blob: 90de737fbc909780581068c82eff4ecfb291b7fb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* FRU (Field-Replaceable Unit) Memory Poison Manager
*
* Copyright (c) 2024, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Authors:
* Naveen Krishna Chatradhi <naveenkrishna.chatradhi@amd.com>
* Muralidhara M K <muralidhara.mk@amd.com>
* Yazen Ghannam <Yazen.Ghannam@amd.com>
*
* Implementation notes, assumptions, and limitations:
*
* - FRU memory poison section and memory poison descriptor definitions are not yet
* included in the UEFI specification. So they are defined here. Afterwards, they
* may be moved to linux/cper.h, if appropriate.
*
* - Platforms based on AMD MI300 systems will be the first to use these structures.
* There are a number of assumptions made here that will need to be generalized
* to support other platforms.
*
* AMD MI300-based platform(s) assumptions:
* - Memory errors are reported through x86 MCA.
* - The entire DRAM row containing a memory error should be retired.
* - There will be (1) FRU memory poison section per CPER.
* - The FRU will be the CPU package (processor socket).
* - The default number of memory poison descriptor entries should be (8).
* - The platform will use ACPI ERST for persistent storage.
* - All FRU records should be saved to persistent storage. Module init will
* fail if any FRU record is not successfully written.
*
* - Boot time memory retirement may occur later than ideal due to dependencies
* on other libraries and drivers. This leaves a gap where bad memory may be
* accessed during early boot stages.
*
* - Enough memory should be pre-allocated for each FRU record to be able to hold
* the expected number of descriptor entries. This, mostly empty, record is
* written to storage during init time. Subsequent writes to the same record
* should allow the Platform to update the stored record in-place. Otherwise,
* if the record is extended, then the Platform may need to perform costly memory
* management operations on the storage. For example, the Platform may spend time
* in Firmware copying and invalidating memory on a relatively slow SPI ROM.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cper.h>
#include <linux/ras.h>
#include <linux/cpu.h>
#include <acpi/apei.h>
#include <asm/cpu_device_id.h>
#include <asm/mce.h>
#include "../debugfs.h"
#include "atl/internal.h"
#define INVALID_CPU UINT_MAX
/* Validation Bits */
#define FMP_VALID_ARCH_TYPE BIT_ULL(0)
#define FMP_VALID_ARCH BIT_ULL(1)
#define FMP_VALID_ID_TYPE BIT_ULL(2)
#define FMP_VALID_ID BIT_ULL(3)
#define FMP_VALID_LIST_ENTRIES BIT_ULL(4)
#define FMP_VALID_LIST BIT_ULL(5)
/* FRU Architecture Types */
#define FMP_ARCH_TYPE_X86_CPUID_1_EAX 0
/* FRU ID Types */
#define FMP_ID_TYPE_X86_PPIN 0
/* FRU Memory Poison Section */
struct cper_sec_fru_mem_poison {
u32 checksum;
u64 validation_bits;
u32 fru_arch_type;
u64 fru_arch;
u32 fru_id_type;
u64 fru_id;
u32 nr_entries;
} __packed;
/* FRU Descriptor ID Types */
#define FPD_HW_ID_TYPE_MCA_IPID 0
/* FRU Descriptor Address Types */
#define FPD_ADDR_TYPE_MCA_ADDR 0
/* Memory Poison Descriptor */
struct cper_fru_poison_desc {
u64 timestamp;
u32 hw_id_type;
u64 hw_id;
u32 addr_type;
u64 addr;
} __packed;
/* Collection of headers and sections for easy pointer use. */
struct fru_rec {
struct cper_record_header hdr;
struct cper_section_descriptor sec_desc;
struct cper_sec_fru_mem_poison fmp;
struct cper_fru_poison_desc entries[];
} __packed;
/*
* Pointers to the complete CPER record of each FRU.
*
* Memory allocation will include padded space for descriptor entries.
*/
static struct fru_rec **fru_records;
/* system physical addresses array */
static u64 *spa_entries;
static struct dentry *fmpm_dfs_dir;
static struct dentry *fmpm_dfs_entries;
#define CPER_CREATOR_FMP \
GUID_INIT(0xcd5c2993, 0xf4b2, 0x41b2, 0xb5, 0xd4, 0xf9, 0xc3, \
0xa0, 0x33, 0x08, 0x75)
#define CPER_SECTION_TYPE_FMP \
GUID_INIT(0x5e4706c1, 0x5356, 0x48c6, 0x93, 0x0b, 0x52, 0xf2, \
0x12, 0x0a, 0x44, 0x58)
/**
* DOC: max_nr_entries (byte)
* Maximum number of descriptor entries possible for each FRU.
