blob: 1d459d6af21b5ba67e14a88b5e7064f036ea1dc5 [file] [log] [blame]
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SCIC_CONTROLLER_H_
#define _SCIC_CONTROLLER_H_
/**
* This file contains all of the interface methods that can be called by an
* SCIC user on a controller object.
*
*
*/
#include "sci_status.h"
#include "sci_controller.h"
#include "scic_config_parameters.h"
struct scic_sds_request;
struct scic_sds_phy;
struct scic_sds_port;
struct scic_sds_remote_device;
enum sci_controller_mode {
SCI_MODE_SPEED, /* Optimized for performance */
SCI_MODE_SIZE /* Optimized for memory use */
};
/**
* enum _SCIC_INTERRUPT_TYPE - This enumeration depicts the various types of
* interrupts that are potentially supported by a SCI Core implementation.
*
*
*/
enum scic_interrupt_type {
SCIC_LEGACY_LINE_INTERRUPT_TYPE,
SCIC_MSIX_INTERRUPT_TYPE,
/**
* This enumeration value indicates the use of polling.
*/
SCIC_NO_INTERRUPTS
};
/**
* This method is called by the SCI user in order to have the SCI
* implementation handle the interrupt. This method performs minimal
* processing to allow for streamlined interrupt time usage.
*
* SCIC_CONTROLLER_INTERRUPT_HANDLER true: returned if there is an interrupt to
* process and it was processed. false: returned if no interrupt was processed.
*/
typedef bool (*SCIC_CONTROLLER_INTERRUPT_HANDLER)(
struct scic_sds_controller *controller
);
/**
* This method is called by the SCI user to process completions generated as a
* result of a previously handled interrupt. This method will result in the
* completion of IO requests and handling of other controller generated
* events. This method should be called some time after the interrupt
* handler.
*
* Most, if not all, of the user callback APIs are invoked from within this
* API. As a result, the user should be cognizent of the operating level at
* which they invoke this API.
*/
typedef void (*SCIC_CONTROLLER_COMPLETION_HANDLER)(
struct scic_sds_controller *controller
);
/**
* struct scic_controller_handler_methods - This structure contains an
* interrupt handler and completion handler function pointers.
*
*
*/
struct scic_controller_handler_methods {
SCIC_CONTROLLER_INTERRUPT_HANDLER interrupt_handler;
SCIC_CONTROLLER_COMPLETION_HANDLER completion_handler;
};
/**
* scic_controller_construct() - This method will attempt to construct a
* controller object utilizing the supplied parameter information.
* @c: This parameter specifies the controller to be constructed.
* @scu_base: mapped base address of the scu registers
* @smu_base: mapped base address of the smu registers
*
* Indicate if the controller was successfully constructed or if it failed in
* some way. SCI_SUCCESS This value is returned if the controller was
* successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
* if the interrupt coalescence timer may cause SAS compliance issues for SMP
* Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
* This value is returned if the controller does not support the supplied type.
* SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
* controller does not support the supplied initialization data version.
*/
enum sci_status scic_controller_construct(struct scic_sds_controller *c,
void __iomem *scu_base,
void __iomem *smu_base);
/**
* scic_controller_enable_interrupts() - This method will enable all controller
* interrupts.
* @controller: This parameter specifies the controller for which to enable
* interrupts.
*
*/
void scic_controller_enable_interrupts(
struct scic_sds_controller *controller);
/**
* scic_controller_disable_interrupts() - This method will disable all
* controller interrupts.
* @controller: This parameter specifies the controller for which to disable
* interrupts.
*
*/
void scic_controller_disable_interrupts(
struct scic_sds_controller *controller);
/**
* scic_controller_get_handler_methods() - This method will return provide
* function pointers for the interrupt handler and completion handler. The
* interrupt handler is expected to be invoked at interrupt time. The
* completion handler is scheduled to run as a result of the interrupt
* handler. The completion handler performs the bulk work for processing
* silicon events.
* @interrupt_type: This parameter informs the core which type of
* interrupt/completion methods are being requested. These are the types:
* SCIC_LEGACY_LINE_INTERRUPT_TYPE, SCIC_MSIX_INTERRUPT_TYPE,
* SCIC_NO_INTERRUPTS (POLLING)
* @message_count: This parameter informs the core the number of MSI-X messages
* to be utilized. This parameter must be 0 when requesting legacy line
* based handlers.
