | |
| KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | |
| KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | |
| KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | |
| KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; |
| cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | |
| KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | |
| KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | |
| KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; |
| } |
| return 0; |
| } |
| #else |
| static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) |
| { |
| return -ENOTTY; |
| } |
| #endif |
| |
| static inline bool have_fw_feat(struct device_node *fw_features, |
| const char *state, const char *name) |
| { |
| struct device_node *np; |
| bool r = false; |
| |
| np = of_get_child_by_name(fw_features, name); |
| if (np) { |
| r = of_property_read_bool(np, state); |
| of_node_put(np); |
| } |
| return r; |
| } |
| |
| static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) |
| { |
| struct device_node *np, *fw_features; |
| int r; |
| |
| memset(cp, 0, sizeof(*cp)); |
| r = pseries_get_cpu_char(cp); |
| if (r != -ENOTTY) |
| return r; |
| |
| np = of_find_node_by_name(NULL, "ibm,opal"); |
| if (np) { |
| fw_features = of_get_child_by_name(np, "fw-features"); |
| of_node_put(np); |
| if (!fw_features) |
| return 0; |
| if (have_fw_feat(fw_features, "enabled", |
| "inst-spec-barrier-ori31,31,0")) |
| cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; |
| if (have_fw_feat(fw_features, "enabled", |
| "fw-bcctrl-serialized")) |
| cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; |
| if (have_fw_feat(fw_features, "enabled", |
| "inst-l1d-flush-ori30,30,0")) |
| cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; |
| if (have_fw_feat(fw_features, "enabled", |
| "inst-l1d-flush-trig2")) |
| cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; |
| if (have_fw_feat(fw_features, "enabled", |
| "fw-l1d-thread-split")) |
| cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; |
| if (have_fw_feat(fw_features, "enabled", |
| "fw-count-cache-disabled")) |
| cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; |
| if (have_fw_feat(fw_features, "enabled", |
| "fw-count-cache-flush-bcctr2,0,0")) |
| cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; |
| cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | |
| KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | |
| KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | |
| KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | |
| KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | |
| KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | |
| KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; |
| |
| if (have_fw_feat(fw_features, "enabled", |
| "speculation-policy-favor-security")) |
| cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; |
| if (!have_fw_feat(fw_features, "disabled", |
| "needs-l1d-flush-msr-pr-0-to-1")) |
| cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; |
| if (!have_fw_feat(fw_features, "disabled", |
| "needs-spec-barrier-for-bound-checks")) |
| cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; |
| if (have_fw_feat(fw_features, "enabled", |
| "needs-count-cache-flush-on-context-switch")) |
| cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; |
| cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | |
| KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | |
| KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | |
| KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; |
| |
| of_node_put(fw_features); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm __maybe_unused = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| |
| switch (ioctl) { |
| case KVM_PPC_GET_PVINFO: { |
| struct kvm_ppc_pvinfo pvinfo; |
| memset(&pvinfo, 0, sizeof(pvinfo)); |
| r = kvm_vm_ioctl_get_pvinfo(&pvinfo); |
| if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { |
| r = -EFAULT; |
| goto out; |
| } |
| |
| break; |
| } |
| #ifdef CONFIG_SPAPR_TCE_IOMMU |
| case KVM_CREATE_SPAPR_TCE_64: { |
| struct kvm_create_spapr_tce_64 create_tce_64; |
| |
| r = -EFAULT; |
| if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) |
| goto out; |
| if (create_tce_64.flags) { |
| r = -EINVAL; |
| goto out; |
| } |
| r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); |
| goto out; |
| } |
| case KVM_CREATE_SPAPR_TCE: { |
| struct kvm_create_spapr_tce create_tce; |
| struct kvm_create_spapr_tce_64 create_tce_64; |
| |
| r = -EFAULT; |
| if (copy_from_user(&create_tce, argp, sizeof(create_tce))) |
| goto out; |
| |
| create_tce_64.liobn = create_tce.liobn; |
| create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; |
| create_tce_64.offset = 0; |
| create_tce_64.size = create_tce.window_size >> |
| IOMMU_PAGE_SHIFT_4K; |
| create_tce_64.flags = 0; |
| r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); |
| goto out; |
| } |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| case KVM_PPC_GET_SMMU_INFO: { |
| struct kvm_ppc_smmu_info info; |
| struct kvm *kvm = filp->private_data; |
| |
| memset(&info, 0, sizeof(info)); |
| r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); |
| if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) |
| r = -EFAULT; |
| break; |
| } |
| case KVM_PPC_RTAS_DEFINE_TOKEN: { |
| struct kvm *kvm = filp->private_data; |
| |
| r = kvm_vm_ioctl_rtas_define_token(kvm, argp); |
| break; |
| } |
| case KVM_PPC_CONFIGURE_V3_MMU: { |
| struct kvm *kvm = filp->private_data; |
| struct kvm_ppc_mmuv3_cfg cfg; |
| |
| r = -EINVAL; |
| if (!kvm->arch.kvm_ops->configure_mmu) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&cfg, argp, sizeof(cfg))) |
| goto out; |
| r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); |
| break; |
| } |
| case KVM_PPC_GET_RMMU_INFO: { |
| struct kvm *kvm = filp->private_data; |
| struct kvm_ppc_rmmu_info info; |
| |
| r = -EINVAL; |
| if (!kvm->arch.kvm_ops->get_rmmu_info) |
| goto out; |
| r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); |
| if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) |
| r = -EFAULT; |
| break; |
| } |
| case KVM_PPC_GET_CPU_CHAR: { |
| struct kvm_ppc_cpu_char cpuchar; |
| |
| r = kvmppc_get_cpu_char(&cpuchar); |
| if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) |
| r = -EFAULT; |
| break; |
| } |
| case KVM_PPC_SVM_OFF: { |
| struct kvm *kvm = filp->private_data; |
| |
| r = 0; |
| if (!kvm->arch.kvm_ops->svm_off) |
| goto out; |
| |
| r = kvm->arch.kvm_ops->svm_off(kvm); |
| break; |
| } |
| default: { |
| struct kvm *kvm = filp->private_data; |
| r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); |
| } |
| #else /* CONFIG_PPC_BOOK3S_64 */ |
| default: |
| r = -ENOTTY; |
| #endif |
| } |
| out: |
| return r; |
| } |
| |
| static DEFINE_IDA(lpid_inuse); |
| static unsigned long nr_lpids; |
| |
| long kvmppc_alloc_lpid(void) |
| { |
| int lpid; |
| |
| /* The host LPID must always be 0 (allocation starts at 1) */ |
| lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL); |
| if (lpid < 0) { |
| if (lpid == -ENOMEM) |
| pr_err("%s: Out of memory\n", __func__); |
| else |
| pr_err("%s: No LPIDs free\n", __func__); |
| return -ENOMEM; |
| } |
| |
| return lpid; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); |
| |
| void kvmppc_free_lpid(long lpid) |
| { |
| ida_free(&lpid_inuse, lpid); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_free_lpid); |
| |
| /* nr_lpids_param includes the host LPID */ |
| void kvmppc_init_lpid(unsigned long nr_lpids_param) |
| { |
| nr_lpids = nr_lpids_param; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_init_lpid); |
| |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); |
| |
| void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) |
| { |
| if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs) |
| vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry); |
| } |
| |
| int kvm_arch_create_vm_debugfs(struct kvm *kvm) |
| { |
| if (kvm->arch.kvm_ops->create_vm_debugfs) |
| kvm->arch.kvm_ops->create_vm_debugfs(kvm); |
| return 0; |
| } |