*
* Values between '1' and '255' are valid.
* No input or '0' will default to FMPM_DEFAULT_MAX_NR_ENTRIES.
*/
static u8 max_nr_entries;
module_param(max_nr_entries, byte, 0644);
MODULE_PARM_DESC(max_nr_entries,
"Maximum number of memory poison descriptor entries per FRU");
#define FMPM_DEFAULT_MAX_NR_ENTRIES 8
/* Maximum number of FRUs in the system. */
#define FMPM_MAX_NR_FRU 256
static unsigned int max_nr_fru;
/* Total length of record including headers and list of descriptor entries. */
static size_t max_rec_len;
#define FMPM_MAX_REC_LEN (sizeof(struct fru_rec) + (sizeof(struct cper_fru_poison_desc) * 255))
/* Total number of SPA entries across all FRUs. */
static unsigned int spa_nr_entries;
/*
* Protect the local records cache in fru_records and prevent concurrent
* writes to storage. This is only needed after init once notifier block
* registration is done.
*
* The majority of a record is fixed at module init and will not change
* during run time. The entries within a record will be updated as new
* errors are reported. The mutex should be held whenever the entries are
* accessed during run time.
*/
static DEFINE_MUTEX(fmpm_update_mutex);
#define for_each_fru(i, rec) \
for (i = 0; rec = fru_records[i], i < max_nr_fru; i++)
static inline u32 get_fmp_len(struct fru_rec *rec)
{
return rec->sec_desc.section_length - sizeof(struct cper_section_descriptor);
}
static struct fru_rec *get_fru_record(u64 fru_id)
{
struct fru_rec *rec;
unsigned int i;
for_each_fru(i, rec) {
if (rec->fmp.fru_id == fru_id)
return rec;
}
pr_debug("Record not found for FRU 0x%016llx\n", fru_id);
return NULL;
}
/*
* Sum up all bytes within the FRU Memory Poison Section including the Memory
* Poison Descriptor entries.
*
* Don't include the old checksum here. It's a u32 value, so summing each of its
* bytes will give the wrong total.
*/
static u32 do_fmp_checksum(struct cper_sec_fru_mem_poison *fmp, u32 len)
{
u32 checksum = 0;
u8 *buf, *end;
/* Skip old checksum. */
buf = (u8 *)fmp + sizeof(u32);
end = buf + len;
while (buf < end)
checksum += (u8)(*(buf++));
return checksum;
}
static int update_record_on_storage(struct fru_rec *rec)
{
u32 len, checksum;
int ret;
/* Calculate a new checksum. */
len = get_fmp_len(rec);
/* Get the current total. */
checksum = do_fmp_checksum(&rec->fmp, len);
/* Use the complement value. */
rec->fmp.checksum = -checksum;
pr_debug("Writing to storage\n");
ret = erst_write(&rec->hdr);
if (ret) {
pr_warn("Storage update failed for FRU 0x%016llx\n", rec->fmp.fru_id);
if (ret == -ENOSPC)
pr_warn("Not enough space on storage\n");
}
return ret;
}
static bool rec_has_valid_entries(struct fru_rec *rec)
{
if (!(rec->fmp.validation_bits & FMP_VALID_LIST_ENTRIES))
return false;
if (!(rec->fmp.validation_bits & FMP_VALID_LIST))
return false;
return true;
}
static bool fpds_equal(struct cper_fru_poison_desc *old, struct cper_fru_poison_desc *new)
{
/*
* Ignore timestamp field.
* The same physical error may be reported multiple times due to stuck bits, etc.
*
* Also, order the checks from most->least likely to fail to shortcut the code.