* @handler_methods: The caller provides a pointer to a buffer of type
* struct scic_controller_handler_methods. The size depends on the combination of
* the interrupt_type and message_count input parameters:
* SCIC_LEGACY_LINE_INTERRUPT_TYPE: - size =
* sizeof(struct scic_controller_handler_methods) SCIC_MSIX_INTERRUPT_TYPE:
* sizeof(struct scic_controller_handler_methods)
* @handler_methods: SCIC fills out the caller's buffer with the appropriate
* interrupt and completion handlers based on the info provided in the
* interrupt_type and message_count input parameters. For
* SCIC_LEGACY_LINE_INTERRUPT_TYPE, the buffer receives a single
* struct scic_controller_handler_methods element regardless that the
* message_count parameter is zero. For SCIC_MSIX_INTERRUPT_TYPE, the buffer
* receives an array of elements of type struct scic_controller_handler_methods
* where the array size is equivalent to the message_count parameter. The
* array is zero-relative where entry zero corresponds to message-vector
* zero, entry one corresponds to message-vector one, and so forth.
*
* Indicate if the handler retrieval operation was successful. SCI_SUCCESS This
* value is returned if retrieval succeeded.
* SCI_FAILURE_UNSUPPORTED_MESSAGE_COUNT This value is returned if the user
* supplied an unsupported number of MSI-X messages. For legacy line interrupts
* the only valid value is 0.
*/
enum sci_status scic_controller_get_handler_methods(
enum scic_interrupt_type interrupt_type,
u16 message_count,
struct scic_controller_handler_methods *handler_methods);
/**
* scic_controller_initialize() - This method will initialize the controller
* hardware managed by the supplied core controller object. This method
* will bring the physical controller hardware out of reset and enable the
* core to determine the capabilities of the hardware being managed. Thus,
* the core controller can determine it's exact physical (DMA capable)
* memory requirements.
* @controller: This parameter specifies the controller to be initialized.
*
* The SCI Core user must have called scic_controller_construct() on the
* supplied controller object previously. Indicate if the controller was
* successfully initialized or if it failed in some way. SCI_SUCCESS This value
* is returned if the controller hardware was successfully initialized.
*/
enum sci_status scic_controller_initialize(
struct scic_sds_controller *controller);
/**
* scic_controller_get_suggested_start_timeout() - This method returns the
* suggested scic_controller_start() timeout amount. The user is free to
* use any timeout value, but this method provides the suggested minimum
* start timeout value. The returned value is based upon empirical
* information determined as a result of interoperability testing.
* @controller: the handle to the controller object for which to return the
* suggested start timeout.
*
* This method returns the number of milliseconds for the suggested start
* operation timeout.
*/
u32 scic_controller_get_suggested_start_timeout(
struct scic_sds_controller *controller);
/**
* scic_controller_start() - This method will start the supplied core
* controller. This method will start the staggered spin up operation. The
* SCI User completion callback is called when the following conditions are
* met: -# the return status of this method is SCI_SUCCESS. -# after all of
* the phys have successfully started or been given the opportunity to start.
* @controller: the handle to the controller object to start.
* @timeout: This parameter specifies the number of milliseconds in which the
* start operation should complete.
*
* The SCI Core user must have filled in the physical memory descriptor
* structure via the sci_controller_get_memory_descriptor_list() method. The
* SCI Core user must have invoked the scic_controller_initialize() method
* prior to invoking this method. The controller must be in the INITIALIZED or
* STARTED state. Indicate if the controller start method succeeded or failed
* in some way. SCI_SUCCESS if the start operation succeeded.
* SCI_WARNING_ALREADY_IN_STATE if the controller is already in the STARTED
* state. SCI_FAILURE_INVALID_STATE if the controller is not either in the
* INITIALIZED or STARTED states. SCI_FAILURE_INVALID_MEMORY_DESCRIPTOR if
* there are inconsistent or invalid values in the supplied
* struct sci_physical_memory_descriptor array.
*/
enum sci_status scic_controller_start(
struct scic_sds_controller *controller,
u32 timeout);
/**
* scic_controller_stop() - This method will stop an individual controller
* object.This method will invoke the associated user callback upon
* completion. The completion callback is called when the following
* conditions are met: -# the method return status is SCI_SUCCESS. -# the
* controller has been quiesced. This method will ensure that all IO
* requests are quiesced, phys are stopped, and all additional operation by
* the hardware is halted.
* @controller: the handle to the controller object to stop.
* @timeout: This parameter specifies the number of milliseconds in which the
* stop operation should complete.
*
* The controller must be in the STARTED or STOPPED state. Indicate if the
* controller stop method succeeded or failed in some way. SCI_SUCCESS if the
* stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
* controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
* controller is not either in the STARTED or STOPPED states.
*/
enum sci_status scic_controller_stop(
struct scic_sds_controller *controller,
u32 timeout);
/**
* scic_controller_reset() - This method will reset the supplied core
* controller regardless of the state of said controller. This operation is
* considered destructive. In other words, all current operations are wiped
* out. No IO completions for outstanding devices occur. Outstanding IO
* requests are not aborted or completed at the actual remote device.
* @controller: the handle to the controller object to reset.
*
* Indicate if the controller reset method succeeded or failed in some way.
* SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
* the controller reset operation is unable to complete.
*/
enum sci_status scic_controller_reset(
struct scic_sds_controller *controller);
/**
* scic_controller_start_io() - This method is called by the SCI user to
* send/start an IO request. If the method invocation is successful, then
* the IO request has been queued to the hardware for processing.
* @controller: the handle to the controller object for which to start an IO
* request.
* @remote_device: the handle to the remote device object for which to start an
* IO request.
* @io_request: the handle to the io request object to start.
* @io_tag: This parameter specifies a previously allocated IO tag that the
* user desires to be utilized for this request. This parameter is optional.
* The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
* for this parameter.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
* result, it is expected the user will have set the NCQ tag field in the host
* to device register FIS prior to calling this method. There is also a
* requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
* the scic_controller_start_io() method. scic_controller_allocate_tag() for
* more information on allocating a tag. Indicate if the controller
* successfully started the IO request. SCI_IO_SUCCESS if the IO request was
* successfully started. Determine the failure situations and return values.
*/
enum sci_io_status scic_controller_start_io(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *io_request,
u16 io_tag);
/**
* scic_controller_start_task() - This method is called by the SCIC user to
* send/start a framework task management request.
* @controller: the handle to the controller object for which to start the task
* management request.
* @remote_device: the handle to the remote device object for which to start
* the task management request.
* @task_request: the handle to the task request object to start.
* @io_tag: This parameter specifies a previously allocated IO tag that the
* user desires to be utilized for this request. Note this not the io_tag
* of the request being managed. It is to be utilized for the task request
* itself. This parameter is optional. The user is allowed to supply
* SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - The user must synchronize this task with completion
* queue processing. If they are not synchronized then it is possible for the
* io requests that are being managed by the task request can complete before
* starting the task request. scic_controller_allocate_tag() for more
* information on allocating a tag. Indicate if the controller successfully
* started the IO request. SCI_TASK_SUCCESS if the task request was
* successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
* returned if there is/are task(s) outstanding that require termination or
* completion before this request can succeed.
*/
enum sci_task_status scic_controller_start_task(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *task_request,
u16 io_tag);
/**
* scic_controller_complete_task() - This method will perform core specific
* completion operations for task management request. After this method is
* invoked, the user should consider the task request as invalid until it is
* properly reused (i.e. re-constructed).
* @controller: The handle to the controller object for which to complete the
* task management request.
* @remote_device: The handle to the remote device object for which to complete
* the task management request.
* @task_request: the handle to the task management request object to complete.
*
* Indicate if the controller successfully completed the task management
* request. SCI_SUCCESS if the completion process was successful.
*/
enum sci_status scic_controller_complete_task(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *task_request);
/**
* scic_controller_terminate_request() - This method is called by the SCI Core
* user to terminate an ongoing (i.e. started) core IO request. This does
* not abort the IO request at the target, but rather removes the IO request
* from the host controller.
* @controller: the handle to the controller object for which to terminate a
* request.
* @remote_device: the handle to the remote device object for which to
* terminate a request.
* @request: the handle to the io or task management request object to
* terminate.
*
* Indicate if the controller successfully began the terminate process for the
* IO request. SCI_SUCCESS if the terminate process was successfully started
* for the request. Determine the failure situations and return values.
*/
enum sci_status scic_controller_terminate_request(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *request);
/**
* scic_controller_complete_io() - This method will perform core specific
* completion operations for an IO request. After this method is invoked,
* the user should consider the IO request as invalid until it is properly
* reused (i.e. re-constructed).
* @controller: The handle to the controller object for which to complete the
* IO request.
* @remote_device: The handle to the remote device object for which to complete
* the IO request.
* @io_request: the handle to the io request object to complete.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
* Core user, using the scic_controller_allocate_io_tag() method, then it is
* the responsibility of the caller to invoke the scic_controller_free_io_tag()
* method to free the tag (i.e. this method will not free the IO tag). Indicate
* if the controller successfully completed the IO request. SCI_SUCCESS if the
* completion process was successful.
*/
enum sci_status scic_controller_complete_io(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *io_request);
/**
* scic_controller_get_port_handle() - This method simply provides the user
* with a unique handle for a given SAS/SATA core port index.
* @controller: This parameter represents the handle to the controller object
* from which to retrieve a port (SAS or SATA) handle.
* @port_index: This parameter specifies the port index in the controller for
* which to retrieve the port handle. 0 <= port_index < maximum number of
* phys.
* @port_handle: This parameter specifies the retrieved port handle to be
* provided to the caller.
*
* Indicate if the retrieval of the port handle was successful. SCI_SUCCESS
* This value is returned if the retrieval was successful.