*/
if (old->addr != new->addr)
return false;
if (old->hw_id != new->hw_id)
return false;
if (old->addr_type != new->addr_type)
return false;
if (old->hw_id_type != new->hw_id_type)
return false;
return true;
}
static bool rec_has_fpd(struct fru_rec *rec, struct cper_fru_poison_desc *fpd)
{
unsigned int i;
for (i = 0; i < rec->fmp.nr_entries; i++) {
struct cper_fru_poison_desc *fpd_i = &rec->entries[i];
if (fpds_equal(fpd_i, fpd)) {
pr_debug("Found duplicate record\n");
return true;
}
}
return false;
}
static void save_spa(struct fru_rec *rec, unsigned int entry,
u64 addr, u64 id, unsigned int cpu)
{
unsigned int i, fru_idx, spa_entry;
struct atl_err a_err;
unsigned long spa;
if (entry >= max_nr_entries) {
pr_warn_once("FRU descriptor entry %d out-of-bounds (max: %d)\n",
entry, max_nr_entries);
return;
}
/* spa_nr_entries is always multiple of max_nr_entries */
for (i = 0; i < spa_nr_entries; i += max_nr_entries) {
fru_idx = i / max_nr_entries;
if (fru_records[fru_idx] == rec)
break;
}
if (i >= spa_nr_entries) {
pr_warn_once("FRU record %d not found\n", i);
return;
}
spa_entry = i + entry;
if (spa_entry >= spa_nr_entries) {
pr_warn_once("spa_entries[] index out-of-bounds\n");
return;
}
memset(&a_err, 0, sizeof(struct atl_err));
a_err.addr = addr;
a_err.ipid = id;
a_err.cpu = cpu;
spa = amd_convert_umc_mca_addr_to_sys_addr(&a_err);
if (IS_ERR_VALUE(spa)) {
pr_debug("Failed to get system address\n");
return;
}
spa_entries[spa_entry] = spa;
pr_debug("fru_idx: %u, entry: %u, spa_entry: %u, spa: 0x%016llx\n",
fru_idx, entry, spa_entry, spa_entries[spa_entry]);
}
static void update_fru_record(struct fru_rec *rec, struct mce *m)
{
struct cper_sec_fru_mem_poison *fmp = &rec->fmp;
struct cper_fru_poison_desc fpd, *fpd_dest;
u32 entry = 0;
mutex_lock(&fmpm_update_mutex);
memset(&fpd, 0, sizeof(struct cper_fru_poison_desc));
fpd.timestamp = m->time;
fpd.hw_id_type = FPD_HW_ID_TYPE_MCA_IPID;
fpd.hw_id = m->ipid;
fpd.addr_type = FPD_ADDR_TYPE_MCA_ADDR;
fpd.addr = m->addr;
/* This is the first entry, so just save it. */
if (!rec_has_valid_entries(rec))
goto save_fpd;
/* Ignore already recorded errors. */
if (rec_has_fpd(rec, &fpd))
goto out_unlock;
if (rec->fmp.nr_entries >= max_nr_entries) {
pr_warn("Exceeded number of entries for FRU 0x%016llx\n", rec->fmp.fru_id);
goto out_unlock;
}
entry = fmp->nr_entries;
save_fpd:
save_spa(rec, entry, m->addr, m->ipid, m->extcpu);
fpd_dest = &rec->entries[entry];
memcpy(fpd_dest, &fpd, sizeof(struct cper_fru_poison_desc));
fmp->nr_entries = entry + 1;
fmp->validation_bits |= FMP_VALID_LIST_ENTRIES;
fmp->validation_bits |= FMP_VALID_LIST;
pr_debug("Updated FRU 0x%016llx entry #%u\n", fmp->fru_id, entry);
update_record_on_storage(rec);
out_unlock:
mutex_unlock(&fmpm_update_mutex);
}
static void retire_dram_row(u64 addr, u64 id, u32 cpu)
{
struct atl_err a_err;
memset(&a_err, 0, sizeof(struct atl_err));
a_err.addr = addr;
a_err.ipid = id;
a_err.cpu = cpu;
amd_retire_dram_row(&a_err);
}
static int fru_handle_mem_poison(struct notifier_block *nb, unsigned long val, void *data)
{
struct mce *m = (struct mce *)data;
struct fru_rec *rec;
if (!mce_is_memory_error(m))
return NOTIFY_DONE;
retire_dram_row(m->addr, m->ipid, m->extcpu);
/*
* An invalid FRU ID should not happen on real errors. But it
* could happen from software error injection, etc.