* SCI_FAILURE_INVALID_PORT This value is returned if the supplied port id is
* not in the supported range.
*/
enum sci_status scic_controller_get_port_handle(
struct scic_sds_controller *controller,
u8 port_index,
struct scic_sds_port **port_handle);
/**
* scic_controller_get_phy_handle() - This method simply provides the user with
* a unique handle for a given SAS/SATA phy index/identifier.
* @controller: This parameter represents the handle to the controller object
* from which to retrieve a phy (SAS or SATA) handle.
* @phy_index: This parameter specifies the phy index in the controller for
* which to retrieve the phy handle. 0 <= phy_index < maximum number of phys.
* @phy_handle: This parameter specifies the retrieved phy handle to be
* provided to the caller.
*
* Indicate if the retrieval of the phy handle was successful. SCI_SUCCESS This
* value is returned if the retrieval was successful. SCI_FAILURE_INVALID_PHY
* This value is returned if the supplied phy id is not in the supported range.
*/
enum sci_status scic_controller_get_phy_handle(
struct scic_sds_controller *controller,
u8 phy_index,
struct scic_sds_phy **phy_handle);
/**
* scic_controller_allocate_io_tag() - This method will allocate a tag from the
* pool of free IO tags. Direct allocation of IO tags by the SCI Core user
* is optional. The scic_controller_start_io() method will allocate an IO
* tag if this method is not utilized and the tag is not supplied to the IO
* construct routine. Direct allocation of IO tags may provide additional
* performance improvements in environments capable of supporting this usage
* model. Additionally, direct allocation of IO tags also provides
* additional flexibility to the SCI Core user. Specifically, the user may
* retain IO tags across the lives of multiple IO requests.
* @controller: the handle to the controller object for which to allocate the
* tag.
*
* IO tags are a protected resource. It is incumbent upon the SCI Core user to
* ensure that each of the methods that may allocate or free available IO tags
* are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). An unsigned integer representing an available IO tag.
* SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
* currently available tags to be allocated. All return other values indicate a
* legitimate tag.
*/
u16 scic_controller_allocate_io_tag(
struct scic_sds_controller *controller);
/**
* scic_controller_free_io_tag() - This method will free an IO tag to the pool
* of free IO tags. This method provides the SCI Core user more flexibility
* with regards to IO tags. The user may desire to keep an IO tag after an
* IO request has completed, because they plan on re-using the tag for a
* subsequent IO request. This method is only legal if the tag was
* allocated via scic_controller_allocate_io_tag().
* @controller: This parameter specifies the handle to the controller object
* for which to free/return the tag.
* @io_tag: This parameter represents the tag to be freed to the pool of
* available tags.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
* Core user, using the scic_controller_allocate_io_tag() method, then it is
* the responsibility of the caller to invoke this method to free the tag. This
* method returns an indication of whether the tag was successfully put back
* (freed) to the pool of available tags. SCI_SUCCESS This return value
* indicates the tag was successfully placed into the pool of available IO
* tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
* is not a valid IO tag value.
*/
enum sci_status scic_controller_free_io_tag(
struct scic_sds_controller *controller,
u16 io_tag);
/**
* scic_controller_set_mode() - This method allows the user to configure the
* SCI core into either a performance mode or a memory savings mode.
* @controller: This parameter represents the handle to the controller object
* for which to update the operating mode.
* @mode: This parameter specifies the new mode for the controller.
*
* Indicate if the user successfully change the operating mode of the
* controller. SCI_SUCCESS The user successfully updated the mode.
*/
enum sci_status scic_controller_set_mode(
struct scic_sds_controller *controller,
enum sci_controller_mode mode);
/**
* scic_controller_set_interrupt_coalescence() - This method allows the user to
* configure the interrupt coalescence.
* @controller: This parameter represents the handle to the controller object
* for which its interrupt coalesce register is overridden.
* @coalesce_number: Used to control the number of entries in the Completion
* Queue before an interrupt is generated. If the number of entries exceed
* this number, an interrupt will be generated. The valid range of the input
* is [0, 256]. A setting of 0 results in coalescing being disabled.
* @coalesce_timeout: Timeout value in microseconds. The valid range of the
* input is [0, 2700000] . A setting of 0 is allowed and results in no
* interrupt coalescing timeout.
*
* Indicate if the user successfully set the interrupt coalesce parameters.
* SCI_SUCCESS The user successfully updated the interrutp coalescence.
* SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
*/
enum sci_status scic_controller_set_interrupt_coalescence(
struct scic_sds_controller *controller,
u32 coalesce_number,
u32 coalesce_timeout);
struct device;
struct scic_sds_controller *scic_controller_alloc(struct device *dev);
#endif /* _SCIC_CONTROLLER_H_ */