*/
rec = get_fru_record(m->ppin);
if (!rec)
return NOTIFY_DONE;
update_fru_record(rec, m);
return NOTIFY_OK;
}
static struct notifier_block fru_mem_poison_nb = {
.notifier_call = fru_handle_mem_poison,
.priority = MCE_PRIO_LOWEST,
};
static void retire_mem_fmp(struct fru_rec *rec)
{
struct cper_sec_fru_mem_poison *fmp = &rec->fmp;
unsigned int i, cpu;
for (i = 0; i < fmp->nr_entries; i++) {
struct cper_fru_poison_desc *fpd = &rec->entries[i];
unsigned int err_cpu = INVALID_CPU;
if (fpd->hw_id_type != FPD_HW_ID_TYPE_MCA_IPID)
continue;
if (fpd->addr_type != FPD_ADDR_TYPE_MCA_ADDR)
continue;
cpus_read_lock();
for_each_online_cpu(cpu) {
if (topology_ppin(cpu) == fmp->fru_id) {
err_cpu = cpu;
break;
}
}
cpus_read_unlock();
if (err_cpu == INVALID_CPU)
continue;
retire_dram_row(fpd->addr, fpd->hw_id, err_cpu);
save_spa(rec, i, fpd->addr, fpd->hw_id, err_cpu);
}
}
static void retire_mem_records(void)
{
struct fru_rec *rec;
unsigned int i;
for_each_fru(i, rec) {
if (!rec_has_valid_entries(rec))
continue;
retire_mem_fmp(rec);
}
}
/* Set the CPER Record Header and CPER Section Descriptor fields. */
static void set_rec_fields(struct fru_rec *rec)
{
struct cper_section_descriptor *sec_desc = &rec->sec_desc;
struct cper_record_header *hdr = &rec->hdr;
/*
* This is a saved record created with fewer max_nr_entries.
* Update the record lengths and keep everything else as-is.
*/
if (hdr->record_length && hdr->record_length < max_rec_len) {
pr_debug("Growing record 0x%016llx from %u to %zu bytes\n",
hdr->record_id, hdr->record_length, max_rec_len);
goto update_lengths;
}
memcpy(hdr->signature, CPER_SIG_RECORD, CPER_SIG_SIZE);
hdr->revision = CPER_RECORD_REV;
hdr->signature_end = CPER_SIG_END;
/*
* Currently, it is assumed that there is one FRU Memory Poison
* section per CPER. But this may change for other implementations.
*/
hdr->section_count = 1;
/* The logged errors are recoverable. Otherwise, they'd never make it here. */
hdr->error_severity = CPER_SEV_RECOVERABLE;
hdr->validation_bits = 0;
hdr->creator_id = CPER_CREATOR_FMP;
hdr->notification_type = CPER_NOTIFY_MCE;
hdr->record_id = cper_next_record_id();
hdr->flags = CPER_HW_ERROR_FLAGS_PREVERR;
sec_desc->section_offset = sizeof(struct cper_record_header);
sec_desc->revision = CPER_SEC_REV;
sec_desc->validation_bits = 0;
sec_desc->flags = CPER_SEC_PRIMARY;
sec_desc->section_type = CPER_SECTION_TYPE_FMP;
sec_desc->section_severity = CPER_SEV_RECOVERABLE;
update_lengths:
hdr->record_length = max_rec_len;
sec_desc->section_length = max_rec_len - sizeof(struct cper_record_header);
}
static int save_new_records(void)
{
DECLARE_BITMAP(new_records, FMPM_MAX_NR_FRU);
struct fru_rec *rec;
unsigned int i;
int ret = 0;
for_each_fru(i, rec) {
/* No need to update saved records that match the current record size. */
if (rec->hdr.record_length == max_rec_len)
continue;
if (!rec->hdr.record_length)
set_bit(i, new_records);
set_rec_fields(rec);
ret = update_record_on_storage(rec);
if (ret)
goto out_clear;
}
return ret;
out_clear:
for_each_fru(i, rec) {
if (!test_bit(i, new_records))
continue;
erst_clear(rec->hdr.record_id);
}
return ret;
}
/* Check that the record matches expected types for the current system.*/
static bool fmp_is_usable(struct fru_rec *rec)
{
struct cper_sec_fru_mem_poison *fmp = &rec->fmp;
u64 cpuid;
pr_debug("Validation bits: 0x%016llx\n", fmp->validation_bits);
if (!(fmp->validation_bits & FMP_VALID_ARCH_TYPE)) {
pr_debug("Arch type unknown\n");
return false;
}
if (fmp->fru_arch_type != FMP_ARCH_TYPE_X86_CPUID_1_EAX) {
pr_debug("Arch type not 'x86 Family/Model/Stepping'\n");
return false;
}
if (!(fmp->validation_bits & FMP_VALID_ARCH)) {
pr_debug("Arch value unknown\n");
return false;
}
cpuid = cpuid_eax(1);
if (fmp->fru_arch != cpuid) {
pr_debug("Arch value mismatch: record = 0x%016llx, system = 0x%016llx\n",
fmp->fru_arch, cpuid);
return false;
}
if (!(fmp->validation_bits & FMP_VALID_ID_TYPE)) {
pr_debug("FRU ID type unknown\n");
return false;
}
if (fmp->fru_id_type != FMP_ID_TYPE_X86_PPIN) {
pr_debug("FRU ID type is not 'x86 PPIN'\n");
return false;
}
if (!(fmp->validation_bits & FMP_VALID_ID)) {
pr_debug("FRU ID value unknown\n");
return false;
}
return true;
}
static bool fmp_is_valid(struct fru_rec *rec)
{
struct cper_sec_fru_mem_poison *fmp = &rec->fmp;
u32 checksum, len;
len = get_fmp_len(rec);
if (len < sizeof(struct cper_sec_fru_mem_poison)) {
pr_debug("fmp length is too small\n");
return false;
}
/* Checksum must sum to zero for the entire section. */
checksum = do_fmp_checksum(fmp, len) + fmp->checksum;
if (checksum) {
pr_debug("fmp checksum failed: sum = 0x%x\n", checksum);
print_hex_dump_debug("fmp record: ", DUMP_PREFIX_NONE, 16, 1, fmp, len, false);
return false;
}
if (!fmp_is_usable(rec))
return false;
return true;
}
static struct fru_rec *get_valid_record(struct fru_rec *old)
{
struct fru_rec *new;
if (!fmp_is_valid(old)) {
pr_debug("Ignoring invalid record\n");
return NULL;
}
new = get_fru_record(old->fmp.fru_id);
if (!new)
pr_debug("Ignoring record for absent FRU\n");
return new;
}
/*
* Fetch saved records from persistent storage.
*
* For each found record:
* - If it was not created by this module, then ignore it.
* - If it is valid, then copy its data to the local cache.
* - If it is not valid, then erase it.
*/
static int get_saved_records(void)
{
struct fru_rec *old, *new;
u64 record_id;
int ret, pos;
ssize_t len;
old = kmalloc(FMPM_MAX_REC_LEN, GFP_KERNEL);
if (!old) {
ret = -ENOMEM;
goto out;
}
ret = erst_get_record_id_begin(&pos);
if (ret < 0)
goto out_end;
while (!erst_get_record_id_next(&pos, &record_id)) {
if (record_id == APEI_ERST_INVALID_RECORD_ID)
goto out_end;
/*
* Make sure to clear temporary buffer between reads to avoid
* leftover data from records of various sizes.
*/
memset(old, 0, FMPM_MAX_REC_LEN);
len = erst_read_record(record_id, &old->hdr, FMPM_MAX_REC_LEN,
sizeof(struct fru_rec), &CPER_CREATOR_FMP);
if (len < 0)
continue;
new = get_valid_record(old);
if (!new) {
erst_clear(record_id);
continue;
}
if (len > max_rec_len) {
unsigned int saved_nr_entries;
saved_nr_entries = len - sizeof(struct fru_rec);
saved_nr_entries /= sizeof(struct cper_fru_poison_desc);
pr_warn("Saved record found with %u entries.\n", saved_nr_entries);
pr_warn("Please increase max_nr_entries to %u.\n", saved_nr_entries);
ret = -EINVAL;
goto out_end;
}
/* Restore the record */
memcpy(new, old, len);
}
out_end:
erst_get_record_id_end();
kfree(old);
out:
return ret;
}
static void set_fmp_fields(struct fru_rec *rec, unsigned int cpu)
{
struct cper_sec_fru_mem_poison *fmp = &rec->fmp;
fmp->fru_arch_type = FMP_ARCH_TYPE_X86_CPUID_1_EAX;
fmp->validation_bits |= FMP_VALID_ARCH_TYPE;
/* Assume all CPUs in the system have the same value for now. */
fmp->fru_arch = cpuid_eax(1);
fmp->validation_bits |= FMP_VALID_ARCH;
fmp->fru_id_type = FMP_ID_TYPE_X86_PPIN;
fmp->validation_bits |= FMP_VALID_ID_TYPE;
fmp->fru_id = topology_ppin(cpu);
fmp->validation_bits |= FMP_VALID_ID;
}
static int init_fmps(void)
{
struct fru_rec *rec;
unsigned int i, cpu;
int ret = 0;
for_each_fru(i, rec) {
unsigned int fru_cpu = INVALID_CPU;
cpus_read_lock();
for_each_online_cpu(cpu) {
if (topology_physical_package_id(cpu) == i) {
fru_cpu = cpu;
break;
}
}
cpus_read_unlock();
if (fru_cpu == INVALID_CPU) {
pr_debug("Failed to find matching CPU for FRU #%u\n", i);
ret = -ENODEV;
break;
}
set_fmp_fields(rec, fru_cpu);
}
return ret;
}
static int get_system_info(void)
{
/* Only load on MI300A systems for now. */
if (!(boot_cpu_data.x86_model >= 0x90 &&
boot_cpu_data.x86_model <= 0x9f))
return -ENODEV;
if (!cpu_feature_enabled(X86_FEATURE_AMD_PPIN)) {
pr_debug("PPIN feature not available\n");
return -ENODEV;
}
/* Use CPU socket as FRU for MI300 systems. */
max_nr_fru = topology_max_packages();
if (!max_nr_fru)
return -ENODEV;
if (max_nr_fru > FMPM_MAX_NR_FRU) {
pr_warn("Too many FRUs to manage: found: %u, max: %u\n",
max_nr_fru, FMPM_MAX_NR_FRU);
return -ENODEV;
}
if (!max_nr_entries)
max_nr_entries = FMPM_DEFAULT_MAX_NR_ENTRIES;
spa_nr_entries = max_nr_fru * max_nr_entries;
max_rec_len = sizeof(struct fru_rec);
max_rec_len += sizeof(struct cper_fru_poison_desc) * max_nr_entries;
pr_info("max FRUs: %u, max entries: %u, max record length: %lu\n",
max_nr_fru, max_nr_entries, max_rec_len);
return 0;
}
static void free_records(void)
{
struct fru_rec *rec;
int i;
for_each_fru(i, rec)
kfree(rec);
kfree(fru_records);
kfree(spa_entries);
}
static int allocate_records(void)
{
int i, ret = 0;
fru_records = kcalloc(max_nr_fru, sizeof(struct fru_rec *), GFP_KERNEL);
if (!fru_records) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < max_nr_fru; i++) {
fru_records[i] = kzalloc(max_rec_len, GFP_KERNEL);
if (!fru_records[i]) {
ret = -ENOMEM;
goto out_free;
}
}
spa_entries = kcalloc(spa_nr_entries, sizeof(u64), GFP_KERNEL);
if (!spa_entries) {
ret = -ENOMEM;
goto out_free;
}
for (i = 0; i < spa_nr_entries; i++)
spa_entries[i] = INVALID_SPA;
return ret;
out_free:
while (--i >= 0)
kfree(fru_records[i]);
kfree(fru_records);
out:
return ret;
}
static void *fmpm_start(struct seq_file *f, loff_t *pos)
{
if (*pos >= (spa_nr_entries + 1))
return NULL;
return pos;
}
static void *fmpm_next(struct seq_file *f, void *data, loff_t *pos)
{
if (++(*pos) >= (spa_nr_entries + 1))
return NULL;
return pos;
}
static void fmpm_stop(struct seq_file *f, void *data)
{
}
#define SHORT_WIDTH 8
#define U64_WIDTH 18
#define TIMESTAMP_WIDTH 19
#define LONG_WIDTH 24
#define U64_PAD (LONG_WIDTH - U64_WIDTH)
#define TS_PAD (LONG_WIDTH - TIMESTAMP_WIDTH)
static int fmpm_show(struct seq_file *f, void *data)
{
unsigned int fru_idx, entry, spa_entry, line;
struct cper_fru_poison_desc *fpd;
struct fru_rec *rec;
line = *(loff_t *)data;
if (line == 0) {
seq_printf(f, "%-*s", SHORT_WIDTH, "fru_idx");
seq_printf(f, "%-*s", LONG_WIDTH, "fru_id");
seq_printf(f, "%-*s", SHORT_WIDTH, "entry");
seq_printf(f, "%-*s", LONG_WIDTH, "timestamp");
seq_printf(f, "%-*s", LONG_WIDTH, "hw_id");
seq_printf(f, "%-*s", LONG_WIDTH, "addr");
seq_printf(f, "%-*s", LONG_WIDTH, "spa");
goto out_newline;
}
spa_entry = line - 1;
fru_idx = spa_entry / max_nr_entries;
entry = spa_entry % max_nr_entries;
rec = fru_records[fru_idx];
if (!rec)
goto out;
seq_printf(f, "%-*u", SHORT_WIDTH, fru_idx);
seq_printf(f, "0x%016llx%-*s", rec->fmp.fru_id, U64_PAD, "");
seq_printf(f, "%-*u", SHORT_WIDTH, entry);
mutex_lock(&fmpm_update_mutex);
if (entry >= rec->fmp.nr_entries) {
seq_printf(f, "%-*s", LONG_WIDTH, "*");
seq_printf(f, "%-*s", LONG_WIDTH, "*");
seq_printf(f, "%-*s", LONG_WIDTH, "*");
seq_printf(f, "%-*s", LONG_WIDTH, "*");
goto out_unlock;
}
fpd = &rec->entries[entry];
seq_printf(f, "%ptT%-*s", &fpd->timestamp, TS_PAD, "");
seq_printf(f, "0x%016llx%-*s", fpd->hw_id, U64_PAD, "");
seq_printf(f, "0x%016llx%-*s", fpd->addr, U64_PAD, "");
if (spa_entries[spa_entry] == INVALID_SPA)
seq_printf(f, "%-*s", LONG_WIDTH, "*");
else
seq_printf(f, "0x%016llx%-*s", spa_entries[spa_entry], U64_PAD, "");
out_unlock:
mutex_unlock(&fmpm_update_mutex);
out_newline:
seq_putc(f, '\n');
out:
return 0;
}
static const struct seq_operations fmpm_seq_ops = {
.start = fmpm_start,
.next = fmpm_next,
.stop = fmpm_stop,
.show = fmpm_show,
};
static int fmpm_open(struct inode *inode, struct file *file)
{
return seq_open(file, &fmpm_seq_ops);
}
static const struct file_operations fmpm_fops = {
.open = fmpm_open,
.release = seq_release,
.read = seq_read,
.llseek = seq_lseek,
};
static void setup_debugfs(void)
{
struct dentry *dfs = ras_get_debugfs_root();
if (!dfs)
return;
fmpm_dfs_dir = debugfs_create_dir("fmpm", dfs);
if (!fmpm_dfs_dir)
return;
fmpm_dfs_entries = debugfs_create_file("entries", 0400, fmpm_dfs_dir, NULL, &fmpm_fops);
if (!fmpm_dfs_entries)
debugfs_remove(fmpm_dfs_dir);
}
static const struct x86_cpu_id fmpm_cpuids[] = {
X86_MATCH_VENDOR_FAM(AMD, 0x19, NULL),
{ }
};
MODULE_DEVICE_TABLE(x86cpu, fmpm_cpuids);
static int __init fru_mem_poison_init(void)
{
int ret;
if (!x86_match_cpu(fmpm_cpuids)) {
ret = -ENODEV;
goto out;
}
if (erst_disable) {
pr_debug("ERST not available\n");
ret = -ENODEV;
goto out;
}
ret = get_system_info();
if (ret)
goto out;
ret = allocate_records();
if (ret)
goto out;
ret = init_fmps();
if (ret)
goto out_free;
ret = get_saved_records();
if (ret)
goto out_free;
ret = save_new_records();
if (ret)
goto out_free;
setup_debugfs();
retire_mem_records();
mce_register_decode_chain(&fru_mem_poison_nb);
pr_info("FRU Memory Poison Manager initialized\n");
return 0;
out_free:
free_records();
out:
return ret;
}
static void __exit fru_mem_poison_exit(void)
{
mce_unregister_decode_chain(&fru_mem_poison_nb);
debugfs_remove(fmpm_dfs_dir);
free_records();
}
module_init(fru_mem_poison_init);
module_exit(fru_mem_poison_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FRU Memory Poison Manager");